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Abstract 

Several biotic crises during the past 300 million years have been linked to episodes of 

continental flood basalt volcanism, and in particular to the release of massive quantities of 

magmatic sulphur gas species. Flood basalt provinces were typically formed by numerous 

individual eruptions, each lasting years to decades. However, the environmental impact of 

these eruptions may have been limited by the occurrence of quiescent periods that lasted 

hundreds to thousands of years. Here we use a global aerosol model to quantify the 

sulphur-induced environmental effects of individual, decade-long flood basalt eruptions 

representative of the Columbia River Basalt Group, 16.5–14.5 million years ago, and the 

Deccan Traps, 65 million years ago. For a decade-long eruption of Deccan scale, we 

calculate a decadal-mean reduction in global surface temperature of 4.5 K, which would 

recover within 50 years after an eruption ceased unless climate feedbacks were very 

di_erent in deep-time climates. Acid mists and fogs could have caused immediate damage to 

vegetation in some regions, but acid-sensitive land and marine ecosystems were well-

bu_ered against volcanic sulphur deposition effects even during century-long eruptions. We 

conclude that magmatic sulphur from flood basalt eruptions would have caused a biotic 

crisis only if eruption frequencies and lava discharge rates had been high and sustained for 

several centuries at a time.  

  



 

Main Text  

A CFB province producing total magma volumes of 0.1-4.0 million km3 is typically 

formed by hundreds to thousands of individual and volumetrically large (on the order of 

1000 km3) eruptions, each separated by highly uncertain hiatus periods with the overall 

emplacement taking place on a timescale of 100,000s of years10,11. These eruptions far exceed 

even the largest historic eruptions in terms of lava volume, duration and amount of gases emitted 

into the atmosphere6-8. Intriguingly, the timing of the emplacement of four out of five CFB 

provinces in the last 300 Myr coincides with periods of high extinction rates of species1,2,4, 

leading to a suggestion of a causal link1-4,7,10. Yet after more than four decades of research this 

hypothesis remains equivocal and contested3,12.   

 

It is well known from observations of historic eruptions that emissions of magmatic sulfur 

dioxide (SO2) and its oxidation products, such as sulfuric acid aerosol, are the main agents able 

to induce profound climatic and environmental change13,14. Consequently, climatic cooling and 

environmental acidification due to the emission and deposition of large quantities of magmatic 

sulfur are the two most commonly proposed causal agents causing global biotic crises during 

periods of CFB volcanism3,5. However, no previous study took into account the buffering 

capacities of soils and other environments when assessing the effects of acid rain, hence this 

causal link remains elusive and unquantified. Similarly, previous studies either relied on 

extrapolations of the surface cooling caused by explosive volcanism3,5, or used simple 

relationships between the mass of sulfuric acid aerosol particles generated from SO2 and its 

cooling effects6. Both approaches do not account for two key factors that may reduce the aerosol-

induced cooling: limited oxidant availability, which affects SO2 conversion to acidic aerosol, and 

particle growth to large sizes, which reduces the particle light-scattering efficiency and shortens 

particle lifetime in the atmosphere due to sedimentation of particles. While the relative 

importance of these processes has been quantified for short-lived explosive eruptions15-17, this is 

not the case for CFB eruptions, which differ fundamentally in terms of eruption style, and height 

and duration of SO2 emissions (Extended Data Figure 1).  

 

To constrain the environmental effects and consequences for habitability induced by 



magmatic sulfur emissions from individual decade- to century-long CFB eruptions we use 

numerical models including a global aerosol model, GLOMAP18, a soil and freshwater 

acidification model, MAGIC19, and an Earth system model, GENIE20 (Online Methods). Our 

model experiments are based on the well-constrained 14.7 Ma (mid-Miocene) Roza eruption 

emplaced in the youngest CFB province on Earth, the Columbia River Basalt Group, and 

individual eruptions from the 65 Ma Deccan Traps, which coincided with the Cretaceous-

Paleogene (K-Pg) mass extinction. The Roza eruption produced a total volume of 1300 km3 and 

is the only individual CFB eruption with a constraint on both duration and emission fluxes of 

about 1200 Tg of SO2 per annum for a decade or two6. Magma volumes in excess of 1000 km3 

for individual eruptions in the Deccan Traps have been proposed8, but individual eruption 

durations are unknown. Plume rise modeling for basaltic fissure eruptions suggests gas emissions 

to altitudes of 9-13 km21,22, corresponding to the upper troposphere or lower stratosphere 

depending on latitude. We simulate a ‘Roza-scale’ eruption by emitting 1200 Tg of SO2 per year 

at 9-13 km altitude at 120°W, 45°N, and a ‘Deccan-scale’ eruption by emitting 2400 Tg of SO2 

per year at 135°E, 21°S. The latter is considered an upper bound for the SO2 emitted by 

individual CFB-scale eruptions, assuming either greater mean lava discharge rates or that more 

than one flow field was active at any one time (Online Methods, Extended Data Table 1).  

 

We find that the net climate effect of magmatic sulfur emitted by individual CFB 

eruptions is to reduce surface temperatures (Figure 1), resulting from the combined effects of 

acidic aerosol particles and SO2. The increase in the former exerts a negative radiative forcing, 

cooling the climate via both aerosol direct and indirect forcing (the latter due to changes in cloud 

reflectance caused by changes in cloud droplet concentrations). By contrast, any unoxidized SO2 

acts as a greenhouse gas and absorbs ultraviolet radiation, which warms the climate (positive 

forcing). We show that the relationship between the amount of SO2 emitted and the magnitude of 

these two opposing climate forcings is highly non-linear. For example, a 20-fold increase in SO2 

release leads to less than a 6-fold increase in negative forcing (Extended Data Table 4). In our 

model, this non-linearity is caused by the combination of limited aerosol production and 

differences in particle growth with increasing SO2 emissions, but also the striking saturation of 

the aerosol indirect forcing, and the offset of the negative aerosol forcings by the positive forcing 

from SO2 (Extended Data Table 4). For instance, we find that for a Roza-scale eruption only 60% 



of the emitted SO2 eventually forms volcanic aerosol (~1490 Tg of sulfuric acid aerosol per year) 

because of the sustained depletion of atmospheric oxidants in our model, in particular the 

hydroxyl radical, OH (Extended Data Table 2). The saturation of the indirect forcing is caused by 

increasing aerosol concentrations, effectively decreasing the sensitivity of cloud reflectance to 

changes in aerosol loading18. A previous study on explosive super-eruptions also suggested that 

the positive greenhouse gas forcing from volcanic SO2 may offset the aerosol cooling16. 

However, the forcing by SO2 is not normally considered in climate model simulations of volcanic 

eruptions or their geo-engineering analogues. Yet we show that for a Deccan-scale eruption the 

SO2 forcing (+1.4 W m-2) offsets about 8% of the global mean aerosol forcing (-17.6 W m-2; 

Extended Data Table 4). 

 

Our simulations show that the frequency and duration of individual CFB eruptions as well 

as hiatus periods strongly affect the severity and longevity of the climatic effects. For a proposed 

individual eruption duration of a decade6, the peak global mean surface temperature reduction is 

6.6 K (90% confidence interval of -7.7 K to -5.7 K) by the end of year 10 for a Deccan-scale 

eruption (Figure 1 and Online Methods). For context, simulations of the 74 ka Toba eruption 

suggest peak global mean temperature changes of between -3.5 K and -10 K17,23. Assuming 

present-day, century-scale climate feedbacks and ignoring potential carbon-cycle feedbacks, the 

mean temperature changes during the first decade are also substantial: -3.0 K for a Roza-scale 

eruption and -4.5 K for a Deccan-scale eruption. However, the cooling from decade-long 

eruptions is short-lived and could have been sustained only if eruptions occurred in quick 

succession without hiatuses longer than a decade, or if an individual eruption lasted far longer 

than 150 years so that temperature changes reach equilibrium (Figure 1). Our estimates are at the 

lower end of previous estimates of global mean surface temperature reductions for 14.7 Ma 

Roza6. For the K-Pg, the survival of ectothermic tetrapods at mid-latitudes (but not at high-

latitudes and with the exception of lizards)12, supports our findings of surface temperatures 

potentially dropping and fluctuating significantly on decadal timescales, which are, however, by 

no means ‘catastrophic’. 

 

Markedly, we find that the chemical and microphysical processes controlling the 

magnitude of climatic impacts differ fundamentally between CFB and explosive eruptions due to 



their differences in eruption style (Extended Data Figure 1). In our simulations, a sustained 

release of SO2 into the upper troposphere/lower stratosphere during a CFB eruption provides a 

sustained source of sulfuric acid vapour, albeit limited by oxidant availability. The sulfuric acid 

nucleates to form many tiny particles less than 10 nm in diameter, which grow by condensation 

and coagulation to diameters of between 0.3 to 0.8 µm, depending on eruption scale. Further 

growth is limited because the high removal rates in the troposphere limit the particle lifetimes to 

about two weeks (Extended Data Table 2). Conversely, for large explosive eruptions that inject 

SO2 into the stratosphere, particles typically have time to grow to diameters much larger than 

0.8 µm15,17 due to differences in atmospheric circulation that result in slow removal rates in the 

stratosphere.  Importantly, at particle diameters between 0.4 µm and 0.8 µm sulfuric acid aerosol 

particles scatter more incoming solar radiation back to space than at larger sizes and particle 

removal via gravitational settling is insignificant. Bearing in mind that the temperature changes 

induced by CFB eruptions are limited, we find that, the aerosol optical depth (AOD, a 

dimensionless measure of the degree to which the transmission of light is reduced due to 

absorption and scattering by aerosol particles) and therefore climate are perturbed more 

efficiently for CFB eruptions, even though the generated aerosol burden per unit mass of SO2 

emitted is lower than for explosive eruptions (Extended Data Table 3).  

 

Environmental acidification can affect ecosystems either through direct exposure to 

acidic species, or indirectly through the acidification of soils and stream waters. Acidification has 

been suggested to have contributed to the K-Pg mass extinction3,5,24 and the end-Permian mass 

extinction at 252 Ma9. We can use modern understanding of acidification mechanisms and 

damage thresholds for ecosystems to evaluate the probability of damage to sensitive soils, 

vegetation and waters in the past. Acidification mechanisms are encapsulated in the widely-used 

MAGIC model25 and damage thresholds are represented by the deposition and concentration 

standards (critical loads and critical levels) used in European policymaking26-28. Ecosystems with 

an average acid sensitivity have a critical load of 1 kmolc ha-1 a-1, assuming this load is exceeded 

for at least a century27. For both eruption scenarios, this critical load is exceeded in an area of 

about 30 degrees latitude relative to the eruption site with peak zonal-mean loads of 

5.5 kmolc ha-1 a-1 for the Deccan-scale eruption (Figure 2a). At first sight this suggests that soil 

acidification would be intense and widespread, but detailed modelling using MAGIC25 shows 



that such high deposition rates would have had to be maintained continuously for centuries to 

cause significant acidification and damage in most cases (Table 1 and Online Methods). 

Therefore, we conclude that soil acidification due to volcanic sulfur deposition cannot directly 

explain global-scale mass extinction events, which is in contrast to previous studies that 

neglected the acid buffering capacities of soils and other environments3,5,9. In detail, sulfur 

deposition leads to a set of acidification responses: the soil base saturation and the ratio of Ca2+ 

to Al in the soil solution decline, stream pH drops and toxic inorganic monomeric aluminum 

(Al3+) concentrations increase. These changes were used as acidification criteria and quantified in 

Table 1 for different deposition magnitudes (based on Figure 2a) and durations (Online 

Methods). We find that an acid-sensitive podzol, which we considered a representative sensitive 

soil type for the mid-Miocene and Late Cretaceous, can tolerate several centuries of continued 

deposition rates of 3 kmolc ha-1 a-1. Although for continued deposition rates of 5 kmolc ha-1 a-1 the 

ratio of Ca2+ to Al in the soil solution drops below the threshold at which damage may occur after 

century-long deposition, the recovery is rapid, occurring within decades once volcanic activity 

has ceased. Only for extreme soil types, such as the acid-sensitive, weathered oxisol, is soil-

mediated ecosystem damage possible. These soils were, however, not distributed widely enough 

during the Late Cretaceous to allow for global mass extinctions. 

 

Acidification of stream waters to a degree that acute effects on fish and amphibians 

occur29 only takes place for the shallow oxisol after almost 60 years of continued deposition rates 

of 3 kmolc ha-1 a-1 (reaching an equilibrium pH of 3.94) and for the 1-m deep podzol after almost 

200 years of deposition rates of 5 kmolc ha-1 a-1 (reaching an equilibrium pH of 3.95) (Table 1 

and Extended Data Figure 2). Figure 2a shows that these effects would be limited spatially and 

by the soil type. Our results are generally supported by the vertebrate fossil record and survival 

patterns of pH-sensitive species such as alligators, turtles and frogs, which experienced only 

small reductions in their numbers at the K-Pg12,30, constraining the pH of freshwaters to not less 

than four29 (Table 1).  

 

The impact of sulfur deposition on seawater chemistry and ‘ocean acidification’ from 

decade-long volcanic eruptions is also negligible (Online Methods). At Deccan-scale rates, we 

calculate that volcanic sulfur deposition would have needed to proceed continuously for almost 



three millennia to drive a surface ocean pH decline comparable to the current anthropogenic 

perturbation of ~0.1 pH units (Extended Data Table 5). 

 

Although for the Deccan-scale scenario peak SO2 ground-level concentrations are 

comparable to those experienced in the 1970s in Europe due to anthropogenic pollution, critical 

levels29 for ground-level SO2 are not exceeded on a scale sufficient to cause global-scale foliar 

damage (Online Methods). However, ground-level SO2 concentrations strongly depend on the 

injection height of volcanic SO2. Our model simulations suggest that the direct effects of acid 

mists and fogs on vegetation26,27 may have caused the most lethal and immediate damage to 

vegetation, with 44% of the land area above the critical level in the Deccan-scale scenario 

(Online Methods). The fact that there is no soil intermediary or long-term exposure requirement 

and that the acidity of mists is likely much greater than that of rainfall makes this a potent 

mechanism where cloud-water is intercepted26 (Figure 2b). In the present-day climate, the 

interception of cloud-water by the surface is mostly restricted to upland areas, and the presence 

of neutralizing species in the cloud-water (such as calcium or ammonia) can reduce the effects. 

Therefore, persistent and widespread damage from acid mists in deep times seems possible only 

if the cloud distribution or amount were much greater than at present.  

 

Our results demonstrate that environmental acidification due to magmatic sulfur 

emissions is unlikely to have directly caused catastrophic global-scale extinctions. Further 

increases in acidity and toxicity could be caused by magmatic halogen emissions, however, 

model simulations of pulsed eruptions in the 250 Ma Siberian Traps9 suggest that their effects are 

localized. Even when assuming that magmatic HCl is dispersed and deposited like SO2, our 

calculated acid deposition rates would increase by 30-50% only (using a very high SO2 to HCl 

ratio8 of 1:0.29; Online Methods). Cases for severe environmental acidification have been made 

for CFB provinces where non-magmatic halogen emissions play a role9,31, but this is not relevant 

for the Deccan Traps or for 14.7 Ma Roza.  

 

Our model simulations show that the climatic effects of episodic magmatic sulfur 

emissions could have been large enough to impair habitability only if individual eruption 

frequencies and lava discharge rates were high and sustained for centuries or longer without 



hiatuses. Such a longevity and intensity of individual eruptions, and hence cooling of climate, has 

not been demonstrated convincingly for any CFB province emplaced during the Phanerozoic. In 

fact, if individual CFB eruptions lasted for centuries or longer, then the mean magmatic gas 

release rate may have been lower32, resulting in lower eruption column heights22 and lower acid 

deposition rates. This in turn would suggest a reduced effect from magmatic sulfur on climate 

and spatially even more confined, and perhaps, subdued environmental effects. In future, the 

effects of other volcanic and non-volcanic stressors such as ozone depletion resulting from the 

emissions of halogenated species9 ought to be quantified in concert with the sulfur-induced 

effects.  



Figures (main text) 

 

 

 

Figure 1. Global mean surface temperature change and its dependence on eruption 

duration and emission magnitude. (a) for a Roza-scale eruption emitting 1,200 Tg of SO2 per 

year at 45°N and (b) for a Deccan-scale eruption emitting 2,400 Tg of SO2 per year at 21°S. The 

eruption duration and hiatuses considered for each case are indicated by the colored bars (grey = 

10 years of continuous eruption; blue = 10 years of continuous eruption followed by a 10-year 

hiatus followed by another 10 years of continuous eruption; and orange = 50 years of continuous 

eruption). The shading refers to uncertainty in surface temperature change based on 90% 

uncertainty range of the climate feedback parameter (Online Methods). The equilibrium 

temperature change including the 90% confidence interval is in the top-right corners and would 

require continuous SO2 emissions for more than 150 years.  



 

Figure 2. Annual latitudinal-mean volcanic acid deposition rates and acid mist 

concentrations for CFB-scale eruptions compared with standards to protect soils, 

vegetation and waters from the effects of acid deposition (‘critical loads’) and direct 

exposure to pollutants (‘critical levels’)29. (a) Critical loads [kmolc ha-1 a-1] for a Roza-scale 

eruption at 45°N (blue line), a Deccan-scale eruption at 21°S (gray line) and a model simulation 

with only year 2000 anthropogenic emissions for context (dashed black line). (b) Critical levels 

[µg(S) m-3] of acid mist concentrations for the same model experiments. The critical level of 

1 µg(S) m-3 at which immediate damage to vegetation occurs if low-level clouds are intercepted26 

is exceeded on hemispheric scales for both eruption scenarios, making this a lethal mechanism to 

cause vegetation damage in some but not all parts of the world.   



Table (main text) 

 

Table 1. Indirect effects of volcanic sulfur deposition on soils and streams including damage 

threshold exceedances, timescales to reach equilibrium and recovery timescales. Orange 

shading indicates that thresholds to protect ecosystems are exceeded to a degree that harmful 

effects may occur. Green shading indicates the there are no threshold exceedances. The effects 
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are explored for a range of different soil parameters and soil types with initial values of soil and 

water variables shown in the second column. If deposition is continued indefinitely, these 

variables reach a new equilibrium., For instance, the initial base saturation (BS) for the podzol is 

12.4%. At deposition rates of 3 kmolc ha-1 a-1, the equilibrium BS (Eq. BS) is 6.2%, taking 1621 

years to reach this value, which is still above the damage threshold29. If deposition rates are then 

reduced to background values, recovery takes 2430 years. A calcium (Ca2+) to aluminum (Al) 

ratio of less than 1 puts forest vegetation at risk of reduced growth, freezing injuries and 

dysfunction of fine roots29, which for the podzols is only exceeded for deposition rates of 5 kmolc 

ha-1 a-1 applied for a century or longer, and recovery timescales are comparatively fast. For 

stream waters, an equilibrium pH below 5.0 can affect sensitive freshwater species such as 

molluscs, and acute effects on fish and amphibians occur at pH below 4. If toxic inorganic 

monomeric aluminum (Al3+) concentrations exceed 100 µeq L-1 harmful effects on freshwater 

fish and other species occur if the pH drops below 4.5 (increasing the solubility of Al3+).    
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