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Abstract

Observations and climate models suggest significant decadal variability within the North

Atlantic subpolar gyre (NA SPG), though observations are sparse and models disagree on

the details of this variability. Therefore, it is importantto understand 1) the mechanisms

of simulated decadal variability, 2) which parts of simulated variability are more faithful

representations of reality, and 3) the implications for climate predictions.

Here, we investigate the decadal variability in the NA SPG inthe state-of-the-art, high

resolution (0.25◦ ocean resolution), climate model ‘HadGEM3’. We find a decadal mode

with a period of 17 years that explains 30% of the annual variance in related indices.

The mode arises due to the advection of heat content anomalies, and shows asymme-

tries in the timescale of phase reversal between positive and negative phases. A negative

feedback from temperature-driven density anomalies in theLabrador Sea (LS) allows for

the phase reversal. The North Atlantic Oscillation (NAO), which exhibits the same peri-

odicity, amplifies the mode. The atmosphere-ocean couplingis stronger during positive

rather than negative NAO states, explaining the asymmetry.Within the NA SPG, there is

potential predictability arising partly from this mode forup to 5 years.

There are important similarities between observed and simulated variability, such as the

apparent role for the propagation of heat content anomalies. However, observations sug-

gest interannual LS density anomalies are salinity-driven. Salinity control of density

would change the temperature feedback to the south, possibly limiting real-world predic-

tive skill in the southern NA SPG with this model.

Finally, to understand the diversity of behaviours, we analyse 42 present-generation cli-

mate models. Temperature and salinity biases are found to systematically influence the

driver of density variability in the LS. Resolution is a good predictor of the biases. The

dependence of variability on the background state has important implications for decadal

predictions.
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“Accordingly, seeing that our senses sometimes deceive us,I was willing to suppose

that there existed nothing really such as they presented to us; and because some men

err in reasoning, and fall into paralogisms, even on the simplest matters of geometry, I,

convinced that I was as open to error as any other, rejected as false all the reasonings I

had hitherto taken for demonstrations; and finally, when I considered that the very same

thoughts (presentations) which we experience when awake may also be experienced when

we are asleep, while there is at that time not one of them true, I supposed that all the

objects (presentations) that had ever entered into my mind when awake, had in them no

more truth than the illusions of my dreams. But immediately upon this I observed that,

whilst I thus wished to think that all was false, it was absolutelynecessary that I, who

thus thought, should be somewhat; and I observed this truth, Ithink, therefore I am...

Reńe Descartes (1596–1650)
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Chapter 1

Introduction

1.1 Introduction to the introduction

This thesis presents analyses that are aimed at understanding the mechanisms of decadal

climate variability in the North Atlantic ocean in order to help interpret decadal climate

predictions, making use of a new high resolution coupled climate model, ‘HadGEM3’

(Walters et al., 2011). Therefore, this first chapter begins with the motivation for making

decadal climate predictions in Section 1.2. We then discussthe evidence for periodic

decadal variability in the North Atlantic in Section 1.3 andthe mechanisms of simulated

decadal variability in Section 1.4. In Section 1.5 we describe the potential benefits of the

high ocean and atmosphere resolution. Finally, we outline the key research questions we

aim to address in Section 1.6 and the thesis structure in Section 1.7.

1.2 Near term/‘decadal’ climate prediction

In this first section we begin with the motivation for conducting near term (multi-annual,

often specifically decadal) climate predictions (Section 1.2.1) before discussing the ori-

gins of predictability (Section 1.2.2) and the specific methods by which predictions are

made (Section 1.2.3).

1



2 Chapter 1. Introduction

1.2.1 The motivation for near term climate prediction

The climate is changing (Bindoff et al., 2013); carbon dioxide levels are now higher than

at any point in almost one million years and global mean temperature is likely higher

than at any point in the last 1400 years (Hartmann et al., 2013). Despite this, it is still

not clear precisely how much warming smaller regions, on thescale of countries, will

encounter, and whether these regions will become wetter or drier (Kirtman et al., 2013).

In order to adapt to — or mitigate the effects of — climate change, policy planners and

local people need reliable forecasts of how regional climate may evolve over the next

years to decades. For example, if water is likely to be in short supply this might suggest

investment in strategies for the efficient use of this resource, whereas if it is more likely

there will be future large temperature extremes it may be more appropriate to invest in

infrastructure to combat these. Key to these adaptation andmitigation strategies are the

reliability of the climate models and prediction systems used to make these near term

predictions.

Another motivation for near term climate prediction is related to long term climate pro-

jections (of order one century) with the same or similar models. On long timescales

there exist large uncertainties in both the overall scenario (i.e. the future emissions of

greenhouse gases and other climate pollutants, as well as natural forcing from volcanoes

and changes in the solar cycles,Moss et al., 2010) and the reliability of climate models in

these ‘out of sample’ experiments. It may not be unreasonable to assume that models that

more accurately predict present-day variability and warming may also be better at esti-

mating future rates of warming (Tebaldi et al., 2005) as well as simulating past climate

states.

In summary, near term climate prediction may be useful for both informing regional

adaptation/mitigation strategies, as well as improving the fidelity of climate models (that

can then be used to investigate other climate states). In thenext section we discuss the

origins of this predictability.
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1.2.2 Climate predictability

Given the potential utility of climate predictions we beginthis section with a discussion

of the fundamental origins of predictability within chaotic systems (such as the climate

system) in Section 1.2.2.1. We then explore the physical drivers of this predictability

(Section 1.2.2.2) before discussing the particular variables in which prediction systems

currently show useful skill (Section 1.2.2.3).

1.2.2.1 Fundamental origins of predictability in chaotic systems

Chaos theory states that arbitrarily small perturbations inthe initial conditions of a chaotic

system can lead to very different outcomes, despite the system being innately determinis-

tic (Lorenz, 1963). Such a feature may be expected to render these systems impossible to

predict in the absence of perfect initial conditions (and anerror free prediction system).

Indeed, weather anomalies are generally not predictable more than a few weeks ahead and

yet we would like to know whether regions of the planet will become warmer or cooler

and wetter or dryer over the coming decades (Section 1.2.1).In order to make useful pre-

dictions we can make use of parts of the system that vary on longer (slower) timescales

than others,i.e. that diverge from the initial state more slowly and are less susceptible to

small perturbations. Assuming these slow parts of the system (e.g.the ocean) do interact

with the fast parts of the system (e.g. the atmosphere/weather) they should then modify

the distribution of these events (e.g. the climate) in some predictable way. The extent

to which the ‘slow’ impacts the ‘fast’ can be estimated by conducting initial condition

ensembles, in which small perturbations are made to the initial conditions. Taking the av-

erage over many ensemble members removes the chaotic part ofthe variability and leaves

only the predictable component (if this exists). AfterLorenz(1975), this represents pre-

dictability of the first kind (initial condition) and is separate from predictability of the

second kind (boundary conditions). Here, we focus on the initial condition problem but

see Section 1.2.3 for some discussion of the boundary condition problem.

The accuracy, or diagnostic ‘skill’, of a climate prediction can be assessed against either

past real world observations, or against the climate model itself, the latter often described
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as a perfect-model study that gives thepotentialskill of the system (Kirtman et al., 2013).

In either case, multiple initial conditions (start dates) are chosen and a perturbed ensem-

ble of the prediction system is initialised and allowed to freely run forwards in time. The

skill is the correlation between the ensemble mean forecastand the truth for a given vari-

able over a given spatial domain and averaged over an appropriate time period, where a

value of 1 represents perfect skill and a value of zero represents no skill. We now discuss

the physical origins of predictability within the climate system, as well as the resulting

skill in predicting certain climate variables.

1.2.2.2 Physical origins of climate predictability

The potential predictability of climate indices (in eitherthe ocean or atmosphere) arises

from a variety of sources, the relative importance of which is lead time dependant. For

example, for one season ahead, a combination of sea surface temperatures (Rodwell et al.,

1999, SSTs,), El Nĩno/La Niña (Bell et al., 2009), Arctic sea ice (Yang and Christensen,

2012), and the quasi-biennial oscillation (Pascoe et al., 2006) have been shown to provide

predictability in atmospheric pressure over the North Atlantic (Scaife et al., 2014). On

seasonal to annual timescales, El Niño/La Niña can provide regional predictability of

some variables (see next) over most of the globe through its effect on the large scale

atmospheric circulation (Smith et al., 2012). El Nĩno/La Niña shows variability on multi-

annual timescales, though the mere presence of large multi-annual variability is not a

sufficient condition for long term predictability (Wittenberg et al., 2014).

On multi-annual timescales, the potential predictabilityincreasingly arises from large

scale ocean processes, for which the thermal inertia is larger and for which there are ef-

fective mechanisms to ‘store’ anomalies from year to year (Alexander and Deser, 1995).

Within the North Atlantic, the Atlantic Meridional Overturning Circulation (AMOC) pro-

vides a potential source of predictability on annual or longer timescales (Collins, 2002;

Robson, 2010). However, the potential skill in predicting AMOC changes appears to be

model dependant (Collins et al., 2006) and so the translation to real-world skill (discussed

next) is unclear and remains controversial (Matei et al., 2012;Vecchi et al., 2012).
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1.2.2.3 Resulting skill in climate variables

Some variables and some regions of the globe yield more skilful predictions than others.

In the atmosphere, global mean annual mean surface air temperature (SAT, a common

metric of ‘climate change’) shows skill for several years along with regional SAT in

many locations (Doblas-Reyes et al., 2013). To begin with this skill arises from good

initialisation of the prediction models (discussed in Section 1.2.3) with the skill from the

boundary conditions (e.g. greenhouse gases) increasing through time (Branstator and

Teng, 2012). In some regions, such as the North Atlantic, SAT skill remains dominated

by the initial conditions for around a decade (Branstator and Teng, 2012). There is

currently generally much less skill in precipitation than in SAT, though there is evidence

of possible skill in precipitation over West Africa (Gaetani and Mohino, 2013).

In the ocean a paucity of long term observations makes assessing the actual skill of mod-

els difficult but there is potential skill in predicting sea surface temperatures (SSTs) in

the North Atlantic for up to a decade (Hawkins et al., 2011), possibly related to the large

scale AMOC. In addition, skilful predictions of SSTs in the western Pacific (Meehl et al.,

2014) and Indian Oceans (Corti et al., 2012) have been shown, although the latter of these

is primarily due to external forcings (boundary conditions). Skilful predictions of future

North Atlantic SST variability would be very valuable: North Atlantic SST variability

has been linked to drought in the Sahel region (Folland et al., 1986;Zhang and Del-

worth, 2006), Atlantic hurricane formation (Goldenberg et al., 2001;Smith et al., 2010;

Xie et al., 2005), precipitation over northern Europe (Sutton and Hodson, 2005), and the

growth and persistence of Arctic sea ice, which could also affect the climate of northern

Europe (Screen, 2013). In general, ocean heat content (OHC) is more predictable than

atmospheric SAT and contributes to the skill in SAT at lead times longer than one year

(Hermanson and Sutton, 2010). Once again, this near term predictability arises mostly

from the initialisation of the climate model, which is now discussed.
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1.2.3 Methods for initialising decadal predictions

Although much of the near term predictive skill of climate models is due to the initial

conditions, provided by the initialisation procedure, theinherent biases in the underlying

models mean that they cannot be relied upon to simply ingest real world observations

and provide a skilful forecast. To reduce the impact of thesebiases, there are two main

methods of initialising and post-processing the model output, which essentially differ

on whether the climate model biases are removed before or after the forecast simulation

(Smith et al., 2013). These are ‘full-field’ and ‘anomaly’ assimilation methods, which

are now described.

In the first method, the ocean model is initialised with observations of temperature and

salinity at a given time (with the dynamics already spun up).Due to climate model biases,

these ‘full field’ temperature and salinity observations are likely different to the climate

model’s (transient) equilibrium and, as such, the subsequent forecast exhibits large drifts

away from the observed state back towards the model climatology (Figure 1.1, a). How-

ever, by using comparison of an assimilation simulation with hindcast simulations it is

assumed that the lead time dependant drift term can be removed from the forecasts to

give the bias corrected forecasts (Figure 1.1, c). In this situation, we assume that the

signal we are attempting to (skilfully) detect evolves independently to the drift, which,

given the resulting increase in skill after bias correction(Smith et al., 2013), is at least

partly true.

In the second method, the ocean model is initialised with observed anomalies of temper-

ature and salinity at a given time, relative to some appropriate base state (Robson, 2010).

As the climate model’s mean state is already likely different from that observed, and it is

only the observed variability that is being added, the forecasts are not intended to return

absolute values similar to those observed (Figure 1.1, b). After the forecasts have been

run, the difference between the observed and climate model mean states can be subtracted

to give the bias corrected forecasts (Figure 1.1, d). In thissituation, we assume that the

signal and the mean state are independent (i.e. that the variability doesn’t depend on the

background state), which is again at least partly true, as evidenced by the increase in skill

after the bias correction (Smith et al., 2013).
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Figure 1.1: Illustration of bias correction for full field (left) and anomaly (right) initialisation. Thin black

curves show the observed time series of annual mean global temperature (from HadCRUT3,Brohan et al.,

2006). Coloured curves show the ensemble mean hindcasts, with different colours showing different start

dates. The upper panels (a, b) show absolute values (K), and the lower panels (c, d) show anomalies after

adjustment for model biases. Figure and associated captiontaken fromSmith et al.(2013). c©Springer

Science and Business Media. Used with permission.

Initialisation provides skill related to the fidelity of themodel and due to the boundary

conditions (e.g.external forcings such as greenhouse gases and aerosols,cf. predictabil-

ity of the second kind), as well as relating to the internal variability of the climate system

by attempting to initialise the model in the correct phase ofthe variability and trusting it

to evolve correctly. For near term climateprojections(projections here implies an unini-

tialised prediction that only attempts to capture the externally forced component of the

variability), the combination of model uncertainty and internal variability dominates the

variance in the projections (Figure 1.2a). On regional scales, such as for the British Isles,

this is even more apparent (Figure 1.2b). It is clear that on annual to decadal timescales,

improving the climate model’s representation of the real world and the initialisation of

internal variability could provide valuable increases in predictive skill, particularly in im-

portant regions such as the North Atlantic (Hakkinen and Rhines, 2004;Msadek et al.,

2010;Dunstone et al., 2011). However, in order to achieve these aims we must first un-

derstand the multi-annual/decadal variability of the underlying system, which is the focus

of the next section.
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Figure 1.2: The relative importance of each source of uncertainty in decadal mean surface temperature

projections is shown by the fractional uncertainty (the 90%confidence level divided by the mean pre-

diction) for (a) the global mean, relative to the warming from the 1971–2000 mean, and (b) the British

Isles mean, relative to the warming from the 1971–2000 mean.The importance of model uncertainty is

clearly visible for all policy-relevant timescales. Internal variability grows in importance for the smaller

region. Scenario uncertainty only becomes important at multi-decadal lead times. The dashed lines in (a)

indicate reductions in internal variability, and hence total uncertainty, that may be possible through proper

initialization of the predictions through assimilation ofocean observations (Smith et al., 2007). Figure and

associated caption taken fromHawkins and Sutton(2009). c©American Meteorological Society. Used with

permission.

1.3 The evidence for periodic decadal variability in the

North Atlantic

In this section we review the observational (Section 1.3.2)and model (Section 1.3.3)

evidence for periodic decadal variability in and around theNorth Atlantic subpolar gyre.

However, in order to put these reviews into context, we beginwith a brief description of

the region.

1.3.1 The North Atlantic subpolar gyre

Given the potential predictability of the North Atlantic subpolar gyre (NA SPG,Hakkinen

and Rhines, 2004;Wouters et al., 2013), and it’s importance in particular for European

climate (e.g. Sutton and Hodson, 2005), we focus the majority of our analysis on this
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region. The NA SPG is a region between approximately 45◦N and 80◦N in the North At-

lantic, roughly split in two by the Greenland-Iceland-Scotland (GIS) ridge at 65◦N that

separates the Arctic and Nordic Seas north of this from the classical Atlantic to the south

(Figure 1.3). In terms of the large scale circulation, the region is characterised by the

mean cyclonic circulation that brings warm and salty water from the subtropical Atlantic

northwards, cooling as it traverses the basin, before sinking and returning south as North

Atlantic Deep Water (NADW). This general meridional overturning circulation (MOC,

or AMOC for Atlantic MOC) is another key feature of the region and is often the primary,

explicit focus of studies of the NA SPG. Indeed, the region isoften decomposed into a

streamfunction in the meridional-depth plane (the AMOC) anda streamfunction in the

horizontal plane (the gyre,e.g. Dong and Sutton, 2001), although to what extent this geo-

metric decomposition is representative of the large scale thermohaline circulation (THC)

at these latitudes is not clear (Biastoch et al., 2008a;Zhang, 2010;Kwon and Frankig-

noul, 2014). In addition, the region feels strongly the influenceof the atmosphere, lying

as it does beneath the North Atlantic Oscillation (NAO, the index of which is defined as

the pressure difference between the Azores and Iceland), which is the dominant mode

of wintertime atmospheric variability in the region (Hurrell et al., 2003). This complex

interplay of drivers are what allow the NA SPG to exhibit prominent decadal variability,

evidence for which is now discussed.

1.3.2 Instrumental and proxy evidence for (bi)decadal variability

Instrumental climate records within the NA SPG show decadalvariability in the forma-

tion of NADW (Mauritzen et al., 2012) and in the strength of the NA SPG itself (Curry

and McCartney, 2001;Rhein et al., 2011;Roessler et al., 2015). In addition, there has

been well documented multi-annual/decadal variability inthe heat content of the NA

SPG (Robson et al., 2012) and potentially even in circulation indices such as the AMOC

(Smeed et al., 2014). This ‘decadal’ variability, here defined as variability on timescales

of 10–30 years, is distinct from longer timescale multi-decadal (>30 years) variability

that may also exist in the NA SPG (Schlesinger and Ramankutty, 1994). However, this

multi-decadal variability — increasingly sensitive to forcing/scenario uncertainty in cli-
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Figure 1.3: . Location map. Panel shows the high latitude North Atlanticwith schematic surface current

regime. Figure and associated caption taken fromQuillmann et al.(2012). Shading represents the depth

of the ocean. Selected acronyms: SPG: Subpolar gyre, NS: Nordic Seas, LS: Labrador Sea, NAC: North

Atlantic Current, EGC: East Greenland Current, LC: Labrador Current. c©Elsevier. Used with permission.

mate projections (cf. Section 1.2.3 and Figure 1.2) rather than uncertainty related to the

model or internal variability — is not the focus of this thesis. On decadal timescales,

the relative contributions of internal variability and externally forced variability (e.g. the

drivers of the 1960s cooling in the North Atlantic,Baines and Folland, 2007;Hodson

et al., 2014) has implications for the spectral characteristics of the variability — with

self-sustaining internal variability likely to lead to spectral peaks (Snoussi, 1998) and

externally forced variability likely to lead to episodic ortransient changes (unless the

external forcing has its own periodicity,e.g. the 11 year solar cycle or possibly anthro-

pogenic or volcanic aerosols,Otterå et al., 2010;Booth et al., 2012).

Direct instrumental records in and around the NA SPG are too short to resolve reliably

such spectral behaviour (Kennedy et al., 2011). However, palaeo-proxy records have

been shown to exhibit significant decadal variability, bothglobally (Mann et al., 1995)

and more recently using high temporal resolution palaeo proxies around the NA SPG

(Sicre et al., 2008;Chylek et al., 2012). Sicre et al.(2008) used alkenones (37 Carbon

atom organic molecules with either two or three Carbon-Carbondouble bonds, the ratio

of which is proportional to the temperature) from around Iceland to estimate sea surface

temperatures (Figure 1.4) over the past 4500 years. Separately, Chylek et al.(2012) used

Oxygen isotope ratios (which are affected by temperature aswell as other environmental
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Figure 1.4: . Alkenone derived sea surface temperature (SST) estimatesover the past 4500 years in the

MD99-2275 core. The calibration established byPrahl et al.(1988) was used to convertUK
′

37 into SSTs.

Black diamonds indicate tephra layers identified and used tobuild the age model. The red curve represents

the 10-point running mean of the data. Figure and associatedcaption taken fromSicre et al.(2008).

c©Elsevier. Used with permission.

factors) from Greenland ice cores to estimate the temperature of precipitation over the

past 660 years. Both of these NA SPG records specify periodicity with a timescale of

around 20 years, hereafter referred to as ‘bidecadal’. In addition to these palaeoclimate

proxies, another source of indirect evidence for decadal variability in the NA SPG comes

from numerical models, discussed next.

1.3.3 Model evidence for decadal variability

As with paleoclimate proxies, and even direct observations(Levitus et al., 2009), (unini-

tialised) numerical models of the climate must only be considered in light of their caveats,

such as their inability to resolve potentially important spatial scales (Penduff et al., 2010).

Nonetheless, the sheer number of climate models means it is possible to investigate

whether these independent simulations (although to what extent they are truly indepen-

dent is an open question,Knutti et al., 2013) give consistent results. The periodicity in
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simulated mechanisms of variability (in climate model studies for which the NA SPG

was a major focus) is documented in Figure 1.5 (along with other details that we describe

in forthcoming sections). As can be seen, periodicities of around 20 years are very com-

mon in climate model simulations of this region. Indeed, as noted byFrankcombe et al.

(2010), simulations of the North Atlantic tend to describe variability on either short (20

year/bidecadal) timescales, possibly related to the NAO, or longer (>70 year) timescales,

related to advection from faraway sources (Jungclaus et al., 2005;Hawkins and Sut-

ton, 2007;Park and Latif, 2008;Menary et al., 2012). The specific mechanisms of this

bidecadal variability are discussed in the next section.

1.4 Origins and mechanisms of simulated decadal vari-

ability

In this section we discuss the mechanisms/processes by which models can simulate

decadal variability in the NA SPG. Given the paucity of direct observations within the

NA SPG, studies such as these are a useful tool to probe potential real world mechanisms

of variability. This section is schematically summarised in Figure 1.5. We begin with

the simplest intuitive model of a red noise ocean respondingto a white noise atmosphere

(Section 1.4.1) before specifically reviewing the role of the NAO in driving ocean vari-

ability via momentum and/or buoyancy fluxes (Section 1.4.2 and subsections therein).

We then move on to the potential role of ocean advection in determining the timescale of

the variability (Section 1.4.4) before discussing the possible role of wave processes (Sec-

tion 1.4.5) and summarising alternative drivers of NA SPG variability (Section 1.4.6).

We conclude this section with a review of the drivers of Labrador Sea density variability

across the climate models (Section 1.4.7).

1.4.1 North Atlantic Ocean response to atmospheric noise

SinceHasselmann(1976), one paradigm for explaining decadal variability inthe NA

SPG has been that of an ocean integrating up white-noise (stochastic) forcing from the
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Figure 1.5: A summary of some of the literature on simulated decadal variability in the North Atlantic

subpolar gyre (NA SPG), with a particular emphasis on studies which found self-sustaining cyclical be-

haviour. Key regions of the NA SPG are marked. The figure legend (right) denotes the studies which we

have attempted to synthesise and an associated numerical identifier. Where these studies report a signif-

icant peak in the power spectrum on decadal timescales this is noted as well as whether the mechanism

is primarily ocean-only or inherently coupled. Studies where the atmosphere is postulated to amplify —

but not explicitly propagate — the signal are marked with an asterisk. For each study the feedback or pro-

cess which is reported as crucial in setting the timescale ismarked on the map using a simple numbering

system. These comprise: 1) Feedbacks relating to the deep water pathways and their interaction with the

northward flowing western boundary current, 2) Rossby wave (or sometimes ‘geostrophic self advection’)

transit times across the NA SPG, 3) the mean advection timescale for anomalies to propagate into the NA

SPG from the tropics, or for small anomalies to integrate up over time. Lastly, using the same numerical

key, the studies are split into which of temperature or salinity is reported to control decadal timescale den-

sity changes in the Labrador Sea. In all case, studies in brackets appear in more than one category. This

represents a drastic simplification of each of these studiesand the reader is referred to the original works for

further details. In particular, the reported feedback/process that sets the overall timescale to some degree

also subjectively reflects the precise focus of the particular study.
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atmosphere1. Frankignoul et al.(1997) forced an idealised ocean basin representative of

the Atlantic with stochastic wind stress forcing and found that the dominant timescale

was related to the basin transit time of long baroclinic Rossby waves, although this ide-

alised work compared more favourably with coupled coupled climate models when con-

sidering the subtropics rather than the subpolar regions. Later work with coupled models

also highlighted the potential for the Atlantic Ocean, and in particular the AMOC, to re-

spond to stochastic forcing with large decadal variability(Holland et al., 2001;Kwon and

Frankignoul, 2012), for example by preferentially transmitting atmospheric variability to

the ocean during times of deep convection (Dong and Sutton, 2005;Born and Mignot,

2012).

In an ocean-only model,Delworth and Greatbatch(2000) found that the AMOC re-

sponded preferentially to the longer timescale (>20 year) component of the forcing,

rather than necessarily integrating up the high frequency component. Similarly,Holland

et al. (2001) showed decadal periodicity in their simulated AMOC (related to changes

in Arctic ice export) but found that the ocean was generally insensitive to the origin of

the stochasticity and that low frequency forcing had a larger effect. Indeed, whether

the ocean integrates up atmospheric forcing or preferentially amplifies particular peri-

ods remains unclear. In the latter study, the presence of significant periodicity was due

to a negative feedback on density provided by increasing heat transport associated with

a stronger AMOC, and indeed a negative feedback is usually required in order for an

otherwise white or red power spectrum to exhibit a sharp spectral peak at a preferred

timescale (Snoussi, 1998). One possible exception to this is if the temporally stochas-

tic forcing has sub-basin scale variability and the (advective) ocean has a deep enough

mixed layer for advection to dominate over thermal damping.In such a situation, ‘spa-

tial resonance’ could result in significant periodicity (Saravanan and McWilliams, 1997,

1998) although the preference for long timescale forcing insome models (Delworth and

Greatbatch, 2000;Holland et al., 2001) and the inability of forced ocean-only models to

reproduce the periodicity (Pierce, 2001;Mecking et al., 2014) suggests this mechanism

is not of first order importance. Nonetheless, consistent with the requirements of the

1Indeed, this paradigm has recently been used to explain longer timescale variability over the whole

North Atlantic (Clement et al., 2015).
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model ofSaravanan and McWilliams(1998) often simulated white-noise forcing of the

ocean is stochastic in time but spatially has the pattern of the NAO (Delworth and Great-

batch, 2000;Mecking et al., 2014). As such, we next discuss the effect of specifically

NAO-related forcing on the ocean.

1.4.2 North Atlantic Ocean response to the NAO

When considering the direct effect of the NAO on the North Atlantic Ocean we sepa-

rate our discussion into momentum (wind) forcing (Section 1.4.2.1) and buoyancy (heat

and freshwater) forcing (Section 1.4.2.2). Outside of the deep convection regions of the

North Atlantic such as the Labrador Sea (see Section 1.4.7) the effect of momentum and

buoyancy forcings are often found to add linearly (Cabanes et al., 2008;Biastoch et al.,

2008a). Climate model studies in which the NAO is postulated to play a role in the

simulated ocean decadal variability are noted on Figure 1.5(final column).

1.4.2.1 Wind forcing

The response of a low resolution ocean model to wind forcing reminiscent of that asso-

ciated with NAO variability was investigated byVisbeck et al.(1998) who found that the

sign of the NA SPG temperature response depended on the timescale (annual or decadal)

of the forcing. Subsequent work found that wind stress forcing could explain fast (an-

nual) response times, with buoyancy fluxes implicated in longer timescale responses (see

next section,Eden and Willebrand, 2001). The timescale of the response to wind forcing

may be related to the mechanism by which the wind interacts with the ocean, with short

timescale (less than 3 years) responses due to an Ekman response and long timescale

(more than 3 years) responses due to the heaving of isopycnals and subsequent adjust-

ment (Cabanes et al., 2008). Similarly, using companion forward and adjoint ocean mod-

els to find the mechanisms by which optimal observations maximally affect the AMOC,

Kohl (2005) found wind forcing affected the AMOC in three distinct ways: The first two

(Ekman transport and Ekman pumping, relating to zonally integrated wind stress and

wind stress curl respectively) were not as important as the third; wind driven coastal up-
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welling/downwelling heaving isopycnals and resulting in alongshore currents known as

“coastal upwelling jets”. Buoyancy forcing was found to become increasingly important

on multi-annual timescales. Nonetheless, wind forcing related to the NAO and the sub-

sequent excitation of Rossby waves can contribute to multi-annual timescale variability

(Polo et al., 2014, see also Section 1.4.5).

1.4.2.2 Buoyancy forcing

The role of buoyancy fluxes in driving NA SPG variability has been investigated in tar-

geted ocean-only experiments (Eden and Willebrand, 2001), diagnosed in coupled model

studies (Timmermann et al., 1998) and inferred from observational analyses (Curry and

McCartney, 2001). Buoyancy fluxes generally explain variability on longer timescales to

wind forcing (Eden and Willebrand, 2001;Polo et al., 2014). Whilst in coupled model

studies, the relative roles of heat and freshwater/salinity in buoyancy forcing remain

model dependent (e.g. Dai et al., 2005;Dong and Sutton, 2005, see Section 1.4.7), in

ocean-only experiments it is generally the case that heat fluxes are the most important

buoyancy flux (Eden and Willebrand, 2001;Alvarez-Garcia et al., 2008;Mecking et al.,

2014;Polo et al., 2014). For example,Eden and Willebrand(2001) suggested a simple

NAO-AMOC feedback mechanism in which anomalously negativeheat fluxes over the

NA SPG associated with a positive NAO reduces temperatures in the SPG thereby in-

creasing density and strengthening the AMOC. The subsequently strong AMOC brings

more warm water northwards, reversing the cycle.

An important role for heat fluxes is also found in observational analyses, such as that

of Curry and McCartney(2001) who investigated Potential Energy Anomalies (PEAs,

an oceanic analogy to the NAO) at two sites approximately at the centre of the subpo-

lar and subtropical gyres. On multi-annual/decadal timescales they found that the PEA

and overturning were thermally driven insofar as temperatures changed twice as much as

salinities in the sinking regions (after scaling by the thermal and haline expansion coef-

ficients). A 10-year running sum of the NAO index correlated with the transport index

from the PEAs indicating that the ocean integrates up the atmospheric signal. A similar

running sum of Labrador Sea heat fluxes can also explain AMOC variability in a coupled
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model (Ortega et al., 2011). Although events such as ‘Great Salinity Anomalies’(Dick-

son et al., 1988) suggest a potential role for freshwater/salinity fluxes (not necessarily

related to the NAO), they may only play a damping role in heat flux driven variability

(Curry and McCartney, 2001), although it should be noted that coupled climate models

can display decadal variability broadly consistent with both GSA events (in terms of the

size of freshwater anomalies and their propagation pathways) and an important role for

temperature variability (Wohlleben and Weaver, 1995;Timmermann et al., 1998).

1.4.3 NAO response to the North Atlantic Ocean

We have highlighted the way in which the atmosphere/NAO can drive variability in the

NA SPG, but it is also possible for the ocean to drive variability in the atmosphere (Tim-

mermann et al., 1998;Eden and Willebrand, 2001;Gastineau et al., 2013), and indeed

this must be the case for a coupled mode of variability to exist (in the absence of innate

long timescale variability in the atmosphere). Investigations using uncoupled ocean or

atmosphere simulations forced with appropriate boundary conditions, have shown both

that 1) historical ocean SST variability can mostly be recreated from atmospheric heat

fluxes alone (Battisti et al., 1995), and 2) that historical NAO variability can be recreated

from SSTs (Rodwell et al., 1999) i.e. both that the atmosphere drives ocean variabil-

ity, and the ocean apparently drives atmosphere variability, in models. Over the NA

SPG, the atmospheric response may be a combination of forcing from the local SSTs as

well as those in the tropical Atlantic (Sutton et al., 2000), which provide some of the

skill in seasonal forecasts of the NAO up to a season ahead (Scaife et al., 2014). The

ocean can drive the atmosphere via small-scale SST fronts that induce local wind anoma-

lies (Lindzen and Nigam, 1987;Minobe et al., 2008), or via latent/sensible heating over

larger spatial scales (Rodwell et al., 1999) possibly even involving communication with

the stratosphere (Omrani et al., 2014), but the precise mechanisms and their relative im-

portance are still unclear. Nonetheless, much of the interannual variability in the NAO

appears to be intrinsic to the atmosphere rather than drivenby the ocean (Bretherton and

Battisti, 2000).
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1.4.4 Ocean advection

Often related to buoyancy forcing of the NA SPG, ocean advection has been shown to be

an important regulator of the timescale of NA SPG variability in climate models (Del-

worth et al., 1993;Timmermann et al., 1998;Dai et al., 2005;Dong and Sutton, 2005;

Born and Mignot, 2012;Escudier et al., 2013), in reanalyses of the real world (Robson

et al., 2012), and potentially in observations (Sutton and Allen, 1997). Heat and freshwa-

ter transport is often split into that due to mean and anomalous circulations,e.g.

OHT = ρcp

(∫
vT +

∫
v′T +

∫
vT ′ +

∫
v′T ′

)
dA (1.1)

which describes the ocean heat transport (OHT) through a twodimensional section (A),

whereρ is a constant reference density,cp is the specific heat capacity of seawater,v and

T are the circulation speed normal to the section and potential temperature on the sec-

tion, and overbars and primes represent time means and anomalies respectively. When

analysing variability in OHT, variability invT is zero andv′T ′, which represents corre-

lated changes in circulation and temperature, is often small for large enough areas (Dong

and Sutton, 2005).

An alternative way to partition the OHT is to separate it intothat due to horizontal (gyre)

and vertical (AMOC) components (Johns et al., 2011),e.g.

OHTAMOC = ρcp

∫ 0

−H

V 〈T 〉 dz (1.2)

OHTgyre = ρcp

∫ 0

−H

∫ E

W

v∗T ∗ dx dz (1.3)

whereV is the zonally integrated circulation (i.e. the transport profile), angle brackets

and asterisks represent zonal means and anomalies, anddz anddx represent vertical and

zonal integrals over the full depth (depth,H, to the surface) and basin (West to East)

respectively.

Although it is difficult to estimate these components from observations (except at some

specific latitudes with trans-basin arrays,Johns et al., 2011) they can be calculated in cou-
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pled climate models. BothDelworth et al.(1993) andDong and Sutton(2005) showed

that, within the NA SPG, simulated advection of heat or freshwater anomalies into the

sinking regions was due to gyre changes but the AMOC was implicated in related vari-

ability in the subtropical gyre (Dong and Sutton, 2005). Note that in the NA SPG, the

gyre circulation may be more representative of the THC than the meridional circulation

(AMOC, Biastoch et al., 2008a;Zhang, 2010). The relative contributions of mean and

anomalous circulation may depend on the specific region within the NA SPG, with mean

circulation important throughout and anomalous circulation hypothesised to be important

primarily for zonal flows (Dong and Sutton, 2001), although this is likely resolution and

model dependent.Watanabe et al.(1999) found that different background mean states

meant that simulated NA SPG heat content variability was more prone to the effects of

anomalous circulation than may be the case in reality. Models for which advection by

the mean or anomalous circulation and the subsequent accumulation of heat/freshwater

anomalies are postulated to set the timescale of the variability are noted on Figure 1.5

(numbers — see caption).

1.4.5 Wave processes

Despite the benefits of high complexity in coupled climate models, which makes them

a ‘best guess’ for understanding real world multi-annual/decadal variability, the impor-

tance of particular processes can be hard to elucidate. For example, wave processes, such

as first mode baroclinic Rossby waves within the NA SPG, can have similar propagation

timescales as ocean advection (Watanabe et al., 1999). In these circumstances, simpli-

fied/idealised ocean models that allow analytical solutions can be useful to discern the

precise drivers of change (Johnson and Marshall, 2002;Śevellec and Fedorov, 2013).

The contributions of Rossby and Kelvin waves to the propagation of AMOC signals was

investigated in an idealised ocean byJohnson and Marshall(2002). They used a simple

ocean model with smooth topography and no background circulation to investigate the

ocean’s response to volume flux forcingi.e. ignoring the specifics of deep water forma-

tion and how this is driven. They found that the response of this simple ocean to posi-

tive/negative volume flux anomalies was symmetric (though the response to temperature
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or salinity anomalies might not be expected to be) and that the mechanisms and spatial

extent of the ocean response varied with the period of the forcing. The mechanism in-

volved southward propagation of Kelvin waves along the western boundary towards the

equator followed by eastward propagation along the equator. Subsequently the Kelvin

waves propagated poleward along the eastern boundaries in both hemispheres, all the

while radiating Rossby waves into the ocean interior. Thus the response in the interior

ocean in the opposite hemisphere was controlled by Rossby waves and, as the speed of

these depends on the latitude, lower frequency forcing could penetrate signals further

into the opposite hemisphere (in essence the equator acted as a low pass filter). Signals

of Rossby wave propagation can often also be detected in more complex coupled climate

models, although it is not clear that their existence implies an important role in driving

decadal variability (Eden and Greatbatch, 2003;MacMartin et al., 2013). Nonetheless,

models for which Rossby or other trans-basin wave propagation (such as ‘geostrophic

self-advection’Śevellec and Fedorov, 2013) is invoked as an important mechanism set-

ting the timescale of variability are noted on Figure 1.5 (numbers — see caption).

In a slightly more complex model,Fevrier et al.(2007) showed that the presence of a sim-

ulated Gulf Stream did not inhibit the propagation of Kelvinwaves, as hypothesised by

Johnson and Marshall(2002). Support for boundary wave propagation in observations

could also be found in coherent sea surface height (SSH) signals around the North At-

lantic (Hughes and Meredith, 2006). In this context,Roussenov et al.(2008) investigated

the connection between boundary wave communication and theAMOC in an isopycnal

ocean model with a realistic domain and on the multi-annual/decadal timescales impor-

tant for climate. They found that fine scale (i.e. not smoothly varying) topography acted

to inhibit wave communication, probably through scattering. As such, coarse resolution

in a model may be expected to dampen the variability of the AMOC (see Sections 1.5

and 2.3). Finally, in contrast toJohnson and Marshall(2002), western boundary cur-

rent anomalies were found in the opposite hemisphere withinone year of the northern

hemisphere forcing,i.e. much sooner. These may have been a response to barotropic

(rather than baroclinic) Rossby waves rapidly propagating from the northern to southern

hemisphere.
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1.4.6 Alternative/non-local sources of variability

As well as surface forcing, the deep ocean may play a role in regulating near surface

ocean variability. Complementary to the investigations of wave propagation,Zhang and

Vallis (2007) investigated the reasons behind model temperature biases in the North At-

lantic, and the potential role of vorticity dynamics, and found biases were vastly de-

creased if the model correctly simulated the Northern Recirculation Gyre (NRG), which

helps to separate the Gulf Stream from the coast of North America. Correct representa-

tion of the NRG relies on the interaction between the southward flowing Deep Western

Boundary Current (DWBC) and the northward flowing, surface Gulf Stream. The flow

of the DWBC down the continental slope generates positive vorticity which helps form

the NRG. As such, deep flows could exert some control on surfaceflows. Further evi-

dence of this can be seen in an observational framework usinga statistical model (a linear

inverse model, LIM), and highlights how perturbations to the deep ocean can affect the

predictability of the upper ocean (Zanna, 2012). Studies in which climate models have

highlighted a role for interaction with the deep circulation as a possible regulator of the

variability are noted on Figure 1.5 (numbers – see caption).

The processes we have outlined above are all local to the NA SPG but it is possible that

processes outside of the NA SPG may drive variability withinit. Within the ocean, sim-

ulated variability driven via advection from faraway sources such as the tropics (Menary

et al., 2012;Park and Latif, 2008) or the Arctic (Jungclaus et al., 2005;Hawkins and

Sutton, 2007) often has a much longer timescale. However, in the atmosphere, there is

potential for subtropical Atlantic forcing of NAO variability (Sutton et al., 2000), as well

as forcing via the tropical Pacific (Hoerling et al., 2001), both of which could then impact

the NA SPG (as described in Section 1.4.2). In addition, the tropical Pacific is also a re-

gion of significant multi-annual variability and it has beenshown that ocean-atmosphere

interaction via El Nĩno/La Niña (Trenberth, 1997) may also drive temperature changes in

the NA SPG region (Ineson and Scaife, 2009).
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1.4.7 The role of the Labrador Sea

In most studies of multi-annual/decadal variability in theNA SPG the sinking regions,

in which high density surface waters sink/convect leading to deep water formation, are

found to be important for the subsequent evolution of the AMOC and by extension the

variability within the NA SPG (Figure 1.5). The most important sinking region in the

main NA SPG is the Labrador Sea, as well as the Irminger basin at the entrance to the

Labrador Sea, where upper North Atlantic deep water (UNADW) is formed (Toole et al.,

2011). There is also deep water formation north of Iceland that flows out of the Nordic

Seas and into the Labrador Sea, becoming lower North Atlantic deep water (LNADW,

Toole et al., 2011). In models, the interaction of deep water formed in the Nordic Seas

and the main NA SPG, via the overflow sills, is poorly simulated except at ultra-high

(1/12
◦) resolution (Chang et al., 2009).

Whether the density variability in these key sinking regionsis driven by either temper-

ature or salinity effects can be estimated by decomposing density changes into those

due to temperature and those due to salinity (Delworth et al., 1993). Indeed,Delworth

et al. (1993) defined an index of the large scale variability in the North Atlantic and

separately regressed this against density changes that were due to temperature and den-

sity changes that were due to salinity and found that salinity was the dominant driver

(Figure 1.6). However, this is not the case in all climate models, which disagree on

whether multi-annual/decadal temperature or salinity variability is most important for

multi-annual/decadal density variability in the LabradorSea (Figure 1.5, numbers — see

caption). Given that warm/saline anomalies in the NA SPG often co-vary, and that they

have opposing effects on density, this suggests that the manifestation of NA SPG vari-

ability within climate models may be somewhat sensitive to the particular density driver.

In these sections we have aimed to describe the key processesinvolved in simulated

mechanisms of decadal variability in the NA SPG. There are clearly many potential man-

ifestations of this variability and to what extent any of them are a more realistic repre-

sentation of the real world is still unclear (cf. Figure 1.5). The numerical models are a

discretised version of reality and so the potential benefitsof improving the resolution of

this discretisation is discussed next.
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Figure 1.6: Regression coefficients between various quantities and thetime series of the THC index. The

heavy, solid line (Ψ′) denotes the regression coefficients of the THC index with itself (thus representing a

“typical” fluctuation). The thin, solid line (ρ′) represents the regression coefficients between density and

the THC index. The thick, dashed line (ρ′
S

) denotes the regression coefficients for the density changes

attributable solely to changes in salinity versus the THC index, while the thin, dashed line (ρ′
T

) represents

the regression coefficients for the density changes attributable solely to changes in temperature versus the

THC index. The regression coefficients forρ′, (ρ′
S

and (ρ′
T

were averaged vertically and horizontally

over the sinking region. The ‘THC index’ represents the maximum of the overturning streamfunction in

the North Atlantic. This method of decomposing density changes has often been repeated and is used in

this thesis (Figure 2.10b). Figure and associated caption taken fromDelworth et al.(1993). c©American

Meteorological Society. Used with permission.
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1.5 Potential benefits of increased model resolution

As analysing decadal variability requires many decades/centuries of integration these pre-

vious studies generally use low resolution coupled models (>1◦ ocean resolution,>2◦ at-

mosphere resolution) or higher resolution ocean-only models. However, there are reasons

to suppose that improved atmospheric resolution could affect the amplitude of decadal

variability (Danabasoglu, 2008), whilst improved ocean resolution — and associated rep-

resentation of the variability within the Gulf Stream and other boundary currents (Penduff

et al., 2010) — may also affect the precise timescales of multi-annual/decadal variability

(Grotzner et al., 1998;Gelderloos et al., 2011;Hodson and Sutton, 2012). Higher hor-

izontal resolution may improve stratification and thus alter wave speeds (Kirtman et al.,

2012), which could also be affected by vertical resolution.Higher resolution topography

may also be expected to affect the efficacy of wave processes as compared to idealised

ocean models with smoothed/no topography (Roussenov et al., 2008;Zhang and Vallis,

2007) and improve deep water pathways (Spence et al., 2011).

At high ocean resolution eddies become permitted and then resolved (Figure 1.7) and

eddy induced mixing can be left explicit, rather than parameterised (or the parameterisa-

tion significantly turned down), which may impact on the magnitude and variability of

ocean heat and freshwater transports (Volkov et al., 2008;Tréguier et al., 2014). As a

case in point, ultra-high resolution within the Agulhas region has been shown to affect

the variability of the simulated low-latitude Atlantic overturning due to the shedding of

large mesoscale eddies known as ‘Agulhas rings’ (Biastoch et al., 2008b). In addition,

reducing the need for parameterisation of eddies may affectthe ability of the model to

respond appropriately to ‘out-of-sample’ experiments, such as large scale atmospheric

circulation changes under future climate change (Hallberg and Gnanadesikan, 2006).

Stronger sea surface temperature gradients, associated with higher ocean resolution, may

also improve the strength of atmosphere-ocean coupling (Brayshaw et al., 2008;Minobe

et al., 2008;Kirtman et al., 2012). In short, there are many reasons to suppose improved

ocean and atmosphere resolution may change the details of simulated variability in the

NA SPG. The model we use (‘HadGEM3’,Walters et al., 2011) has an ocean resolution

of 0.25◦, an atmosphere resolution of N216 (92km at the equator), andis described in
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Figure 1.7: Zonally-averaged zonal (dashed) and meridional (plain) resolution of the four model grids

(km, log scale). The meridional resolution is enhanced nearthe equator in the 2◦ and 1◦ models. Dots

indicate the zonally-averaged first Rossby radius (Chelton et al., 1998). Figure and associated caption

taken from (Penduff et al., 2010). Used under Creative Commons Attribution Licence 3.0.

Section 2.3.

1.6 Key research questions

In light of the material presented here, we now define the key research questions that we

aim to address in this thesis. These are:

1. What decadal variability exists in the NA SPG in HadGEM3, and how does

this evolve in both space and time?Given the plethora of previous lower resolu-

tion modelling studies that find many different manifestations of decadal variability

in the NA SPG, and the enhanced resolution of HadGEM3, we firstanalyse whether

HadGEM3 represents either a step-change in the simulated mechanisms of decadal

variability, a refinement of these, or merely the same mechanisms more precisely

resolved.

2. To what extent is the decadal variability consistent with available observa-

tions? Although there is a paucity of high quality long term observations within

the North Atlantic there is nevertheless much analytical power in the observations

that are available, which can be fully realised when combined with a detailed un-
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derstanding of simulated variability. We conduct a critical comparison of simulated

and observed variability to evaluate the plausibility of particular decadal variability.

3. Does this variability provide potential skill for decadal predictions? Having

established the plausibility of various elements of the mechanism of decadal vari-

ability, we investigate to what extent they lead to increases in potential skill in

decadal predictions with this model.

4. Is there any systematic explanation for the diversity of simulated decadal vari-

ability within the NA SPG, as shown in Figure 1.5?Recent multi-model archiv-

ing initiatives (e.g. the fifth coupled model intercomparison project, CMIP5) have

provided a powerful resource to investigate inter-model relationships in a more

consistent and controlled way than comparing reported results from studies with

different aims. As such, although analysis of the decadal variability in HadGEM3

and its utility in predicting the real world is itself a worthy goal, we also aim to elu-

cidate some of the potential causes of this multi-model spread and the implications

for decadal predictions.

1.7 Thesis structure

In this thesis, we diagnose the drivers of NA SPG variabilityin a state-of-the-art coupled

climate model that represents a rare combination of high resolution (in both ocean and at-

mosphere) and the multi-century length integration required to analyse decadal timescale

modes (Chapter 2). We ask: Does high resolution, and the associated processes it allows,

affect the nature of simulated decadal variability? We thencritically compare this simu-

lated mode of variability with instrumental observations in the North Atlantic in Chapter

3.

Most analyses of decadal variability in the North Atlantic have used the approach of

lagged regression analysis to attempt to disentangle causeand effect — in which pos-

itive and negative phases are assumed symmetric. In Chapter 2we note that there are

signs of some asymmetry in the timescales of our proposed mechanism, depending on
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the phase of the oscillation. These asymmetries are investigated in Chapter 4. Further

testing of the robustness of our mechanism is conducted in Chapter 5, in which we test

the predictability of various phases of our proposed mechanism using initial-condition

ensembles.

Having thoroughly tested the mechanism of decadal variability in HadGEM3 we extend

our analysis to other models using the CMIP5 archive in Chapter6. Here, we address the

question of whether there is a link between mean state biasesand the representation of

decadal variability, which would go some way to explain the wide variety of diagnosed

mechanisms (cf. Figure 1.5).

Finally, the main conclusions of the thesis are summarised in Chapter 7, with recommen-

dations for the development of decadal prediction systems and observational networks

and a brief discussion of possible future work.





Chapter 2

The mechanism of North Atlantic

internal decadal variability simulated

in HadGEM3

2.1 Introduction

To begin to understand whether increased atmosphere and ocean resolution may affect

the mechanisms of decadal variability we must first diagnosethose mechanisms in a high

resolution model. This chapter aims to elucidate the originof decadal variability in the

climate model ‘HadGEM3’. The model’s mean state and variability are characterised in

Section 2.2 before diagnosing the mechanism of bidecadal variability in Section 2.4. A

discussion of the proposed mechanism is directed in Section2.5 before chapter conclu-

sions are presented in Section 2.6. This chapter is reproduced in a similar form inMenary

et al. (2015a). c©American Meteorological Society. Used with permission.
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2.2 Characterising the model

2.3 The model: HadGEM3

We examine a prototype of the Met Office Hadley Centre’s state-of-the-art coupled ocean-

atmosphere-land-ice global environment model, HadGEM3. 460 years of near present-

day control simulation have been run at high resolution. Theatmosphere component

is the Met Office Unified Model version 7.7 (Walters et al., 2011). It has a horizontal

resolution of N216 (92km at the equator) and 85 levels in the vertical with a model top

at 85km with at least 30 levels in or above the stratosphere. The ocean is resolved on

the NEMO tripolar grid (0.25◦, 75 depth levels, version 3.2,Madec(2008)), with a pole

under Antarctica and poles either side of the Arctic Ocean inAsia and North America to

resolve the Arctic Ocean. The ocean in HadGEM3 was initialised from rest at December

1st using the 2004–2008 time mean EN3 (Ingleby and Huddleston, 2007) December-

time climatology and subsequently allowed to freely evolvewith repeating 1978 external

forcings in the atmosphere. For further details of the modelconfiguration and other sim-

ulations seeWalters et al.(2011).

HadGEM3 is a precursor to the model used in the Met Office global seasonal forecast,

GloSea5 (MacLachlan et al., 2015), which will also be similar to the new decadal predic-

tion model. However, there are some differences between theHadGEM3 and GloSea5

models, as GloSea5 underwent additional development whilst the HadGEM3 control was

running. Most importantly for the present study of the NA SPGis the more diffuse ther-

mocline in the HadGEM3 ocean (NEMO version 3.2) as compared to GloSea5 (NEMO

version 3.4, see discussion in Section 2.5) (Megann et al., 2014). Despite this, the NA

SPG biases in upper ocean temperature and salinity (compared to EN4), are small com-

pared to many other coupled climate models used to study NA SPG variability (Escudier

et al., 2013;Wang et al., 2014, see Section 2.3.1). Further details of global mean-state

biases within the atmosphere and ocean in HadGEM3 can be found in Walters et al.

(2011).

We use observed data from the EN4 objective analysis (Good et al., 2013) which provides
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infilled, optimally interpolated fields of temperature and salinity on a 1x1◦ grid from 1900

to present-day. EN4 is an updated version of EN3, with improved quality control and

error estimates, but was not available when the climate model was initialised. We use the

period 1900–2013 to construct a simple climatology for comparison with HadGEM3 and

note that the biases in HadGEM3 are large enough (see Section2.3.1) that the method

used to construct the EN4 climatology is unlikely to be of first order importance. Unlike

the HadGEM3 model, which is run with interannually constantforcings appropriate for

the year 1978, this observational data also includes the effects of all other natural and

anthropogenic forcings.

We now examine the NA mean state biases and signal of decadal variability in HadGEM3

in some more detail as a precursor to investigating the mechanisms of variability which

exist on top of these biases.

2.3.1 NA SPG Mean state

Mean state biases in top 500m depth averaged temperatures (T500), salinities (S500),

and densities (ρ500) in the NA SPG are less than±3◦C,±0.4PSU, and±0.1kg/m3 in the

interior NA SPG, with larger +4◦C, +0.6PSU, and±0.2kg/m3 biases in the boundary cur-

rent regions (Figure 2.1). The temperature and salinity biases are close to being density

compensating in the NA SPG but in the subtropical gyre (not the focus of this study) tem-

perature biases dominate resulting in lighter waters. The anomalously cold region in the

western SPG, often attributed to the simulated Gulf Stream being too zonal (Kwon et al.,

2010), is not as large as in many coupled climate models (Scaife et al., 2011). Warm

anomalies exist all along the NA SPG northern boundary currents. These anomalies are

associated with reduced ice distribution around southern Greenland and in the Labrador

Sea (not shown). Within the NA SPG, deep convection, as estimated from the annual

standard deviation in March mixed layer depths using the mixed layer estimate ofKara

et al. (2000), is located in the Labrador Sea and Irminger Current.

The simulated Atlantic meridional overturning circulation (AMOC) streamfunction in the

model is shallow compared to recent observations (Figure 2.2a). The zero streamfunction
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Figure 2.1: Top 500m depth averaged temperature (T500, a) salinity (S500, b), and density (ρ500, c)

biases in HadGEM3 (computed from full model time series) compared to EN4. Grey shading is used for

regions shallower than 500m. d) Standard deviation in Marchmixed layer depths (Kara et al., 2000), to

highlight where deep convection occurs



Chapter 2. The mechanism of North Atlantic internal decadal variability simulated in
HadGEM3 33

line in the model sits at a depth of 2–3km with the maximum overturning occurring

at a depth of approximately 1km. The deeper overturning cell, representing Antarctic

Bottom Water (AABW) and Lower North Atlantic Deep Water (LNADW) has a strength

of around 3 Sverdrups (Sv = 106m3/s), whereas the shallower AMOC cell, representing

the western boundary current and Upper North Atlantic Deep Water (UNADW) has a

mean strength of 17Sv for the last 200 years of the simulation.

At 26◦N it is possible to directly compare the streamfunction in the model to the RAPID

(Cunningham et al., 2007) observations. The depth of the RAPID overturning maxi-

mum is marked with a cross and is approximately 200m deeper than in the simulations,

which at these depths represents a single model grid cell in the vertical. The depth of the

RAPID zero streamfunction line is around 4km, much deeper than simulated. This is not

uncommon in models and may be partly an artefact of computingthe simulated overturn-

ing using the full 3-dimensional velocities (Roberts et al., 2013), although some models

do represent a much deeper upper cell (Yeager and Danabasoglu, 2012). Indeed, using

a ‘RAPID-style’ calculation, afterRoberts et al.(2013) (with a depth of no motion at

4740m) yields a zero streamfunction depth approximately only 250m deeper than using

the full 3-dimensional velocities; the structure and variability of the streamfunction shal-

lower than this are essentially unchanged. Finally, the NA SPG barotropic streamfunction

and associated time series are also shown (Figure 2.2, b and d) and broadly compare well

to observational estimates and high resolution models (Tréguier et al., 2005).

Although the depth (1000m) and strength (17Sv) of the maximum of the upper AMOC

cell are consistent with observations, the simulated annual variability in this index is

weaker than observed. The simulated annual mean AMOC streamfunction at 26.5◦N and

1000m depth has a standard deviation of 1.2Sv (0.9Sv if first detrended), compared to an

annual standard deviation of 2.3Sv from the 10 years of RAPID data available (Figure

2.2c). Additionally, the simulated index begins at a low value and then takes several

centuries to spin-up to a more stable state more favourably comparable to the observed

mean. Although this represents an improvement in this indexof the NA circulation, the

spin-up of the overturning circulation also results in an increase in northward heat and salt

transport within the Atlantic Ocean, causing the NA SPG to drift away from its initialised

state to a warmer and saltier state, seen in Figure 2.1
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Figure 2.2: a) Time mean Atlantic overturning streamfunction in HadGEM3. The contour interval is 2Sv

and the zero-line is marked with a grey contour. At 26.5◦N the profile from the RAPID array (Cunningham

et al., 2007) is overlaid on the same colour/contour scale. The depth of the maximum in the RAPID profile

is marked with a cross. Note that the latitudes north of 45◦N are approximate (within 1◦) due to the

increasingly curved nature of the model grid towards the twonorthern poles. b) Time mean NA SPG

barotropic streamfunction in HadGEM3. Contour interval is10Sv. c) Time series of the overturning

streamfunction at 26.5◦N and 1000m in HadGEM3 (red). Also shown are the time mean and annual mean

standard deviation from the 10 years of RAPID data (black). d) Time series of the minimum (multiplied

by -1) of the barotropic streamfunction in the NA SPG in HadGEM3.
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The simulated AMOC index also shows some evidence of multi-annual/decadal variabil-

ity, particularly at the more northerly latitudes of the NA SPG (not shown) in addition to

26N, as in other models (Zhang, 2010). The maximum correlation between the simulated

AMOC indices at 26.5◦N and 50◦N occurs when the 50◦N index leads by 1 year (correla-

tion of 0.63), suggesting the lower latitude variability isresponding to variability further

north in the NA SPG. The lag-zero correlation of the AMOC transport, calculated after

Bingham et al.(2007), is shown in Figure 2.3 and highlights the separationbetween the

South Atlantic, mid latitude Atlantic, and the NA SPG. Interestingly, the North Atlantic

coherence pattern is more similar to that seen in the lower resolution HadCM3 model

(1.25◦) than higher resolution OCCAM model (0.25◦ Bingham et al., 2007) but in all

cases there is clear separation between the subtropical andsubpolar gyres. We now move

on to examine the decadal variability of the NA SPG in more detail.

2.3.2 Signal of decadal variability

The time-mean T500 simulated in HadGEM3 is shown in Figure 2.4a along with con-

tours at 6 and 10 degrees to mark the general shape of the NA SPG. A comparison with

observations (EN4) again shows the general warm bias of the NA SPG, particularly to-

wards the edges of the gyre. A power spectrum for T500 averaged over the whole region

reveals a significant peak at a period of 16 to 17 years (Figure2.4b). This periodicity

exists whether using the entire simulation or alternatively removing the first 200 years

(not shown), suggesting it is not merely an adjustment process, and so we use the entire

time series to maximise the available data. Additionally, the periodicity is not unique to

any of the four individual subregions within the NA SPG (dashed regions in Figure 2.4a);

all show a significant peak at 16 to 17 years, as well as the North Atlantic Current (NAC)

region (Figure 2.5). Indeed, in HadGEM3 many other large scale ocean indices in the

NA SPG also reveal peaks in their power spectra at periods of 16 and 17 years, such as

SSTs, depth averaged salinities, the AMOC at 50◦N, or the strength of the NA SPG itself

(as defined by the barotropic streamfunction,cf. Figure 2.2).

In addition to these ocean indices, the NAO index also shows periodicity at 16 to 17 years

in its otherwise much whiter spectrum (Figure 2.4c). This issuggestive of a link from
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Figure 2.3: The cross-correlation between the simulated depth averaged (100–1000m) zonal mean trans-

port in the Atlantic as a function of latitude. Data have beendetrended. Black lines denote the latitude of

the equator and where the Gulf Stream separates from the coast of North America.

ocean to atmosphere in the region of the NA in which the ocean can impart some of its

long term memory on to the atmosphere. Such a feedback might in general be expected to

be weaker than similar atmosphere to ocean processes, and related to the strength of the

ocean circulation and SST gradients (Nonaka and Xie, 2003), and thus detection of this

feedback is perhaps at least in part due to the increased signal to noise ratio resulting from

the length of the control simulation (though we note this is still short compared to many

previous studies with lower resolution models). The mechanistic drivers behind this 17

year mode in the ocean and atmosphere, and the reasons for theparticular timescale, are

investigated in the next section; initially characterising the variability in the NA SPG as

a whole before targeted analysis of the processes in different regions.
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Figure 2.4: a) Time mean top 500m depth averaged temperature (T500) in HadGEM3. Contours at 6◦C

and 10◦C are also marked (black) to show the shape of the gyre and for comparison with equivalent

contours from EN4 (grey). Areas in white are shallower than 500m. The dashed grey box denotes the

four quadrants and fifth overall region for which power spectra of T500 were produced. The Irminger

Current region (red box) and Gulf Stream/North Atlantic Current region (blue box) analysed in the text are

also marked. The dashed black line stretching south from theGrand Banks denotes the transect location for

dynamic height analysis in Figure 2.12. b) The T500 power spectrum for the whole subpolar gyre region

(combination of all four quadrants). An estimate of significance is given by the 5–95% confidence intervals

for a red noise process with the same mean and standard deviation. Periods of 16–17 years are highlighted

with the blue shading. c) As (b) but for the NAO index, defined as the difference between simulated sea

level pressures over the Azores and Iceland. Time series arelinearly detrended prior to calculating the

power spectra.
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2.4 Mechanism of decadal variability in the NA SPG

We now diagnose the mechanism of decadal variability withinthe NA SPG, beginning

with a heat budget for the region before investigating how temperature anomalies propa-

gate around the gyre.

2.4.1 Heat budget

To begin to understand the variability of T500 in HadGEM3 a heat budget of the NA SPG

is diagnosed. The basin-wide, full depth NA SPG heat budget is shown in Figure 2.6 for

the latitude range 53–73◦N. Due to the lack of availability of the correct ocean diagnostics

at high enough output frequency (precluded by the expense ofstoring high resolution

atmosphere and ocean data), the heat budget of the NA SPG doesnot close perfectly (cf.

red and black lines in Figure 2.6a). However, the error is negligible, less than 1% of

the net surface fluxes of the region. Sensitivity tests whereall output diagnostics were

computed online and stored revealed that horizontal isopycnal diffusion was the most

important missing heat flux. The heat budget of the NEMO oceanis further complicated

by the use of a linear free surface with variable volume whichsits on top of the fixed

volume ocean grid cells and a heat flux between the two. For further details of the precise

formulation of the heat budget within the NEMO ocean model seeMadec(2008).

The heat budget (ocean heat content (OHC) rate of change) of the NA SPG can first

be broken down into advective (Qadv) and surface fluxes (Qsurf ), which add together

to give the net heat fluxinto the volume. There are also additional smaller heat fluxes

from the ice to ocean, between the linear free surface and fixed ocean volume, and from

geothermal heating of the abyssal ocean, particularly in the vicinity of the mid Atlantic

ridge,Qice, Qfree, andQgeo respectively:

dOHC

dt
= Qadv + Qsurf + Qice + Qfree + Qgeo (2.1)

The advective fluxes can be further broken down into fluxes from the north (OHTN ) and
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Figure 2.6: The full depth heat budget of the NA SPG (53–73◦N) volume plotted using 9 year running

means for clarity and to highlight decadal variability. Positive is into the specified region. a) Individual

components of the heat budget as denoted in the legend. b) Theanomalous heat budget (referenced against

years 22–42) to highlight the trends in latent heat fluxes andadvective heat fluxes through the southern

boundary. Note that the heat content change (dT

dt
, black) and sum of heat fluxes (red) do not match prior

to the year 100 as instantaneous ocean temperatures (used tocalculatedT

dt
) were stored with intermittent

frequency and don’t necessarily represent the same time window as the other heat fluxes during this time.

south (OHTS, positive northward) whilst the surface fluxes can be brokendown into the

shortwave (solar), longwave, latent, and sensible heat fluxes:

Qadv = OHTS − OHTN (2.2)

Qsurf = QSW + QLW + Qlat + Qsens (2.3)

Inspection of these terms reveals thatOHTS dominates the variability in advective heat

fluxes: Using annual data, the standard deviation ofOHTS is 28PW, compared to 17PW

for OHTN . The variability inOHTS is split between vertical ‘AMOC’ (Chapter 1,
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Equation 1.2) and horizontal ‘gyre’ (Equation 1.3) heat transport variability at these lati-

tudes (annual correlation betweenOHTS andOHTAMOC is 0.74, and betweenOHTS

andOHTgyre is 0.88). The surface fluxes (directed into the ocean) are dominated by

shortwave (solar) heating of the NA SPG, whereas longwave, latent, and sensible heat

fluxes represent net heat loss from the NA SPG.

To investigate the relative magnitudes of their variability, and any trends, the mean of

each of the key heat fluxes over the years 22–42 is removed (Figure 2.6b). Rather than

remove the full time mean, removing the mean from just the period soon after the model

was initialised serves to additionally show how the heat fluxes diverge. Net advective heat

fluxes into the region are increasing throughout the period,balanced largely by increasing

surface heat flux loss, but with some residual heating of the NA SPG. The advective heat

flux trend is dominated by the increase in heat flux from the south, which is due to the

strengthening AMOC (Figure 2.2c), with much of this heat lost via latent heat loss as

well as longwave emission. The rate of net warming is highestin the first century, which

is also why the net heat flux appears to be below zero for the remainder of the time,i.e.

the net warming rate is slower in the subsequent years.

There is considerable variability in the net heat flux into the NA SPG, the majority of

which appears to be attributable to the advective heat fluxesfrom the south, which results

in decadal timescale heat content changes within the NA SPG.Annual and decadal cor-

relations between the total heat flux and net advective fluxesare 0.75 and 0.69, whereas

the same for the total heat flux and net surface fluxes are 0.63 and 0.29 (the regression

gradients scale similarly) suggesting that particularly on decadal timescales advective

heat fluxes dominate the variability. Once within the NA SPG,how do these heat content

anomalies evolve?

2.4.2 Spatial characteristics of decadal variability

In order to investigate the spatial characteristics of the heat content variability, lagged

regressions were performed of NA SPG T500 on to SST spatiallyaveraged over the NA

SPG (Figure 2.7, second column). T500 anomalies can be seen propagating around the
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NA SPG: eastwards along the southern boundary whilst spreading into the interior with a

timescale of around 4–6 years (notably slower than implied by the mean circulation speed

in this region); westwards along the northern edge but southof the Greenland, Iceland,

Norwegian (GIN) Seas; into the central Labrador Sea as opposite sign anomalies form in

the Gulf Stream region. A similar evolution of anomalies wasalso found when regressing

T500 on to T500 spatial averages over the eastern SPG, NAC region, or Labrador Sea (not

shown). Features such as the Reykjanes Ridge can be seen diverting the flow. Although

not shown here, there is little evidence of significant amounts of the signal diverting into

the GIN Seas in the far northern part of the SPG. The heat content anomalies reach the

Labrador Sea from the eastern SPG within a couple of years butseveral more years are

required for the anomalies to spread into the interior SPG. As the heat content anomalies

in the Labrador Sea build up so does a cold anomaly in the Gulf Stream/NAC region. The

opposite phase of the cycle now begins.

The underlying essence of the cycle is captured by regressing T500 indices in the north-

ern and southern edges of the NA SPG against each other (Figure 2.8). This shows the

southern edge of the NA SPG leading the northern edge by≈6–7 years and subsequently

lagging changes in the northern edge by≈2 years with opposite sign, yielding a half pe-

riod of 8–9 years and a full period of 16–18 years (constrained here to be even by the use

of annual data). The range in periodicities is further increased by 2 years if a third loca-

tion in the eastern SPG is added to the regression model (not shown), forcing the signal to

go via the eastern SPG, suggesting that the spread in timescales is perhaps related to the

superposition of various advective pathways. This decadalmode is generally confined

to the top 500m–1km with the exception of the central Labrador Sea where it extends to

around 2km (Figure 2.9). Decadal variability in the band 10–30 years, encompassing the

spectral peak at 17 years, explains>15% of the annual variability in T500 within the NA

SPG, with this value rising to>30% in the centre of the gyre.

The lagged regression analysis leads to two key questions: Firstly, what is controlling

the apparent propagation of the heat content anomalies in both a) the Gulf Stream ex-

tension/NAC, and b) the northern boundary currents/Irminger Current? Secondly, what

is the negative feedback that forms the opposite sign anomaly in the NAC, resulting in a

cyclical mechanism and a spectral peak in NA SPG temperatures? To investigate these



Chapter 2. The mechanism of North Atlantic internal decadal variability simulated in
HadGEM3 43

     
30
40

50

60

70
80

     
30
40

50

60

70
80

     
30
40

50

60

70
80

     
30
40

50

60

70
80

     
30
40

50

60

70
80

     
30
40

50

60

70
80

-90 -60 -30 0 30
30
40

50

60

70
80

SST

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1SST [oC/oC]

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

-90 -60 -30 0 30
 
 

 

 

 
 

T500

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1T500 [oC/oC]

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

-90 -60 -30 0 30
 
 

 

 

 
 

SHF

-20 -16 -12 -8 -4 0 4 8 12 16 20SHF [W/m2/oC]

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

-90 -60 -30 0 30
 
 

 

 

 
 

SSS

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5SSS [PSU/oC]

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

     
 
 

 

 

 
 

-90 -60 -30 0 30
 
 

 

 

 
 

DJF PMSL

-5 -4 -3 -2 -1 0 1 2 3 4 5DJF PMSL [hPa/oC]

     
 
 

 

 

 
 

-6
 y

ea
rs

     
 
 

 

 

 
 

-4
 y

ea
rs

     
 
 

 

 

 
 

-2
 y

ea
rs

     
 
 

 

 

 
 

0 
ye

ar
s

     
 
 

 

 

 
 

2 
ye

ar
s

     
 
 

 

 

 
 

4 
ye

ar
s

-90 -60 -30 0 30
 
 

 

 

 
 

6 
ye

ar
s

Ice

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25Ice [frac/oC]

Figure 2.7: Regressions between North Atlantic subpolar (45–65◦N) sea surface temperatures (SSTs)

and, from left to right: SST, top 500m depth averaged temperature (T500), net surface heat flux into ocean

(SHF), sea surface salinity (SSS), wintertime mean sea level pressure (DJF MSLP), and ice fraction. From

top to bottom, the SST index lags then leads the fields from -6 to +6 years. All data are bandpass filtered

to remove interannual variability and the trend using a bandpass filter of 5–70 years.
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Figure 2.8: The lagged correlation between the Irminger Current and North Atlantic Current top 500m

depth averaged temperatures (T500). Regions are as marked in Figure 2.4a. Time series have been de-

trended and smoothed with a 5 year running mean to highlight the decadal correlations by removing annual

variability and the long term drift. An estimate of the significance is provided by the 95% (red) and 99%

(blue) confidence intervals estimated by creating 40,000 random time series with the same mean, standard

deviation, and applied filtering.

questions, we first break down the advective heat budget intocomponents related to the

mean and anomalous circulation/temperatures.

2.4.3 Decomposition of the advective heat budget

PreviouslyDong and Sutton(2001), showed the advective heat budget for a region in ap-

proximate long term equilibrium could be estimated by considering perturbations around

a long term mean as:

q(t) = q̄ + q′(t) (2.4)
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on the decadal mode.
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whereq(t) is some quantity varying in time,̄q is its time mean, andq′(t) is the anomaly in

q at each time,t. For the case of the net advective heat transport convergence, replacing

q with bothv (velocity) andT (temperature) and dropping the(t) on the right hand side

for clarity gives:

OHT (t) = ρcp

∫ (
v̄T̄ + v′T ′ + v̄T ′ + v′T̄

)
dA (2.5)

whereρ is density,cp is the heat capacity of seawater,v̄T̄ is a constant (the mean heat

transport when multiplied byρcp), v′T ′ is the heat transport due to co-variances in circu-

lation and temperature (and is usually but not always small for large enough areas),v̄T ′

is the heat transport by the mean circulation,v′T̄ is the heat transport by the anomalous

circulation, anddA indicates integrating over all faces (horizontal and vertical) enclosing

the volume. This is the same as Equation 1.1 except we now explicitly integrate around

a closed volume.

However, as previously mentioned, there is a trend in the NA SPG temperatures in

HadGEM3, and so the breakdown of the heat budget is made more complicated. For

the case of a known trend in one or more of these parameters (e.g. temperature) theq′

term will not just represent the annual/decadal anomaly butwill also have a component

due to the trend with the relative contributions toq′ varying in size depending on the

magnitude of the trend compared to the magnitude of the variability. Thus q must be

detrended prior to combining the terms together,e.g.

q(t) = q0 + q1t + q′(t) (2.6)

whereq0 is the intercept,q1 is the linear trend multiplied by time,t, andq′ is the pertur-

bation from this trend. Settingt = 0 at the midpoint of the linearly trending time series

results inq0 also representing the mean (previouslyq̄). This results in the OHT becoming

an equation of nine terms (as we detrendv as well due to the trend in the AMOC, Figure

2.2c):
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OHT (t) = ρcp

∫ (
v0T0 + v0T1t + v0T

′ + v1tT0

+ v1T1t
2 + v1tT

′ + v′T0 + v′T1t + v′T ′
)
dA (2.7)

where the terms inside the integral on the right hand side respectively refer to: 1) The

time mean OHT, 2) the interaction between the temperature trend and the mean circula-

tion, 3) the OHT due to anomalous temperature advected by themean circulation, 4) the

interaction between the mean temperature and the trend in circulation, 5) the interaction

between the trends in both circulation and temperature, 6) the interaction between the

trend in circulation and the anomalous temperatures, 7) theOHT due to mean temper-

ature advected by the anomalous circulation, 8) the interaction between the anomalous

circulation and the trend in temperatures, and 9) the OHT dueto co-variances in circu-

lation and temperature. Analysis of these components reveals a non-zero contribution

from the trend-related terms to the advective heat budget variability, but these are much

smaller than (less than half) the mean and anomalous circulation terms (v0T
′ andv′T0)

and so we focus on these latter circulation terms.

2.4.4 Heat content anomalies in the NAC region

To determine what controls the heat content changes on the southern boundary of the NA

SPG, the heat budget of the NAC region is examined in more detail. A region was cho-

sen where simulated zonal currents are much stronger than meridional or vertical currents

(See Figure 2.4a, blue box). This simplifies the later interpretation of the decomposition

of advective heat fluxes into circulation and temperature components. As noted in Section

2.4.1, it is not possible to close the heat budget precisely,which becomes more apparent

for smaller subregions. Table 2.1 shows the time mean advective components and net

surface heat fluxes for the NAC top 500m. Note that the choice of reference tempera-

ture becomes irrelevant when considering the net transportthrough all faces combined

but not when considering open sections (Schauer and Beszczynska-Möller, 2009). The

most important advective heat fluxes are from the east and west, associated with the mean

volume transport through the region from east to west. Theseadvective heat fluxes are
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NAC Irminger Current

East advection -1660 493

West advection 1753 -392

North advection 33 0

South advection -83.1 -23.7

Net vertical advection 7.5 -63.9

Net convergence 51.4 15.2

Surface -49.8 -16.9

A: Sum of advection and

surface (net sum)

1.6 -1.7

B: Ocean heat content

change (net actual)

0.1 0.1

Correlation A:B (Monthly,

Annual, Decadal)

0.96, 0.93, 0.98 0.96, 0.94, 0.95

Table 2.1: Time mean simulated heat fluxes into the North Atlantic Current (NAC) and Irminger Current

regions (TW, referenced to 0◦C).

approximately balanced by the surface heat fluxes but the sumof the two is not identical

to the actual heat content change implied by the in-situ temperatures. This is likely due

to missing diagnostics (See Section 2.4.1) and the use of monthly means when comput-

ing vT , rather than at each model time step. However, although the means are slightly

different, the variability in both time series is well correlated on all timescales at monthly

or longer sampling (Table 2.1). Thus, in the ensuing analysis of the variability, we treat

the budget as sufficiently closed for our purposes.

The annual and decadal timescale correlations (regressiongradients, W=Watts) between

the advective heat fluxes and the net heat content changes in the NAC are 0.82 (0.92

WdOHC/Wadv) and 0.54 (0.40WdOHC/Wadv) respectively, as compared to 0.43 (0.92

WdOHC/Wsurf ) and 0.20 (0.20WdOHC/Wsurf ) for the correlation between surface heat

fluxes and the net heat content change (for annual and decadaldata the 95% significance

levels, assuming a two-tailed t-test, are 0.12 and 0.37 respectively). Thus much of the

annual and decadal variability in the heat content changes in the Gulf Stream is associ-
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Monthly Annual Decadal

NAC v0T
′ 139 43 31

NAC v′T0 149 44 33

NAC v′T ′ 58 16 11

Irminger Currentv0T
′ 13.1 4.0 3.2

Irminger Currentv′T0 6.7 3.6 2.7

Irminger Currentv′T ′ 4.0 1.1 1.0

Table 2.2: Standard deviations of advective heat flux components in theNorth Atlantic Current (NAC) and

Irminger Current at various timescales (TW).

ated with advective heat fluxes but there is a role for surfacefluxes to modulate these

changes, even on decadal timescales. Of the advective heat fluxes, the remaining ques-

tion is whether these are due to the anomalous circulation oranomalous temperature. See

Section 2.4.3 for the full heat transport breakdown.

For the NAC region it can be seen that slightly more of the advective heat flux variability

arises from anomalous circulation advecting the mean temperature (v′T0, Table 2.2) than

terms involving anomalous temperatures (v0T
′, v′T ′). Although the magnitudes are sim-

ilar betweenv′T0 andv0T
′ components, the relationship with the net ocean heat transport

(OHT, i.e. vT ) is not, withv′T0 having a higher correlation with OHT. Correlations (re-

gression gradients in brackets) betweenv′T0 and OHT are 0.29, 0.36, and 0.42 (0.82, 2.4,

2.9WOHT /Wv′T0
) on monthly, annual, and decadal timescales respectively,compared to

0.00, -0.16, and -0.23 (0.01, -1.1, -1.6WOHT /Wv0T ′) for v0T
′ (95% significance levels,

assuming a two-tailed t-test and accounting for some missing data, are 0.03, 0.12, and

0.37 respectively). This holds throughout the western halfof the southern edge of the NA

SPG (not shown), and is associated with a strong background temperature gradient. Thus

v′T0 appears to be the dominant advective heat flux in the NAC region on all timescales.
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2.4.5 Heat content anomalies in the Irminger Current region

The same breakdown of heat content changes into a particularregion was applied to the

Irminger Current at the entrance to the Labrador Sea (Figure 2.4a, red box). Similarly

to the NAC region, this was chosen where horizontal circulation was well defined in a

particular direction and much larger than all orthogonal circulations. The breakdown of

heat fluxes into surface, advective, and advective subcomponents is shown in Table 2.1,

right column. Similarly to the Gulf Stream region, the net surface and net advective heat

fluxes approximately balance but do not fully explain the directly calculated heat content

change. However, as before, the correlation between the sumof the surface and advective

components and the flux implied by the actual heat content change is very good on all

timescales and so we again treat the budget as sufficiently closed.

For the individual fluxes, on annual timescales, the correlation (regression gradient) be-

tween the advective heat fluxes and net heat content changes is 0.56 (0.56WdOHC/Wadv),

again marginally greater than the correlation between surface heat fluxes and net heat

content changes at 0.47 (0.52WdOHC/Wsurf ). On decadal timescales these drop to 0.21

(0.08) and 0.19 (0.09) for advective and surface fluxes respectively. Despite these low

decadal correlations, there is still a very large correlation between their sum and the ac-

tual net heat content change (Table 2.1), suggesting that onthese decadal timescales no

single component of the heat budget can be considered the controlling influence. This is

also indicated by the strong anti-correlation between advective and surface heat fluxes of

-0.87 on decadal timescales.

In contrast to the Gulf Stream region, for the Irminger Current the most important ad-

vective heat flux is that due to the mean circulation advecting anomalous temperature

(v0T
′, Table 2.2).v0T

′ has slightly greater variability on all timescales thanv′T0 and also

shows larger correlations (and regression gradients) withthe actual OHT changes on all

timescales. Correlations between OHT andv0T
′ for monthly, annual, and decadal vari-

ability are 0.83, 0.34, and 0.29 (0.83, 0.66, 0.53WOHT /Wv0T ′) respectively, whereas

correlations between OHT andv′T0 are much smaller at 0.19, -0.1, and -0.14 (0.10, -

0.18, -0.24WOHT /Wv′T0
; for monthly, annual, and decadal data, the 95% significance

levels, assuming a two-tailed t-test and accounting for some missing data, are 0.03, 0.12,
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and 0.37 respectively). In our Irminger Current box the zonalcurrents are an order of

magnitude larger than in all other directions, and so we suggest that it is the zonal mean

circulation which is playing an important role in moving heat content anomalies from

east to west on the northern edge of the NA SPG.

In summary, the heat budget for the NA SPG as a whole has been diagnosed and it has

been seen that advective heat fluxes play an important role ondecadal timescales, but

that the relative contributions of circulation and temperature anomalies to the OHT are

region specific. We now investigate the remaining question of what controls the negative

feedback between Labrador Sea and NAC temperature anomalies.

2.4.6 Negative feedback between Labrador Sea and Gulf Stream

The anomalous temperatures in the Labrador Sea, which are related to the increased heat

flux into the region, affect deep water formation in this region. As noted in Section 1.3.3,

an assessment of related studies suggests an approximatelyeven split between tempera-

ture and salinity control of the Labrador Sea density changes related to increased deep

water formation on decadal timescales. FollowingDelworth et al.(1993) we decompose

the simulated density changes in the Labrador Sea into thosedue to temperature and

those due to salinity (Figure 2.10a). This analysis suggests that in HadGEM3 simulated

density changes in the Labrador Sea are due to temperature induced density changes (an-

nual correlation with actual density: 0.64), rather than salinity induced density changes

(annual correlation with actual density: 0.06). A lagged correlation analysis confirms

that on both annual and decadal timescales density changes are temperature-controlled

(Figure 2.10b). In the wider context of the proposed mechanism of decadal variability

these temperature anomalies are related to OHT anomalies through the Irminger Current

region.

In the Labrador Sea, on these decadal timescales, the temperature/density signal is man-

ifest throughout the whole water column. The deeper signal,between 1-1.5km depth,

spreads southwards along the particular deep water pathways of the model. Model simu-

lated deep water pathways show much inter-model diversity and are notoriously difficult
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Figure 2.10: a) 5-year smoothed Labrador Sea (50–60◦W, 55–62◦N) top 500m mean density (calculated

using annual mean temperature and salinity, black) and contributions from temperature (by keeping salinity

at the time mean in the density equation of state, blue) and from salinity (by keeping temperature at the

time mean in the density equation of state, red). Temperature and salinity both linearly detrended prior to

computing density. b) Lagged correlation of temperature-induced (blue) and salinity-induced (red) density

against actual density for detrended data, either unsmoothed (dashed) or smoothed with a 5-year running

mean (solid, as in (a)). Temperature/salinity-induced density leads at negative lags.

to validate (Spence et al., 2011). In HadGEM3 these pathways involve a combination

of the fast deep western boundary current and slower interior pathways (Figure 2.11).

Young water is formed in the Labrador Sea (Figure 2.11, a) which spreads eastwards

and southwards along the deep western boundary current (Figure 2.11, b and c). The

core of relatively young deep water can be seen transiting underneath the older north-

ward flowing water (Figure 2.11, d). These deep advective pathways are relatively slow

compared to the timescale of the simulated variability within the NA SPG and are more

likely to modulate longer timescale variability in the North Atlantic extending outside of

the SPG (e.g. Jungclaus et al., 2005;Menary et al., 2012). Instead, we hypothesise that

simulated dense water formation in the Labrador Sea in HadGEM3 contributes to circu-

lation anomalies in the NAC region via the creation of an anomalous north-south density

gradient, and as such acts as a negative feedback on to NA SPG temperatures.

To examine this hypothesis we calculate a composite difference in the density in a cross

section through the NAC which lags the density upstream in the Labrador Sea (Figure

2.12a). To the north the connection between surface and deepwater is revealed with the

signal sinking below the surface as it progresses southwards. The north-south density
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Figure 2.11: NA SPG ‘age of water’ tracer simulated in HadGEM3 where age ofwater is defined as the

time since the water was last in a surface grid cell. It is implemented by resetting all surface grid cell

ages to zero at the beginning of each model time step and incrementing the age of non-surface cells by the

length of the time step (in this case 20 minutes). Subsequently the age tracer evolves as any other passive

tracer. Thus the tracer represents the grid cell mean age of the water. The tracer was applied at model

year 268 and had been running for 213 years at the time this figure was created. Panels a, b, c: The age of

water at depths of 500m, 1000m, and 2600m respectively. Panel d: The age of water in a cross section at

approximately 42◦E (due to the curved grid lines), as marked by the line in (a).
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Figure 2.12: Transect south from the Grand Banks through the North Atlantic Current at 47.5◦W, as

shown in Figure 2.4a. Density (referenced to 0m) composite of high minus low densities in the Labrador

Sea, computed by averaging all cases where Labrador Sea volume mean density (computed over the region

47–55◦W, 56–61◦, 0–1000m) was at least one standard deviation larger than the time mean, and subtracting

the average of all cases where density was at least one standard deviation less than the time mean. Cross

sections lag by 1 year the Labrador Sea index. b) As (a) but fordynamic height composites (relative to

1500m). c) As (a) but for the geostrophic circulation (relative to 1500m). d) As (c) but first removing the

NAO signal from the density field afterPolo et al.(2014), see text. Cross-sectional time mean density is

indicated by the black contours. All data have been detrended and 5-year smoothed. Data insignificant at

the 99% level for a two-tailed t-test has been masked.

gradient is associated with a change in the local dynamic height (Figure 2.12b). Despite

the negative density anomaly in the south it can be seen that alarge part of the dynamic

height anomaly is controlled by the northern, positive density anomaly.

As the signal of anomalous density spills out of the LabradorSea this dynamic height

gradient increases and is balanced by anomalous shear in thegeostrophic velocities (Fig-

ure 2.12c). The mean geostrophic velocity anomaly between the surface and 500m for

the pictured transect is 0.9cm/s, increasing to 1.2cm/s forthe top 200m only. Thus, an in-

crease in density in the Labrador Sea, associated with a cooling in this region, is followed

by a strengthening of the circulation in the NAC, and thus an increase in northward OHT

into the NA SPG (with likely also some additional contribution fromv′T ′ as the anoma-

lous circulation acts on anomalously warm, low density surface water,cf. Figure 2.12a).

This acts as a negative feedback on the NA SPG temperatures. We now discuss the at-

mospheric contribution to these ocean feedbacks.
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2.4.7 The role of the atmosphere

Although the proposed mechanism of decadal (17 year) variability in HadGEM3 has been

described mostly in terms of ocean dynamics there are regions where the atmosphere

directly forces, or acts as a positive feedback on, the oceanvariability.

For example, the negative feedback dipole between LabradorSea and NAC temperatures

is reminiscent of the Ekman response to NAO forcing. To quantify the instantaneous (i.e.

zero lag) impact of the NAO we attempt to isolate its signal similarly to the analysis of

Polo et al.(2014). Specifically, the annual mean 3-dimensional ocean density field was

regressed onto the wintertime NAO index (both unfiltered, not shown). The direct impact

of the NAO was then removed from the density field by scaling the regression pattern

by the NAO index and removing the pattern from the density at each time point before

re-calculating the composites. Removing the instantaneousNAO-related signal weakens

the density/dynamic height and thus geostrophic current response calculated in Section

2.4.6 (Figure 2.12d), hence suggesting that some of the proposed negative feedback in

the ocean is forced by the atmosphere and not merely an ocean-only process. On annual

timescales the magnitude of the current response, as calculated in Section 2.4.6 and de-

picted in Figure 2.12c, is reduced by 45% but on longer, decadal timescales the reduction

is less stark (13% reduction). This analysis assumes that the instantaneous impact of the

NAO is annually independent and can be linearly separated. To what extent the NAO

and ocean temperatures/densities can be seen as one-way forcing from atmosphere to

ocean, and to what extent it is actually a coupled feedback (i.e. some of the NAO signal

is itself forced by the ocean, implied by the spectral peak inthe NAO power spectrum

Figure 2.4c), is discussed below. However, the reduction inanomalous circulation re-

sponse when removing the NAO suggests that atmospheric forcing/the NAO may act to

reinforce this ocean feedback.

In the northern NA SPG we have previously shown a role for ocean advection in moving

heat content anomalies westwards via the mean circulation (Section 2.4.5). At the same

time, surface heat fluxes were also shown to be non-negligible. In Figure 2.7 the SST,

T500, SHF, Sea Surface Salinity (SSS), Mean Sea Level Pressure (MSLP), and Sea ice

are regressed at various lags against NA SPG mean SSTs. The SHF is directed into
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the ocean and at lag=0,+2 is having a cooling effect in the eastern SPG and a warming

effect in the western SPG, i.e. it is effectively moving heatcontent anomalies from east

to west. This is likely related to the concomitant strongly negative NAO anomaly in

the MSLP field at the same lags. The actual magnitude of the SHFcontribution to the

Irminger Current OHC change is similar to the contribution from advective fluxes but, as

noted in Section 2.4.5, both are individually quite poorly correlated with the OHC change

on multi-annual timescales. This is consistent with a mechanism whereby the ocean

integrates up the interannually independent forcing from the atmosphere/NAO resulting

in decadal timescale variability in ocean heat content.

In the eastern SPG, the SSTs are anti-correlated with the NAOindex, seen both at the

lag=0 regression and with the opposite phase at lag=-6. These SSTs are likely a com-

bination of the direct forcing of both 1) the NAO via SHFs and anomalous Ekman and

gyre circulation (Hakkinen and Rhines, 2004;Sarafanov et al., 2008) and 2) the advec-

tive heat flux associated with the diagnosed mechanism of decadal variability. However,

the simulated NAO shows a spectral peak at 17 years similarlyto ocean indices within

the NA SPG. It would appear most likely that this atmosphericmemory must come from

the ocean but unfortunately long enough atmosphere-only experiments with this model

are not available to further test this hypothesis.

The anomalous NAO-related SHFs show the same sign change over both the Labrador

Sea and Gulf Stream/NAC but over the Gulf Stream/NAC are of the wrong sign to explain

the heat content changes (both at the surface and throughoutat least the top 500m of

the water column). This is consistent with advective heat fluxes playing a much more

dominant role in the heat budget of the NAC region (see Section 2.4.4) than the Irminger

Current/Labrador Sea region (Section 2.4.5). However, as noted at the beginning of

this section, in the NAC region there is a significant portionof the ocean geostrophic

circulation (and associated heat transport) response which is itself related to the NAO (cf.

Figures 2.12c and 2.12d). In short, it is impossible to completely separate the effects of

either the atmosphere or ocean without further experiments.

SSS evolves similarly to SST in the NA SPG although the largest changes are associated

with movement of the ice edge in the GIN Seas (Figure 2.7). In general in the NA SPG,
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positive salinity anomalies co-vary with positive temperature anomalies in both space and

time (mostly density compensating), again suggesting a role for advective fluxes. NAO-

related surface freshwater fluxes are also proposed to be of only secondary importance

due to the fact that simulated SSS anomaly magnitudes are independent of the amplitude

of the NAO.

Similarly to other large scale variables within the NA SPG, ice edge changes exhibit

decadal variability with a spectral peak at a period of 17 years (not shown). However,

unlike in similar work with the IPSL model (Escudier et al., 2013) these changes do not

appear to lead variability in either the East Greenland Current or deep water formation

in the Labrador Sea; we suggest that in our simulations ice edge changes are primar-

ily a passive response to the temperature dominated decadalvariability within the NA

SPG, perhaps again via the NAO (Deser et al., 2000), rather than a direct driver of this

variability.

2.4.8 Summary of the proposed mechanism

The mechanism of decadal (17 year) variability simulated inthe NA SPG T500 and

SSTs is summarised in Figure 2.13. Positive circulation anomalies in the southern part

of the SPG move heat eastwards and northwards into the eastern SPG with a timescale

of around 5 years (orange). These heat content anomalies arethen transported by the

mean circulation around the northern edge of the SPG with a timescale of around 2

years (red). In the Labrador Sea these anomalies affect the stability of the water col-

umn. These negative density anomalies, associated with reduced deep water formation,

spill out from the Labrador Sea into the SPG, deepening as they go. In the region north of

the Gulf Stream these negative density anomalies affect thenorth-south density gradient

and induce geostrophic circulation anomalies weakening the NAC. The weaker circula-

tion reduces ocean heat transport and acts to cool the NA SPG (blue). The phase of the

oscillation is thus reversed.

The postulated role of the atmosphere is also noted (black dashed lines in Figure 2.13):

As temperature anomalies build up in the eastern SPG the atmosphere acts to strengthen
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Figure 2.13: A schematic of the proposed mechanism. The various processes in different regions, the

timescales, and the postulated role of the atmosphere are asdescribed in the text. Dashed grey lines denote

the approximate location of NA SPG and subtropical gyres with bathymetry of particular interest marked

brown. Regions dominated by circulation anomalies (orange) and temperature anomalies (red), and where

the negative feedback is suggested to occur (blue) are also marked. Additionally, black dashed lines denote

regions where the atmosphere is postulated to play a role in forcing or feeding back on ocean anomalies.

these anomalies. When the east of the NA SPG is anomalously warm or cold SHFs

also act to move the ocean heat content anomaly westwards. Lastly, in the region of

the Labrador Sea/Gulf Stream temperature (density) dipolethe NAO is associated with

around 13% of the ocean-circulation feedback (cf. Figure 2.12d).

We now discuss the implications of our work and similaritiesbetween it and previous

studies.
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2.5 Discussion

In the context of the literature summary in Section 1.3.3, and the schematic illustration

presented in Figure 1.5, our simulations broadly fall into atemperature-dominated regime

in the Labrador Sea in which the mechanism could be describedas ‘Ocean*’i.e. A posi-

tive feedback between the NAO and SSTs may be amplifying the mode. The timescale is

set in part by mean circulation speeds in the northern SPG butwith a transition to anoma-

lous circulation in the southern SPG — although it is not clear from the simulations

precisely where this transition occurs.

The simulated timescales between changes in the Labrador Sea, NAC and eastern SPG

have been attributed to advective processes. However, confounding this are wave pro-

cesses which are also weakly detectable within the model. Analysis of the deep density

field (1500–3000m) reveals signals characteristic of boundary waves propagating from

the Labrador Sea to the equator; propagating along the equator to the eastern bound-

ary; subsequently propagating north and south along the eastern boundary, all the while

radiating Rossby waves westwards (Figure 2.14). The evolution is very similar to that

found in the idealised model ofJohnson and Marshall(2002) and yield a lag between

the Labrador Sea and eastern SPG of 5 years, broadly similar to that due to the proposed

advective feedback. Although detectable, these wave signals require heavy filtering of

the deep density field whilst the proposed mechanism exists mainly in the top 1km (Fig-

ure 2.9). Additionally, recent work has shown that, while detectable and associated with

decadal variability, Rossby waves may not necessarily be a significant driver of this vari-

ability (MacMartin et al., 2013). We can only conclude that wave processes may play

an additional role in our simulated variability but the magnitude of this is unclear. We

also note that the relatively diffuse thermocline in HadGEM3 (Megann et al., 2014) may

act to dampen these wave processes (Grotzner et al., 1998) as compared to the updated

seasonal forecast model, GloSea5 (which will be similar to the new Met Office decadal

prediction model).

Despite the lagged regression analysis used in this study, and its ubiquity within studies

of decadal variability within climate models, there are some hints from the present work



60
Chapter 2. The mechanism of North Atlantic internal decadal variability simulated in

HadGEM3

-80 -60 -40 -20 0 20
Longitude

-20

0

20

40

60

La
tit

ud
e

A

B

C D

EN

ES

FN

FS

0 24 48 72

0 2 4 6

Years

Months

Figure 2.14: A map of the lag in months of the maximum correlation with density at the marked location

in the Irminger Current. Densities are the depth average between 1500–3000m afterHodson and Sutton

(2012). Data have been bandpass filtered to remove periods less than 3 years and greater than 40 years.

Wave signals propagate around the boundary of the Labrador Sea, beginning atA, and down the west coast

of the North Atlantic viaB to the equator atC, with an arrival time at the equator of 15 months. From

the west coast of the equator the signal is next seen on the east coast atD, arriving there after 43 months

implying a pan-equatorial journey time of 28 months. Subsequently, the signal propagates poleward in the

direction ofEN andES , all the while radiating Rossby Waves into the ocean interior (FN andFS). Grey

and black contours mark the distance from the eastern boundary that a first-mode baroclinic Rossby Wave

would be estimated to travel after 5 and 6 years respectively, given the simulated thermocline depth (far

shallower than 3000m; these lines mark the general extent ofRossby Wave penetration) and the signal’s

initial arrival time on the eastern boundary of the Atlanticat that latitude.
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that the proposed mechanism may be asymmetric. This asymmetry is manifest in the

timescales of various phases of the cycle being also dependant on the sign of the anomaly;

i.e. the same processes are at work in opposite phases of the mechanism but may evolve

with different timescales. Some evidence for this can be seen in Figure 2.7 in which

all the fields reverse sign over 6–8 years, implying a periodicity of 12–16 years, and

yet the spectral peak occurs at the upper end of this at 16 to 17years. If we construct

lagged composites of the T500 (or SST) field based on the top/bottom 10% of phases

of the SST index we find a reversal timescale of 9 years following a high SST phase,

but a reversal time of 7 years following a low SST phase (not shown). This asymmetrical

timescale doesn’t appear to be directly due to the effect of heat transport by the anomalous

circulation in the southern SPG (thev′T0, see Section 2.4.4) as the lags between the NAC

and eastern SPG result in the same timescale in high and low phases. It is important to

note though that constructing composites, which only use 20% of the total data, reduces

the effective number of degrees of freedom.

Additionally, atmosphere-only sensitivity experiments (see Chapter 4) suggest a stronger

coupling in the NA SPG between anomalously positive NAO/negative SSTs than anoma-

lously negative NAO/positive SSTs. This atmospheric asymmetry also appears evident

in the coupled simulation when compositing MSLP based on high/low phases of the SST

index. Although both MSLP patterns, composited against positive SSTs (Figure 2.15a)

and negative SSTs (Figure 2.15b), show a pattern broadly similar to the NAO, the mag-

nitude and precise structure are clearly different, with a stronger NAO signal associated

with the negative SST composite (Figure 2.15b). This asymmetry is examined further in

Chapter 4.

It is difficult to prove the mode of variability reported hereis inconsistent with observa-

tional data due to the paucity of observational records in the NA SPG, particularly in the

northern half, and the presence of confounding additional transient forcings in the ob-

servational record. However, palaeo proxies from the NA SPGsuggest there is 20 year

variability in some indices in the region (Sicre et al., 2008;Chylek et al., 2012), although

it must be noted that there is disagreement on the spectral characteristics of all proxies

(Mann et al., 1995). The specific elements of our proposed mechanism (anomalous cir-

culation OHT in the southern part of the NA SPG, mean circulation OHT in the northern
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Figure 2.15: Mean sea level pressure (MSLP) composites created using thesame SST index as in Figure

2.7 to highlight the asymmetry between positive and negative phases of the proposed mechanism. a)

Composite created using the highest 10% of SST anomalies. b)As (a) but for the lowest 10% of SST

anomalies.

part, a negative feedback between Labrador Sea and NAC temperatures) are also broadly

consistent with the observational literature. For example, there are some similarities to

the anti-correlated relationship between Labrador Sea andNAC temperatures/transports

seen in observations (Curry and McCartney, 2001). This observational work also high-

lights the significant role of the NAO in this relationship aswell as the dominant role for

temperature (as opposed to salinity) in driving these changes. We note that as a result

of the northern NA SPG warm bias in HadGEM3 there is less ice inthe mean, which

may detrimentally affect the ability of ice/freshwater fluxes to affect the decadal variabil-

ity. In models where the NA SPG mean state bias is cold, feedbacks involving ice and

freshwater fluxes have been shown to be crucial to the diagnosed decadal variability (Es-
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cudier et al., 2013). To what extent the simulated decadal variability isconsistent with

observational data is discussed further in Chapter 3.

2.5.1 Comparison with other models

Similar to our findings, recent ultra-high resolution (1/12
◦ horizontal resolution) eddy re-

solving ocean-only model studies show that much of the OHT into the eastern NA SPG

occurs in the near surface (but below the Ekman layer) originating in the subtropics (25%

of virtual floats at 500m, compared to less than 10% at 50m or 1000m,Burkholder and

Lozier, 2011, 2014). In addition, the role of anomalous circulation transporting the mean

temperature gradient in the southern part of the NA SPG is indirectly supported by these

ocean-only simulations, which find that the mean circulation is unable to explain the

slow timescale by which temperature anomalies move from thesubtropics to the eastern

SPG. Important for decadal variability in our simulations are advective heat fluxes from

the southern edge of the NA SPG due to the anomalous circulation (v′T0). The heat flux

across the southern boundary correlates well with both the vertical ‘AMOC’ and horizon-

tal ‘gyre’ heat transports. However, the standard deviation in the annual mean AMOC

at 26.5◦N from 10 years of RAPID data is approximately double the annual standard

deviation in HadGEM3. Thus, if the proposed mechanism exists in reality then it could

be expected to have a larger amplitude or faster timescale. Amore critical comparison

against observational data is provided in the next chapter (Chapter 3).

The mechanism we have presented has a timescale of 17 years, similar to the 20 years

found in the IPSL-CM5A-LR model recently investigated by (Escudier et al., 2013, here-

after E13). However, a similar timescale does not imply the same mechanism: see for

example an identical 17 year timescale but different mechanism reported byBorn and

Mignot (2012). The present study reports a mode of variability where temperature dom-

inates the density budget, whereas E13 report a mode in whichfreshwater/salinity fluxes

have an important role. Indeed, salinity advection within the SPG has been proposed as a

cause of bistability in the SPG (Born et al., 2013), albeit on longer timescales. It is intu-

itive that whether the density budget is dominated by temperature or salinity would affect

whether a strengthening northward circulation acted as a positive or negative feedback
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Mean state Density change for one s.d.

change in temperature

Density change for one

s.d. change in salinity

EN4 + HadGEM3 bias 0.027 0.014

EN4 + IPSL bias 0.010 0.014

EN4 (original) 0.023 0.014

Table 2.3: Characteristic magnitudes of density changes (kg/m3) in different simulated/estimated T/S

regimes. As there is limited raw data from EN4 to reliably estimate decadal variability in the Irminger

Current, and to simplify the experimental design and interpretation, we use HadGEM3 estimates of the

decadal variability in temperature and salinity in all cases. s.d.= Standard deviation.

— but why are NA SPG density changes differently controlled in the two models?

One hypothesis is that the nature of the biases (compared to observations) affect the

variability as the non-linear equation of state for densitybecomes increasingly salinity

dominated at cooler temperatures. To estimate this effect we compute the density change

in the Irminger Current region, mechanistically important in both studies, for a one stan-

dard deviation change in temperature and salinity (whilst keeping the other of salinity or

temperature at climatological values) in both HadGEM3 and the IPSL-CM5A-LR model

as well as an observational estimate from EN4 (Table 2.3). InHadGEM3, such a tem-

perature change has double the impact on density than a change in salinity. This is not

the case in the IPSL model where salinity changes are found tobe more important. The

EN4 data suggest that the real world may be in a temperature dominated regime, similar

to HadGEM3. This points to there being some relationship between the NA SPG mean

state biases of a given model and the subsequently diagnosedmechanisms of decadal

variability. Note that this cursory analysis merely compares mean states and variability,

and does not explicitly investigate whether density variability is temperature- or salinity-

controlled. Nevertheless, one implication of this would bethat decadal prediction studies

using anomaly-assimilation methods, in which the mean state biases are implicitly as-

sumed to be independent of the variability, would need to re-evaluate the validity of this

assumption (Robson, 2010). We will investigate this further in Chapter 6.
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2.6 Chapter conclusions

We have analysed a decadal mode of variability in the North Atlantic subpolar gyre (NA

SPG) in a 460 year control simulation with a version of the high resolution coupled

climate model HadGEM3.

• The mode of variability exists primarily in the top 1km and involves the propaga-

tion of heat content anomalies around the NA SPG with a periodicity of around 17

years.

• Simulated decadal variability (between 10 to 30 years) in the NA SPG explains

more than 15% of the annual mean variance in top 500m depth averaged tempera-

tures. This rises to>30% of the variance within the interior NA SPG and Labrador

Sea. Some of the processes/feedbacks we have identified havea low signal to noise

ratio, which reinforces the case for continuing to invest inlong control simulations

even with high resolution, computationally expensive, coupled climate models.

• The simulated NA SPG heat budget is dominated by advective, rather than surface,

heat fluxes on decadal timescales, with advection from the subtropics playing the

primary role. For the specific regions of interest, namely the Irminger Current and

North Atlantic Current (NAC), advective fluxes were also foundto dominate. The

large depth extent of the mode is also consistent with an important role for advec-

tion (Saravanan and McWilliams, 1998), as has also been shown for the analogous

Kuroshio extension (Qiu and Kelly, 1993).

• The role of mean or anomalous circulation in transporting heat content anomalies

was found to vary with region: Anomalous circulation dominated the variability in

the NAC with mean circulation, and hence temperature anomalies, dominant in the

Irminger Current region.

• A negative feedback, required for the mechanism to result ina spectral peak, oc-

curs between the Labrador Sea and NAC. Here, density anomalies spill out of the

Labrador Sea resulting in a dynamic height gradient across the NAC/Labrador Sea

which induces vertical shear in the geostrophic currents. These current anomalies
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result in heat transport anomalies which reverse the cycle.The density changes are

temperature, rather than salinity, driven.

• Variability in the NAO directly contributes to various stages of the mechanism as

well as showing signs of responding to ocean variability. Removing the North

Atlantic Oscillation (NAO) signal from the negative feedback between Labrador

Sea and NAC temperatures/densities (see Section 2.4.7) shows about 45% of the

geostrophic current speed feedback is related to the NAO on annual timescales but

that on decadal timescales the ocean feedback still dominates. The atmosphere also

acts to reinforce temperature anomalies in the eastern NA SPG and aid their west-

ward propagation in the northern SPG. The proposed mechanism is summarised in

Figure 2.13.

• Whether density changes are temperature or salinity controlled effects where, and

how, negative feedbacks can occur. This may also be expectedto affect the particu-

lar mechanism simulated in the model. This could have important implications for

decadal prediction studies that use the method of anomaly-assimilation and predic-

tion, in which the future evolution of the model is assumed tobe independent of

the mean state — an assumption which we suggest may not be valid.

A modified version of the model presented here will be used as part of the Met Office

decadal prediction system and analyses such as we have presented will be important in

developing and evaluating such systems. Given the relationship between resolution and

the improved realisation of particular processes, as well as mean state biases, further high

resolution coupled model studies would be valuable in testing whether these results are

model-specific.

How robust various elements of this mechanism of decadal variability are will be dis-

cussed in Chapters 4 and 5. However, in the next chapter we firstcritically compare the

mechanism to available observations within the NA SPG.



Chapter 3

Confronting the mechanism of

simulated decadal variability with

real-world observations

3.1 Introduction

In the previous chapter the mechanism of decadal variability within the North Atlantic

subpolar gyre (NA SPG) was diagnosed within HadGEM3. We now attempt to test the

validity of this mechanism against available observationsof the NA SPG. Our goal is to

do more than merely test the magnitude of the biases in the model mean state, which

has already been done elsewhere (Walters et al., 2011). Although this is useful for un-

derstanding the base climate of a model, and provides guidance as to the ‘plausibility’

of the variability within a particular model, it does not speak to the specific mechanisms

of that variability (although we note that this does have some utility for understanding

mechanisms of variability when undertaken in a multi-modelframework, see Chapter 6).

As such, in Section 3.2 we begin with a brief review of the periodicity and variability

observed in the NA SPG and describe the key datasets that we will use in our analysis. In

Section 3.3 we investigate the surface evolution of observed variables in the NA SPG be-

fore investigating the depth structure in more detail in Section 3.4. We test key elements

67
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of the mechanism of variability simulated in HadGEM3 in Section 3.5 before discussing

our results in Section 3.6. Finally, conclusions are presented in Section 3.7.

3.2 Review of relevant observations

3.2.1 Variability in palaeo and direct observations

In Chapter 1 we discussed some of the direct and indirect observations of the mean state

and variability of the North Atlantic region, as well as manyof the simulations that aim

to reconstruct and understand that variability. Aside fromnumerical models, much of the

information about the periodicity of variability in and around the North Atlantic subpolar

gyre (NA SPG) originates from palaeo reconstructions (Mann et al., 1995) with palaeo

records only recently able to resolve temporal variabilityon sub-decadal timescales (Sicre

et al., 2008;Chylek et al., 2012). However, despite recent efforts (Ahmed et al., 2013),

the spatial patterns of this variability and any depth structure in the ocean are still not

estimable from the palaeo archive.

Direct/instrumental observations of temperature in the North Atlantic have been made

for many centuries, with Benjamin Franklin reported to have made measurements on

voyages between Europe and America as early as 1775 (Richardson, 1980). A relatively

well sampled record of surface temperatures in the subtropics and southern half of the

subpolar gyre exists for the last 160 years (Kennedy et al., 2011). However, observations

in the northern edge of the NA SPG are well sampled for perhapsonly the last 70 years

(Kennedy et al., 2011) and observations of surface salinity or subsurface temperature and

salinity (in the top 2000m) in the NA SPG are poorly sampled until at least 1960 (Good

et al., 2013). Observations at depths below this are still sparse to this day, as are direct

estimates of circulation indices (Cunningham et al., 2007), which is particularly alarming

given the recently detected trend in the AMOC (Smeed et al., 2014) and its potential

relationship to variability in the NA SPG (Robson et al., 2014). Despite the observational

paucity in temperature and salinity in the NA SPG compared tothe rest of the Atlantic

Ocean, the high signal to noise ratio in this region makes it aprime candidate for detecting
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significant decadal (or even longer) variability (Hakkinen and Rhines, 2004) — here we

approximately define decadal variability as timescales of 10–30 years and multi-decadal

variability as timescales>30 years although in the literature there is considerable overlap

of these terms.

Large multi-decadal variations in the mean sea surface temperature (SST) in the subtrop-

ical and subpolar North Atlantic have been observed over thelast century, often referred

to as the Atlantic Multidecadal Oscillation (AMO,Schlesinger and Ramankutty, 1994).

However, it is not clear to what extent these are forced signals (Booth et al., 2012;Zhang

et al., 2013) and whether they are simultaneously representativeof the same variabil-

ity in the NA subpolar and subtropical regions (Knight et al., 2005;Zhang et al., 2013;

Häkkinen et al., 2015). Within the NA SPG, using records since 1960, signalsof multi-

decadal variability have been observed in upper North Atlantic deep water (UNADW)

whilst lower North Atlantic deep water (LNADW) has exhibiteda long term trend (Mau-

ritzen et al., 2012).

On shorter, decadal timescales, multiple analyses have noted the relationship between the

strength of the North Atlantic Oscillation (NAO) and a proxyfor the strength of the NA

SPG (Curry and McCartney, 2001;Rhein et al., 2011;Roessler et al., 2015). The NA

SPG strength is postulated to have declined in the past decades (Hakkinen and Rhines,

2004), possibly related to decadal variability in the strength of the Atlantic meridional

overturning circulation (AMOC) with opposing signals in thesurface and subsurface

temperatures (Zhang, 2008). Indeed, there is often an anticorrelation between surface

and subsurface temperature anomalies, as well as between NASPG and subtropical tem-

perature anomalies (Lozier et al., 2008). Model studies suggest these may be internally

(rather than externally) forced (Zhang and Vallis, 2007) as well as due to advective (rather

than surface) processes (Williams et al., 2014).

In summary, there is clear evidence of decadal (and multi-decadal) variability in the NA

SPG, particularly in ocean temperatures, and with a depth structure that has implications

for the processes involved. In order to quantitatively testthe simulated mechanism of

decadal variability in HadGEM3 we first source and describe an observational dataset.
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3.2.2 The EN4 dataset

The ‘EN4’ optimally-interpolated objective analyses provide gridded T/S data throughout

the global oceans based on quality controlled temperature and salinity profiles (Good

et al., 2013). EN4 represents an improvement upon the previous version EN3 (Ingleby

and Huddleston, 2007) owing to the provision of uncertainty estimates derived via a novel

‘observation influence’ approach (Donlon et al., 2012). This approach involves using a

recursive filter to iteratively estimate the optimal value of the interpolated data, hence

‘optimal interpolation’. The number of iterations has beenincreased from 10 to 50 in

this version of EN4 to enable closer convergence.

Data are provided as monthly means on a 1x1◦ grid with 42 vertical levels. The data

are infilled, using statistically determined three-dimensional decorrelation lengthscales

and persistence of anomalies in time. The horizontal covariances are modelled using two

second-order autoregressive functions, with lengthscales of 300km and 400km. Within

four degrees of the equator the first of these lengthscales increases exponentially to

1500km. Vertical covariances are estimated using lengthscales of 100m and 200m.

The persistence of anomalies in time is modelled month by month and combines the

present monthly climatology with the previous monthly meananomaly (from climatol-

ogy), scaled by a factor of 0.9 resulting in an e-folding timeof 9.5 months. Further details

can be found inGood et al.(2013).

The data span the period January 1900 to the present day (although there are no obser-

vations within the interior NA SPG prior to August 1908) witha lag of 2 months to real

time1. Unless otherwise stated, in the subsequent analysis annual mean data is used up to

and including the year 2014.

Before analysing the depth structure in EN4 (Section 3.4), itis prudent to check where, in

the 1900–2015 record, there are subsurface observations. Figure 3.1a counts the number

of subsurface (below 200m) temperature and salinity observations per month within the

important Labrador Sea region. Although the infilled recordstretches back to 1900,

there are few years before 1925 with any subsurface observations in this region at all.

1Data freely available from http://www.metoffice.gov.uk/hadobs/en4/ (August 2015)
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Figure 3.1: a) The number of independent (as estimated from the quality control procedure within EN4,

Good et al., 2013) observations per month in EN4 within the Labrador Sea, defined as the region 45–

60◦W, 55–65◦N between 200m and 6000m. b) As (a) but just for the winter months: December, January,

February.

Indeed, analysing just the winter months, when deep convection most commonly occurs

(Yashayaev, 2007) reveals that prior to 1960 there were at best only tensof observations

and even some subsequent years with no wintertime observations at all,e.g. the early

1990s (Figure 3.1b).

3.2.3 Other datasets

In Section 3.3.1 we initially compare the variability in near surface fields from a variety of

observational datasets. For SST, sea surface salinity (SSS), and top 500m depth averaged

temperature (T500) we use EN4 (Good et al., 2013). For December-February inclusive

(DJF) wintertime mean sea level pressure (MSLP) we use HadSLP2r, a near-real-time

update of HadSLP2 (Allan and Ansell, 2006) that provides 5x5◦ gridded fields of land and

marine pressure observations for the period 1850–2004 (updated to 2014 in the present

analysis with use of HadSLP2r). For sea-ice fraction we use HadISST (Rayner et al.,
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2003) that provides 1x1◦ gridded fields of monthly mean sea ice concentrations for the

period 1870 to present day with a lag of 1 month to real time. All fields are converted to

annual means (except wintertime MSLP) for the common period1900–2014.

3.3 Comparing the surface evolution of NA SPG vari-

ability in the model and observations

3.3.1 The spatio-temporal evolution of surface fields

In this section we attempt to recreate a key figure from our HadGEM3 analysis (Chapter

2, Figure 2.7) using observational data and an index of NA SPGvariability. In Chapter 2

we used a basinwide SST index for the model simulations, which comprise more than 400

years of data without annually varying external forcings. For the observations, we use a

depth averaged index over the top 500m (Figure 3.2). This is because the observed SST

record is made up a series of large amplitude multi-decadal changes that are potentially

externally forced (Booth et al., 2012;Menary and Scaife, 2014;Swingedouw et al., 2015)

and may be subject to more global influence than T500. Testingwith the model (not

shown) suggests this has little effect on the lagged relationships seen in the simulations.

The time series of NA SPG T500 is shown in Figure 3.2 and highlights the rapid warming

in the 1990s, discussed in detail byRobson et al.(2012) and also later in this section.

Removing the regression against global mean SST since 1900 does not have a dramatic

effect on the NA SPG T500 index (Figure 3.2, red) but does reduce the linear trend in

the period since 1960 (see the orange line during this period). Alternatively, removing

the regression against global mean SST from 1960–2000 has the opposite effect on the

linear trend in NA SPG T500 during this time (Figure 3.2, blue). The sensitivity of the

subsequent regression maps to these choices will be discussed.

Figure 3.3 shows the regression slopes between an index of T500 between 45–65◦N in

the North Atlantic, estimated using EN4 data, and various other fields at a variety of

lags. At a lag of zero years (fourth row) the T500 index is consistent with anomalously
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Figure 3.2: Time series of North Atlantic subpolar (45–65◦N) top 500m depth averaged temperature

(T500) from EN4 (black). An estimate of the component associated with global mean climate change is

made by regressing T500 against the global mean SST (from EN4) and this component (orange, displayed

with arbitrary mean) is subsequently removed from the T500 index as well as all the fields used in Figures

3.3 and 3.4. The final T500 index (red) is subsequently regressed against a variety of similarly processed

spatial fields in Figure 3.3. The full period 1900–2014 is used in Figure 3.3 and the shorter period 1960–

2000 (blue, highlighted with grey shading) is used in Figure3.4, with the climate change signal recomputed

and removed for this shorter period.

warm conditions at the surface and throughout at least the top 500m of the water col-

umn (Figure 3.3, first two columns). Concomitant with this warm anomaly is a salinity

anomaly (third column) that does not appear to be due to ice formation (brine rejection)

as ice concentrations are also anomalously negative at thistime (fifth column). These

warm/saline anomalies are consistent with a joint (advective) origin, though also con-

sistent with merely temperature-induced evaporation or reduced mixing with fresher,

subsurface water. The warm conditions are also consistent with the atmospheric pres-

sure pattern (Flatau et al., 2003), which resembles a negative North Atlantic Oscillation

(NAO) pattern and implies a reduction in wind-driven cooling.

In the years leading up to this maximal warm anomaly in the NA SPG (Figure 3.3, first

three rows) surface warming begins in the Nordic Seas beforebecoming focussed most

heavily on the Labrador Sea (Figure 3.3, first column) whilstthe T500 warming appears

to growin situ in the NA SPG (Figure 3.3, second column). Similar to the SST anomalies,

the SSS anomalies are largest in the Nordic Seas and LabradorSea, although unlike the

SST anomalies they remain larger in the Nordic Seas than Labrador Sea. Throughout

this time, the atmosphere inverts from an initially neutralNAO phase (Figure 3.3, fourth
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Figure 3.3: Regressions over the period 1900–2014 between North Atlantic subpolar (45–65◦N) top 500m

depth averaged temperature (T500, from EN4) and, from left to right: sea surface temperature (SST, from

EN4), T500, sea surface salinity (SSS, from EN4), wintertime mean sea level pressure (DJF MSLP, from

HadSLP2r), and ice fraction (from HadISST). From top to bottom, the T500 index lags then leads the

fields from -6 to +6 years. To attempt to remove the climate change signal, all fields are first detrended

by removing the local regression against a global mean SST index. Stippling denotes regions insignificant

at the 90% level using a two-tailed t-test for correlations between random variables with the same mean,

standard deviation, and lag=1 autocorrelation as the real datai.e. testing the null hypothesis that both the

T500 index and each of the fields merely exhibit damped persistence.
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column, first two rows) to its lag=0 negative NAO phase although both the MSLP and ice

cover at these lags are not significantly correlated with theT500 index.

Figure 3.3 has been designed to be comparable to the same figure created using more

than 400 years of simulated data with HadGEM3 (Figure 2.7) inChapter 2 with some

exceptions: Firstly, in the present figure, the index used isdepth averaged temperature

(T500) as opposed to SST, for the reasons given at the beginning of this section but we

note that creating the simulated version of the figure using T500 data does not appreciably

affect the patterns for HadGEM3 (not shown). Secondly, surface heat flux observations

were far too sparse in time or space to be meaningfully included in our observational

comparison. We avoid using reanalysis products that use dynamical ocean/atmosphere

models in order to avoid potentially contaminating the observed signal with the model

dynamics that we are trying to test. Finally, note that in allcases the scale used for

the observed regression slopes in Figure 3.3 is double that for the simulated variables in

Figure 2.7, which is related to the use of a T500 index rather than SST index (consistent

with the scaling between T500 and SST indices in HadGEM3, notshown).

There are some key similarities and differences between thetwo sets of figures. The

NAO signal reverses from broadly positive to negative in both simulations and observa-

tions between lag=-6 and lag=0. Similarly, ice extents in the Labrador Sea also reverse

from anomalously positive to negative during this time. However, surface and near sur-

face temperature anomalies, which appear to propagate intothe NA SPG and reverse the

sign of the anomaly in HadGEM3 (Figure 2.7, first two columns)arisein situ, without

appearing to propagate, in the observations (EN4) and do notswitch sign between lag=-6

and lag=0. Similarly, following the maximum at lag=0, the observed anomalies merely

appear to gradually decay (Figure 3.3, first two columns, fifth and sixth rows) whereas

in HadGEM3 opposing anomalies can once again be seen propagating into the region

(Figure 2.7, first two columns, fifth and sixth rows). Finally, the pattern of all anomalies

at lag=-6 and lag=+6 has gone full circle and is becoming similar in HadGEM3 (Figure

2.7, first and last rows), indicative of the decadal periodicity, whereas this is not the case

in EN4 (Figure 3.3, first and last rows).

Despite removing the global climate change signal from the observational indices (by
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removing the local regression against the global mean SST) the lagged relationships be-

tween T500 and the other indices do show some sensitivity to the precise period used.

To attempt to compare our analyses of the available observations with previous work

(Robson et al., 2012) we recreate Figure 3.3 for the shorter period 1960–2000 (Figure

3.4). As noted inRobson et al.(2012), the direct correlation between T500 and the NAO

appears to break down after the year 2000 and, as previously noted here and inRobson

et al.(2012), observations of North Atlantic ocean variables aresomewhat sparse prior to

1960 — indeed many reanalysis products do not extend much further back in time than

this (e.g. Uppala et al., 2005). Similar to the full period, at lag=0 the NA SPG is warm

and under negative NAO conditions (Figure 3.4, fourth row).However, unlike for the

full period, this state appears to have arisen from a cool NA SPG under positive NAO

conditions at lags of -4 to -6 years (Figure 3.4, top two rows), with some signs that the

warm anomalies propagate into the NA SPG from the south.

The phase reversal in Figure 3.4 (top to bottom) is consistent with the analysis ofRob-

son et al.(2012) who found a shift from a positive NAO/cool NA SPG in thedecade

1986–1995 to a negative NAO/warm NA SPG in the decade 1996–2005. In addition,

the anomaly propagation from the southern edge of the NA SPG (Figure 3.4, first two

columns) is again consistent with the analysis ofRobson et al.(2012) who found a pos-

sible role for the circulation (AMOC) in producing these warmanomalies. Subsampling

the observations this way also gives better agreement with the simulations: both the lag=-

6 to lag=0 phase reversal and the possible role for heat content anomaly propagation can

be seen in the simulated case (Figure 2.7). As such, it is not clear whether the apparent

disparity between simulations and observations — coveringthe full period 1900–2014 —

is related to the effects of severe data paucity (which relaxto climatology where there is

missing data) or whether this reflects a more subtle distinction between ‘average’ decadal

variability and specific decadal events in the late twentieth century.

Additionally, regressing the observed MSLP against an SST index (rather than T500

index, not shown) over the period 1960–2000 yields instead apositive NAO associated

with a warm NA SPG with the negative NAO shifted to a lag of -2 years (i.e. preceding

the positive NAO). This is again consistent with the analysis of Robson et al.(2012) in

which an extended period of an anomalously positive phase ofthe NAO, followed by a
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Figure 3.4: As in Figure 3.3 but only computing regressions for the period 1960–2000, for comparison with

Robson et al.(2012). Regressions between North Atlantic subpolar (45–65◦N) top 500m depth averaged

temperature (T500, from EN4) and, from left to right: sea surface temperature (SST, from EN4), T500, sea

surface salinity (SSS, from EN4), wintertime mean sea levelpressure (DJF MSLP, from HadSLP2r), and

ice fraction (from HadISST). From top to bottom, the T500 index lags the fields from -6 to 0 years. To

attempt to remove the climate change signal, all fields are first detrended by removing the local regression

against a global mean SST index. Stippling denotes regions insignificant at the 90% level using a two-

tailed t-test for correlations between random variables with the same mean, standard deviation, and lag=1

autocorrelation as the real datai.e. testing the null hypothesis that both the T500 index and eachof the

fields merely exhibit damped persistence.
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strongly negative phase, was associated with a rapid warming of the NA SPG. This result

does call in to question our use of a T500 index (rather than SST index) in Figure 3.3 but,

as previously noted, the model (to which we compare) is insensitive to this choice. Once

again this may reflect a distinction between average and specific decadal variability.

In summary, the key similarities between simulations and observations are the lag=0

relationships between the T500 index and various surface fields as well as the possible

role for advection of heat content anomalies and the phase reversal of the NAO when

using only observations for the period 1960–2000. However,there are also potentially

important differences including the unclear origins of heat content anomalies when using

the full period 1900–2014 and the sensitivity of the observed relationships to the use

of either surface or depth averaged temperature indices when using the shorter period

1960–2000. It is not clear to what extent many of these differences could be explained

by the confounding influences of data paucity, the representativeness of particular decadal

events, and the presence of transient external forcing in reality (which masks the internal

variability). In the next section we begin to address this byconsidering only the most

well observed dataset: SSTs.

3.3.2 Testing the simulated variability in regions of high observation

density

The previous analysis comparing the surface evolution of various fields attempted to

maximise the number of available years by allowing the use ofdata infilling, which

is approached in different ways for the different data sets and variables but essentially

amounts to reverting to climatology over a given length and/or timescale. As such, the

regressions shown in Figure 3.3 may only represent a reducedsubset of years, compared

to the potentially 114 total years used. We now attempt to account for incomplete spa-

tial and temporal coverage by 1) inquiring where there are the most observations of SST

within the NA SPG, subsequently 2) characterising the simulated decadal variability by

relationships between those locations before 3) applying the same analysis to the (now

more well sampled) observations.
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Figure 3.5: The number of individual years within the HadSST3 sea surface temperature dataset (Kennedy

et al., 2011) that have at least 10 months with which to create an annual mean. Data are provided on a

regular 5x5◦ grid and span the period 1850–2014 inclusive.

The spatial coverage of SST data within the HadSST3 dataset (Kennedy et al., 2011)

is shown in Figure 3.5 and highlights the North Atlantic as a relatively well observed

basin. The data are provided pre-binned on to a 5x5◦ regular grid (Kennedy et al., 2011)

and, within the North Atlantic, most of the subtropical and southern edge of the subpolar

gyre have more than a century of annual means (where we have defined an annual mean

as containing a minimum of 10 sampled months). However, there is a large disparity

between the southern and northern edges of the subpolar gyre, with the northern edge

approximately half as well sampled as the southern edge. This is of particular concern for

attempting to directly test the mechanism of simulated decadal variability in HadGEM3,

which relies on ocean advection and feedbacks within this poorly sampled region (see

Chapter 2 and Section 2.4.5).

In the analysis of the mechanism of decadal variability in HadGEM3 (Chapter 2) we

noted the long timescales (several years) for near surface (T500) signals to propagate

around the NA SPG, as well as the shorter timescales (around 1year) between anoma-

lously positive northern NA SPG signals and anomalously negative southern NA SPG

signals (Figure 2.8). We now recreate that figure using observed SSTs from HadSST3,
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and slightly modifying our index locations to be the most well sampled regions (crosses

in Figure 3.5). Changing the index locations also affects thesimulated timescales and so

we recompute these using the observationally constrained locations.

The time series of the observed SSTs in the two index locations are shown in Figure 3.6a,

and Figure 3.6b and highlight the large multi-decadal variability in observed SSTs in the

North Atlantic region. The subsequent lagged correlation between the two indices is

shown in Figure 3.6c. The nature of the lagged relationship does not appear too sensitive

to the precise grid point locations chosen. The timescale for signals to transfer between

the NAC region and north east subpolar gyre (NE SPG) region issomewhat shorter than in

the original estimate with HadGEM3, which the model suggests is due to the shorter path

used here as well as the use of SSTs rather than depth averagedtemperatures. Estimating

the same lagged correlation using the simulated data yieldsa timescale of 2 years, which

is broadly similar to the 2–3 years implied by the peak correlations in Figure 3.6c.

The timescale for simulated inverse anomalies to form in theNAC lagging the NE SPG is

not clear from the observed correlations, and shows no indication of a minimum around

lag=-6 years, compared to HadGEM3 (filtering to remove periods>30 years yields qual-

itatively similar results, not shown). The observed correlations do show a minimum at

around lag=-15 years, which would imply an overall timescale of 34 years, consistent

with the multi-decadal variability seen in the SST indices (Figure 3.6a, b). This would

also imply different processes at play in the observed record, possibly externally forced,

to enable a longer timescale relationship and could suggesta reduced role for the simu-

lated negative feedback between the Labrador Sea and NAC, which is a relatively quick

process in the model taking at most only a few years. A reducedrole for the simulated

negative feedback in reality is also consistent with later analysis of the key processes of

variability in the NA SPG (see Section 3.5.1). The timescales of signal propagation are

investigated further in Section 3.5.2.

Given the data paucity, even in the relatively well observedSST record, it clearly remains

difficult to apply the same lagged regression analysis previously used successfully with

simulated data. That is, in the observed record, the degreesof freedom in the combined

horizontal and temporal axes are still low. To address this,we now extend our analysis
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Figure 3.6: a) HadSST3 sea surface temperature (SST) time series in the North Atlantic Current (NAC)

region, as indicated by the black cross in Figure 3.5 for boththe raw data (black) and detrended data

(red). Data are anomalies relative to the period 1961–1990 (Kennedy et al., 2011). b) as (a) but for the

North East subpolar gyre (NE SPG) region, as indicated by thered cross in Figure 3.5. c) The lagged

correlation between detrended SSTs in the NAC and NE SPG regions, with NAC leading at positive lags

(red). Significance levels (green) are estimated using a two-tailed t-test and assuming individual years

are independent. Similarly computed times of maximum and minimum lagged correlation simulated in

HadGEM3 are also highlighted (blue lines). The effect of shifting one or both of the north-eastern or

south-western box by one five degree grid point meridionallyor zonally is estimated by recomputing the

correlation with every possible combination of paired locations (81 possibilities, grey lines).
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to the depth structure of variability within the NA SPG and investigate to what extent

surface and deeper signals are coherent in space and time.

3.4 Comparing the depth evolution of NA SPG variabil-

ity in the model and observations

To analyse the depth structure of variability within the NA SPG, we show the temporal

correlations between a near surface layer between 100-200m(such that it is below the Ek-

man layer) and approximately 250m thick layers in both EN4 and HadGEM3 (where we

have sub-sampled HadGEM3 into 54 year sections comparable to EN4 and subsequently

computed the ensemble mean values, Figure 3.7). This aims toelucidate the depth ex-

tent of the near surface (but not directly wind-driven) variability that is more likely to be

due to advective ocean processes. In this respect these estimates of the depth coherence

are different to merely estimating the mixed layer depths, the latter being more likely to

reveal a signal of surface forcing (though in regions of particularly strong/frequent con-

vection such as the Labrador Sea they are likely to be well correlated). For example, the

wintertime mixed layer depths outside of the Labrador Sea are deepest in the eastern NA

SPG in both EN4 and HadGEM3 (Figure 2.1d for HadGEM3), whereas the coherence

analysis suggests the strongest depth coherence in the western NA SPG. In order to min-

imise the effects of the infilling methodology we use only theperiod 1960–2014 in the

subsequent analysis with EN4 data.

As can be seen, both EN4 and HadGEM3 show similar coherence inthe top 2 layers

(Figure 3.7, top row) with high correlations throughout theNA SPG. At layers 3 and

4 (between approximately 500-1000m, Figure 3.7, second row) there are some differ-

ences, with EN4 highlighting stronger coherence south of the Denmark Straits, whereas

HadGEM3 finds both this region and the Labrador Sea to be particularly depth coherent.

Additionally, in HadGEM3, the depth extent of the NAC can be seen as the track extend-

ing from the south west to north east, which is not as readily visible in EN4. This may

be linked to the relative importance of oceanic advection inthis region in HadGEM3 (see

Chapter 2 and Section 2.4.4) and perhaps suggests this effectmay be less prominent in



Chapter 3. Confronting the mechanism of simulated decadal variability with real-world
observations 83

#1 0-253m

       
 

45

50

55

60

65

70
75

La
tit

ud
e

#2 253-494m

       
 

 

 

 

 

 

 
 

#3 494-728m

       
 

45

50

55

60

65

70
75

La
tit

ud
e

#4 728-1065m

       
 

 

 

 

 

 

 
 

#5 1065-1270m

       
 

45

50

55

60

65

70
75

La
tit

ud
e

#6 1270-1497m

       
 

 

 

 

 

 

 
 

#7 1497-1742m

-60-50-40-30-20-10 0
Longitude

45

50

55

60

65

70
75

La
tit

ud
e

#8 1742-2001m

-60-50-40-30-20-10 0
Longitude

 

 

 

 

 

 
 

#1 0-258m

       
 

 

 

 

 

 

 
 

#2 258-483m

       
 

 

 

 

 

 

 
 

#3 483-735m

       
 

 

 

 

 

 

 
 

#4 735-997m

       
 

 

 

 

 

 

 
 

#5 997-1209m

       
 

 

 

 

 

 

 
 

#6 1209-1452m

       
 

 

 

 

 

 

 
 

#7 1452-1724m

-60-50-40-30-20-10 0
Longitude

 

 

 

 

 

 
 

#8 1724-2023m

-60-50-40-30-20-10 0
Longitude

 

 

 

 

 

 
 

 

 

EN4 (1960-2014) HadGEM3 (ensemble mean)

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

a b

Figure 3.7: a) The correlation between layer average temperature data from EN4 (layer bounds noted

above panels) and a depth layer between 100–200m. Layer averages are approximately 250m thick but the

original grid cell boundaries are used instead of interpolating in the vertical. b) As (a) but for HadGEM3.

EN4 is linearly detrended over the 54 year period and HadGEM3high-pass filtered to remove periods

greater than 108 yearsi.e. assuming the linear trend removed from EN4 represents a halfperiod of at least

54 years. Stippling denotes regions insignificant at the 90%level using a two-tailed t-test for correlations

between random variables with the same mean, standard deviation, and lag=1 autocorrelation as the real

datai.e. testing the null hypothesis that both the 100-200m layer index and each of the lower 250m thick

layers merely exhibit damped persistence.
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reality. At even greater depths, between 1000–2000m (Figure 3.7, third and fourth rows)

the NAC track is still visible in HadGEM3, but in EN4 this region is now increasingly

anticorrelated with the near surface variability. Further, the east-west dipole that can be

seen in EN4 (Figure 3.7, fourth row) is skewed in favour of positive western correlations

in HadGEM3, perhaps suggesting that the spatial extent/influence of Labrador Sea water

appears to be reduced in EN4 compared to HadGEM3 (see Section3.6 and Appendix A).

Figure 3.7 uses detrended annual data. Smoothing the data with a running mean of, for

example, 10 years to highlight multi-decadal variability,yields a qualitatively similar

picture in both EN4 and HadGEM3 (not shown). This is because the annual variabil-

ity is dominated by the multi-decadal signal (cf. the time series from 1960 onwards in

Figure 3.2). Removing the multi-decadal variability (to analyse the interannual signal)

has the effect of reducing the depth extent of the Labrador Sea signal in both EN4 and

HadGEM3 and generally reducing the depth extent of all variability in EN4 (not shown).

In general, the patterns of interannual and multi-decadal variability are broadly similar in

HadGEM3, which is not the case in EN4. This difference in EN4 may be indicative of

different processes existing at these different timescales, perhaps also related to whether

the forcing is internal or external (note that HadGEM3 has nointerannually varying ex-

ternal forcings), but could also reflect the short time series used in EN4 that clearly cannot

resolve many individual multi-decadal variations.

The depth at which the correlation with near surface variability falls below a defined

threshold is shown in Figure 3.8, which represents a condensed version of Figure 3.7.

Although this removes information about the spatial extentof negative correlations at

deeper levels, it does highlight several other key features. For example, the Labrador

Sea and Irminger Current regions can be seen to have similar depth coherence in both

HadGEM3 and EN4 despite the actual correlation values generally being lower in EN4

(Figure 3.7). In addition, the NAC track can be clearly seen in HadGEM3 as a region

of strong depth coherence, down to around 1250m, compared to750m in EN4. In

HadGEM3 this region is separated from the northern SPG except at the east and west

coasts. This is consistent with subsurface signals propagating around the NA SPG in

HadGEM3 and subsequently feeding back on the circulation inthe NAC region in the

west (see Chapter 2). In EN4, although the connections in the west and east coasts of the
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Figure 3.8: a) The depth at which the correlation between the 100–200m layer and other 250m thick layers

(shown in Figure 3.7) falls below the arbitrary level of r=0.3 in EN4 (a), and HadGEM3 (b)

NA SPG exist, there is a much weaker depth coherence within the NAC, possibly point-

ing to a reduced role for advection of heat content anomaliesin this region. Once again,

removing the multi-decadal variability has the effect of reducing the maximum depths of

significant correlations in both EN4 and HadGEM3.

In summary, a comparison of the depth coherence of variability within the NA SPG

between EN4 and HadGEM3 suggests a broadly similar structure in terms of the promi-

nence of the Labrador Sea and northern NA SPG. However, thereare some differences,

such as the reduced depth extent of the NAC coherence in EN4, which may be key to

the processes and amplitude of variability in HadGEM3 as compared to EN4. We now

examine these key processes in some more detail, beginning with the simulated negative

feedback between the Labrador Sea and NAC (Section 3.5.1) before investigating the

timescales of propagation around the NA SPG (Section 3.5.2).
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3.5 Observational analysis of key simulated processes

3.5.1 Negative feedback between Labrador Sea and NAC

To investigate the negative feedback between Labrador Sea and NAC temperatures that

was simulated in HadGEM3 we compute spatial maps of the driver of interannual density

changes (Figure 3.9). The data we use are horizontally varying top 500m depth averaged

temperature and salinity in EN4, from the relatively well observed period of 1960–2014.

This analysis follows the methodology ofDelworth et al.(1993) and decomposes density

changes into those due to temperature and those due to salinity by time-meaning salinity

or temperature in the density equation of state respectively (Equation 3.1).

ρT = ρ(T, S̄, p), ρS = ρ(T̄ , S, p) (3.1)

Having computed temperature-induced density changes, we then regress density against

these temperature-induced density changes to estimate theregression slope between the

two i.e. for a given density change, how much of this change is due to temperature

variability (Equation 3.2)?

ρTcontrol = regr[ρ, ρT ], ρScontrol = regr[ρ, ρS] (3.2)

We do the same for salinity-induced density changes, and subsequently subtract the two

regression slopes to estimate the magnitude of temperatureor salinity control of density

changes (Equation 3.3).

ρTorScontrol = ρTcontrol − ρScontrol (3.3)

A value ofρTorScontrol>0 indicates density changes that are temperature controlled, with

ρTorScontrol<0 indicating salinity-controlled density changes. The linearisation of the

non-linear density equation of state, using depth averagedtemperature and salinity, ex-

plains>99% of the variance in depth averaged density in the NA SPG in both EN4 and
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Figure 3.9: ρTorScontrol, as described in the text, for the top 500m in EN4 for the period 1960–2014 (a),

for the period 1995–2014 (b), and HadGEM3 (c). The Labrador Sea region in EN4 is marked and analysed

in Figure 3.10. Both EN4 and HadGEM3 are linearly detrended prior to computingρTorScontrol.

HadGEM3 (not shown) and is thus able to provide a framework toinvestigate the drivers

of interannual density variability.

Within the NA SPG, in both EN4 and HadGEM3, top 500m interannual density vari-

ability in the eastern half of the basin can be considered to be temperature controlled,

although this is more strongly the case in HadGEM3 (Figure 3.9c) than in EN4 (Fig-

ure 3.9a). In contrast, within the Labrador Sea region, the density variability is driven by

salinity variability in EN4 (Figure 3.9a) but remains temperature-controlled in HadGEM3

(Figure 3.9c). Given that, in both EN4 and HadGEM3, interannual anomalies in temper-

ature and salinity co-vary in the NA SPG such that warm anomalies are generally also

more saline (not shown), this suggests that a given anomaly in the Labrador Sea region

would be expected to have opposing effects on density in either EN4 or HadGEM3.e.g.

A warm/saline anomaly would be expected to decrease densityin HadGEM3 (because

density changes are controlled by temperature, and increasing temperature reduces den-

sity) but increase density in EN4 (because density changes are controlled by salinity, and

increasing salinity increases density). However, we suggest some caution in interpret-

ing the limited EN4 variability and note that assimilation of observed anomalies into a
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dynamical ocean model suggests a prominent role for temperature in controlling density

variability (Robson, 2010) and that hydrographic analyses suggest recent Labrador Sea

density variability may be more complex than merely whetherit is temperature or salin-

ity controlled (Yashayaev, 2007). The sensitivity to the exact period is also implied by

the near-zero values ofρTorScontrol in the Labrador Sea for the most well observed period

1995–2014 (Figure 3.9b).

To investigate the specific contributions of temperature and salinity to observed density

changes in the Labrador Sea, in Figure 3.10a we plot time series of density (ρ), density

due to temperature changes (ρT ), and density due to salinity changes (ρS). The linear

sum of the components can be seen to be a good estimate of the actual non-linear density

anomaly. Throughout the period 1960–2014, the relative contributions of temperature

and salinity to density variability are not the same, highlighting the potential difficulty

in choosing a representative period. For example, there arelarge density anomalies that

are sometimes salinity driven with little temperature compensation (e.g.1962), and other

times largeρT andρS anomalies that are broadly compensating (e.g.1984).

To quantify the contributions of temperature and salinity induced density changes through

time, we plot the correlation of 20 year subsections of the data (Figure 3.10b). Similar

to the regression maps presented in Figure 3.9a, for most of the period the largest corre-

lations are between density andρS, contrary to the relationship simulated in HadGEM3.

However, for the most recent 20 years (i.e. 1995–2014, as in Figure 3.9b) interannual

density variability appears to be more driven by temperature changes, with higher corre-

lations between density andρT . The simulated relationships (indicated by the shading in

Figure 3.10b) are more consistent with this recent period. It is not clear to what extent

the observed density variability, and drivers thereof, arehere exhibiting internal variabil-

ity/noise (the correlation window is only 20 years long so could severely alias longer pe-

riod variability, should it exist — see Section 3.3.2) or to what extent the apparent switch

from salinity to temperature-controlled density variability represents a secular/climate

change. Further analysis on this topic is outside the scope of this investigation into the

mechanisms of simulated decadal variability, but would be worthwhile in the future. Ad-

ditional analysis in a multi-model context is presented in Chapter 6.
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Figure 3.10: a) Time series of the volume averaged density anomaly (computed from linearly detrended

volume averaged temperature and salinity) in the Labrador Sea (52–65◦N, 45–65◦W, top 500m, as marked

in Figure 3.9) for the actual density (ρ, black), for density due to temperature changes (ρT , blue), and for

density due to salinity changes (ρS , red). Also plotted is the sum ofρT andρS (orange). b) Correlations

between density andρT (blue) andρS (red) using a moving 20 year window, plotted at the final year.Prior

to 1980 a reduced window length is used (dashed). The 95% ranges of the same correlations in HadGEM3

(using an identical 20 year moving window) are highlighted with red and blue shading.

In both HadGEM3 and EN4, T500s in the Labrador Sea and NAC region are anticorre-

lated (not shown), seemingly consistent with a situation whereby warm anomalies in the

Labrador Sea could induce cool anomalies in the NAC (Chapter 2, Section 2.4.6). How-

ever, the disparity in the driver of Labrador Sea density changes between HadGEM3 and

observations (the last 20 years notwithstanding) has implications for the feedback iden-

tified in HadGEM3 and whether it acts as a positive or negativeinfluence. Consequently,

the anticorrelation of Labrador Sea and NAC T500s in EN4 are perhaps more likely due

to a local response to the NAO (Visbeck et al., 1998) rather than an ocean feedback. In

HadGEM3, positive (negative) temperature anomalies in theLabrador Sea induce nega-

tive (positive) temperature anomalies in the NAC via a weakening (strengthening) of the
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meridional density gradient (which is temperature controlled) and associated geostrophic

balance. In EN4, if the same process exists, it would result in positive (negative) temper-

ature anomalies in the Labrador Sea inducing positive (negative) temperature anomalies

in the NAC, as the associated Labrador Sea salinity anomalieswould have the effect of

strengthening (weakening) the meridional temperature gradient (which is salinity con-

trolled), i.e. there would be a positive feedback. We analyse this feedbackfurther in a

multi-model context in Chapter 6.

3.5.2 Propagation timescales in the southern half of the NA SPG

In Section 3.3.2 we attempted to compute observed lagged relationships between lo-

cations in the NA SPG using SSTs. Although a similar methodology showed utility

when analysing the multi-century simulation with HadGEM3,it appeared to show lim-

ited scope when given the shorter time series—and increasedset of forcings present—

in the observed record. To address this, we instead calculate the implied propagation

timescales in both EN4 and HadGEM3 by essentially calculating the extent of the spatial

coherence of depth averaged temperature anomalies (Figure3.11).

For example, taking the EN4 dataset for the period 1960–2014, we begin by defining an

initial index region, which is the area averaged top 250m depth averaged temperature in

the south western corner of the NA SPG (41–45◦W, 41–45◦N, marked region in Figure

3.11). We then correlate the (linearly detrended) time series of this index with time series

of top 250m temperature in all locations in the NA SPG at a lag of one year (i.e. one

year later), and find regions where the correlation is greater than r=0.3 (the correlation

required for significance at the 95% level for a two-tailed t-test with 54 years of data and

assuming independence). Having done this, we calculate themean longitude and latitude

of the NA SPG points that meet this criteria and define a new boxcentred at this location,

with zonal and meridional extents of±2◦ from the centre. We then proceed to use this

new location as our index region and begin the process again.Each iteration or ‘pass’ is

marked on the map. We do this both for the layer 0–250m (Figure3.11a) and the layer

250–500m (Figure 3.11b), once for the 54 year time series from EN4 and 75 times using

54 year long sections of the HadGEM3 simulation to estimate the simulated variability



Chapter 3. Confronting the mechanism of simulated decadal variability with real-world
observations 91

around the mean pathway. This method has the joint benefits ofutilising much more

of the available data to constrain our result than merely finding the lagged correlation

between two distant points (cf. Figure 3.6) as well as minimising the loss of degrees

of freedom due to the lead time (fixed at 1 year). As the timescales we infer from this

analysis are a function of the correlation cutoff value theycannot be directly compared

to the timescales estimated from correlations between the southern and northern edges

of the gyre (cf. Figure 2.8 and Figure 3.6) but, as we have used time series of identical

lengths in EN4 and HadGEM3, these results can be meaningfully intercompared, with the

spread in the HadGEM3 ensemble also providing an estimate ofthe sampling uncertainty.

Within the 0–250m layer, in both EN4 and HadGEM3, the propagation pathway follows

the mean circulation pathways within the NA SPG. The pathwayderived from the EN4

data (Figure 3.11a, black line) is slightly outside the range of pathways simulated by

HadGEM3, and to the south and east of the ensemble mean from HadGEM3. In addi-

tion, in HadGEM3 the signal arrives in the eastern NA SPG, around 33◦W, 55◦N within

a single iteration whilst this takes approximately 4 iterations in EN4. This suggests the

near surface propagation timescales in HadGEM3 are faster than in reality. Given that the

strength of the circulation, measured by the barotropic streamfunction, is broadly con-

sistent with available observations (see model validationin Chapter 2, Section 2.3.1) this

implies that processes other than merely the current speed are important for the slower

signal propagation in EN4, which the model cannot properly simulate (e.g. eddies), or

does not properly simulate. For example, the signal propagation in reality could be in-

hibited by damping either from surface fluxes (e.g. related to more/less NAO variability

in reality), due to interaction with deeper flows in the ocean, or from a greater/lesser role

for heat storage within the ocean.

To investigate the role of the deeper circulation in aiding signal propagation we also plot

the pathways for a layer between 250–500m (Figure 3.11b). InHadGEM3 the ensemble

mean pathway is the same as for the shallower layer and the timescales are also broadly

consistent, though there is increased spread across the ensemble members. This is some-

what dissimilar to EN4, in which the signal initially travels slowly eastwards, before

halting around 37◦W, 44◦N.
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Figure 3.11: The inferred signal propagation timescales in 250m thick temperature layers between 0–250m

(a) and 250–500m (b), estimated from one year lagged correlations, as described in the text. The pathways

are shown for EN4 (black), the HadGEM3 ensemble members (grey), and the HadGEM3 ensemble mean

(white). The first pass is at a box centred at 43◦W, 43◦N with a zonal and meridional extent of±2◦.

Subsequent iterations are as marked in the figure legend up toa maximum of 7 iterations. In the background

are the time mean depth averaged temperature in EN4 (colours) and HadGEM3 (contours) for the layer 0–

250m (a) and the layer 250–500m (b).
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Although there are differences in the top 500m depth averaged temperature profiles be-

tween HadGEM3 and EN4 (See Figure 2.1a for the difference) the locations of the

temperature gradients are broadly similar between the two (Figure 3.11, background

colours/contours) and don’t appear to explain either the different timescales or pathways

by which signals propagate from the NAC region into and around the NA SPG. However,

we suggest that the timescale for signal propagation in EN4 in the 0–250m layer and the

subsequent lack of an advective pathway in the deeper 250–500m layer are self consis-

tent, with effective damping (or lack of reinforcement, compared to HadGEM3) from

this deeper layer slowing down the signal propagation in theupper layer of EN4. This is

also consistent with the analysis of the depth coherence of subsurface signals in EN4 and

HadGEM3, in which EN4 had a much shallower coherence than HadGEM3 (Figure 3.8,

note that the specific depths are a function of the arbitrary choice of a correlation cutoff).

To bring together our assessment of the veracity of the key processes in HadGEM3 we

now investigate the evolution of the depth structure.

3.5.3 Evolution of the depth structure

In the previous sections we analysed whether it was plausible that the negative feedback

between Labrador Sea and NAC T500s existed in reality (Section 3.5.1), and whether the

timescales of signal propagation around the NA SPG were likely to be similar (Section

3.5.2). In this final section, we attempt to bring these together by investigating depth

profile composites in one part of the NA SPG based on significant departures from a

particular index in another part of the NA SPG and how these profiles change in time

(Figure 3.12).

Figure 3.12b shows the difference in temperature profiles (located in the blue marked

region) between profiles that lag by three years or are in phase with a temperature index

(based on volume averaged temperatures over the top 500m in the red marked region,

see figure caption), in both EN4 and HadGEM3. That is, they show how the structure

of a temperature profile in the NAC changes following an increase in the volume mean

temperature in the eastern NA SPG. As can be seen, following awarming of the eastern

NA SPG, the temperature profile throughout the top 500m in HadGEM3 becomes cooler,
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Figure 3.12: a) Time mean (period 1960–2014) top 500m depth averaged temperatures (T500) in the

North Atlantic subpolar gyre (NA SPG) region from EN4. b) andc) Depth profile lagged composites in

HadGEM3 and EN4, area averaged at the titled locations. Composites profiles are created by taking the

difference between high and low instances (greater than onestandard deviation from the mean) of a T500

index, which is volume averaged over the alternate region,e.g.Panel b (red) is based on an index in the blue

marked region. The difference between lag=3 and lag=0 composites are then taken to construct the final

lagged composite. As such, the lagged composites highlightthe effect of the 3 years of temporal evolution

of the temperature anomalies and are symmetric about high and low phases (due to the initial ‘high’ minus

‘low’ differencing). EN4 is linearly detrended over the 54 year period and HadGEM3 high-pass filtered to

remove periods greater than 108 yearsi.e. assuming the linear trend removed from EN4 represents a half

period of at least 54 years. Lags of 3 years are used to balancehighlighting the temporal evolution of the

signal with increasing noise at greater lags, particularlygiven the short EN4 time series.

with subsequent warming at depth (Figure 3.12b, dashed). This cooling of the upper

part of the water column is indicative of the negative feedback between temperatures in

the Labrador Sea (and upstream in the eastern NA SPG) and temperatures in the NAC

(see Section 2.4.6). However, such a signal is not seen in EN4, in which warming of the

eastern NA SPG is followed by even greater warming of the NAC region throughout the

water column (Figure 3.12b, solid). This result is consistent with our previous analysis

of the negative feedback in EN4 (Section 3.5.1) in which, dueto interannual density

changes being driven by salinity rather than temperature, awarm (and saline) anomaly in

the Labrador Sea would be expected to exert a positive feedback on temperatures in the

NAC.
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Conversely, we next construct profiles in the eastern NA SPG, based upon an index of

temperatures in the NAC region (Figure 3.12c). These highlight how the structure of a

temperature profile in the eastern NA SPG becomes warmer or cooler three years after

an increase in the mean temperature in the NAC region. In HadGEM3, the eastern NA

SPG becomes increasingly warm following warming in the NAC, with the warming ex-

hibiting a maximum at around 200m depth (Figure 3.12c, dashed). In EN4, this warming

is also evident, though much reduced (Figure 3.12c, solid).Once again, this is consis-

tent with our previous analysis, in which we found that temperature anomalies could be

more clearly seen propagating around the NA SPG in HadGEM3 than in EN4 (Section

3.5.2). The greater subsurface extent evident in HadGEM3 may help the signal to remain

undamped for longer.

In summary, the negative feedback simulated in HadGEM3 appears unlikely to have ex-

isted in exactly the same form in reality due to the differingdrivers of density variability

in the Labrador Sea, with the possible exception of the most recent decades. In addition,

the propagation timescales of near surface signals, which are an important part of the

mechanism of simulated decadal variability in HadGEM3, arealso likely to be modified

in reality, possibly due to the slightly different depth structure in HadGEM3 than in EN4.

In light of these findings we now discuss our results, beginning with a discussion of the

rationale behind our approaches and further discussion of the role of the Labrador Sea.

3.6 Discussion

We begin this section by briefly highlighting the difficulties in applying the same analysis

techniques to observations as to models before discussing our results for the simulated

and observed Labrador Sea region in some more detail. We discuss the relative strengths

of statistical (e.g. EN4) and dynamical analysis products and the potential benefits of

increased model resolution before concluding with some recommendations for future

observational networks.

In Section 3.3 we attempted to analyse a suite of observational datasets using a simi-

lar framework to that which we applied to the simulations (Chapter 2). Although these
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datasets use sophisticated methods to attempt to deal with spatially and temporally sparse

observations, without prior knowledge of the relative contributions of internal and exter-

nal forcings to the observed variability it is not possible to fully determine to what extent

model-observation disparities are due to model deficiencies (when our model simula-

tions do not include any estimate of transient external forcings). The strength of these

simulations however is the statistical power that results from more than 400 years of sim-

ulation. As noted by the comparison of Figures 3.3 and 3.4, itmay also be the case that

average decadal variability (observed or simulated) may not necessarily evolve similarly

to specific, large decadal events. Further work on this topiccould involve a case study

approach to find simulated analogues to observed events and assess their nature and im-

portance/frequency in more detail, similar to the approachused byRobson et al.(2012)

using a model reanalysis.

In many investigations into simulated decadal variabilityin the NA SPG, the Labrador

Sea has been found to play an active role in this variability (see Chapter 1 and Figure

1.5) including in HadGEM3 (Chapter 2) where the Labrador Sea is a region of partic-

ularly strong mixed layer depth variability (and by inference, convection, Figure 2.1d).

To investigate the relative importance of deep water formedin the Labrador Sea and

in the Nordic Seas (another important deep water (precursor) formation site) we have

performed additional tracer release experiments that investigate the downstream evolu-

tion of water formed in these two regions, detailed in Appendix A. These experiments

suggest that North Atlantic Deep Water (NADW) formed in the Labrador Sea (Upper

NADW) and Nordic Seas (Lower NADW) is indistinguishable in themodel, whereas in

reality the depth maxima of these two water masses are separated by approximately 1km

(Toole et al., 2011). As such, it is possible that the model overemphasises the role of the

Labrador Sea in its decadal variability.

In addition to the simulated prominence of Labrador Sea water, the model also suggests

a deeper extent of coherent signals within the NAC (Section 3.4), which may be the

cause of the larger depth range in which advective signals are seen to propagate around

the NA SPG in HadGEM3 compared to EN4 (Section 3.5.2). This may be due to the

overly diffuse thermocline in HadGEM3 (Megann et al., 2014) that results in a more

permeable barrier between near surface and deeper waters inthe NAC. Further increases
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in resolution to ‘eddy resolving’ scales may also reduce thedepth extent of the coherence

in the model by reducing the average depth of high latitude mixed layers (Oschlies, 2002,

see discussion below of resolution effects). These are two examples of how model mean

state biases can potentially affect the simulation of variability, and so cannot be merely

“subtracted off” the final solution or removed by conductinganalyses in anomaly-space.

This will be discussed in more detail in a multi-model context in Chapter 6.

In addition, also relevant to the discussion of the relationship between mean state biases

and modes of variability are the implied dominant drivers ofdensity variability and their

non-stationary nature in EN4. One of the key differences between the simulations and

observations is the time mean difference in the driver of interannual density variabil-

ity (Figure 3.9), in which the simulations suggest temperature drives density variability

throughout the NA SPG whereas in EN4 this switches to be salinity driven in the Labrador

Sea region. As previously discussed, neglecting other differences, this would imply a

positive (rather than negative) feedback between LabradorSea and NAC temperatures in

EN4. Despite this, further analysis suggests that the dominant driver of Labrador Sea den-

sity variability in EN4 may not be stationary, with recent decades implying a temperature

dominated regime. However, this result should be interpreted with some caution, partly

because the correlation window width is necessarily narrow(20 years) and may alias

longer term variability. Nonetheless, if the present relationship is maintained, it would

suggest that the variability simulated by HadGEM3 may become more likely/prominent

in the real world in the future — in the absence of confoundingvariability driven by ex-

ternal forcings, the relative magnitude of which is unclear, as noted above. Further model

simulations with realistic external forcings would help toaddress this issue but we note

that, even if forced simulations in the same model frameworkwere available, it would

not be trivial to quantify the externally forced signal (Frankcombe et al., 2015).

In our analysis of the real world we have made significant use of the latest Objective

Analysis EN4 dataset (Good et al., 2013, described in Section 3.2.2) from the Met Of-

fice Hadley Centre rather than alternative reanalysis datasets, such as, for example, the

Simple Ocean Data Assimilation reanalysis (SODA,Carton and Giese, 2008), or the lat-

est Operational Reanalysis System (ORAS4,Balmaseda et al., 2013). The fundamental

difference between the Objective Analysis of EN4 and these reanalyses is that the Objec-
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tive Analyses provides its analysis using fixed spatial and temporal decorrelation scales

(statistical), whereas the model reanalyses use a dynamical ocean model (physical). The

question is then to what extent the physical approach can be considered more reliable

than the statistical one, given the imperfect nature of these reanalyses (Carton and Giese,

2008;Balmaseda et al., 2013), and which of the different physical models should beused

(Kröger et al., 2012). To sidestep these issues our approach has been to test the model

against the Objective Analysis in the regions (in time and space) where there are enough

direct observations to be most confident in the observed signal. In addition, we note

that boundary currents are important for the NA SPG decadal variability in HadGEM3

(See Chapter 2 and Section 2.4.5), which are not well resolvedby the resolution (≥1◦)

of current ocean reanalyses. However, this will also be the case with EN4, which uses

decorrelation length scales of>300km.

Although it is difficult to isolate the precise mechanisms bywhich increased ocean or

atmosphere resolution may have altered our results — without a parallel set of low reso-

lution simulations within the same model framework — there are specific features of the

simulated decadal variability that are likely to be affected by enhanced resolution. For

example, our proposed mechanism of NA SPG decadal variability suggests a prominent

role for boundary currents, which may be improved by higher resolution (Grotzner et al.,

1998;Gelderloos et al., 2011). Additionally, the increased atmospheric resolution (which

represents the main computational burden for the coupled model) may affect the innate

atmospheric variability over the North Atlantic (Matsueda et al., 2009), while the role of

the atmosphere may also be modulated by the improved ocean resolution (Scaife et al.,

2011). Recent work comparing 1◦, 0.25◦, and1/12
◦ resolution simulations with the same

underlying model suggest that, in the NA SPG, 0.25◦ is a significant improvement over

1◦, but that there are still further improvements to be had at even higher resolution (Mar-

zocchi et al., 2015). In short, although the variability simulated in HadGEM3 does not

appear to be identical to that which exists in reality, thereare reasons — such as its rep-

resentation of the location of key dense water formation sites and the boundary currents

that supply these — to suppose it may be closer to emulating the real world than previous

modelling work using lower resolution (in both the ocean andatmosphere) models.

Finally, we note that, while the observational density of temperature and salinity obser-
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vations in the North Atlantic is growing (Good et al., 2013), there are still significant

gaps in the observation network. Perhaps the most significant of these are high quality

observations of surface heat fluxes between the ocean and atmosphere (notably missing

in Figure 3.3). Reanalysis products are not yet able to reliably simulate surface heat

fluxes (Josey, 2001) and yet the variability in these heat fluxes is crucialin understanding

the coupling between the atmosphere and ocean (Gulev et al., 2013). Aside from direct

heat flux observations, greater knowledge of the transportsof mass, heat, and freshwater

in the northern edge of NA SPG would be helpful in order to characterise the magni-

tude of variability, particularly in the heat content anomalies that are important in the

simulations with HadGEM3. The recently begun Overturning in the Subpolar North At-

lantic Program (OSNAP2) may help to address these issues. Lastly, merely sustaining the

present day observational density is of critical importance and we note that, even in the

late twentieth century, this was not guaranteed (cf. Figure 3.1b).

3.7 Chapter conclusions

We have compared the simulated mode of decadal variability in the North Atlantic subpo-

lar gyre (NA SPG) in HadGEM3 (described in Chapter 2) against observational analyses

of surface fields and subsurface ocean fields in this region.

• The interannual evolution of sea surface temperature (SST)and mean sea level

pressure (MSLP) fields is broadly similar between HadGEM3 and EN4, with warm

temperatures in the NA SPG associated with negative North Atlantic Oscillation

(NAO) anomalies (Section 3.3.1). However, using the full period 1900–2014, the

implied propagation of anomalies in either SST or top 500m depth averaged tem-

perature (T500) fields is not as clear in EN4 as in HadGEM3.

• Using the shorter period 1960–2000 (to be consistent with the analysis ofRobson

et al., 2012) yields qualitatively different evolution of observed ocean/atmosphere

anomalies (Section 3.3.1), compared to the (significantly more infilled) period

2http://www.o-snap.org/ (October 2015)
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1900–2014. This evolution is more consistent with that exhibited by the simu-

lations with HadGEM3. It is not clear whether this represents either 1) the relative

increase in noise when using a much shorter time series, 2) a related reduction in

the damping effect of heavily infilled data, or 3) a more nuanced distinction be-

tween ‘average’ decadal variability (which may only explain a small amount of the

variance, and could be internally forced) and particular decadal ‘events’ (which

may episodically explain large amounts of variance and may be externally forced

Robson et al., 2012).

• Data paucity, even in the most well observed variables such as SSTs, inhibits direct

comparison of lagged relationships between different locations in the NA SPG

(Section 3.3.2). This is further complicated by the unknownmagnitude of the

contribution of externally forced variability in the observed record, and to what

extent this will result in similar or different ocean feedbacks.

• Analysis of the depth coherence of interannual variabilitywithin the NA SPG sug-

gests a shallower extent in reality than in HadGEM3, particularly in the North

Atlantic Current (NAC) region (Section 3.4). The larger extent in HadGEM3 may

help to explain the increased efficacy of signal propagationaround the NA SPG.

• Consistent with the above, the propagation pathways of temperature anomalies

around the NA SPG appear to occur over a shallower depth rangein EN4 than

in HadGEM3 (Section 3.5.2). The timescales of this signal propagation are also

longer in EN4 (though specific lags cannot be attributed, seeSection 3.5.2).

• The feedbackprocessbetween Labrador Sea and NAC temperatures (as simulated

in HadGEM3, Chapter 2) may exist in reality but does not appearto be negative

(Section 3.5.1),i.e. it acts as a positive feedback in reality but a negative feedback

in HadGEM3. Specifically, in the Labrador Sea, the dominant driver of interannual

density variability is different in EN4 (salinity) than in HadGEM3 (temperature)

consistent with the sign of lagged relationships between depth averaged tempera-

tures in the eastern NA SPG and NAC region (negative in HadGEM3, positive in

EN4, see Section 3.5.3).

• Despite the above statement, it is not clear that in reality the interannual driver of
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Labrador Sea density variability is stationary (Section 3.5.1). In recent decades,

the relative contributions of temperature and salinity to this density variability ap-

pear to have inverted, with the most recent two decades implying a larger role for

temperature-driven variability in EN4, similar to the simulations. It is not clear

whether this represents a transient or permanent role-reversal and warrants further

investigation.

• Some of the disparities between model and observations may be attributable to the

overly prominent role of Labrador Sea water in the NA SPG in HadGEM3, which

is overly extensive and homogenises upper and lower North Atlantic deep water

(Section 3.6).

The most crucial difference between HadGEM3 and observations, in terms of the ve-

racity of the simulated decadal variability in HadGEM3, is the absence in observations

of the simulatednegativefeedback between Labrador Sea and NAC temperatures in the

observed record. This feedback, and the conditions in whichit may exist, is investigated

further as part of the multi-model analysis in Chapter 6. Despite this crucial difference,

various other elements of the simulated variability, such as the evolution of surface fields

and the propagation of anomalies around the NA SPG, are detectable in reality, albeit with

different temporal or spatial structures. Having understood these differences it may still

be possible to combine simulated variability in the model (or a version thereof:MacLach-

lan et al., 2015) with this knowledge to make useful decadal predictions by, for example,

post-processing prediction simulations to account for model-observation discrepancies,

or by giving certain simulated predictions more/less confidence depending on the pro-

cesses by which those predictions arise. This will be discussed further in the context of

an initial condition ensemble in Chapter 5. However, in the next chapter we further inves-

tigate the asymmetry between phases of the simulated mechanism of decadal variability.





Chapter 4

Asymmetry in the simulated variability

4.1 Introduction

In Chapter 2 it was noted that the timescales of opposing phases of the proposed mech-

anism of bidecadal variability in the North Atlantic subpolar gyre (NA SPG) may be

different. The timescale of reversal following anomalously high NA SPG sea surface

temperatures (SSTs) is around 9 years, somewhat longer thanthe timescale of reversal

following anomalously low NA SPG SSTs at around 7 years. Additionally, Figure 2.15

highlights the different mean sea level pressure (MSLP) patterns associated with anoma-

lously positive or negative SSTs in the NA SPG in the coupled simulation, suggesting

possibly different characteristics of atmosphere-ocean interactions in opposing phases of

the variability. In this chapter, we present further evidence of asymmetry in the coupled

simulation in Section 4.2 before describing targeted decoupled experiments to test the

possible causes of this asymmetry in Section 4.3. We discussthe similarities between

these coupled and uncoupled results in Section 4.4 before chapter conclusions in Section

4.5.

103
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4.2 Evidence of asymmetry in the coupled control

In this section we describe the method we use to diagnose asymmetry in the coupled

model (Section 4.2.1) before presenting evidence of spatial and temporal asymmetries

in MSLP composites (Section 4.2.2) and other fields (Section4.2.3) and discussing the

possible causes of this in the coupled control simulation (Section 4.2.4).

4.2.1 Method: composite analysis

In Chapter 2 we presented (lagged) linear regression analysis, similar to many previous

studies of climate variability (cf. Chapter 1 and schematic Figure 1.5). However, this

method of analysis, which uses all of the available data to maximise the number of de-

grees of freedom (DoF), forces the subsequent results to be symmetric,i.e. the negative

phase of any oscillation is, by construction, the inverse ofthe positive phase. For the

case where a system evolves differently (that is, asymmetrically) in positive or negative

phases, these differences/asymmetries will be averaged out, possibly resulting in spuri-

ous diagnoses of the spatial or temporal evolution of the variability. This could occur

if either the dependent or explanatory variables are non-normally distributed, or if the

relationship between the two is non-linear (Allison et al., 2015).

An alternative to linear regression is to construct composites of one field/time series

based on a particular index representing a subset of the data. For example, constructing a

composite field of MSLP based on the top 10% of the NA SPG SST index (Figure 2.15a)

and comparing to a composite field based on the bottom 10% of the same index (Figure

2.15b) to independently determine the relationships in high/low SST phases. This can

also be extended to lagged composites — similarly to lagged regressions. The compos-

ite approach has the advantage of no longer assuminga priori that the two phases are

symmetric in space or that they evolve symmetrically in time(although it does assume

that the data within each composite is representative of thesame process). However, the

major disadvantage is the reduction in the effective degrees of freedom by a large factor:

in linear regression 100% of the data is used to create a single regression slope, whereas

with composites a small percentage (for example, 10%) of thedata is used for each of the
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two composites. Table 4.1 summarises the advantages and disadvantages of regression

and composite analysis.

In this chapter we use composites based on the NA SPG SST indexused in Chapter

2 (Figure 4.1 and against which lagged regressions are shownin Figure 2.7), which is

the bandpass filtered (5–70 years) basinwide average SST in the North Atlantic between

45–65◦N from the coupled control simulation. The highest and lowest 10% of index val-

ues are used to construct anomaly composites of various fields at a variety of lags, with

anomalies referenced to the time mean of the specific field from the coupled control sim-

ulation. The SST index does not appear significantly different from a normal distribution

and is mostly symmetric (skewness of -0.06).

4.2.2 Asymmetry in MSLP composites

MSLP anomaly composites based on the NA SPG SST index are shown in Figures 4.2

(for positive SST anomalies) and 4.3 (for negative SST anomalies) and highlight the

asymmetrical relationship between SSTs and MSLP in opposing phases of the decadal

variability. Note that the composited MSLP anomaly associated with the lowest 10% of

SSTs in Figure 4.3 is shown on an inverted scale to aid visual comparison with the com-

posited MSLP anomaly associated with the highest 10% of SSTs(Figure 4.2). In both

sets of composites, lags of -1 and 0 are associated with strong North Atlantic Oscillations

(NAOs, defined as the difference in wintertime MSLP over the Azores and Iceland) — a

negative NAO associated with positive SSTs (Figure 4.2, lag=-1, 0) and a positive NAO

associated with negative SSTs (Figure 4.3, lag=-1, 0, note inverted scale). However, the

amplitude of these two in-phase NAOs are quite different, with an in-phase NAO anomaly

associated with positive SSTs of -1.7hPa (-3.6hPa/◦C) and an in-phase NAO anomaly as-

sociated with negative SSTs of 3.1hPa (-6.1hPa/◦C). The amplitude of these anomalies is

significantly different at the 99% level for a two-tailed t-test.

In addition to the difference in strength of the in-phase NAOanomalies and overall North

Atlantic MSLP field, there are also differences in the temporal evolution of these anoma-

lies. The maximum opposite-sign NAO anomaly preceding the lag=0 anomaly occurs at
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Linear regression High/low Composites

DoF assuming

i.i.d. data

(n − 2) (n × 0.1) (for 10% composites)

Implicit

assumptions

about processes

Data towards the middle of the

distribution (near zero

anomaly) is a low-weighted

version of data towards the

extrema,i.e. all data represents

the same single process but at

different scalings

Data within each composite

represents the same process

High and low

phases

Symmetric by design Can be asymmetric

Effect of

outliers

Outliers have little effect with a

large enough sample and can be

easily removed

Outliers can have a large effect

that can be reduced by

increasing the composite size at

the expense of assuming

increasing symmetry

Units and

interpretation of

amplitude

[dependant]/[explanatory],e.g.

hPa/K, can be scaled given

any value of the explanatory

variable

[dependent]e.g.hPa,

amplitude is a function of the

composite size, affected by the

relative weight of outliers

Table 4.1: Advantages and disadvantages of linear regression and composite analysis. DoF: Degrees of

freedom,i.i.d: independent and identically distributed,n: Number of data points/years.
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Figure 4.1: Histogram showing the distribution of the SST index (bandpass filtered (5–70 years) basinwide

average SST in the North Atlantic between 45–65◦N from the coupled control simulation). A normal

distribution with the same mean and standard deviation (normalised to have the same area under the curve)

is shown in red. Given that the simulated SST index uses a finite number of data points, a bootstrap

approach (Wilks, 1997) is used to estimate the 95% confidence intervals, indicated by the vertical red bars.

Blue lines are drawn at the SST anomaly values that occur at 10% and 90% of the total datai.e. the top

and bottom 10%.

a lag of -7 years for the composite using positive SSTs (Figure 4.2, lag=-7). That is, prior

to the in-phase relationship between high SSTs and an anomalously negative NAO, is

an anomalously positive NAO 7 years previously. This reversal timescale, from positive

NAO to negative NAO, deduced from composites created using high SSTs, is also consis-

tent with the timescale for the same transition instead deduced from composites created

using low SSTs (Figure 4.3, lag=+7): Noting the reversed scale in Figure 4.3, it can be

seen that following a positive NAO in phase with a negative SST anomaly (Figure 4.3,

lag=0) is a negative NAO (Figure 4.3, lag=+7). Thus, using either 1) MSLP composited

on to the highest 10% of SST index anomalies, or 2) MSLP composited on to the lowest

10% of SST index anomalies, yields a reversal timescale frompositive NAO to negative
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Figure 4.2: Lagged composite plot of wintertime (seasonal mean over December, January and February)

MSLP composited from the highest 10% of NA SPG SST index values (5–70 year bandpass filtered basin-

wide average SSTs in the North Atlantic between 45–65◦N) at various lags. Anomaly with respect to the

time mean wintertime MSLP. SST index lags then leads the MSLPfield.
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Figure 4.3: Lagged composite plot of wintertime (seasonal mean over December, January and February)

MSLP composited from the lowest 10% of NA SPG SST index values(5–70 year bandpass filtered basin-

wide average SSTs in the North Atlantic between 45–65◦N) at various lags. Anomaly with respect to the

time mean wintertime MSLP. SST index lags then leads the MSLPfield. Scale has been inverted to aid

comparison with Figure 4.2.
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NAO of 7 years.

The reversal timescale from negative NAO to positive NAO canbe estimated in a similar

sense to the above. However, instead of transitioning from anegative to a positive NAO

anomaly, the MSLP signal in Figure 4.2 merely tends to zero atincreasing lags (Figure

4.2, all positive lags), and is still small at lags greater than +7 (not shown). As such,

it is not possible to estimate the timescale of reversal fromnegative NAO to positive

NAO using the lagged composites created using the highest 10% of SSTs. Nevertheless,

analysing instead the composites created using the lowest 10% of SSTs (Figure 4.3), we

find that the maximum negative NAO preceding the in-phase (positive NAO) relationship

occurs at a lag of 9 years (Figure 4.3, lag=-9). Thus, from MSLP composited on to the

lowest 10% of SST index anomalies yields a reversal timescale from negative to positive

NAO of 9 years.

In summary, the analysis of MSLP composited on to the NA SPG SST index implies a

total cycle timescale of around7+9 = 16 years, consistent with the 16/17 year periodicity

in many NA SPG indices,cf. the power spectra for ocean and atmospheric variables in

Figure 2.4. We now briefly investigate the manifestation of this asymmetry in related

North Atlantic variables before describing experiments todiagnose its origin.

4.2.3 Asymmetry in other fields

Given the asymmetry between MSLP and SSTs in terms of both 1) the magnitude of

the in-phase NAO and 2) the timescale of transitions betweenanomalous NAO states,

it is reasonable to expect further asymmetrical relationships in related fields. Figure 4.4

shows net surface heat flux (SHF; positive values are directed into the ocean) composites,

constructed as described in Section 4.2.1, following anomalously high values of the SST

index (left column) and anomalously low values of the SST index (right column, note

again the inverted scale to aid visual comparison). The SHF anomaly over the NA SPG

following warm SSTs shows a weakening. At lags of +5 to +7 years the largest remaining

anomalies are related to a shift in the position of the NAC, themean position of which is

highlighted (see also Section 4.2.4). This is in contrast tothe SHF following cool SSTs
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(right column, inverted scale) where inverse SHF anomaliesbuild up in the NA SPG

(initially in the eastern SPG at lags +3 to +5 and in the Labrador Sea at lags +5 to +7),

implying subsequent warming by the SHFs. These SHF responses are consistent with

the MSLP responses shown in Figures 4.2 and 4.3 in which the relationship between a

positive NAO and cool SSTs is stronger than the negative NAO/warm SSTs and shows a

more rapid phase reversal.

Similarly to the SHF fields, there is also asymmetrical evolution in top 500m depth aver-

aged temperatures (T500) in the NA SPG (Figure 4.5). The T500field was analysed ex-

tensively as part of the mechanism of decadal variability diagnosed in HadGEM3 (Chap-

ter 2) and the symmetric lagged linear regression against the same SST index is shown

in Figure 2.7 (column 2), along with SHF (column 3) and MSLP (column 5). Using

the same time window as for SHFs, the T500 composites show thereversal from anoma-

lously warm temperatures (left column) to cool temperatures, and from anomalously cool

temperatures (right column, note inverted scale) to anomalously warm temperatures. At

lags of +3 and +4 years (i.e. 3 or 4 years after maximal values of the SST index) the

high and low composites are very similar. However, at increasing lags it can be seen that

the temperature anomaly in the eastern NA SPG is stronger andmore extensive in the

low composites. That is, after anomalously cool temperatures in the NA SPG SST index,

a subsequent opposite-sign anomaly builds up more stronglythan in the inverse phase

of the mechanism. As above, this appears consistent with larger SHF anomalies in the

eastern SPG and a larger MSLP signal following the lowest 10%of SST index values.

Conversely, the T500 signal in the Labrador Sea is not so different in opposite phases,

despite the differences in the SHFs seen there, perhaps suggesting a role for ocean pro-

cesses to remove the additional SHF, either horizontally orvertically. In general, despite

the differences in opposite phases of the T500 composites, the magnitude of the differ-

ence between the evolution of T500 high and low composites isnot as clear as for MSLP

and SHF. This likely reflects the competing contributions toT500 of atmospheric and

oceanic processes. Indeed, as was shown in Chapter 2, advection by both the mean and

anomalous ocean circulation is important for the build-up of NA SPG T500 anomalies.

Given the diagnosed asymmetry in the relationship between SSTs and MSLP, as well as

other variables, we next ask how that asymmetry is formed.
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Figure 4.4: Lagged composite plot of net surface heat flux (SHF, into ocean) composited from the highest

10% of NA SPG SST index values (5–70 year bandpass filtered basinwide average SSTs in the North

Atlantic between 45–65◦N, left) and lowest 10% (right, scale inverted) at various lags. Anomaly with

respect to the time mean net SHF. SST index leads the SHF field.The mean location of the North Atlantic

Current is estimated by the location of the maximum time meanSST gradient (green).
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Figure 4.5: Lagged composite plot of top 500m depth averaged temperature (T500) composited from the

highest 10% of NA SPG SST index values (5–70 year bandpass filtered basinwide average SSTs in the

North Atlantic between 45–65◦N, left) and lowest 10% (right, scale inverted) at various lags. Anomaly

with respect to the time mean T500. SST index leads the T500 field. The mean location of the North

Atlantic Current is estimated by the location of the maximumtime mean SST gradient (green).
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4.2.4 Origin of the asymmetry

The asymmetry between opposing phases of the decadal variability in the NA SPG is

evident in sea level pressure, associated surface heat fluxes, and their integral in depth

averaged temperatures. In the proposed mechanism of decadal variability (see Figure

2.13 for a schematic) there are two important non-linear processes that are prime candi-

dates for the origins of this asymmetry. These are: 1) the role of convection, a highly

non-linear process, in mixing down near surface density anomalies in and around the

Labrador Sea, and 2) the importance of circulation anomalies (e.g. v′(T0 + T ′)) for the

advective heat transport in the southern edge of the NA SPG.

The mixed layer depth (MLD) composites, constructed using the same method as in

previous figures, are shown in Figure 4.6. Consistent with thenet surface heat flux com-

posites (Figure 4.4) they show a stronger relationship withnegative SST anomalies (right

column) with the initial MLD anomaly in the Labrador Sea/Irminger Current (the loca-

tion of the climatological mixed layer depth variability, Figure 2.1) able to reverse sign

between lags +3 to +7. This is in contrast to the MLD anomaly following positive SST

anomalies (left column) in which the initial MLD anomaly merely tends to zero through-

out this time. This implies that some of the asymmetry in the timescales between phases

of the mechanism of decadal variability may be related to asymmetries in the MLDs,

perhaps related to the physical limits of mixed layer depth variability (i.e. the bathymetry

and the ocean surface). However, there is a symmetric relationship between the MLDs

(or net surface heat flux) and composites based instead on an NAO index (not shown).

This suggests that the NAO is related to similar strength heat fluxes and subsequent mixed

layer depth/convection anomalies and would imply that the asymmetry must come from

the oceanic response to these symmetric anomalies, perhapsthrough the circulation.

The time mean top 500m depth averaged zonal current speed (U500) in the North Atlantic

is shown in Figure 4.7a. The North Atlantic Current (NAC) can beclearly seen after the

Gulf Stream detaches from the coast between 35–40◦N. An index of the NAC is defined

as the top 500m volume averaged zonal mean current in the marked box, which has a

mean value of 5.85cm/s. Composites of this index, as described in Section 4.2.1, are then

created based on the NA SPG basinwide SST index and are shown in Figure 4.7b.
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Figure 4.6: Lagged composite plot of March-time mixed layer depths (MLDs) computed using the

methodology ofKara et al.(2000) composited from the highest 10% of NA SPG SST index values (5–70

year bandpass filtered basinwide average SSTs in the North Atlantic between 45–65◦N, left) and lowest

10% (right, scale inverted) at various lags. Anomaly with respect to the time mean MLD. SST index

leads the MLD field. The mean location of the North Atlantic Current is estimated by the location of the

maximum time mean SST gradient (green).
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Figure 4.7: a) Time mean top 500m depth averaged zonal velocity (i-direction, which is approximately

zonal at these non-polar latitudes, see Chapter 1, Section 2.3 for details of the curvilinear grid) in the

coupled control simulation. The dark grey box demarks the North Atlantic Current (NAC) region for which

composites are shown. b) Lagged composite NAC top 500m volume averaged zonal current speeds in the

marked region, composited from the SST index used in Figure 2.7 and Figures 4.2–4.6 using the highest

10% of SST index values (+SST, red) and the lowest 10% of SST index values (-SST, blue). Climatological

mean current speed in this region is 5.85cm/s. Note the inverted scale for the velocity anomaly following

+SST. Confidence intervals (black, dashed) are estimated use the moving blocks bootstrap technique of

Wilks(1997), using a block length of 4, resampling the original data 40000 times.

Consistent with the proposed negative feedback (see Chapter 2and Section 2.4.6), anoma-

lously warm temperatures in the NA SPG lead to a negative circulation anomaly in the NA

SPG region whilst anomalously cool temperatures lead to a positive circulation anomaly

(Figure 4.7b, note the inverted scale for the high SST index composite). The spatialpat-

ternsof the circulation anomalies (not shown) are symmetrical and depict an anomaly

located on the southern edge of the NAC but the magnitude and temporal evolution are

not symmetric (Figure 4.7b). Even if these circulation (andsubsequent heat content)

anomalies were of equal (but opposite) magnitude it would imply different timescales of

anomaly propagation in the NAC region due to the inverse relationship between speed

and time,e.g.
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OHC ′
± ∝ (v0 ± v′)T ′ × t± (4.1)

where notation is as in Section 2.4.1.OHC+ is only equal toOHC− in the trivial case

of v′=0 or whent+ is not equal tot−. In such a situation, it could be said that symmetric

forcing (of the circulation anomaly,v′) led to an asymmetric response. However, as the

circulation anomalies in either composite are not of comparable magnitude we conclude

that an asymmetrical forcing, of unknown origin, leads to anasymmetrical response.

The velocity anomaly per degree of the SST high/low composite is ≈1.2cm/s/◦C for

the negative SST phase, and≈0.8cm/s/◦C for the positive SST phase (using the peak

anomalous velocities from Figure 4.7b), suggesting that some of the asymmetry may

indeed arise from an asymmetrical ocean response to the SST changes. However, the

difference in timescales between the two composites, estimated by assuming a length

scale that is the width of the box (3000km) and a velocity anomaly scale that is the peak

anomalous velocity (0.6cm/s for the high composite, -0.4cm/s for the low composite), is

4 months. As noted in Chapter 2, the location where heat transport anomalies transition

from being dominated by the anomalous to the mean circulation is not clear. In addition,

we have neglected the potential role for the temperature anomalies (which, in the absence

of compensating salinity anomalies, will also be potentialvorticity anomalies) to interact

with the circulation. As such, this likely represents an upper estimate on the asymmetry

due to the anomalous circulation and is much less than the≈2 year difference in phase-

reversal time suggested by the MSLP composites (cf. Figures 4.2 and 4.3), suggesting

other processes must also exist to explain the asymmetry.

In addition to the larger magnitude of the anomalous velocity following cool SSTs this

velocity anomaly also subsequently subsides more quickly.The anomaly following cool

SSTs becomes ‘insignificant’, as defined by the moving blocksbootstrap estimate of sig-

nificance at the 95% level, within 5 years, compared to the 6 year timescale for the weaker

but longer lasting anomaly following warm SSTs. This can also be seen in Figure 4.4, in

which the surface heat flux anomalies in the NAC region (marked in green), indicative of

a slight shift in the latitude of the NAC, are longer lasting following anomalously warm

SSTs (left column) than following anomalously cool SSTs (right column).
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In summary, there is evidence of asymmetry within the proposed mechanism of simulated

decadal variability in the NA SPG. The asymmetrical timescales for reversal between

positive and negative phases (phases characterised by basinwide SSTs in the NA SPG)

cannot solely be attributed to the non-linear processes within the ocean that we have

investigated (e.g. convection or the role of circulation anomalies). However,given the

lag=0 asymmetry in MSLP composites based on this SST index (cf. Figures 4.2 and

Figure 4.3, lag=0), which to some degree characterise the strength of the relationship

between SSTs and MSLP/the NAO, it is possible that the overall asymmetry between

the opposing phases of the variability is related to asymmetries in the strength of ocean-

atmosphere coupling. That is, one phase of the mechanism canelicit a larger MSLP

response in the atmosphere, which amplifies or accelerates that part of oscillation. We

examine this hypothesis in the next section.

4.3 Atmosphere-only experiments

We begin this section with the details of some forced atmosphere-only experiments (Sec-

tion 4.3.1) and briefly discuss the choice of a control baseline (Section 4.3.2) before

presenting the results in Section 4.3.3.

4.3.1 Experimental design

To investigate possible asymmetries in the strength of ocean-atmosphere coupling we de-

sign and run a set of atmosphere-only ensembles,i.e. using just the atmosphere compo-

nent of the coupled model, summarised in Table 4.2 and described next. The atmosphere

model is forced with annually-repeating daily mean SST and sea ice fields, linearly in-

terpolating the daily mean values on to the atmosphere time step of 15 minutes. Note

that there is no representation of the diurnal cycle in either the forcing fields or in the

atmosphere simulations. The individual daily mean climatological forcing fields are cal-

culated from the coupled model by separately averaging eachday over a 20 year period

towards the end of the simulation,i.e. averaging all firsts of January to create a mean
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Experiment name +NAO -NAO

Forcing fields Daily mean SSTs and sea ice, repeated annual cycle

(no diurnal cycle)

Forcing fields Composite wintertime SST and sea ice fields on

construction to NAO index using:

highest 10% of wintertime lowest 10% of wintertime

NAOs from coupled control NAOs from coupled control

Ensemble members 7 7

Length (years) 30, 32, 40, 40, 41, 44, 45 26, 35, 35, 35, 38, 39, 44

Total years/winters 272 252

Table 4.2: Design of the atmosphere-only ensembles.

January 1st forcing field for both SST and sea ice. We use daily values fromthis shorter

subset of the full simulation due to the availability of the correct diagnostics and compu-

tational overheads. Although it is difficult to validate thedaily variability against the full

simulation, the time mean NAO during this period is in a neutral state compared to the

full simulation (not shown). Subsequently, the additionalanomalous NAO-related SST

and sea ice forcing are added to the climatological forcing fields to create the forcing

fields for the ‘+NAO’ and ‘-NAO’ experiments. These NAO-related anomalies are esti-

mated by creating composites of wintertime (December, January, February time mean)

SSTs and sea ice using the highest (+NAO) and lowest (-NAO) 10% of wintertime NAOs

from the whole time series, similarly to the composite construction detailed in Section

4.2.1. Wintertime values are used as the strength of the relationship between the ocean

and the NAO is largest at this time (Rodwell et al., 1999) but the anomalous forcing is

applied constantly throughout the annual cycle. As such, the forcing fields are designed

to represent an ocean state that is perpetually associated with a positive or negative NAO

anomaly.

The SST and sea ice anomaly fields, which were added to the daily mean SST and sea ice

climatology, are shown in Figure 4.8. Note that the fields areglobal rather than regional.

This was to avoid making anya priori assumptions that the NAO is forced from anywhere

in particular as evidence of bidecadal variability exists globally in proxy records (Mann
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et al., 1995) and in our model (e.g. Arctic sea ice, not shown). That is, we did not want

to damp any ocean to atmosphere forcing we might have seen in the atmosphere-only

simulations by removing additional — but related — non-local forcing (see discussion

in Section 4.4). Additionally, the use of global forcing fields significantly simplified the

experimental design by avoiding the use of buffer regions between regions of climato-

logical forcing and anomalous forcing. However, we note that global forcing may also

have limitations (see Section 4.4). Some of the key featuresof the forcing fields are the

tripole pattern in Atlantic SSTs (top two panels), consistent with the NAO, and a much

stronger signal in the northern hemisphere than southern hemisphere. There is also a pat-

tern reminiscent of El Nĩno/La Niña in the Pacific Ocean, the significance of which we

discuss in Section 4.4. The sea ice fields, only shown for the northern hemisphere, yield

a pattern of increased/decreased sea ice consistent with local decreases/increases in SST

(bottom two panels). As expected, SSTs in the NA SPG are anomalously cool associated

with a positive NAO (top left), and anomalously warm associated with a negative NAO

(top right). The North Atlantic SST gradient between the subtropical and subpolar gyres

(defined as the area mean SST in 2x2◦ boxes centred at 57◦W, 29◦N and 31◦W, 53◦N

respectively) is similar in both sets of forcing fields at -1.03K in the +NAO ensemble and

1.00K in the -NAO ensemble.

4.3.2 Control baseline choice

Prior to analysing the atmosphere-only ensembles, it is first prudent to consider the choice

of baseline against which to compare the output from the ensembles. There are several

possible candidates for a control baseline, which are summarised in Table 4.3. These

represent a choice between using the coupled control simulation, from which the en-

sembles are initialised, or separate atmosphere-only simulations, which should have a

similar background climate. Additionally, there are choices over the time window to use,

balancing an improved signal to noise ratio from a long time series against the compu-

tational expense and/or issues with drifts in the mean state. We compared our analysis

of the atmosphere-only ensembles against baseline options1–4 in Table 4.3 and found

that the results were sensitive to the baseline choice (not shown). Given this sensitivity,



Chapter 4. Asymmetry in the simulated variability 121

180 90W 0 90E
90S

45S

0

45N

90N

Anomalous SST field [oC]
with +ve NAO

-0.4 -0.2 0 0.2 0.4

180 90W 0 90E
90S

45S

0

45N

90N

Anomalous SST field [oC]
with -ve NAO

-0.4 -0.2 0 0.2 0.4

   
 

 

 

Anomalous Ice fraction
with +ve NAO

-0.08 -0.04 0 0.04 0.08

   
 

 

 

Anomalous Ice fraction
with -ve NAO

-0.08 -0.04 0 0.04 0.08

Figure 4.8: The anomalous SST (top) and sea ice (bottom, only shown for the northern hemisphere)

forcing applied to the atmosphere-only ensemble, in addition to the daily-varying climatology as described

in Section 4.3.1 and Table 4.2. Left column: Forcing fields associated with the highest 10% of NAO

anomalies (+NAO). Right column: Forcing fields associated with the lowest 10% of NAO anomalies (-

NAO).
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we chose to use the computationally expensive, but most robust, baseline of a parallel

set of atmosphere-only ensembles, identically forced to the +NAO and -NAO ensembles

but forced with only climatological forcings (Table 4.3, number 5). Seven atmosphere-

only control ensemble members were run, with simulation lengths of 26, 27, 27, 28, 28,

29, and 29 years, totalling 194 individual years/winters (cf. the 272 and 252 individual

years/winters in the +NAO and -NAO ensembles respectively). This ensemble is here-

after referred to as the control ensemble.

Having defined the atmosphere-only ensemble experimental design, and our choice of

control baseline, we now analyse the results of these ensembles. We ask: How does

the atmosphere respond to the SSTs/sea ice associated with apositive or negative NAO

anomaly? Does the atmosphere return a similar NAO anomaly, implying ocean to at-

mosphere forcing, or return no significant NAO anomaly, implying the relationship be-

tween simulated SSTs/sea ice and the NAO is due to atmosphereto ocean forcing? Is the

strength of the atmospheric response similar for both +NAO and -NAO forcing, or is the

response asymmetric, as suggested by the coupled analysis in Section 4.2?

4.3.3 Asymmetry in atmosphere-only ensembles

4.3.3.1 North Atlantic sea level pressure response

The time mean intra-ensemble wintertime MSLP response to the anomalous SST/sea ice

forcing is shown in Figure 4.9 for the +NAO (left) and -NAO (right) experiments. It can

be seen that the response to SSTs/sea ice associated with a positive NAO is to return an

MSLP pattern that is also suggestive of a positive NAO (Figure 4.9, left). Conversely,

the response of the atmosphere to SSTs/sea ice associated with a negative NAO is an

MSLP pattern that is more reminiscent of the East Atlantic Pattern (EAP, the second most

dominant mode of MSLP variability in the North Atlantic (Barnston and Livezey, 1987)

after the NAO, Figure 4.9, right). In both cases, the signal in the northern NA SPG is not

significantly different from the control ensemble, relatedto the large interannual/inter-

ensemble variability in/across the control ensemble in this region. However, defining

the NAO index as the difference in MSLP between the Azores andIceland does reveal a
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Control baseline Advantages Disadvantages

1. Full≈500 years

from coupled

control

Long enough to average out

other modes of variability.

Coupled control uses

3-hourly coupling so does

represent the diurnal cycle

Simulation shows some drift in

SSTs/sea ice that will affect the

MSLP. Background state in

coupled and uncoupled modes

cannot be assumed the same

2. 20 year parallel

portion of coupled

control

Short enough to remove drift

effects and attempts to

represent the same

background climate as in the

forced ensembles.

Represents the diurnal cycle

Other modes of

variability/noise become

amplified relative to the signal.

Background state in coupled

and uncoupled modes cannot

be assumed the same

3. 20 year

atmosphere-only

simulation forced

by time varying

SSTs/sea ice from

parallel coupled

control

Background climate state

should be more similar to the

forced ensembles. The SST

and sea ice forcing will

contain the effects of the

diurnal cycle, which exists in

the coupled control

Interannually varying SSTs/sea

ice from the coupled

simulation may contain the

imprint of interannual NAO

variability, which may project

on to the time-mean response

4. Inter-ensemble

mean

The background climate state

is identical to the forced

ensembles by design

Forces the results to be

symmetric

5. Control

ensemble forced

with periodic

SSTs/sea ice but

without the addition

of NAO-related

SST/sea ice

anomalies

Background state is the same

as in the forced ensembles

and effects of drift and/or

noise affecting the signal are

the same in both the control

and forced ensembles

Many ensembles needed to get

statistically significant results,

which are computationally

expensive to run. No

representation of diurnal cycle

- though this is also the case in

the anomaly-forced

simulations

Table 4.3: Advantages and disadvantages of various control baseline choices for the atmosphere-only

forced ensembles, as described in Table 4.2.
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Figure 4.9: Ensemble mean wintertime MSLP response [hPa] to anomalous SST/sea ice forcing in the

+NAO ensemble (left) and -NAO ensemble (right, scale inverted). Stippling denotes anomalies indistin-

guishable from the control ensemble at the 90% level for a two-tailed t-test.

significant difference between the control and the +NAO ensemble. The ensemble mean

NAO is 1.35hPa stronger in the +NAO ensemble than the controlensemble, with a t-

statistic of 1.86 that is significant at the 90% level. In the -NAO ensemble, the ensemble

mean NAO isnot significantly different from the control ensemble at the same level.

These results imply a stronger coupling between the wintertime NAO and wintertime

SSTs in the positive NAO phase than in the negative NAO phase.That is, anomalously

cool SSTs in the NA SPG (and associated sea ice changes) are more able to force anoma-

lous atmospheric circulation in this region than can anomalously warm SSTs. This is

consistent with the composite analysis of asymmetry withinthe coupled control simu-

lation in Section 4.2 in which a stronger in-phase relationship between cool SSTs and a

positive NAO was found than between warm SSTs and a negative NAO. The atmosphere-

only ensembles suggest this stronger coupled relationshipcould be due to the ocean-to-

atmosphere forcing being stronger during a positive NAO state.
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It is not clear why the coupling should be stronger in one phase compared to the other.

Using model output from the coupled control simulation, we find the net surface heat

flux into the NA SPG is a linear function of the atmosphere-ocean temperature difference

(not shown) using both annual and wintertime data. This is consistent with the bulk

formula (e.g. Large and Yeager, 2004) in which the relationship is approximately linear

for small temperature differences. It is possible that the asymmetries are introduced by

the interaction between the atmosphere-ocean temperaturedifference and the specific

humidity in the resultant latent heat flux. In addition, non-local forcing from the tropical

Atlantic (Sutton et al., 2000) or elsewhere (Hoerling et al., 2001) could be important

(allowed by our experimental design) both for the manifestation of the NAO signal and

perhaps the non-linear/asymmetrical response (Sutton et al., 2000). The possible role of

non-local forcing is discussed in the next section and further in Section 4.4.

4.3.3.2 Global and upper troposphere responses

The forcing fields shown in Figure 4.8 reveal a Pacific SST anomaly of the same sign

as the NA SPG SST anomaly. These SST anomalies co-vary such that the anomaly

related to a positive NAO is concomitant with an SST anomaly consistent with a La

Niña episode, and similarly for a negative NAO and El Niño. To highlight the global

response, Figure 4.10 shows the ensemble mean MSLP anomalies in the atmosphere-only

ensembles (top row) along with the relative magnitudes of these anomalies compared to

the control ensemble variability (bottom row). It can be seen that there are also significant

MSLP anomalies in the tropical Pacific in both ensembles. These are much smaller than

the MSLP anomalies in the North Atlantic and North Pacific regions but exist in a region

where the annual variability in MSLP is also much smaller, resulting in relatively large

excursions from the variability described by the control ensemble (Figure 4.10, bottom).

Thus, an important open question is to what extent the resultant anomalies in the NA

SPG are due to forcing from the tropical Pacific.

To investigate the relationship between the tropical Pacific and North Atlantic we analyse

the 500hPa geopotential height anomalies (Figure 4.11). Inthe North Atlantic region

these are suggestive of a broadly barotropic response in the-NAO ensemble, whereas
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there is increased baroclinicity in the +NAO ensemble, as evidenced by the large negative

height anomaly over the Labrador Sea that has little surfaceexpression (cf. Figure 4.10,

top right). The tropical Pacific annual variability in both ensembles is of comparable

magnitude to the annual variability from the control ensemble (Figure 4.11, bottom).

However, an important difference is the fraction of variability in the tropical Atlantic

region, which is much larger for the +NAO ensemble than the -NAO ensemble. This may

be related to the increased surface response in the tropicaland midlatitude Atlantic in

the +NAO ensemble, which ultimately drives the NAO anomaly (see discussion section,

next).

4.4 Discussion

It is important to clarify the actual relationship that shows asymmetry in the above analy-

sis: In both the composites created from the coupled controlsimulation (Section 4.2) and

the atmosphere-only ensembles (Section 4.3.3) we have found indications of a stronger

relationship between SSTs/sea ice and MSLP in the positive NAO/cool NA SPG phase.

However, when compositing MSLP based on the NAO index (usingthe highest and low-

est 10% of values, as in Section 4.2.1) we find a similar in-phase relationship in both

positive and negative NAO states (not shown). That is, the coupled control simulation

suggests it is the strength of the relationship between SST/sea ice and NAO that is asym-

metric, and not the strength of the NAO itself. In other words, in the coupled control the

absolute magnitude of the positive NAO anomaly using the highest 10% of NAO values

is similar to the absolute magnitude of the negative NAO anomaly using the lowest 10%

of values. Indeed, it is the existence of the postulatedasymmetrical coupling strengththat

the atmosphere-only ensembles are testing (and have found)and not merely the skewness

in the distribution of NAO anomalies in the coupled control simulation.

Some of the asymmetry in the coupling strength may arise due to the relationship between

the North Atlantic eddy-driven jet/storm tracks and the NAO(Hoskins and Valdes, 1990).

Recent work has shown that whether it is the position or strength of the storm tracks that

affect the NAO may depend on the timescale of the variability, being either multi-annual



Chapter 4. Asymmetry in the simulated variability 127

+NAO ensemble mean MSLP

-300 -200 -100 0
Longitude

-50

0

50

La
tit

ud
e

-NAO ensemble mean MSLP

-300 -200 -100 0
Longitude

 

 

 

-1.5 -1 -0.5 0 0.5 1 1.5

Units:
hPa

+NAO ensemble mean MSLP
(Fraction of control variability)

-300 -200 -100 0
Longitude

-50

0

50

La
tit

ud
e

-NAO ensemble mean MSLP
(Fraction of control variability)

-300 -200 -100 0
Longitude

 

 

 

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

Figure 4.10: Top row: Global ensemble mean MSLP anomalies, with respect to the control ensemble, in

the +NAO (left) and -NAO (right, scale inverted) ensembles,as in Figure 4.9. Stippling denotes anomalies

indistinguishable from the control ensemble at the 90% level for a two-tailed t-test. Bottom row: As for

the top row but dividing by the annual standard deviation in MSLP from the control ensemble, to estimate

the relative magnitude of the anomalous responses.
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Figure 4.11: As in Figure 4.10 but for geopotential height anomalies at 500hPa. Units: metres.
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or multi-decadal (Woollings et al., 2014). Our atmosphere-only ensembles are forced

with an anomalous SST gradient that is essentially equal andopposite between forcing

sets (see Section 4.3.1) but this does not preclude differences in the precise patterns of the

resulting static stability. Indeed, it has been shown that the extratropical atmospheric re-

sponse of the North Atlantic can be forced by both the local (extratropical) and non-local

(tropical/subtropical) Atlantic SSTs (Sutton et al., 2000). Some evidence of this in the

present uncoupled experiments can be seen in the subtropical 500hPa height anomalies

in both the +NAO and -NAO ensembles (Figure 4.10). In addition, the combination of

these forcings has been postulated to add non-linearly to give the resulting extratropical

NAO response (Sutton et al., 2000) and thus represents another possible driver of the

asymmetrical coupling strength we have diagnosed.

In Section 4.3.3.2 we highlighted the asymmetrical global response to the global SST/sea

ice forcing. Previous work has also highlighted an asymmetrical response of the NAO to

forcing from the tropical Pacific in an observational framework, with a stronger relation-

ship in the +NAO/La Nĩna phase (Pozo-V́azquez et al., 2005), similar to the response we

find. Indeed, further work has linked Pacific Rossby wave breaking to the +NAO phase,

though not necessarily related to El Niño/La Niña (Strong and Magnusdottir, 2008). The

favouring of +NAO over -NAO arises due to the preference for anticyclonic wave break-

ing (Drouard et al., 2013). As such, it is possible that the MSLP anomalies (and the

asymmetry) over the NA SPG are driven by non-local forcing, allowed by our experi-

mental design, which provides a tantalising link between decadal variability in the North

Atlantic and tropical Pacific, although we also note that there is no evidence of bidecadal

periodicity in SSTs in the tropical Pacific (not shown).

Ultimately, the root cause of the asymmetry in the coupling strength between opposing

phases of the simulated decadal variability in the NA SPG, and how this translates to dif-

ferent timescales for phase reversal, has yet to be diagnosed. Within the coupled system,

there are key regions in which the atmosphere is postulated to play a role in reinforcing

or driving ocean anomalies (Figure 2.13). If the timescalesof phase reversal in the cou-

pled system are, on average, related to the anomaly magnitudes (e.g. in T500) then it is

possible that stronger coupling in the +NAO phase would, on average, hasten the +NAO

(cool T500) part of the cycle.
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Given the analysis in Section 4.3.3.2, future analysis in the current framework of inves-

tigation of the NA SPG could involve further atmosphere-only simulations performed

with anomalous SST/sea ice forcing only in the NA SPG region,rather than globally.

These would help to confirm that the asymmetry in coupling strength between SSTs/sea

ice and the atmosphere does indeed occurin situ in the NA SPG, or whether other, larger

scale, processes are involved. As noted, there is a tropicalPacific signal reminiscent of El

Niño/La Niña in the forcing fields we have used (Figure 4.8). Using an atmosphere-only

model that was a precursor to the model used in this analysisIneson and Scaife(2009)

found that, under some circumstances, El Niño-related SSTs could impact wintertime

temperatures in northern Europe. As such, further analysiscould probe the relative roles

of both Pacific and Atlantic forcing as well as tropical Atlantic and subpolar Atlantic

forcing — the latter two having already been shown to add non-linearly to give an extra-

tropical atmospheric response over the North Atlantic (Sutton et al., 2000).

Recent work has shown that NA SPG ocean variability on timescales greater than 15

years can be driven by NAO-related forcings (Mecking et al., 2014). To further investigate

whether the asymmetry we have detected arises due to atmosphere or ocean processes,

a parallel set of forced ocean-only simulations, given surface forcing associated with

anomalously high and low NAO states, could be performed. These were not performed

here due to complications involving the most optimal way to restore the ocean surface

salinities, which show a tendency to drift significantly when in uncoupled mode (Behrens

et al., 2013). Additionally, as noted in Section 4.2.4, there is a stronger response in ocean

circulation in the NAC region associated with cool SSTs thanwarm SSTs (Figure 4.7)

— with the anomalous circulation in this region previously shown to be related to the

geostrophic response to temperature anomalies (Section 2.4.6). Ocean-only simulations

would help to elucidate whether the asymmetrical response seen in Figure 4.7 is due

to the asymmetrical coupling strength differently affecting the ocean temperatures (and

hence geostrophic circulation), or whether it is due to processes internal to the ocean.

More broadly, the analysis we have presented in this chapteremphasizes the complemen-

tary approaches of composite analysis (low DoF but no assumption of symmetry) and re-

gression analysis (high DoF but assumes symmetry, see Table4.1 for further examples).

Indeed, it highlights the potential role of asymmetry in themechanism of decadal vari-
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ability presented in Chapter 2 and why linear regression (symmetric) analysis may not

always reveal the precise timescales involved. Such a combination of analysis techniques

could be applied to other processes in the climate system where there is enough data to

allow substantial sub-sampling, such as variability associated with El Nĩno/La Niña.

4.5 Chapter conclusions

We have investigated the existence of asymmetry between opposing phases of the mecha-

nism of decadal variability in HadGEM3 that was diagnosed inChapter 2. This asymme-

try is highlighted through the use of composite analysis, asopposed to linear regression

analysis, where the latter implicitly assumes symmetry between opposing phases of an

oscillation.

• The coupled control simulation shows asymmetry in a varietyof climate-relevant

fields in the North Atlantic subpolar gyre (NA SPG), such as mean sea level pres-

sure (MSLP), surface heat fluxes, and top 500m depth averagedtemperature.

• The asymmetry is manifest in space as a stronger MSLP anomalyassociated with

an anomalouslycoolNA SPG rather than with an anomalouslywarmNA SPG. The

asymmetry is also manifest in time as a faster reversal timescale (by approximately

2 years) from positive North Atlantic Oscillation (+NAO) tonegative NAO (-NAO)

conditions than from -NAO to +NAO conditions.

• An ensemble of atmosphere-only experiments suggest the asymmetry inspaceis

related to an asymmetrical coupling strength between the ocean and atmosphere,

i.e. that anomalously cool NA SPG sea surface temperatures (SSTs) exert a stronger

influence on the atmosphere than anomalously warm NA SPG SSTs.

• Although still unclear, the asymmetry intimescalescould be linked to the asymme-

try in coupling strength, given the previously diagnosed role for the atmosphere in

reinforcing ocean anomalies. The timescale asymmetry cannot be fully explained

by the role of anomalous ocean circulation in the North Atlantic Current (NAC)

region, which explains only a 4 month offset.
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• Non-local forcing from the tropical Pacific and tropical Atlantic cannot be dis-

counted as playing a significant role in the asymmetry. Further atmosphere-only

ensembles, with non-local SSTs/sea ice relaxed to climatology, would help to re-

solve this issue.

This analysis has highlighted the potential role of the asymmetrical evolution of anoma-

lies in the NA SPG in HadGEM3. The asymmetry between the evolution of, for example,

MSLP anomalies, can lead to significantly different timescales (up to 2 years difference)

in opposing phases of the variability. As such, it further highlights the need for multi-

century control simulations when investigating simulateddecadal variability to allow for

the low-DoF asymmetrical analysis we have presented.

We have previously diagnosed a range of processes that are important to the NA SPG

decadal variability in HadGEM3 and tested them against observations revealing varying

degrees of agreement (Chapter 3). In the next chapter we discuss how robust and pre-

dictable are various elements of the proposed mechanism (Chapter 5) before moving on

to try and draw broader conclusions across many more models in Chapter 6.



Chapter 5

Examining initial condition ensembles

as a means of testing the mechanism of

decadal variability

5.1 Introduction

In Chapter 2 we diagnosed the mechanism of internal decadal variability within the North

Atlantic subpolar gyre (NA SPG) in HadGEM3. In this chapter we investigate whether

specific phases of the decadal variability are more or less robust than others, using as our

experimental apparatus a set of initial condition ensembles. Additionally, given that this

model, or a version thereof, will provide the basis for seasonal to decadal prediction at the

Met Office Hadley Centre (MacLachlan et al., 2015) for the forthcoming years it is also

appropriate to begin to test whether the diagnosed variability can contribute to increased

predictive skill. As such, we begin with a brief review of decadal prediction and the

motivation for our initial condition ensembles in section 5.2. In Section 5.3 we describe

the initial condition ensemble experimental design beforepresenting some results for the

NA SPG in Section 5.4, both generally and for some of the specific processes noted in

Chapter 2. We discuss our findings in the context of the simulated mechanism of decadal

variability (Chapter 2) and comparisons against observations (Chapter 3) in Section 5.5

133
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before presenting chapter conclusions in Section 5.6.

5.2 Brief review of decadal prediction

Decadal climate prediction aims to provide useful information for society on, for ex-

ample, near-term atmospheric temperature and precipitation changes on regional scales

(Meehl et al., 2009). The skill and/or predictability (defined next) of these predictions

may well arise from oceanic processes due to the long memory in the ocean, particularly

the deep ocean (Delworth et al., 2007). Therefore, understanding whether simulated

ocean variability is realistic (see Chapter 3) is important in order to assess the reliability

of decadal predictions. When evaluating the performance of adecadal prediction sys-

tem, one can test it against real-world observations (with ensuing difficulties relating to

the procedure for assimilating the real-world state (Magnusson et al., 2013) and initial-

isation shock) or against itself in a ‘perfect model’ framework (Hawkins et al., 2011).

Given its relative simplicity, and that we also aim to test the robustness of various parts

of the decadal variability described in Chapter 2, we use the latter approach.

The potential ‘skill’ of a prediction of a climate variable (see Chapter 1, Section 1.2.2.1)),

such as European surface air temperature, can be assessed ina model framework by con-

ducting multiple ‘Initial Condition’ ensembles, each with multiple ensemble members

(Collins, 2002). Here, a set of parallel simulations begun at multiple start dates initialised

from some control simulation are performed and their evolution at a given lead time is

compared to the control evolution. The control simulation represents the target, or ‘truth’

— in this analysis the simulation described in Chapter 2 is thecontrol simulation. The

better the anomalies (from some time mean) in the parallel simulations match the con-

trol simulation anomalies, the higher the anomaly correlation coefficient (ACC, skill). In

addition, each start date is made up of multiple ensemble members to attempt to average

out the noise and retain only the predictable signal. Ensemble member generation can

be complex (Karspeck et al., 2013;Ham et al., 2014) but in the present experiment we

choose to simply apply a bit-level perturbation to the atmosphere model restart files af-

ter Dunstone et al.(2011). The ACC, which is a function of lead time, is given by the
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following formula (modified fromCollins, 2002), where a value of 1 represents perfect

skill, and a value of 0 represents no skill:

ACC (t) =

∑N

j=1

∑M

i=1

∑
k 6=i (xkj (t) − x(t)) (xij (t) − x(t))

∑N

j=1

∑M

i=1

∑
k 6=i (xkj (t) − x(t))2

(5.1)

wherex is some climate variable,j represents the individual start dates (N total), i rep-

resents each ensemble member (M total), andk represents the ‘truth’, which is taken to

be each ensemble member in turn (Collins, 2002). The grand ensemble mean,x, is given

by:

x(t) =
1

N×M

N∑

j=1

M∑

i=1

xij (t) (5.2)

In addition to the ACC, another useful measure is the prognostic potential predictability

(PPP,Pohlmann et al., 2004). This relates the amount of variability across the ensem-

bles and ensemble members at a given lead time (for example, 1year) to the interannual

variability of the control simulation (i.e. the annual standard deviation in the detrended

control simulation). As such, it diagnoses lead times wherethe ensembles remain more

tightly constrained than the control simulation, suggesting that there is some useful con-

straint provided by the initial conditions in these periods. For the PPP, a value of 1

represents an ensemble with no intra-ensemble variance, and a value of 0 represents an

ensemble with the same intra-ensemble variance as exists through time in the control sim-

ulation. The PPP, as a function of lead time, is given by the following equation (notation

modified fromPohlmann et al.(2004) to be consistent with the above):

PPP (t) = 1 −

1
N(M−1)

∑N

j=1

∑M

i=1 (xij(t) − xj(t))
2

σ2
(5.3)

wherexj is thejth ensemble mean andσ2 is the variance of the particular climate variable

throughout the control simulation (detrended as appropriate). The PPP is complementary

to the ACC. For example, one can imagine a situation where the anomalies in the ensem-

bles are of the same sign as the control simulation but with considerable spread across
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the ensemble members — a high ACC but low PPP, possibly indicating a signal-to-noise

problem. Similarly, one can also imagine a situation where the anomalies in both the

ensembles and control are spread tightly around zero anomaly, yielding a low ACC but

high PPP (if the variability is normally much larger).

Finally, in addition to the ACC and PPP, we also define a new index: the concatenated

anomaly correlation coefficient (CACC), to allow us to investigate the relative skill in

different subsetsof start dates/initial conditions. This is defined similarly to the ACC

but to offset the effect of reducing the number of start datesit uses multiple lead times

to build the correlation. As such, the CACC is not calculated for each lead time but is

sensitive to the lead times (P ) incorporated:

CACC =

∑P

l=1

∑N

j=1

∑M

i=1

∑
k 6=i (xkjl − xcacc) (xijl − xcacc)

∑P

l=1

∑N

j=1

∑M

i=1

∑
k 6=i (xkjl − xcacc)

2
(5.4)

where the notation is as previously andl represents the (not independent) lead times (P

total) whilstN is reduced to investigate the skill for groups of start datesseparately. The

grand ensemble mean,xcacc, is given by:

xcacc =
1

P×N×M

P∑

l=1

N∑

j=1

M∑

i=1

xijl (5.5)

The CACC is a measure of where the ensembles and ensemble members evolve similarly

in time. However, whereas multiple start dates can be assumed independent (if well

separated), multiple lead times cannot, which reduces the statistical power of this index.

Nonetheless, given the few start dates available to us (see Section 5.3) this metric at

least provides an indication of how various sets of initial conditions compare. Finally,

we limit our analysis to these relatively simple and intuitive metrics but note that there

are many alternative methods of quantifying skill. These are often more appropriate for

verification against real observations (rather than in a perfect model framework) or for

analysis of discrete rather than continuous variables (Weigel et al., 2007).
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5.2.1 Motivation for an initial condition ensemble

Our motivation for conducting investigations with initialcondition ensembles is twofold.

Firstly, we aim to investigate in more detail which of the elements of the mechanism

of simulated decadal variability in HadGEM3 are more robustthan others by choosing

initial conditions with large anomalies in a variety of subregions within the NA SPG

(Goal 1). That is, to what extent are different phases of the variability more or less

susceptible to random fluctuations that can create or destroy apparently low frequency

modes. This question is not easily answered with lagged regression analysis (as presented

in Chapter 2) that inherently post-rationalises the simulated variability. For example,

Wittenberg et al.(2014) described how simulated, unforced, large decadal variability in

El Niño, which one might expect to be predictable in a perfect model framework and to

provide skill to — or drive variability in — other climate indices, showed very little (if

any) predictability at all.

Secondly, we aim to begin to analyse the predictability characteristics of this model,

noting its potential future use in seasonal to decadal forecasting (MacLachlan et al.,

2015, Goal 2). Although this analysis is in a ‘perfect model’ framework (where the

target ‘truth’ is not reality but the model control simulation), we aim to combine it with

our analysis of observed constraints on the simulated decadal variability (Chapter 3) to

discuss the potential real-world predictability. In the next section we describe the design

of our initial condition experiments.

5.3 Initial condition ensemble — experimental design

To determine the instances from the control simulation to use as initial conditions for our

ensemble experiments we first define some broad indices that aim to capture particular

phases of the simulated decadal variability. Given the large vertical extent of the decadal

mode in the NA SPG (Figure 2.9) we use depth average temperatures over the top 1000m

(T1000). Additionally, given the differing processes/timescales associated with differ-

ent stages of the variability (see Figure 2.13) we define indices in three locations: the
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Figure 5.1: Time series of detrended (high pass filtered to remove periods greater than 70 years) top 1000m

depth averaged temperature (T1000) in three regions withinthe North Atlantic subpolar gyre. These are a

region in the East (10–25◦W, 50–57◦N, black), a region in the North at the entrance to the Labrador Sea

(37–52◦W, 57–63◦N, green), and a region in the South in the North Atlantic Current (50–65◦W, 35–40◦N,

pink). Regions are marked on Figure 5.2. The model year of themaximum and minimum values of the

detrended time series are denoted by the vertical lines. Years towards the beginning of the time series are

truncated due to the unavailability of model restart files during this time. Data at either end of the time

series are ignored due to the end-effects of the detrending.

East (10–25◦W, 50–57◦N), the North (37–52◦W, 57–63◦N), and the South (50–65◦W,

35–40◦N). Time series of the T1000 interannual variability in these regions are shown

in Figure 5.1. We find both the maximally positive anomaly andmaximally negative

anomaly for each index, resulting in a total of six sets of initial conditions/start dates.

Each of these is comprised of five ensemble members (plus the control — see below) and

run for five years, amounting to a total of 150 years of model integration in addition to

the control simulation. Ensembles are initialised on December 1st (note that the model

year runs from December 1st to November 30th by convention). Bit-level perturbations

are applied to all fields in the atmospheric component of the restart files for each ensem-

ble member to provide the initial seed for the subsequent chaotic evolution. We present

annual means unless otherwise stated.

In the present analysis we use an idealised framework in which the model control simu-

lation provides the ‘truth’ that a set of short simulations with perturbed initial conditions

aim to recreate. Therefore, for a given start date, the period of the control simulation that

is parallel to this ensemble can be considered to be merely another ensemble member.

Thus, when computing the ACC and PPP, we include this additional ensemble member

to increase the robustness of our statistical estimates. For the ACC, this is achieved by us-
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ing a resampling technique, afterCollins (2002), which treats each ensemble member in

turn as the ‘truth’ (Equation 5.1). For the PPP, we merely increase the effective ensemble

size by one member, afterPohlmann et al.(2004, Equation 5.3).

It can be seen from Figure 5.1 that some of the initial conditions are not well separated

in time, due to the co-variability of the East, North, and South indices. We chose not to

manually interfere with our algorithm for selecting the initial conditions but note that the

effective number of independent start dates may be closer tofour than to six. However,

it should also be noted that it is not always the same pairs of indices that are adjacent

(cf. the East and North indices around model year 290, and the Eastand South indices

around model year 380, both of which are separated by only 2 years). In addition, the

spatial structures of these nearby start dates are not obviously more similar than other

well separated start dates (Figure 5.2). This is discussed further in Section 5.5.

The annual mean T1000 anomalies from the control simulationfor the year that ends at

the initialisation of the ensembles are shown in Figure 5.2.We use annual means for

simplicity when searching for anomalous phases of the multi-annual/decadal variability

but note that, as the model is initialised from a single pointin time (or more precisely at

two adjacent time-steps due to the specifics of the numericalscheme), these are not the

precise initial conditions. It can be seen that all the initial conditions show to some degree

a dipole between the northern and southern halves of the NA SPG (discussed in Section

5.5) and that the sign of the anomaly in the eastern and northern regions is generally the

same (consistent with the short timescales linking the simulated decadal variability in

these regions, Section 2.4.2). The apparent similarity of many of the initial conditions is

related to our first goal of investigating which elements of the decadal variability are most

robust but is not optimal for general assessment of the predictability characteristics of the

NA SPG, for which a more complete sampling of parameter spacewould be preferable

(though we note this is also limited by available computing resources). Nonetheless,

within the limits imposed by the available resources and thedual aims of the experimental

design, we next present our analysis of the initial condition ensembles.
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Figure 5.2: Maps of the control simulation annual mean top 1000m depth averaged temperature (T1000)

anomalies prior to the initialisation of the model ensembles. Anomalies are with respect to the parallel

control low frequency variability (low pass filtered to remove periods shorter than 70 years) to highlight

their magnitude relative to neighbouring years. The start dates are chosen using filtered time series as

shown in Figure 5.1 (vertical lines). There are six initial condition states, representing anomalously warm

conditions in the East subpolar gyre (SPG, a), North SPG (c),and South SPG (e), and anomalously cool

conditions in the East subpolar gyre (b), North SPG (d), and South SPG (f). Also highlighted is whether

the majority of the central subpolar gyre is warm (a, c, f, redtitles) or cool (b, d, e, blue titles).
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5.4 Results

In this section we present the results of our initial condition ensemble experiments, be-

ginning with the general evolution of the NA SPG (Section 5.4.1) before analysing the

skill and predictability in different regions (Section 5.4.2) and finally in specific processes

related to the simulated decadal variability (Section 5.4.3).

5.4.1 General evolution

To characterise the general evolution of anomalies initialised in each of the eastern, north-

ern, and southern NA SPG regions we show the normalised ensemble mean T500 anoma-

lies relative to the low frequency variability in the long control simulation (Figure 5.3).

Each of the panels comprises two initial conditions (positive and negative anomalies)

that each consist of five ensemble members as well as the parallel portion of the control

simulation, making a total of twelve fields over which we compute the mean anomaly

(multiplying the negative anomalies by minus one). At t=1 (which denotes the annual

mean anomaly for the first full year), the location of the region in which we maximised

the anomaly values in the control simulation (Figure 5.3) can still be seen, with large

anomalies in the eastern NA SPG when initialising based uponan East index (Figure 5.3,

left column) and similarly for northern and southern regions. In addition, for the East

index, there are already large anomalies in the north and west of the NA SPG, which

are consistent with the fast timescales linking the decadalvariability in these two regions

(note though that these timescales will both influence the initial condition anomaly (Fig-

ure 5.2) as well as the subsequent evolution of the initialised anomalies — see further

discussion of this in Section 5.5).

For increasing lead times, the location of the maximum positive anomaly (normalised

by the interannual variability) for the East initial conditions spreads from the east into

the Labrador Sea region (Figure 5.3, left column) whilst thelocation of the maximum

negative anomaly spreads from the NAC region into the eastern NA SPG. The relation-

ship between positive anomalies in the Labrador Sea and negative anomalies in the NAC

region (and subsequently the eastern NA SPG) is further highlighted by the North initial
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Figure 5.3: Annual mean top 500m depth averaged temperature (T500) ensemble mean anomalies with

respect to the long-period variability in the parallel control simulation (low pass filtered to remove periods

less than 70 years) as a function of lead time (e.g.∆t=1 is the annual mean over the first full year) for the

East (left column), North (middle column), and South (rightcolumn) initial conditions. Pairs of anomalies

for each region are combined by subtracting the cool anomalyfrom the warm anomaly and dividing by

2. Anomalies are further normalised by dividing by the detrended control annual standard deviation to

highlight the relative magnitude of the ensemble mean signal compared to the annual variability.
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conditions (Figure 5.3, middle column). For this set of initial conditions negative anoma-

lies in the NAC region appear to follow positive anomalies inthe Labrador Sea region

by a few years, whilst negative anomalies located more towards the centre of the NA

SPG appear in-phase with the same Labrador Sea anomalies. This difference between

the locations of negative anomaly responses may suggest that the nature of the negative

feedback between Labrador Sea and NAC anomalies (describedin Section 2.4.6) is sen-

sitive to the precise location of the anomaly in and around the Labrador Sea, which would

likely further affect the timescales for phase reversal.

Finally, the South initial conditions (Figure 5.1, right column) show a strong NAC anom-

aly that appears to gradually propagate into the eastern NA SPG. Notably, at t=1, the

location of the maximum negative anomaly for the South initial conditions is not centred

in the Labrador Sea but located approximately evenly between the locations of maximal

positive anomalies at t=1 for the East and North initial conditions, further suggesting

some nuance as to the precise centres of action linking northern and southern NA SPG

variability via the diagnosed negative feedback (Section 2.4.6).

The ensemble mean evolution of anomalies is an instructive first-order method of ana-

lysing the initial condition ensembles and the possible differences relating to the location

of the largest anomalies in the initialisation. However, itis not clear from the ensem-

ble mean evolution to what extent individual ensemble members evolve similarly and to

what extent the ensemble mean evolution merely represents adamped response to large

anomalies and/or regression to the mean (zero anomaly). In Figure 5.4 we plot an index of

T500 variability throughout the NA SPG and the associated ACCand PPP scores for this

index. Consistent with the large signals seen in the ensemblemean evolution (Figure 5.1)

the initial condition ensemble members (Figure 5.4a, blacklines) often appear to evolve

similarly to the control simulation (Figure 5.4a, red line)— for example, the warming

around year 290 and the cooling around year 380. Despite this, given the autoregressive

characteristics of the control simulation, the ensemble mean evolution (averaged over all

start dates and all ensemble members) is not more skilful than damped persistence (cal-

culated afterBoer (2000)) for lead times greater than 2 years (Figure 5.4, b). However,

there are some important caveats to this estimate of the ACC: Firstly, even including all

start dates and ensemble members together, the uncertaintyon this ACC score is likely
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still quite high. Secondly, note that our NA SPG index is between 45–65◦N, to try and

capture the general skill associated with the NA SPG. However, as can be seen from Fig-

ure 5.1, at lead times of t=3–4 years the NA SPG is in a somewhattransitional phase,

which results in the basin-wide ensemble mean T500 anomaly being near to zero and

thus reduces the correlations (assuming that the ensemble variance at these lead times

continues grow, as indeed implied by Figure 5.4, c). This maycontribute to the apparent

recovery of skill at lead times of five years.

From the ocean, any transmission of skill to — or impacts on — atmospheric variability,

such as the NAO or precipitation over Europe (Sutton and Hodson, 2005), must take place

at the ocean surface. As such, we also show the skill and predictability in NA SPG SSTs

in Figure 5.5. The variability (Figure 5.5, a), and lead timeevolution of skill (Figure

5.5, b) and potential predictability (Figure 5.5, c) are very similar to the depth averaged

temperatures. Nonetheless, for all lead times the absolutevalues of skill and potential

predictability are slightly lower than for T500, consistent with a role for the subsurface

ocean in providing some of the skill/predictability in T500. Related to this, there is

less autocorrelation in the SSTs and so the damped persistence model becomes easier

to improve upon, resulting in skill and predictability in SSTs that is better than damped

persistence at broadly similar lead times as for T500. However, we note that the dip and

subsequent improvement in skill, which results in poor skill in SPG T500 at lead times

of 3–4 years but an improvement thereafter (Figure 5.4, b), is shifted forward by a year

for SSTs (Figure 5.5, b), occurring at lead times of 2–3 years. This could imply that 1)

some of the skill in the subsurface ocean originates at the surface, possibly driven by the

atmosphere (see Section 5.4.3.3), or 2) that the propagating T500 anomalies exhibit some

shear such that any transitional phase of the variability (noted above) occurs at the surface

before the subsurface. However, as also noted above, small differences between ACC

scores are likely sensitive to the limited number of start dates and ensemble members.

Given that there appears to be some (limited) skill in predicting the simulated evolution of

basin-wide NA SPG T500 we now present the spatial structure of this skill to investigate

in which regions this skill arises.
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Figure 5.4: a) Time series of annual mean detrended (high pass filtered toremove periods longer than 70

years) top 500m depth averaged temperature (T500) in the North Atlantic subpolar gyre (SPG, 45–65◦N,

red) truncated to highlight the initialisation dates (green lines) and ensemble members (black). Ensemble

members (and control) detrended by removing the low frequency (periods longer than 70 years) part of

the parallel control time series and all predictability scores calculated using detrended data. b) Resampled

anomaly correlation coefficient (ACC, purple with squares)calculated afterCollins (2002) and an estimate

of the ACC for damped persistence (black). c) Prognostic potential predictability (PPP, purple with squares)

calculated afterPohlmann et al.(2004) and an estimate of the PPP for damped persistence (black). Damped

persistence calculated afterBoer (2000).
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Figure 5.5: As Figure 5.4 but for sea surface temperature (SST).

5.4.2 Regional skill and potential predictability

In Figure 5.6 we show the resampled anomaly correlation overall start dates and en-

semble members for each annual mean following the initialisation for T500. The skill

falls away rapidly in the eastern and southern subpolar gyrefrom t=2 onwards but in

the western subpolar gyre, and in particular the central Labrador Sea and Irminger Sea

(south of Greenland), the skill remains above r=0.6 up to andincluding a lead time of 4

years. There is also considerable skill north of Iceland in the Nordic Seas. It is notable

that both of these locations are where the model mixes shallow and deep water during

convection, and so the skill may arise from the mixing up of slowly varying deep water
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(Alexander and Deser, 1995). In addition, between t=2–5 it is possible to see an area of

relatively high skill (compared to its surroundings) apparently propagating from the NAC

region eastwards and northwards, consistent with the diagnosed mechanism of decadal

variability in which heat content anomalies propagate along this path (see Section 2.4.4).

Unfortunately, it is not possible to separately assess the skill provided by initialising

based on the three regions as the ACC score relies on multiple start dates. The theoreti-

cal ACC score increases with the number of ensemble members, up to a maximum level

given an infinite number of ensemble members (Murphy, 1990), with the number of start

dates increasing the confidence in that ACC score. Nonetheless, it is possible to estimate

the PPP for individual (or pairs of) start dates.

Although the PPP cannot explain which, if any, start dates provide more skilful predic-

tions (our second goal) it can give some clues as to whether particular sets of start dates

provide more coherent (across the ensemble) variability. This could then be interpreted

as evidence of whether particular elements of the mechanismof simulated decadal vari-

ability are more robust than others (our first goal). In Figure 5.7 we show the evolution

of PPP for pairs of initial conditions based on the East index(Figure 5.7, left column),

the North index (Figure 5.7, middle column), and the South index (Figure 5.7, right col-

umn). It can be seen that initialisation based on large anomalies in the East provides

high potential predictability in the northern NA SPG after 2years, and more so than ini-

tialisation based on large anomalies in the North. Indeed, at a lead time of two years,

the largest PPP signal based on the North index is in the subtropical gyre, which is also

true for initialisation based on the South index. However, this similarity is not neces-

sarily unexpected, given that anomalies in the North index and South index (of opposite

sign) occur at short lags (Figure 2.8). One possible reason that the potentially predictable

signal spreads into the subtropical gyre is that the anomalies affect the mean circulation

here and may thus remain large (but for only a few years) whereas the link between the

NAC and the eastern subpolar gyre is in part due to the anomalous circulation, which

involves longer timescales and traversing along the inter-gyre boundary. Indeed, the low

predictability inter-gyre boundary can be clearly seen forthe South index at t=1.

Although the spatial maps suggest limited predictability at timescales longer than two

years, this does not preclude longer timescale potential predictability for broader regions
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Figure 5.6: Annual mean top 500m depth averaged temperature (T500) resampled anomaly correlation

coefficient (ACC,Collins, 2002) for all start dates as a function of lead time (years).
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Figure 5.7: Prognostic potential predictability (PPP) in annual mean top 500m depth averaged temperature

(T500) for initial condition ensembles based on: an easternsubpolar gyre index (left column), a northern

subpolar gyre index (middle column), and a southern subpolar gyre index (right column), as a function of

lead time (years). Each column represents the combination of a pair of ensembles describing anomalously

warm and anomalously cool states (in each region) from the total of 6 initial condition ensembles. Green

boxes highlight the region from which the initial conditions were chosen.
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Figure 5.8: Prognostic potential predictability (PPP, purple) in annual mean top 500m volume averaged

temperature measured in the eastern subpolar gyre (10–25◦W, 50–57◦N, a), northern subpolar gyre (37–

52◦W, 57–63◦N, b) and southern subpolar gyre (50–65◦W, 35–40◦N, c). The PPP is calculated for pairs

of ensembles describing anomalously warm and anomalously cool states (in each region) from the total

of 6 initial condition ensembles, as in Figure 5.7. These area pair of ensembles based on large eastern

anomalies (solid), northern anomalies (dotted), and southern anomalies (dashed). In addition, the ensemble

pair ‘upstream’ of the measurement region (according to thesimulated mechanism of decadal variability in

the North Atlantic subpolar gyre, see Figure 2.13) is highlighted with grey shading. The PPP for damped

persistence (calculated separately for each region) is shown in black.

— for example, to average across the circulation-driven heat transport anomalies in the

NAC region. For simplicity, we choose to measure the potential predictability of top

500m volume averaged anomalies in each of the regions that wealso used to create the

initial conditions (Figure 5.8). Over the broader eastern region (Figure 5.8, a), we find

that the PPP generally remains greater than that expected from damped persistence,i.e.

the ensembles remain better constrained than the innate interannual variability (estimated

from the control simulation). Initialisation based on an index in the same East region

gives the greatest predictability, but initialising ‘upstream’ in terms of the mechanism of

simulated decadal variability (i.e. in the South), also gives high predictability.

Similar to the above, measuring the PPP over the North region(Figure 5.8, b) also sug-

gests that initialising based on an index upstream in the East NA SPG gives high pre-



Chapter 5. Examining initial condition ensembles as a means of testing the mechanism
of decadal variability 151

dictability. Interestingly, the initialisation based on an in situ North index gives pre-

dictability worse than damped persistence. It is possible that this is an artefact of the heat

content anomalies in the measurement (and initialisation)index being strongly domi-

nated by the northern boundary currents (see Section 2.4.5)and thus the initial condition

ensembles based on large anomalies here may also capture large variability (for example,

if the temperature/potential vorticity anomalies interact strongly with the circulation),

resulting in large ensemble spread, compared to more quiescent times when the temper-

ature anomalies are smaller and so the intra-ensemble spread is also small (cf. initial-

isation based on East or South temperature anomalies, Figure 5.8b). In contrast to the

North measurement region, the South region shows initialisation based on large North

anomalies gives the highest potential predictability (Figure 5.8, c). Once again this high-

lights a preference for the upstream region. However, we caution that the limited size

of these ensembles mean that it is difficult to quantify the statistical difference between

these upstream or downstream PPP scores.

In summary, across all three measurement regions, initialisation based on large anomalies

upstream of the measurement region gives the highest (twice) or second highest (once)

potential predictability. Overall, this suggests that anomalies seem to spread around the

NA SPG consistent with the mechanism of decadal variabilitydescribed in Chapter 2.

However, it should also be noted that this is also consistentwith just the mean circulation

pathways, given that the NA SPG is a cyclonic gyre. We discussthis further in Section

5.5.

5.4.3 Skill and potential predictability in important processes

Given that there is some skill (ACC) and potential predictability within the NA SPG

on both broad and regional scales we now investigate some of the processes previously

shown to be important for the negative feedback in the decadal mode, as well as whether

the ocean predictability shows any link to the North Atlantic Oscillation (NAO).
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5.4.3.1 Labrador Sea deep water formation

In Chapter 2 we suggested that the negative feedback between Labrador Sea temperatures

and those in the NAC was also linked to deep water formation (DWF) in the Labrador

Sea, which mixes down the surface signal. Additionally, DWF in the Labrador Sea could

project on to longer timescale variability via its effect onthe Atlantic Meridional Over-

turning Circulation (AMOC, Pohlmann et al., 2013). Figure 5.9 shows the time series

and ACC and PPP scores for wintertime mixed layers in the Labrador Sea. The inter-

annual autocorrelation is low, resulting in low ACC and PPP from damped persistence

(Figure 5.9, b, c, black lines), which the initial conditionensembles are able to beat. De-

spite this, at lead times longer than two years the ACC and PPP are very low, although

the ACC increases again at lead times greater than four years (similarly to the ACC for

T500 and SST across the NA SPG, Figures 5.4 and 5.5). We also find that the previous

winter provides greater skill (the autocorrelation between winters in the control simula-

tion is 0.42) than the previous autumn season (r=0.30). Thismay suggest that some of the

interannual memory is related to the subsurface storage andre-emergence of anomalies

(Alexander and Deser, 1995).

5.4.3.2 Dynamic height gradient between Labrador Sea and North Atlantic Cur-

rent

Similarly to convection in the Labrador Sea, the dynamic height gradient between the

Labrador Sea and North Atlantic Current (NAC) was postulated to be important for the

phase reversal of decadal variability. In Figure 5.10a we show the interannual variabil-

ity in the control simulation for a dynamic height index defined identically to that used

previously (Chapter 2, Section 2.4.6 and Figure 2.12), as well as the evolution of the

initial condition ensembles. Although we use an annual index of the dynamic height

there is little autocorrelation in the control simulation,which results in low estimates of

the skill or predictability expected through damped persistence. As such, both the ACC

(Figure 5.10, b) and PPP (Figure 5.10, c) remain higher than damped persistence for

the first four years. The skill shown by the initial conditionensembles is larger for the

dynamic height index than wintertime convection (mixed layers, Figure 5.9b) at com-
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Figure 5.9: As Figure 5.4 but for wintertime (December to February inclusive) mixed layer volume in the

Labrador Sea (50–60◦W, 55–62◦N). The damped persistence model is based on wintertime mixed layer

volumes (i.e. the first lead time is 9–12 months rather than the 0–3 months for the initialised ensembles) as

the previous winter provides greater skill (r=0.42) than the previous season (autumn, r=0.30).
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Figure 5.10: As Figure 5.4 but for the dynamic height (DH, relative to 500m) difference between the south-

ern edge of the extended Labrador Sea (44◦N) and the North Atlantic Current (NAC, 39◦N) at 47.5◦W, i.e.

the same index as used in Chapter 2, Figure 2.12.

parable lead times, perhaps suggesting that the dynamic height index also encompasses

skill from other sources. For example, in Section 2.4.7 we noted the potential role of the

atmosphere in reinforcing the dynamic height gradient. Forthis reason, as well as for its

climate/societal relevance, we conclude our analysis of specific processes by looking at

the skill and predictability in the wintertime NAO index.
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5.4.3.3 The North Atlantic Oscillation (NAO)

The NAO index computed from the control simulation shows very little autocorrelation

(Figure 5.11, a), which can also be seen in the mostly white spectrum in Figure 2.4c (de-

spite the spectral peak at 16/17 years). In addition, over the six sets of initial conditions

and all ensemble members there is little evidence of skill orpotential predictability at lead

times longer than one season. This is also true for an annual NAO index (not shown) and

indeed there is little skill or predictability in wintertime or annual mean sea level pressure

anywhere in the North Atlantic (not shown). Nonetheless, the skill at a lead time of one

season (r=0.34, Figure 5.11, b) is suggestive of a link between ocean and atmosphere,

although the PPP is very low even at this lead time (Figure 5.11, c), indicating that the

spread across the ensemble is already approaching the climatological annual variability

in the wintertime NAO.

In addition to the PPP for the full set of six initial conditions, we also group the ensem-

bles by whether they are initialised with an anomalously warm or cool northern NA SPG

(see Figure 5.2). The PPP for the full ensemble is the linear sum of the PPP for the warm

and cool subsets (Figure 5.11, c). It can be seen that the poorPPP for the full ensemble

is primarily due to the warm set of initial conditions, whereas the cool initial conditions

give higher potential predictability, although there is considerable spread across the en-

sembles. This result is consistent with the analysis in Chapter 4 in which we suggest a

stronger coupling between ocean-atmosphere in the cool SPG/positive NAO state than in

the warm SPG/negative NAO state. This increased coupling strength appears to result in

increased predictability in the NAO index when the subpolargyre is anomalously cool

(i.e. positive NAO), as opposed to when it is anomalously warm (i.e. negative NAO).

However, as noted previously, it is not possible to reliablyassess the skill (ACC) of sub-

sets of ensembles, given the limited number of start dates.
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Figure 5.11: As Figure 5.4 but for the wintertime (December to February inclusive) North Atlantic Oscilla-

tion (NAO) index (defined as the difference between mean sea level pressure over the Azores and Iceland).

The damped persistence model is based on seasonal (autumn towinter) autocorrelation. In addition, the

prognostic potential predictability (PPP, c) is further separated into sets of initial conditions where the

majority of the northern North Atlantic subpolar gyre is cool (blue) or warm (red), with individual initial

conditions also shown (dotted). With respect to Figure 5.2,warm initial conditions correspond to spatial

maps (a), (c), and (f), and cool initial conditions to spatial maps (b), (d), and (e).



Chapter 5. Examining initial condition ensembles as a means of testing the mechanism
of decadal variability 157

5.5 Discussion

In this section we begin by summarising and discussing the origins of the predictability

diagnosed in our initial condition ensemble experiments. We then discuss the relation-

ship between these experiments and our previous analysis ofthe mechanism of internal

decadal variability in the NA SPG (Chapter 2) and the plausibility of various elements

of that variability given the available observations (Chapter 3). We conclude with some

suggestions for future work in this context.

The limits on — and sources of — predictability in the NA SPG appear to vary with

the process that supplies the potentially predictable variability in a given region. For

example, between the Labrador Sea and NAC the dynamic heightgradient suggests skill

at lead times of up to three years (Figure 5.10), explaining some of the ACC in the

southern NA SPG (Figure 5.6). However, in the eastern NA SPG,the ACC and PPP fall

away more rapidly (Figure 5.6). This could be related to the importance of circulation

variability in this region, which has much more interannualvariability than temperature

(not shown) and perhaps requires a larger ensemble set to capture. Alternatively, this

region could represent one area in which atmospheric variability drives the NA SPG

decadal variability (via the provision of white noise forcing), although this is far from

certain.

In terms of the three measurement regions we have defined (East, North, South), the re-

maining question concerns the origin of the high ACC (Figure 5.6) and PPP (Figure 5.8,

b) in the North region. To investigate this, we estimate the concatenated anomaly corre-

lation coefficient (CACC, see Section 5.2 and Equation 5.4) for pairs of start dates based

on large anomalies in each of the East, North, and South regions (Figure 5.12). When

initialising based on large eastern temperature anomalies(Figure 5.12, a), the CACC sug-

gests coherent evolutionthrough timeof the eastern subpolar gyre as well as the northern

boundary, consistent with an important role for the mean circulation advecting anoma-

lous temperature anomalies. That is, the skill in the North region appears to arise via

initialisation of upstream anomalies that are then transported by the northern boundary

currents.
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Figure 5.12: Concatenated anomaly correlation coefficient (CACC, as described in the text) in annual

mean top 500m depth averaged temperature (T500) for initialcondition ensembles based on: an eastern

subpolar gyre index (a), a northern subpolar gyre index (b),and a southern subpolar gyre index (c). Each

map represents the combination of a pair of ensembles describing anomalously warm and anomalously

cool states (in each region) from the total of 6 initial condition ensembles. Green boxes highlight the

region from which the initial conditions were chosen.

A similar approach can be taken for the North (Figure 5.12, b)or South (Figure 5.12, c)

regions. For the North region, there appears to be little coherent evolution of temperature

anomalies through time. Despite this, for both the central Labrador Sea (just south of

Greenland) and northern edge of the NAC (east of Newfoundland) the temporal evolu-

tion (CACC) is larger than when initialising based on anomaliesin the East and South,

consistent with initialisation of the northern edge of the dynamic height gradient and a

subsequent response at the southern edge (Figure 5.10). Nonetheless, the low CACC

(compared to values of r>0.6 in for the East initial conditions) suggests the ensemble

members become increasingly decorrelated within the 5 yearwindow (recall that the

CACC score is a function of the total lead time). Similarly, there are also limited regions

of coherent evolution in the South ensemble within the eastern NA SPG (Figure 5.12, c),
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although these are once again notably downstream of the region from which the initial

conditions were chosen.

In general, initialisation based on large anomalies upstream of the region of interest re-

sults in the highest potential predictability (above analysis and Figure 5.8). In this sense,

‘upstream’ both describes the spatial evolution of variability associated with the diag-

nosed mechanism of decadal variability (Chapter 2) as well asthe cyclonic nature of

the NA SPG. Ultimately, the question is to what extent any given propagating anomaly

within the NA SPG is representative of either 1) the diagnosed mode of decadal variabil-

ity (that involves propagation along the mean circulation pathways), 2) another mode of

variability at shorter or longer timescales, or 3) noise (oratmospheric forcing unrelated

to the diagnosed decadal mode). The PPP shown in Figure 5.8 suggests at least some of

the signal is not merely due to noise, and the analysis withinSection 5.4.3 supports some

role for the previously diagnosed mode of decadal variability, but what fraction remains

unclear.

In our ‘perfect-model’ analysis, the NAO shows skill at leadtimes of 0–3 months, when

initialised on December 1st, but this skill is much lower than that for the real-world win-

tertime NAO initialised at the beginning of November for a later version of this model

(Scaife et al., 2014). However,Scaife et al.(2014) use 20 start dates, each with 24 ensem-

ble members, compared to the 6 start dates with 5 (plus the control) ensemble members

in this analysis, which may explain some of the difference (cf. the effect of ensemble

size on skill in their Figure 3). Related to this, another intriguing possibility for the lim-

ited skill in our analysis is that the ratio of predictable tounpredictable variability in the

model and in reality may not be the same (Scaife et al., 2014;Eade et al., 2014), with the

model exhibiting less predictability than reality. If thisremains true for North Atlantic

ocean indices then it is possible that the skill we see in the oceanic evolution of the NA

SPG could be vastly improved in the real world by increasing the number of start dates

and ensemble members. This may also explain why the sometimes limited skill in these

initial condition ensembles exists in a system that clearlyshows a significant decadal

mode of variability (cf. Figure 2.4, b).

As noted above, our analysis has been within a ‘perfect-model’ framework, and as such
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specific ACC scores are not necessarily indicative of skill inpredicting real-world vari-

ability. However, we can combine this analysis with our extensive comparison against

observations (Chapter 3) to speculate on the regions where the ACC scores are more/less

likely to be representative of real skill. We do this using the three measurement regions

(East, North, and South) defined and used previously.

In the eastern NA SPG there is low skill in the model initial condition ensembles, which

may well be even less so in reality. This is because the model skill likely arises at least

partly via the advection of anomalies along the southern edge of the NA SPG, which

is a process with a much greater depth extent (and thus memory) in the model than in

observations (Figure 3.11). Conversely, in the North measurement region, there is high

skill in the model (Figure 5.6), likely related to the initialisation of boundary currents

(Figure 5.12), which we previously suggested the model was far better able to capture

than previous, lower resolution, models (Section 3.6). Finally, in the South measurement

region, although the skill/predictability is moderate, arising from the initialisation and

simulation of the dynamic height gradient between the Labrador Sea and NAC (Figure

5.10), we suggest the skill at predicting this region in reality will be low (at least when

hindcasting recent decades — see next). This is because the negative feedback simulated

in the model relies on the density variability in the Labrador Sea being dominated by

temperature variability (rather than salinity, Figure 3.9, c), whereas in reality it appears

that salinity is the dominant driver (Figure 3.9, a and b). Therefore, initialising with

warm/saline anomalies in the Labrador Sea may give skilful predictions of the down-

stream model evolution but are unlikely to give skilful predictions of reality. However,

it should be noted that the observed driver of Labrador Sea density variability appears

to be non-stationary (Figure 3.10, b) and so it is possible that decadal predictions in this

region made with this model may have more skill in future predictions than hindcasts.

This represents an important caveat when using the hindcastskill of a model to assess

the reliability of future predictions. However, one shouldalso note that we have assessed

the skill of the model without external forcings, which could be the driver of the non-

stationarity mentioned above and would also provide increasing amounts of the longer

term predictability (Branstator and Teng, 2012).

As outlined in Section 5.2.1, our two goals when conducting these initial condition en-
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semble experiments were to 1) test the robustness of processes found to be important

for the simulated decadal variability, and to 2) assess the predictability characteristics

of the model in the NA SPG. In these regards, the analysis in this chapter represent a

far more in-depth investigation into the plausibility of simulated decadal variability, and

the predictability it implies, than is normally found in theliterature on model mecha-

nisms. Nonetheless, the experimental design could be improved if used as a framework

for future studies. For example, of the six initial condition sets, there are closer to just

four independent start dates as both the East -T1000 and North -T1000 start dates and

the East +T1000 and South -T1000 start dates are separated byonly two years (Figure

5.1). Although this is not ideal, it is consistent with the mechanism whereby anomalies

propagate around the NA SPG before inducing opposite-sign anomalies in the southern

NA SPG and we note at least that it is not always the same pairs of start dates that are

close together. Further work could improve the algorithm tochoose the start dates, by

perhaps ensuring they are well separated in time, and also bydefining indices that are

more well separated through the temporal evolution of the variability. For example, the

East and North indices are separated by a much shorter timescale than the South and

East indices. Using the periodicity of the region (17 years,Chapter 2) suggests indices

separated by lags of around 3 years would be optimal (noting that there are six indices

over three regions if choosing both positive and negative anomalies). Finally, initialising

with anomalies confined to each region (and zero elsewhere) would help to categori-

cally confirm that the predictability arises from initialising upstream, though this would

require artificially creating dynamically consistent anomalies. This would be a consider-

ably more complex procedure than merely providing anomalies taken straight from the

control simulation, and would also require the redefining ofthe model ‘truth’ as well as

reinterpretation of the climatological variability.

5.6 Chapter conclusions

We have conducted initial condition ensemble experiments to jointly assess the robust-

ness of various features of the simulated decadal variability and assess the predictability

characteristics of the model
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• There is skill at predicting subpolar gyre top 500m depth averaged temperatures

at lead times up to and including 2 years (despite the small ensemble size) and

potential predictability at all lead times up to and including 5 years.

• For depth averaged temperatures, the skill and potential predictability are largest

in the Labrador Sea region as well as on the northern edge of the NAC (possibility

related to the negative feedback between Labrador Sea and NAC temperatures).

• Analysis of regional PPP suggests predictability in a givenregion often arises from

initialising large temperature anomalies upstream of thatregion, although it is not

clear whether the predictability arises via the diagnosed mechanism of decadal

variability or other means.

• Labrador Sea deep water formation and the negative feedbackbetween Labrador

Sea and NAC temperatures appear to provide the skill in the South measurement

region (on the southern edge of the NA SPG). Northern boundary currents that ad-

vect temperature anomalies westwards on the northern edge of the NA SPG appear

to provide the skill in the North measurement region.

• There is little skill in the NAO index, possibly related to the small number of en-

sembles and ensemble members, but some suggestion that coolNA SPG initial

conditions provide greater potential predictability of positive NAO anomalies than

warm NA SPG initial conditions provide of negative NAO anomalies, consistent

with the analysis in Chapter 4.

• Comparison of the regional skill in the model and the plausibility of various aspects

of the model variability (Chapter 3) suggests that the model may be expected to

overestimate the real-world skill in the eastern NA SPG and southern NA SPG

(related to the driver of density variability in the Labrador Sea) but may present an

improvement in real-world skill levels related to the northern NA SPG due to its

improved representation of boundary currents compared to previous generations of

models.

As noted here and in all previous chapters, a version of this model will be used for sea-

sonal to decadal prediction at the Met Office (MacLachlan et al., 2015) and such analyses
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as these (that provide comparisons of the model skill and themodel reliability, with a fo-

cus on the processes that provide that skill/reliability) will be important in understanding

predictions made with that model.

We have shown that a negative feedback involving the Labrador Sea is important for the

NA SPG decadal variability in HadGEM3 (Chapter 2), and that this feedback may be dif-

ferent in reality (Chapter 3), with implications for the real-world predictability with this

model (this chapter). As such, in the next chapter (Chapter 6)we widen the focus from

a single model (HadGEM3) and attempt to understand the widerrelationships between

biases in climate models and the many documented mechanismsof decadal variability.





Chapter 6

Exploring the impact of CMIP5 model

biases on the simulation of North

Atlantic decadal variability

6.1 Introduction

Initial conditions within the North Atlantic subpolar gyre(NA SPG) have been shown

to be important in making skilful decadal forecasts (Dunstone et al., 2011). However,

even when given similar initial conditions, decadal predictions of the North Atlantic be-

tween different models can be quite different (Pohlmann et al., 2013). Indeed, decadal

variability in the North Atlantic Ocean, although extensively investigated in both cou-

pled and uncoupled models (e.g.Eden and Willebrand, 2001;Dai et al., 2005;Dong and

Sutton, 2005;Cabanes et al., 2008;Alvarez-Garcia et al., 2008;Biastoch et al., 2008a),

is still poorly understood, in part due to the paucity of constraining observational data

(Chapter 3 andGood et al., 2013). In this chapter we conduct one of the first, large

multi-model analyses of variability in the NA SPG region to investigate whether there

are relationships between broad characteristics of the models and their manifestation of

decadal variability. We begin by briefly recapping the evidence for bidecadal variability

in the NA SPG and the disparate model representations in Section 6.2 before describing

165
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the model data we use in Section 6.3. In Section 6.4 we analysethe results including

the relationships between model biases and variability before putting these into a wider

context in Section 6.5. Chapter conclusions are presented inSection 6.6. This chapter is

reproduced in a similar form inMenary et al.(2015b). Used under Creative Commons

licence BY-NC-ND 4.0.

6.2 The Labrador Sea and its role in North Atlantic dec-

adal variability

An array of coupled, partially coupled, and ocean-only mechanisms have been proposed

to describe simulated variability in the NA SPG (see above references andLiu (2012)

for a review) whilst the pacemaker of this variability has been attributed to a variety of

processes such as Rossby Wave propagation (Śevellec and Fedorov, 2013), mean advec-

tion timescales (Delworth et al., 1993), and interaction with the deep flow (Eden and

Willebrand, 2001). Despite the large number of postulated mechanisms and key pro-

cesses, a periodicity of around≈20 years has begun to emerge as the common timescale

of simulated multi-annual/decadal variability in the NA SPG (Frankcombe et al., 2010),

consistent with some high resolution palaeo records in thisregion (Sicre et al., 2008;

Chylek et al., 2012). This timescale describes variability generally confined to the subpo-

lar gyre, with feedbacks to other regions in the Arctic and/or subtropical North Atlantic

usually involving longer timescales (Jungclaus et al., 2005;Menary et al., 2012).

Within the NA SPG, a key region in most mechanisms of decadal (or longer) variability

is the deep water formation (DWF) region of the Labrador Sea, where surface signals can

spread to depth and impact the large-scale dynamics of the region (Medhaug et al., 2012),

though we note that some models can locate their main DWF regions elsewhere (Ba et al.,

2014). Similar to the disparate mechanisms of variability,although models generally

agree that the Labrador Sea (or model equivalent) is important, they are split roughly

evenly on whether decadal timescale changes in density in this region are controlled by

either temperature or salinity (Chapter 1).
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In summary, there remain many systematic differences across the present generation of

climate models in their representation of North Atlantic decadal variability. In Chapter 2

we hypothesised that these differences may in part be related to the relationship between

mean state biases in the NA SPG and whether temperature or salinity control density

changes. This would have ramifications for situations in which mean state biases and the

evolution of the system are assumed to be independent, such as decadal forecasts using

‘anomaly-assimilation’. In this chapter, we test the validity of this simple hypothesis link-

ing mean state temperature and salinity biases with the controller of density variability

and investigate whether this has implications for the manifestation of decadal variability

in the NA SPG.

6.3 Methods/Models

Phase 5 of the Coupled Model Intercomparison Project (CMIP5) represents a coordinated

approach to simulating global climate under a variety of scenarios (Taylor et al., 2012).

We examine 40 pre-industrial control simulations from 40 individual models from the

CMIP5 archive (Tables 6.1 and 6.2). We use control simulations in all cases to isolate the

internal variability whilst their length allows us to maximise the signal to noise ratio for

each model. In addition, we examine 2 iterations of the latest high resolution coupled cli-

mate model from the Met Office Hadley Centre: ‘HadGEM3’ (whichcomprises Global

Atmosphere (GA) version 3.0 (Walters et al., 2011) and the NEMO ocean model version

3.2 (Madec, 2008), see Chapter 2 andDuchez et al.(2014) and references therein) and

‘GC2’ (which comprises GA6.0 and NEMO version 3.4,Williams et al., 2015). The ver-

sions of HadGEM3 and GC2 we analyse are control simulations run with interannually

constant forcings appropriate for the years 2000 and 1850 respectively. We compare the

simulations to optimally interpolated observations from the EN4 dataset (Good et al.,

2013). We use EN4 data from the most well observed period 1960–2014 but note that,

due to under-sampling, we have far more confidence in the estimation of the time mean

values than the decadal variability (see Chapter 3).

All models are regridded on to a regular 1×1◦ horizontal grid to aid analysis. Testing
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Institute

(CMIP5 name)

Model

(CMIP5 name)

Length

(years)

Effective ocean reso-

lution (degrees)

BCC bcc-csm1-1 500 0.99

BCC bcc-csm1-1-m 400 0.99

BNU BNU-ESM 559 1.0

CCCma CanESM2 996 1.1

CMCC CMCC-CESM 277 1.6

CMCC CMCC-CM 330 1.6

CMCC CMCC-CMS 500 1.6

CNRM-CERFACS CNRM-CM5 850 0.85

CNRM-CERFACS CNRM-CM5-2 410 0.85

CSIRO-BOM ACCESS1-0 500 0.75

CSIRO-BOM ACCESS1-3 500 0.75

CSIRO-QCCCE CSIRO-Mk3-6-0 500 1.35

FIO FIO-ESM 765 0.62

ICHEC EC-EARTH 452 0.85

IPSL IPSL-CM5A-LR 1000 1.6

IPSL IPSL-CM5A-MR 300 1.6

IPSL IPSL-CM5B-LR 300 1.6

LASG-CESS FGOALS-g2 700 1.0

LASG-IAP FGOALS-s2 501 1.0

MOHC HadGEM2-CC 241 1.0

MOHC HadGEM2-ES 578 1.0

Table 6.1: A summary of the first 21 models used in this analysis. All CMIP5 models simulate pre-

industrial climates. For further details of the CMIP5 models and institutions see Table 9.A.1 ofFlato et al.

(2013) and references therein. For the remaining models seeTable 6.2.
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Institute

(CMIP5 name)

Model

(CMIP5 name)

Length

(years)

Effective ocean reso-

lution (degrees)

MPI-M MPI-ESM-LR 1000 0.47

MPI-M MPI-ESM-MR 1000 0.53

MPI-M MPI-ESM-P 1156 0.47

MRI MRI-CGCM3 500 0.67

MRI MRI-ESM1 251 0.67

NASA-GISS GISS-E2-H 540 1.0

NASA-GISS GISS-E2-H-CC 251 1.0

NASA-GISS GISS-E2-R 550 1.1

NASA-GISS GISS-E2-R-CC 251 1.1

NCAR CCSM4 1051 0.62

NCC NorESM1-M 501 0.62

NCC NorESM1-ME 252 0.62

NOAA-GFDL GFDL-CM3 500 0.99

NOAA-GFDL GFDL-ESM2G 500 0.96

NOAA-GFDL GFDL-ESM2M 500 0.99

NSF-DOE-NCAR CESM1-BGC 500 0.62

NSF-DOE-NCAR CESM1-CAM5 319 0.62

NSF-DOE-NCAR CESM1-FASTCHEM 222 0.62

NSF-DOE-NCAR CESM1-WACCM 200 0.62

MOHC (non-CMIP5) HadGEM3 473 0.21

MOHC (non-CMIP5) GC2 269 0.21

Table 6.2: A summary of the second 21 models used in this analysis. All models simulate pre-industrial

climates except HadGEM3, which uses forcings appropriate for the year 2000 (GC2 uses forcing appro-

priate for the year 1850).
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with HadGEM3 and GC2 (not shown), using both original and regridded data, suggests

regridding has very little impact on our subsequent results. The original vertical discreti-

sations are left unaltered. Additionally, all models are linearly detrended prior to analysis

but this again has little effect on our results (not shown). Unless otherwise stated, top

500m depth averaged annual mean data is used.

6.4 Results

6.4.1 Biases

Models exhibit a wide variety of temperature and salinity (T/S) biases in the northern

North Atlantic (Figure 6.1). Both the magnitude and spatial structure of the bias varies

greatly, up to±4K and±1PSU for top 500m depth averaged temperature and salinity

respectively. Models from the same institution often sharesimilar biases, perhaps associ-

ated with a reduction in the effective number of degrees of freedom of our sample (Knutti

et al., 2013), but this is not always the case (e.g. IPSL-CM5A-LR andIPSL-CM5B-LR,

or GISS-E2-H and GISS-E2-H-CC).

In addition to the mean state biases, interannual variability in the northern North Atlantic

(as diagnosed by the annual standard deviation) varies frommodel to model. Figure

6.2 highlights the combination of mean state biases (compared to EN4) and interannual

variability for the volume averaged Labrador Sea (55–65◦N, 45–65◦W, top 500m) across

the entire 42-model ensemble. For each model, simulated annual standard deviations in

temperature and salinity are approximately 0.5K and 0.1PSUrespectively, significantly

smaller than the inter-model spread in mean state temperature and salinity. In general

there is a positive correlation between temperature and salinity biases (r=0.85) to the ex-

tent that biases are largely density compensated, which holds throughout the NA SPG

(not shown). However, a small density bias remains, which istypically due to the salinity

biases,i.e. models which are warmer and saltier (Figure 6.2, top right) are also generally

denser than models which are cooler and fresher (Figure 6.2,bottom left). The origin of

this co-variability is unclear but it is consistent with important roles for either evapora-
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Figure 6.1: Top 500m depth averaged time mean temperature (colours) andsalinity (contours) biases in

the full model ensemble, relative to EN4. Salinity contoursare solid for zero bias, dotted for negative bias,

and dashed for positive bias, with a contour interval of 0.25PSU. Time mean absolute values in EN4 are

also shown for comparison.
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Figure 6.2: Top 500m depth averaged temperature and salinity mean (crosses) and annual±1 standard

deviation range (ellipses) in the Labrador Sea for the modelcontrol simulations (colours) and observations

(EN4, black). All time series linearly detrended prior to computing the standard deviation. Contours of

constant potential density (relative to 2000m) are also plotted (grey, solid). A linear fit to these contours,

taken when T=5◦C and extrapolated for cooler temperatures, is shown to highlight the non-linear nature

of the seawater equation of state (grey, dashed). The black contour highlights the mean density in EN4.

The models have been coloured by their effective horizontalresolution in the NA SPG, the exact values of

which have been indicated in grey on top of the colour bar (seeSection 6.4.4, note that some resolutions

occur more than once) along with the mean resolution (black,solid) and median resolution (black, dashed).

tion, deep convection (as the subsurface Labrador Sea is warmer/saltier than the surface),

or ocean dynamics (see Section 6.5).
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6.4.2 Density control

One of the key uncertainties in climate model simulations ofthe North Atlantic region

is whether these simulations imply that the density changesassociated with DWF are

temperature or salinity controlled (Chapter 1). Although individual convective events

are likely due to rapid wind-induced cooling (rather than salinifying) of surface waters

during winter time, the frequency and/or intensity of theseevents depends on both the

background mean and interannual variability of temperature and salinity profiles. As

such, both temperature and/or salinity could plausibly be said to control interannual vari-

ability in density changes associated with DWF in the Labrador Sea.

In order to quantify whether temperature or salinity are controlling density changes in the

Labrador Sea in our 42-model ensemble we follow the decomposition of Delworth et al.

(1993) and decompose density changes into those due to temperature and those due to

salinity as in Chapter 3. This assumes a linear decompositionof the non-linear equation

of state, but we suggest this is not a bad assumption given thesmall size of interannual

T/S variability for any given model (cf. Figure 6.2) and indeed the linear reconstruction

explains>96% of the annual variance in density in all models. This results in the familiar

equation forρTorScontrol, the degree of temperature or salinity control of Labrador Sea

density changes:

ρTorScontrol = ρTControl − ρSControl (6.1)

This is identical to Equation 3.3 but repeated here for clarity. Figure 6.3 compares

ρTorScontrol with the biases in the Labrador Sea. There are strong correlations between

the biases and what controls density changes with regression slopes significantly differ-

ent from zero. Density changes in warm and salty models appear to be dominated by

variability in temperature, whereas density changes in cool and fresh models appear to

be dominated by variability in salinity.i.e. T/S biases appear to explain what controls

interannual density variability in models and explains to alarge extent the spread in the

literature on this topic. This can be understood by comparison to Figure 6.2 in which the

potential density contours have been overlaid. For temperatures less than 5◦C a linear fit
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to the density equation (extrapolated fromρ = ρ(T=5, S)) has also been added to high-

light the non-linear nature of the seawater equation of state. A given salinity change has

a larger effect on density when the temperature is cool than when it is warm. Similarly,

when the background mean temperature is warm, a given temperature change is now

more likely/able to play an important role than when it is cool. Note also that, although

meandensity biases are due to salinity, it is the combination of both temperature and

salinity biases which systematically affect the controller of densityvariability. We find

this result holds for both unfiltered (but detrended) time series representing interannual

relationships as well as filtered time series (removing periods less than 5 years) investi-

gating decadal relationships. Indeed, even estimating therelationships on ‘multi-decadal’

timescales (by filtering to remove periods less than 30 years) has little effect (not shown),

i.e. it is not the case that temperature variability dominates oninterannual timescales and

salinity variability dominates on decadal timescales.

6.4.2.1 Scaling analysis

Despite the above analysis, it is also possible that the magnitude of temperature or salinity

interannual variability across models varies with the biases and thus affects what we

estimate controls density variability. Indeed, the magnitude of T/S interannual variability

across models shows some correlation with the biases. As such, the magnitude of T/S

variability could also affect what we estimate controls density variability. This would lead

to the alternative interpretation that models which, for example, have larger amplitude

interannual salinityvariability (rather than particular mean state biases) would also have

salinity-controlled density changes, and similarly for temperature. We account for this by

scaling the T/S variability in all the models to have the samemagnitude of temperature

or salinity variability set to the multi-model mean.i.e. we effectively scaledT
dt

and dS
dt

in

Equation 6.2.

dρ

dt
=

dT

dt
·

dρ

dT
+

dS

dt
·

dρ

dS
(6.2)

Where dρ

dT
and dρ

dS
measure the density change for a given temperature or salinity change
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Figure 6.3: Top 500m depth averaged temperature (left) and salinity (right) biases in the Labrador Sea

against a measure of the controller of interannual density changes in the Labrador Sea (ρTorScontrol). The

colours represent each model’s effective horizontal resolution in the NA SPG, as in Figure 6.2. An estimate

of ρTorScontrol for EN4 has also been added (with zero bias, black). Regression slopes are computed by

ordinary least-squares regression with the envelope representing an estimate of the 95% confidence interval

on the slope.
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Figure 6.4: The effect of scaling temperature and salinity variability. On the x-axis isρTorScontrol, com-

puted as described in the text. On the y-axis isρ̂TorScontrol which is asρTorScontrol but calculated using

T/S which have been scaled to have the same standard deviation in all models (set to the multi-model mean

standard deviation). The solid line represents a simple 1:1relationship.

and are thus a function of the mean state biases in both temperature and salinity (i.e.

for cooler temperatures, a given temperature change has a lesser effect on density than

at warmer temperatures,cf. Figure 6.2). dT
dt

and dS
dt

represent the magnitude of T/S

variability through time (t) and are scaled in this sensitivity test. We then recompute

ρTorScontrol with these scaled variables to giveρ̂TorScontrol. If the magnitude of variability

in T/S does affect what controls density variability then there should be large differences

betweenρTorScontrol calculated with/without scaling. However, we find that scaling has

little effect, yielding very similar values for̂ρTorScontrol asρTorScontrol (Figure 6.4). As

such, although T/S variability correlates withρTorScontrol we find that the magnitude of

T/S variability is unlikely to causally affectρTorScontrol and suggest that the causation is

more likely to be in the opposite direction.

In summary, it appears that simulated Labrador Sea mean state T/S biases do appear to
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be related to whether interannual/decadal density changesare temperature- or salinity-

controlled. The final question we investigate is whether these mean state biases — and

their apparent relationship to what controls density variability — have a systematic im-

pact on the mechanisms of variability within the North Atlantic.

6.4.3 Labrador Sea feedbacks

The Labrador Sea has been shown to be an important region in differing mechanisms of

decadal variability in the North Atlantic (Chapter 2 andEscudier et al., 2013) — here

we examine whether these differences can be simply understood by investigating neg-

ative feedbacks associated with depth-averaged temperature anomalies (denoted T500)

in the Labrador Sea. That is, when it is anomalously warm/cold in the Labrador Sea,

where (if anywhere) in the ocean do the anomalies that reverse the state of the Labrador

Sea originate. We use depth averages over the top 500m for comparison with our previ-

ous analysis and because these have a high signal to noise ratio. We focus on negative

feedbacks as these are required in order to create significant periodicity in the absence of

periodic forcing but limit our analysis to the ocean. Indeed, we make noa priori assump-

tions about the precise details of the feedback mechanism, be it coupled or ocean-only.

We use temperature (rather than, for example, salinity) forsimplicity but note that, what-

ever the mechanism, Labrador Sea DWF is likely to leave signals in both temperature

and salinity.

Figure 6.5a shows the location of maximal negative correlation of T500 with the marked

Labrador Sea region at a lag of 1 year (i.e. the map lags the Labrador Sea index by

1 year). A lag of 1 year is used to reduce the confounding effect of the North Atlantic

Oscillation (NAO) forcing both the Labrador Sea and rest of the NA SPG simultaneously.

The location of this negative correlation follows a curve broadly consistent with the shape

of the NA SPG. These anomalies propagate into the Labrador Sea and reverse the sign

of the initial anomaly (not shown) over the course of a few years to a decade with the

timescales varying from model to model (see also Section 6.5). Many models exhibit

their maximal negative correlation in the North Atlantic Current region (consistent with

the feedback in HadGEM3, described in Chapter 2, Section 2.4.6) whereas some show a
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Figure 6.5: a) The location, constrained to be within the grey dashed boundary, of the maximum negative

correlation with the Labrador Sea depth averaged temperature (T500, marked region) in each model. The

map lags the Labrador Sea index by 1 year; annual, detrended data is used. b) The location and strength

of feedbacks involving the Labrador Sea, estimated by regressing T500 in the Labrador Sea against a

‘northern’ and ‘southern’ index, as described in the text and marked on the map, for the models (colours)

and EN4 (black). The trend line and correlation are estimated using a Bayesian approach to total least-

squares (TLS) regression (Kelly, 2007) with the uncertainty on the individual regression slopes for each

model used as the measurement errors within the TLS calculation. The HadGEM3 and IPSL-CM5A-LR

models have been highlighted with squares and the IPSL-CM5B-LR model with a triangle (see text). The

colours represent each model’s effective horizontal resolution in the NA SPG, as in Figure 6.2.

preference for the East Greenland Current (consistent with elements of the mechanism,

though not the specific timescales, ofEscudier et al.(2013)).

To quantify the differences highlighted in Figure 6.5a, we design two metrics that aim to

characterise these negative feedbacks in ocean temperatures: the magnitude of the (neg-

ative) regression gradient between the Labrador Sea index and an index of the North At-

lantic Current region (30–50◦W, 41–48◦N: ‘South’), and the magnitude of the (negative)

regression gradient between the Labrador Sea index and an index of the East Greenland

Current region (30–45◦W, 60–70◦N: ‘North’). It can be seen from Figure 6.5b that in

general models have a preference for one feedback or the other, with a stronger ‘north-

ern’ feedback implying a weaker ‘southern’ one, and vice versa. The correlation between

the two feedbacks is -0.56, which rises to -0.71 when using zero lag (Figure 6.6). This
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Figure 6.6: As Figure 6.5b but for zero lag. The location and strength of feedbacks involving the Labrador

Sea, estimated by regressing T500 in the Labrador Sea against a ‘northern’ and ‘southern’ index with zero

lag, for the models (colours) and EN4 (black). The trend lineand correlation are estimated using total least-

squares regression as in Figure 6.5. The HadGEM3 and IPSL-CM5A-LR models have been highlighted

with squares and the IPSL-CM5B-LR model with a triangle (seetext). The colours represent each model’s

effective horizontal resolution in the NA SPG, as in Figure 6.2.

method of analysis is also consistent with the individual simulations investigated in pre-

vious work where the southern and northern portions of the NASPG were important in

HadGEM3 (Chapter 2) and IPSL-CM5A-LR (Escudier et al., 2013) respectively (high-

lighted on the figure). Note also the low resolution outlier IPSL-CM5B-LR (triangle),

which has improved tropical atmospheric dynamics comparedto IPSL-CM5A-LR but

a severely worsened representation of the North Atlantic Ocean with a control Atlantic

overturning strength of 4 Sverdrups (Dufresne et al., 2013).

To compare against reality we add an observational estimateof the feedback using the

years 1960–2014 from EN4. The observations occupy a zone where neither a northern

nor southern feedback dominates, according to our analysis. This may be because in-
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terannual/decadal variability in the observations duringthis period is also related to a

number of other factors, including: Great Salinity Anomalies (Dickson et al., 1988), re-

cent rapid warmings of the subpolar gyre (Robson et al., 2012), and possibly a larger

role for the NAO (Scaife et al., 2011), to name but a few. Unfortunately the confound-

ing influence of transient climate change, along with a much shorter record (there are

only sporadic observations in the northern North Atlantic prior to 1960), inhibits detailed

comparison (see Section 6.5). Nevertheless, the observational estimate lies within the

simulated ranges implying that accurate representations of the observed North Atlantic

variability may be sampled by some of the model mechanisms.

6.4.4 Resolution

The refinement of horizontal resolution in the ocean to permit and even resolve ed-

dies/Rossby waves may be particularly important for regionssuch as the Labrador Sea

(Gelderloos et al., 2011;Marzocchi et al., 2015). To account for non-regular grids we

estimate the effective resolution of each model in the NorthAtlantic region (40–76◦N,

0–65◦W) by simply counting the number of grid cells with centres within this domain

on each model’s native grid. These range from 1.6◦ for the IPSL and CMCC models to

0.21◦ for the new Hadley Centre models (though note that the new Hadley Centre models

are post-CMIP5 models).

The effective resolution of the models does appear to show a broad relationship to their

biases, with warm and salty models also being of higher resolution than cool and fresh

models (Figure 6.2). Interestingly, the effective resolution does not appear to correlate

with the absolute value of the bias,i.e. higher resolution models cannot be said to be

‘better’, in terms of their depth averaged T/S biases in the Labrador Sea, than lower res-

olution models. In addition, we find that higher resolution models are more likely to

show temperature-controlled interannual/decadal density changes, whereas these density

changes are more likely to be salinity-controlled in lower resolution models (Figure 6.3).

Lastly, models which have a lower effective resolution in the North Atlantic are much

more likely to exhibit signals indicative of a northern feedback than models of higher

resolution (Figure 6.5), though this selection between northern and southern feedbacks



Chapter 6. Exploring the impact of CMIP5 model biases on the simulation of North
Atlantic decadal variability 181

is not as clear when colouring byρTorScontrol (not shown). Possible reasons for the rela-

tionship between biases and resolution are discussed next (Section 6.5).

6.5 Discussion

We have demonstrated, across a 42-member coupled-model ensemble, that mean state

T/S biases in the North Atlantic co-vary and are almost density compensating. We have

shown that these biases also appear to affect what controls interannual/decadal density

variability in the sinking regions, a result that perhaps helps to explain the spread in the

literature on this point. Furthermore, we have highlightedhow these models appear to

favour Labrador Sea feedbacks either to the north or the south. Lastly, the relationships

between all of these metrics show some separation by the models’ effective horizontal

resolution.

A key remaining question is whether there is a further systematic link between the mech-

anisms of simulated variability and the inherent timescales of this variability. Of the 42

models tested, 26 show a peak in their power spectrum (above the 95% level for that

estimated for a similar first order autoregressive red noiseprocess) for top 500m volume

averaged temperatures in the NA SPG (45–62◦N) at short ‘decadal’ timescales (periods

of 10–40 years). This rises to 29 models when considering just the Labrador Sea region.

Despite this, we find no relationships between the aforementioned mechanisms/density-

control and either the preferred timescales or relative magnitudes of decadal variability.

Thus, within the statistical power of our reduced sample, there appears to be no system-

atic relationship between the mechanisms that we have investigated and the subsequent

manifestation of decadalperiodicity in the North Atlantic subpolar gyre. This is further

evidenced by the similar periodicities in HadGEM3 (17 years) and IPSL-CM5A-LR (20

years (Escudier et al., 2013)) despite very different resolutions/biases/density-control.

However, it is still possible that there exist systematic relationships on longer timescales,

which we have not investigated, perhaps involving the AMOC. Finally, recent work has

suggested that observed and simulated (in historical simulations) bi-decadal variability

in the NA SPG may be pace-set by volcanic forcing (Swingedouw et al., 2015). Al-
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though the authors find similar timescales of variability this appears to arise by different

mechanisms across the models and further highlights the apparent independence of the

mechanisms and overall timescales in the NA SPG.

The relationship between the mean T/S (biases) and density control suggests that the

real world may be in a state where Labrador Sea annual densityvariability is controlled

by salinity (rather than temperature) changes, similarly to lower resolution models (Fig-

ure 6.3). However, as noted in Chapter 3, this relationship may have changed in re-

cent decades. In either case, there is limited spatial and temporal sampling within the

Labrador Sea, particularly during the important wintertime period (defined here as De-

cember to February inclusive). For example, there are multiple years in the 1990s in EN4

where there are less than two combined T/S observations below the surface anywhere in

the Labrador Sea during winter (see Chapter 3 and Figure 3.1b). Additionally, it is likely

that there has been significant external forcing within thistime period, noted in Section

6.4.3. Therefore, we have more confidence in the first order moments (i.e. the mean,

from which we estimate the model biases) than second order moments (i.e. the observed

interannual/decadal variability) and as such we suggest some caution in interpreting mea-

sures relating to the observed Labrador Sea variability (cf. black crosses in Figures 6.3

and 6.5).

Although it is clear that the effective horizontal resolution of the models in the NA SPG

is related to their mean state biases, it is not as apparent why this is. We speculate that

this relationship may arise due to higher resolution allowing better representation of the

strength of boundary currents (Grotzner et al., 1998;Gelderloos et al., 2011), which are

an important component of the AMOC (McCarthy et al., 2015), as well as heat transport

in the NA SPG. The computational overhead of calculating theAMOC streamfunction on

the various model grids, and the mixed availability of the streamfunction diagnostic on

the CMIP5 archive, precluded direct comparison to the AMOC. However, the zonal mean

northward geostrophic circulation at 45◦N (depth averaged between 100–1000m) was

calculated using the T/S data, which shows an interannual correlation with the AMOC

time series (maximum at 45◦N) of r=0.7 in HadGEM3. This geostrophic estimate was

then calculated for all models and used as a proxy for the AMOC.There exist weak

correlations between this AMOC proxy and the T/S biases in the NA SPG (45–62◦N) of
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r=0.46 (for both temperature and salinity biases), with stronger northward circulation im-

plying warmer and saltier conditions in the North Atlantic across models, consistent with

recent multi-model work investigating larger-scale biases (Zhang and Zhao, 2015). It has

also been shown that the timescales of the relationship between increased Labrador Sea

(or elsewhere) convection and the response of the AMOC can vary greatly between mod-

els (Huang et al., 2014), which may also explain the lack of a systematic link between

the mechanisms and periodicity of simulated decadal variability, but further analysis is

required.

The models we have analysed are intended to represent a stable climate not undergoing

transient climate change. Due to the large role of AMOC-related northward heat trans-

port, combined with uncertainties in AMOC projections, it is not clear whether the North

Atlantic subpolar gyre region will actually become warmer or cooler under future climate

change (Collins et al., 2013). Whatever the sign, given that according to our analysis a

change in mean T/S could affect the dominant mechanisms of decadal variability (e.g.

Figure 6.3), this implies the prevalent mechanisms of decadal variability in the NA SPG

could be different under future climate change (as indeed also tantalisingly implied by

Figure 3.10b).

These results have clear implications for decadal predictions using the common method

of ‘anomaly-assimilation’ in which observed oceanic T/S anomalies are assimilated in

to a climate model’s (biased) mean state. The simulated evolution of these anomalies

within the climate model is then assumed to be independent ofthe mean state biases —

an assumption that we have shown appears not to be valid when considering the mecha-

nisms of variability. Although a process based understanding of the mechanisms of North

Atlantic decadal change — gained by confronting climate predictions with recent obser-

vations — could validate and constrain models (Chapter 3), anin-depth understanding

of control simulations will still be invaluable to put thoseresults into a wider context

(e.g. Chapter 2). Until such a time as real world NA SPG decadal variability is fully

sampled we recommend a twin strand approach of analysing multi-century integrations

with stable coupled climate models, and assessing the hindcast skill of decadal prediction

systems.
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6.6 Chapter conclusions

Climate models and direct and indirect observations have highlighted evidence of signif-

icant decadal variability within the North Atlantic subpolar gyre (NA SPG). Given the

paucity of direct observations it is not clear how the signature of this variability evolves,

in either space or time, whilst model simulations suggest a wide range of disparate mech-

anisms, many of which involve an important role for the Labrador Sea. To investigate

these issues, we have analysed the systematic relationships across an exceptionally large

ensemble of present-generation coupled climate models. Wefind that:

• Mean state biases in near surface (top 500m depth averaged) temperature and salin-

ity in the Labrador Sea co-vary, with warm models also being saltier. Ensuing

density biases are mostly due to salinity (rather than temperature).

• There exists a systematic relationship between whether density changes associated

with variability in the Labrador Sea are temperature- or salinity-controlled and the

mean state biases. Models which are too cool/fresh tend to have salinity-controlled

density variability, whereas models which are too warm/salty tend to show a greater

degree of temperature control. This relationship is seen for both interannual and

decadal timescale variability.

• Negative feedbacks with the Labrador Sea tend to fall into two groups that exist

either to the north (around the East Greenland Current) or to the south (around

the North Atlantic current). These feedback locations are consistent with analysis

of IPSL-CM5A-LR (Escudier et al., 2013) and with our analysis of HadGEM3

(Chapter 2) and suggest that some of the inter-model spread indecadal variability

in the NA SPG is related to differences in the preferred feedback location and

mechanism.

• The effective horizontal resolution in the North Atlantic (ranging from 0.21◦ to 1.6◦

in our sample) shows some relationship to the mean state biases, density-control,

and dominant feedbacks. Higher resolution models are generally too warm and

salty, whereas lower resolution models are too cool and fresh in the Labrador Sea.
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However, there is no relationship between the effective resolution and the absolute

magnitude of the biases, suggesting higher resolution models cannot be considered

to be ‘better’ than lower resolution models, in terms of their depth averaged biases

in the Labrador Sea.

• Although there are systematic relationships between biases, density-control, and

feedbacks, these do not appear to result in systematic relationships with the spec-

tral characteristics of the variability in either the Labrador Sea or wider NA SPG.

This is consistent with analysis of HadGEM3 (Chapter 2) and IPSL-CM5A-LR

(Escudier et al., 2013) that found different mechanisms but similar periodicities.

Although the mechanisms of NA SPG variability cannot be shown to be a systematic pre-

dictor of the periodicity, within the statistical power of our ensemble, our results never-

theless suggest that mean state biases influence the characteristics of decadal variability.

This implies potential problems for decadal prediction systems that use the methodol-

ogy of ‘anomaly-assimilation’, in which the mean state and evolution of the system are

assumed to be independent (Robson, 2010). Indeed, the range in individual model bi-

ases and mechanisms suggests caution when making decadal predictions using any given

model, whether initialised with full fields or anomalies.

In the next chapter we present a final discussion of our combination of in-depth analysis

of a single model (Chapters 2–5), critical comparison against observations (Chapter 3),

and its extension to scores of models (this chapter).





Chapter 7

Conclusions

7.1 Introduction

This thesis has focussed on understanding the simulated North Atlantic decadal variabil-

ity in the high resolution coupled climate model HadGEM3. Wehave diagnosed the

mechanism controlling the simulated decadal variability in HadGEM3 that gives rise to

a spectral peak in many North Atlantic indices (such as depthaveraged ocean tempera-

tures) of 17 years. We have critically compared this variability against available observa-

tions, modifying our analysis methods as appropriate to account for sparse observational

data. We have conducted sensitivity studies to investigatethe role of the atmosphere in

more detail and to assess how robust are various elements of the mechanism of decadal

variability. Finally, based on these analyses, we have drawn hypotheses about the fun-

damental relationships between model biases and variability, and tested these in a multi-

model framework. Understanding the origins of model variability, and its possible link

to the underlying model setup/biases, could help give appropriate confidence to decadal

predictions or longer projections made with these models.

In this chapter we describe how our analyses have addressed the key research questions

that we outlined in Chapter 1. In brief, these were:

1. What decadal variability exists in the NA SPG in HadGEM3, and how does this

187
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evolve in both space and time?

2. To what extent is the decadal variability consistent withavailable observations?

3. Does this variability provide potential skill for decadal predictions?

4. Is there any systematic explanation for the diversity of simulated variability within

the NA SPG, as shown in Figure 1.5?

Key conclusions relating to analysis of the HadGEM3 model are presented in Section

7.2, whilst in Section 7.3 we present wider conclusions relating to the plausibility of the

simulated variability relative to the real world as well as the veracity of decadal variabil-

ity in other climate models. In Section 7.4 we present recommendations for future work

on a number of fronts, relating to 1) decadal prediction systems, 2) observational net-

works, and 3) further progress in understanding the fundamental mechanisms of decadal

variability in the North Atlantic before some last remarks in Section 7.5.

7.2 Conclusions part 1 — investigating the mechanism

of decadal variability in HadGEM3

In this section we present the major conclusions relating tothe analysis of the HadGEM3

coupled climate model, beginning with the analysis methodsthemselves (Section 7.2.1)

before discussing the mechanism of simulated variability (Section 7.2.2) and the role of

the atmosphere (Section 7.2.3).

7.2.1 Analysis methods

The investigations we have performed and the results we havepresented have relied on

a variety of complementary analysis methods, in terms of 1) the mathematical/statistical

procedures used (e.g. lagged regression versus composite analysis, Table 4.1), 2) the

critical testing of model mechanisms by comparison againstobservations (Chapter 3) and
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targeted sensitivity experiments (Chapters 4 and 5), and 3) the expansion of single-model

hypotheses to a multi-model context (Chapter 6). In addition, many of these methods

rely on the statistical power provided by a long control simulation, which at high ocean

and atmosphere resolution is a computationally expensive undertaking.

The following sections describe the key conclusions attained in this thesis, but it is worth-

while to note that another important conclusion from this work is the analytical power

provided by combining analysis methods and sensitivity/multi-model studies under a sin-

gle, coordinated project (such as a thesis). For example, lagged regression analysis (as

used in Chapter 2) was a powerful way to maximise the amount of data used in a given

analysis, but precluded the discovery of asymmetries in thevariable of interest. Com-

posite analysis, founded upon the mechanistic understanding provided in Chapter 2, led

to the investigation of an asymmetrical ocean-atmosphere coupling strength (Chapter 4),

which subsequently provided possible reasons for differing predictability characteristics

between warm/cool initial conditions in a set of initial condition ensembles (Chapter 5).

In addition, the real-world skill of the model was estimatedby comparing the model

mechanisms (Chapter 2) with observed variability/processes (Chapter 3). This allowed

us to gain insight as towhy the model may have skill, which is different to merely quan-

tifying the real-world skill using decadal hindcasts (although this would also be useful).

Understanding the origins of skill would also be valuable iffuture iterations of a predic-

tion system ‘lost’ skill, as has happened before, for example with the skill in predicting

Arctic sea ice concentration at some lead times (R. Wood, pers. comm.). Further, these

initial condition ensemble experiments provided details of the more robust elements of

the mechanism described in Chapter 2 but it was not until they were combined with in-

depth comparison between the model and observations (Chapters 2 and 3) that we were

able to begin to assess which elements were more/less likelyto be applicable to the real

world and form simple hypotheses to test in a multi-model framework (Chapter 6).

In summary, a combination of techniques and experiments (using the same model) can

lead to powerful understanding which, we contend, is greater than merely adding another

model study of the North Atlantic to the large number that already exist (cf. Figure 1.5).

Conclusion: Combining analysis techniques under a single project can lead to a more
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holistic understanding.

7.2.2 Periodic variability

HadGEM3 exhibits periodic decadal variability in the NorthAtlantic subpolar gyre (NA

SPG, Chapter 2 and Figure 2.4b for top 500m depth averaged temperatures), similarly

to many other climate models (Chapter 1 and Figure 1.5) and palaeo-proxies of the sur-

rounding region (Chapter 1,Mann et al., 1995;Sicre et al., 2008;Chylek et al., 2012).

Nonetheless, the precise details of this variability are different to many previous studies

(e.g.Escudier et al., 2013, see also Figure 1.5). The key features of this mechanism of

internal decadal variability in the NA SPG are:

• The timescale of the periodic variability is 17 years, explaining >30% of the inter-

annual variance in top 500m depth averaged temperatures (T500) in the Labrador

Sea and interior NA SPG.

• The mechanism describes heat content anomaly propagation around the NA SPG.

• Salinity content anomalies co-vary with heat content and act to dampen associated

density variability.

• Advective heat fluxes rather than surface heat fluxes dominate the decadal variabil-

ity.

• Anomalous circulation is most important for the heat transport variability in the

North Atlantic Current (NAC) region, with anomalous temperature (mean circula-

tion) most important for the heat transport variability in the northern NA SPG.

• The atmosphere acts to amplify the mode

• A negative feedback between Labrador Sea temperatures and those in the NAC, via

a dynamic height gradient that induces circulation anomalies, switches the sign of

the NA SPG temperature anomalies. This feedback appears to be a robust feature

of the model (e.g.Chapter 5 and Figure 5.10).
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The mode of variability we have diagnosed shows an importantrole for ocean advection

in moving heat content anomalies cyclonically around the NASPG (Chapter 2), with the

cyclonic nature of the mode aiding predictability of downstream regions when initialised

with large upstream anomalies (Chapter 5 and Figure 5.8). Therelative importance of

mean circulation (Chapter 2, Section 2.4.5) and anomalous circulation (Chapter 2, Sec-

tion 2.4.4) in the advective heat budget may also relate to the differing predictability

throughout the NA SPG with anomalies related to mean circulation easier to predict, for

example the higher predictability in the northern than southern NA SPG, Figure 5.7. The

ocean variability appears to force atmospheric variability (Chapter 4) of the same period-

icity (Figure 2.4c), despite an otherwise white spectrum inthe North Atlantic Oscillation

(NAO) index (see next).

Conclusion: HadGEM3 shows strong decadal periodicity in the NA SPG relating to the

advection of heat content anomalies around the gyre with a timescale of 17 years and

explaining 30% of the interannual variance.

7.2.3 Atmospheric forcing and feedbacks

The atmosphere is involved in driving/reinforcing ocean variability in the NA SPG, with

NAO-related surface heat fluxes (SHFs) in the eastern NA SPG aiding the westward

propagation of temperature anomalies (Figure 2.7, third column). In addition, the NAO

contributes to the dipole in anomalous ocean temperatures between the Labrador Sea and

NAC, with NAO-related density changes explaining about 45% of the NAC geostrophic

current response on annual timescales but less (13%) on decadal timescales. One dimen-

sional models have shown that atmospheric standing wave patterns (such as the NAO)

may interact with an advective ocean to provide decadal periodicity (Saravanan and

McWilliams, 1998) but experiments with a lower resolution version of the ocean compo-

nent of HadGEM3 suggest this may not happen in a more complex model (Mecking et al.,

2014). Indeed, in HadGEM3, the precise nature of any drivingforce from atmosphere to

ocean, and whether the ocean integrates up atmospheric forcing or preferentially ampli-

fies longer periods, remains unclear.
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In terms of feedbacks, the NAO in HadGEM3 appears to respond to oceanic forcing on

long timescales, showing a spectral peak with the same period (17 years) as the under-

lying ocean (Chapter 2 and Figure 2.4c). In HadGEM3, many climate-relevant fields in

the NA SPG, such as mean sea level pressure (MSLP, Chapter 2, Figure 2.15), SHFs

(Chapter 4, Figure 4.4), and near surface temperatures (T500, Figure 4.5), show asym-

metry between positive and negative anomaly states (when composited against NA SPG

sea surface temperatures). That is, there are stronger MSLPanomalies associated with an

anomalously cool NA SPG (Figure 4.2) than with an anomalously warm NA SPG (Fig-

ure 4.3) as well as a faster (by 2 years) reversal timescale from positive NAO (+NAO) to

negative NAO (-NAO) conditions than from -NAO to +NAO conditions, also associated

with different lagged evolutions in MSLP, SHFs, and T500. These asymmetries in the

strength of ocean-atmosphere coupling in either 1) cool NA SPG/+NAO or 2) warm NA

SPG/-NAO states are supported by an ensemble of decoupled atmosphere-only experi-

ments with the same climate model (Chapter 4). However, the location of primary ocean

to atmosphere coupling that results in asymmetrical NAO responses is not clear: possi-

bly being co-located in the NA SPG or further afield in the tropical Atlantic or tropical

Pacific.

Conclusion: Atmospheric forcing of the ocean may play an important rolein the diag-

nosed North Atlantic variability, particularly on annual timescales.

Conclusion: Asymmetries in the reversal timescales are related to an asymmetrical cou-

pling strength between the ocean and atmosphere.

7.3 Conclusions part 2 — the mechanism of variability

in HadGEM3 and relationships to reality/other mod-

els

In this section we broaden our focus to draw wider conclusions relating to the variability

simulated by HadGEM3 and other climate models. We begin withconclusions relating to

the similarities between HadGEM3 and observed variability(Section 7.3.1) which leads
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us to the origins of the ‘perfect-model’ predictability in HadGEM3 and the potential real

world skill (Section 7.3.2). We then broaden our focus a finaltime and summarise the di-

agnosed systematic relationships between climate model biases and simulated variability

(Section 7.3.3).

7.3.1 Observational constraints

A lagged regression analysis of the simulated mode of variability (described above)

against observational data was limited by severe data paucity in the NA SPG region

(Chapter 3), either at depth (Figure 3.1) or at the surface (Figure 3.5), as well as increasing

uncertainty in the representativeness of observations further back in time (comparison of

Figures 3.3 and 3.4). Nonetheless, the model and observations show similar multi-annual

joint evolution of upper ocean heat content and NAO anomalies, with warm conditions

associated with a negative NAO (Figure 3.4), similar also toRobson et al.(2012). In

addition, the lagged relationships between northern and southern edges of the NA SPG

suggest variability in the southern NA SPG leads variability to the north on multi-annual

timescales (Figure 3.6).

In addition, we undertook critical analysis of more bespokefeatures, such as the depth co-

herence of annual variability (Figure 3.8) and the drivers of Labrador Sea density changes

(Figure 3.9).

The first of these suggests the model may overestimate the depth extent of coherent an-

nual variability in the North Atlantic Current (NAC) region byseveral hundred metres

(Figure 3.8), which may then account for the clearer propagation pathways around the

NA SPG (Figure 3.11) and may also imply the skill in eastern NASPG temperatures is

overestimated (Chapter 5 and subsequent section 7.3.2).

Secondly, the driver of real-world upper ocean Labrador Seamulti-annual density vari-

ability appears to have been mostly salinity for the decadessince 1960 (Figure 3.10) com-

pared to temperature in the HadGEM3 simulations (Chapter 2 and Figure 2.3). However,

the observations imply that the most recent decades have become increasingly tempera-

ture dominated, in agreement with the model results (discussed further in Sections 7.3.3
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and 7.4). The model cannot explain the non-stationarity of the observed relationships,

which could be externally forced (see also Section 7.4.3).

Conclusion: The model, observations, and recent investigation of reanalysis systems

show consistent evolution of upper ocean heat content and NAO anomalies in the NA

SPG.

Conclusion: Observational data paucity means critical comparison with the simulations

must be undertaken by using regions/methods that make best use of these observations.

Upon doing this, subtle but specific differences between themodel and observations can

be found (such as the depth coherence of annual variability), and their potential effect on

the overall variability estimated.

7.3.2 Potential skill

A suite of initial condition ensembles, totalling 150 yearsof model integration (Chapter

5), suggested the real-world skill in the NA SPG provided by the model mechanism

of decadal variability was dependent on both the robustness(i.e. predictability) of the

simulated process providing the model skill and whether that process was likely to exist

in a similar form in reality, the latter estimated by comparison with Chapter 3.

Perfect-model skill (i.e. skill in predicting the control simulation evolution) lasts up to

5 years in parts of the central and northern NA SPG. Potentialpredictability often arises

due to initialisation of large temperature anomalies upstream. For example, potential

predictability of the northern boundary current is highestwhen initialising based on large

temperature anomalies in the eastern NA SPG. Despite this long-lasting potential skill,

some regions of the NA SPG are likely to exhibit more reliablepredictions than others,

summarised next.

In the southern part of the NA SPG, the skill in T500 arises from the initialisation of

the negative feedback/dynamic height gradient between theLabrador Sea and NAC,

with skill in the dynamic height gradient lasting for 4 years(Figure 5.10). However, in

the model this negative feedback relies on annual upper ocean density variability being
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temperature-controlled (Chapter 2 and Section 2.4.6) whereas this appears to be salinity

controlled in reality (Chapter 3 and Figure 3.9a). As such, the combination of under-

standing model mechanisms and the implied mechanisms in reality leads us to the con-

clusion that, if using a version of this model, any potentialskill in predicting real-world

T500 variability in the southern NA SPGthat arises from the simulated feedback with

the Labrador Seais likely to be severely overestimated. This may be the case for both

anomaly and full-field initialisation (see Section 7.4.1).

We find a smaller but similar implied reduction in potential skill when considering the

eastern part of the NA SPG. In the model, the decadal variability in this region is related

to the integration of circulation-driven heat content anomalies (Chapter 2 and Section

2.4.4). Along the NAC path, we find the depth coherence of these heat content anomalies

to be much greater in the model than in reality (Chapter 3 and Figure 3.8), which is also

consistent with a larger depth coherence/extent of signal propagation in the model than in

reality (Figure 3.11). As such, the potential skill in predicting real-world T500 variability

in the eastern NA SPG may also be somewhat overestimated.

Despite the possible reduction in potential skill in predicting T500 in the southern and

eastern NA SPG, we suggest the model likely represents an improvement, compared to

other climate models, in the northern NA SPG. This is becausethe high resolution of the

model likely improves the representation of boundary currents (Gelderloos et al., 2011),

which we find are the driver of model skill in the northern NA SPG (Figure 5.12). As

such, it is plausible that much of the model skill in northernNA SPG T500 (Figure 5.6)

may carry over to real-world predictions, particularly if initialised during times of large

anomalies in the eastern (i.e. upstream) NA SPG.

Conclusion: The potential skill of the model, and the reasons for reductions in skill, vary

by region/process but suggest that hindcasts with this model may exhibit the most skill

in the northern NA SPG.
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7.3.3 Drivers of Labrador Sea density variability

There are several key findings (noted previously in this chapter and summarised below)

that lead us to our final conclusion on the relationships between model biases and simu-

lated variability. These are:

• The importance of a temperature-controlled negative feedback from the Labrador

Sea to NAC (Chapter 2 and Section 2.4.6) for the periodic nature of the decadal

variability (Figure 2.4b). For this feedback to be negative, density variability in the

Labrador Sea must be temperature — rather than salinity — controlled.

• The unclear existence of such a feedback in reality, which appears to be a salinity-

controlled positive feedback for much of the observed record but may have recently

transitioned to a temperature-controlled negative feedback, Chapter 3 and Figure

3.10b.

• The importance of entirely different negative feedbacks inother models in provid-

ing periodicity within the NA SPG (e.g.Escudier et al., 2013).

Given these findings (as well as the non-linear seawater equation of state), we hypothe-

sised that:

1. There is a fundamental link between the mean state biases of a climate model

(in terms of the depth averaged temperature or salinity in the NA SPG) and the

processes by which negative feedbacks can occur (Chapter 2, Section 2.5.1 and

also stated in the Discussion section ofMenary et al., 2015a).

2. A link between the mean state biases of a climate model and the mechanisms of

variability leads to differing timescales/spectral characteristics of the variability.

These hypotheses were tested in Chapter 6. We found the first hypothesis to be verified,

but the second one remained outstanding. Specifically, temperature and salinity biases in

the Labrador Sea were found to be correlated with the driversof density variability in that
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region, as well as with the resolution (in the North AtlanticOcean) of the ocean models,

but there was no detectable systematic link between biases/resolution and the timescales

of the variability. We found that high resolution models were too warm and salty and had

temperature-controlled density variability, while low resolution models were too cool

and fresh and had salinity-controlled variability (Figure6.3). Furthermore, the model

resolution separated the models into those that suggested negative feedbacks between the

Labrador Sea and NAC (such as HadGEM3, Chapter 2) and those that suggested negative

feedbacks between the Labrador Sea and northern NA SPG (Figure 6.5). The relation-

ships between biases and variability suggest that assumingthe mean state and variability

are independent in both models and observations, for example when attempting to sim-

ulate actual events in the real world via ‘anomaly assimilation’, may not be appropriate

(see Section 7.4.1).

Conclusion: The link between mean state biases and variability suggests that in order to

correctly simulate decadal variability models must also exhibit a good representation of

the mean state.

7.4 Recommendations and future work

In this section we discuss the implications of our work for the future development of both

decadal prediction systems (Section 7.4.1) and observational networks (Section 7.4.2).

We conclude with discussion of possible future multi-modelanalyses to make further

use of the powerful resource that is the Phase 5 of the Coupled Model Intercomparison

Project (CMIP5) archive of control simulations (Section 7.4.3).

7.4.1 Implications for the development of decadal prediction systems

Given the aforementioned links between NA SPG biases and multi-annual/decadal vari-

ability (Chapter 6 and Section 7.3.3) it appears likely that the technique of anomaly-

assimilation, in which observed anomalies are combined with a climate model’s biased

mean state, is introducing systematic errors into the resulting predictions. These errors
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are likely to grow with lead time, as the total effect of simulated (potentially incorrect)

feedbacks aggregates. However, we note that it is also possible that full-field assimi-

lation exhibits a similar interdependence of signal and background (in this case, drift),

which may be related to the reduced skill compared to anomalymethods at long lead

times (Smith et al., 2013). In addition, the rapid return of a climate model to a biased

mean state, after initialisation using full fields (around 2years,Smith et al., 2013) means

that full-field initialisation could also result in the background mean state affecting the

evolution of the signal just as for anomaly-assimilation.

Recommendation: For short lead times, use full-field ocean assimilation rather than

anomaly-assimilation, especially if concerned with processes/feedbacks known to be de-

pendent on the background state.

Future work : In addition, investigate in which climate variables/regions signal and

model drift interact in predictions using full-field assimilation, and whether erroneous

influences of the mean state on to the signal increase at longer lead times (after the model

has drifted back to its preferred state).

Related to the above, we have shown that in reality the driver of Labrador Sea density

variability may not be stationary (Chapter 3, Figure 3.10 andSection 7.3.1). Thus, it

is possible that the feedbacks simulated in HadGEM3 may giverise to greater/lesser

skill during different epochs. To quantify whether the realworld skill of the model is

non-stationary related to these feedbacks, hindcast predictions could be compared for

groups of start dates, 1) during the period in observations where density variability in

the Labrador Sea was salinity-controlled (e.g.pre-1980s), and 2) during the more recent

period where this density variability was temperature-controlled. The ‘Decadal Climate

Prediction Project’ (DCPP1) plans to conduct hindcast simulations initialised at every

year from 1960 onwards, which would provide the necessary resource to test this hypoth-

esis. Additional work to better understand this non-stationarity is presented in Section

7.4.3.

Future work : Compare the skill downstream of the Labrador Sea in hindcastsimulations

1http://wcrp-climate.org/dcp-overview (October 2015)
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for start dates prior to 1980 and start dates around 2010 to estimate whether prediction

systems can reproduce the apparent transient changes in Labrador Sea density-drivers

seen in observations.

We have shown an important role for northern boundary currents in the mechanism of

decadal variability in HadGEM3 (Chapter 2, Section 2.4.5 andChapter 5, Figure 5.12),

which is likely in part made possible by the increased resolution of the model (Gelderloos

et al., 2011). In addition, we have shown a link between model biases, resolution, and

the implied location of negative feedbacks from the Labrador Sea (Chapter 6 and Figure

6.5). Although the model resolution is higher than in control simulations with most other

climate models (Tables 6.1 and 6.2) there are potentially still further improvements to be

had by moving from eddy-permitting resolutions to eddy resolving resolutions (Marzoc-

chi et al., 2015). Recent versions of the ocean component of HadGEM3 arealso capable

of incorporating nested, higher resolution grids (Debreu et al., 2008).

Recommendation: Further increase the model resolution to high-latitude eddy-resolving

resolutions in important regions for decadal prediction (e.g. the NA SPG) using nested

schemes and investigate the effects on predictability in NASPG indices (and whether

this arises through processes that are expected to be improved by resolution).

7.4.2 Implications for present and future observational networks

In Chapter 3 we noted that, even in the late twentieth century,sustained observations of

key regions were not guaranteed. For example, there were winters in the 1990s in which

there were no subsurface temperature or salinity observations in the Labrador Sea (Figure

3.1b). In addition, even in surface temperatures, the northern half of the NA SPG has had

sustained observations for far less time than the rest of theNorth Atlantic Ocean (Figure

3.5). To this end, the global array of ‘Argo’ profiling floats,which began deployment

in the year 2000, are a valuable tool, though these are limited to the upper 2000m of

the ocean (Gould et al., 2004). Although we have focused on this upper ocean decadal

variability, we note that near surface variability can imprint on to deep ocean variability

(Mauritzen et al., 2012), observations of which (e.g. ‘Deep Argo’,Johnson and Lyman,
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2014) would provide a further valuable tool to constrain themodels.

Recommendation: Present observational network densities must be at least maintained

if we are to be able to reliably characterise multi-annual/decadal variability.

The mode of variability we have diagnosed is manifest primarily in the NA SPG (Chap-

ter 2, possible links to El Niño and tropical North Atlantic variability notwithstanding).

Simulated heat transport variability on the southern edge of the NA SPG is found to be

important, but even this is much farther north than the only cross-basin current array at

26.5◦N (Cunningham et al., 2007). Indeed, it is not clear (from model studies) to what

extent variability in the NA SPG and tropical North Atlanticare coherent nor the precise

phase relationships between the two (Bingham et al., 2007;Zhang, 2010). We note that a

promising first step in understanding the heat budget of the NA SPG is being taken with

the recent ‘Overturning in the Subpolar North Atlantic Program’ (OSNAP2) that will con-

strain the heat/freshwater/volume fluxes into the NA SPG from the north. Nonetheless,

fluxes from the south and, for example, the degree of recirculation in the NA SPG and

‘leakage’ through the Canary Current (Swingedouw et al., 2013), are still not constrained.

Recommendation: The establishment of further cross-basin arrays, in particular at the

southern boundary of the NA SPG (e.g.45◦N), to constrain the ocean heat and freshwater

budget of the NA SPG.

Ocean temperatures represent the integration of both surface heat fluxes (SHFs) and the

advective convergence/divergence of heat (see also Section 7.4.2). For this reason, given

the lack of direct heat flux observations and estimates of subsurface circulation, it is not

always clear whether well-modelled temperature evolution(or ‘skill’ if directly assessing

against particular observations) is the result of a good representation of both surface

and advective heat fluxes or due to compensating errors. Additionally, given that the

variability in SHFs is an indication of the strength and location of ocean-atmosphere

coupling (see also Chapter 4), they represent a good metric for discriminating between

the mechanisms of variability suggested by climate models.

SHFs can be directly measured by moored buoys. However, there are a severely limited

2http://www.o-snap.org/ (October 2015)
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number of buoys in the world oceans that are able to measure the relevant heat flux

terms (in particular longwave heat fluxes,Kato et al., 2013), the sum of which gives the

net SHF between ocean and atmosphere. Even more starkly, there are no active moored

buoys anywhere within the NA SPG (Kato et al., 2013). The addition of moored buoys to

measure SHFs would allow allow critical comparison of modelmechanisms of variability

against reality.

Recommendation: The placement of moored buoys in the NA SPG to be able to directly

estimate SHFs between the ocean and atmosphere

7.4.3 Implications for investigations of simulated decadal variability,

and further options for multi-model analysis

As repeatedly stated in this thesis, there is a severe paucity of direct observations within

the NA SPG with which to constrain the decadal variability simulated in climate models,

which likely does exist in the real world (Mann et al., 1995;Sicre et al., 2008;Chylek

et al., 2012). In the previous section (Section 7.4.2) we noted that our first priority should

be to maintain, and then increase, the size of the observational network. In the meantime,

as we have shown, a potentially powerful approach to future investigations of decadal

variability is to diagnose the key processes within a range of models and examine where

in this distribution the real world exists — and what implications this may have. Some

specific examples are given next.

Recommendation: A combined approach to analysis of NA SPG decadal variability,

combining multi-model analyses with critical comparison against observations, rather

than describing variability in a single model and crudely contrasting with observations.

In general, in terms of the fundamental processes and drivers of simulated decadal vari-

ability in the NA SPG, there remain many competing theories (Chapter 1). Although

conceptually appealing, it is far from clear that any potentially coupled ocean-atmosphere

relationship can be diagnosed by separately analysing uncoupled ocean and atmosphere

subcomponents (Battisti et al., 1995;Rodwell et al., 1999). In addition, even relatively
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simple explanations of NA SPG periodicity require a coupledsystem (Saravanan and

McWilliams, 1998). However, it is possible to test the relative importance of processes

within a given system by artificially suppressing certain aspects, as has been shown

for the relative importance of different eddy types in restratification of the Labrador

Sea (Gelderloos et al., 2011). We suggest a similar approach could be undertaken to

assess the relative importance of, for example, Rossby Wavesand ocean advection in

transferring information around the NA SPG (both of which have similar, multi-annual

timescales). In this example, this could be undertaken by either direct approaches, such as

pinpointing Rossby Wave signals and damping them, or indirect approaches, such as ar-

tificially altering the thermocline depth to alter wave propagation timescales. This could

be undertaken with either the climate prediction system or using the control simulation

of HadGEM3.

Future work : Investigate methods to damp specific processes within a coupled model

system in order to test the relative importance of particular processes in simulations of

NA SPG decadal variability.

In Chapter 3 (and above in Section 7.3.1) we noted that in reality the driver of Labrador

Sea density variability may not be stationary in time (Figure 3.10). Although the model

control simulations we analysed in Chapter 6 were not drifting, it does not necessarily

follow that the driver of density variability is stable throughout the simulation as this de-

pends both on the bias and the actual variability in temperature or salinity. As such, it

may be possible for climate models to capture these potential regime shifts. In addition,

given that the control simulations were mostly run with external forcings appropriate

for 1850, it would also be interesting to know whether the driver of density variabil-

ity changes under historical forcings as well as under projected future climate change.

Separately to analysis of hindcast simulations (see futurework in Section 7.4.1), these

analyses would shed light on the susceptibility of internalmodes of variability to funda-

mental changes/breakdown and to what extent this may be important for the evolution of

the NA SPG.

Future work : Test the stationarity of the driver of Labrador Sea densityvariability in the

model control simulations, as well as in historical and future climate simulations.
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The multi-model analysis presented in Chapter 6 focussed primarily on the ocean. How-

ever, as we have shown, the atmosphere plays an important role in reinforcing this ocean

variability (Chapter 2, Figure 2.12 and Section 7.2.3) with clear feedbacks from ocean to

atmosphere (Chapter 2, Figure 2.4c) and further interestingasymmetries between posi-

tive and negative phases of the variability (Chapter 4).Gastineau et al.(2013) recently

highlighted similar lead/lag relationships between observed and simulated NA SPG SSTs

and the NAO, although the strength of the coupling in their model was approximately half

as strong as observed. As such, it would be interesting to investigate the characteristics of

the NAO across the models and whether there are any links between the manifestation of

NAO variability and the variability in the ocean. In addition, given our previous analysis

that showed a link between the ocean model resolution in the North Atlantic and the lo-

cations of negative feedbacks with the Labrador Sea (Chapter6, Figure 6.5 and Sections

7.3.3 and 7.4.1), it would be interesting to investigate anypotential role for atmospheric

resolution in the manifestation of variability in and around the North Atlantic.

Future work : Expand CMIP5 multi-model analysis to incorporate the NAO and charac-

teristics of the atmosphere component of the models, such asresolution.

Finally, one caveat of our uncoupled atmosphere-only experiments (Chapter 4) was the

use of globally-defined forcing fields, rather than just local (e.g. North Atlantic) fields

(Section 4.3.1). This leaves open the possibility that non-local forcing, such as from

the tropical Atlantic or tropical Pacific (via El Niño/Southern Oscillation, ENSO), may

drive the NAO (and thus even the ocean) variability in the North Atlantic (Ineson and

Scaife, 2009). Indeed, similar to our analysis of the link between Labrador Sea biases

and variability, it has been shown that biases in the ‘thermocline feedback’ in the tropical

Pacific in CMIP5 models result in incorrect characteristics of ENSO (Michael et al.,

2013). Given the size of our multi-model database (42 models), further analysis of the

links between biases in the tropical Pacific and the manifestation of variability in the

North Atlantic may reveal under what conditions/in which model setups variability in the

ENSO regions more or less strongly affects the NA SPG.

Future work : Expand CMIP5 multi-model analysis to include ENSO diagnostics and

investigate possible teleconnections to the NA SPG.
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7.5 Concluding remarks

A paucity of observations means that understanding past andpotential future variability

in the NA SPG still relies heavily on climate models, whose multi-annual/decadal vari-

ability is poorly constrained. We have diagnosed the mechanism of decadal variability

in the NA SPG in a new, high resolution climate model. We have highlighted, through

a holistic analysis approach, how the specifics of this variability may be important for

understanding — and having confidence in — decadal climate predictions. Continued

critical comparison between climate models and expanding observational networks is

crucial to improving the models and prediction systems. We have also shown how the

various modes/mechanisms of NA SPG variability in climate models may be inextrica-

bly linked to something as simple as errors in their mean states. Understanding to what

extent this link does affect the outcomes of decadal predictions should be a key subject

of future study if we are to have confidence in the ability of climate models to faithfully

represent the state, and fate, of our climate.



Appendix A

Tracer release experiments to examine

simulated deep water formation

A.1 Introduction

In Chapter 2 we noted the interannual variability in wintertime mixed layer depth (MLD)

in HadGEM3 (Figure 2.1d). The mean state mixed layers in HadGEM3 show a similar

pattern but with the maximum depth stretching to around 500min the eastern NA SPG,

and to the full depth in the Labrador Sea (not shown). This is much greater than the real

world, either through estimates applying the sameKara et al.(2000) methodology to the

EN4 dataset (not shown), or published climatologies (de Boyer Mont́egut et al., 2004). It

seems possible that HadGEM3 overestimates the vigour of deep water formation in the

Labrador Sea, and as such gives this region a more prominent role in NA SPG variability

than it has in reality.

This can also be seen in the analysis of the depth coherence ofnear surface signals (Figure

3.7). In EN4 the region downstream of the Denmark Straits sill overflows is found to be

particularly depth coherent, which is not the case in HadGEM3. Additionally, at the

deepest of the chosen layers (Figure 3.7, bottom row) the positive correlation with near

surface signals is much greater in HadGEM3 than in EN4 in the Labrador Sea. It is

therefore possible that the prominence of the 17 year variability displayed in HadGEM3

205
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compared to EN4 is related to the increased role for the Labrador Sea.

A.2 Simulated tracer release experiment

To investigate the importance of Labrador Sea deep water formation (which forms upper

North Atlantic deep water, UNADW) in HadGEM3 and whether HadGEM3 is able to

differentiate between UNADW and lower North Atlantic deep water (LNADW, formed

in the GIN Seas) we design sensitivity experiments with the model. In these, the model

is run for 30 years with a passive tracer released in the Labrador Sea region (Figure A.1a,

red) and a separate passive tracer released in the GIN Seas region (Figure A.1a, blue)

throughout the top 2000m of the water column. The tracers areset to a concentration of

100% within each of the three-dimensional volumes and allowed to evolve freely with

the ocean advection-diffusion scheme outside of these regions. After 30 years the con-

centration profiles are stable, although the absolute values continue to increase as there

is no sink for the tracers.

To compare the profiles of UNADW (Labrador Sea) and LNADW (GINSeas) we show

the zonal mean normalised tracer concentrations at a latitude of approximately 45◦N

(Figure A.1b, approximate latitude due to the curved natureof the model grid). We use

normalised concentrations as the absolute concentrationsare very different due to the

differing proximities of the source regions. The core of southward flowing deep water

exists at 1700m, which compares favourably to the observed depth of the deep western

boundary current (Meinen et al., 2013). However, the two profiles do not show any dif-

ferentiation by source region, contrary to observations inwhich the core of Labrador Sea

water (UNADW) sits more than 1000m above the core of LNADW of GIN Seas origin

(Toole et al., 2011). These simulated profiles are consistent with the view that LNADW,

formed upstream in the GIN Seas, merely aids or preconditions deep convection in the

Labrador Sea in HadGEM3, possibly contributing to the largevertical and horizontal

extent (at depth) of Labrador Sea water.
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Figure A.1: a) The location of tracer release over the top 2000m in the Labrador Sea (red) and Greenland-

Iceland-Norwegian (GIN) Seas (blue). b) The zonal mean profiles at 45◦N (orange line on map) of the

normalised concentration (each tracer normalised relative to its maximum absolute value) of the tracers

released in the Labrador Sea (red) and GIN Seas (blue, dashed).
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and G. Madec (2010), Impact of global ocean model resolutionon sea-level variability

with emphasis on interannual time scales,Ocean Science, 6(1), 269–284.

Pierce, D. W. (2001), Distinguishing coupled ocean–atmosphere interactions from back-

ground noise in the North Pacific,Progress in Oceanography, 49(1), 331–352.

Pohlmann, H., M. Botzet, M. Latif, A. Roesch, M. Wild, and P. Tschuck (2004), Esti-

mating the decadal predictability of a coupled AOGCM,Journal of Climate, 17(22),

4463–4472.

Pohlmann, H., D. M. Smith, M. A. Balmaseda, N. S. Keenlyside, S. Masina, D. Matei,

W. A. Muller, and P. Rogel (2013), Predictability of the mid-latitude Atlantic merid-

ional overturning circulation in a multi-model system,Climate Dynamics, 41(3-4),

775–785.

Polo, I., J. Robson, R. Sutton, and M. A. Balmaseda (2014), The importance of wind and

buoyancy forcing for the boundary density variations and the geostrophic component

of the AMOC at 26◦N, Journal of Physical Oceanography, 44(9), 2387–2408.



226 Bibliography
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M. Khodri, and R. Śeférian (2015), Bidecadal North Atlantic ocean circulation vari-

ability controlled by timing of volcanic eruptions,Nature Communications, 6.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012), An overview of CMIP5 and the

experiment design,Bulletin of the American Meteorological Society, 93(4), 485–498.

Tebaldi, C., R. L. Smith, D. Nychka, and L. O. Mearns (2005), Quantifying uncertainty

in projections of regional climate change: A bayesian approach to the analysis of mul-

timodel ensembles,Journal of Climate, 18(10), 1524–1540.



230 Bibliography

Timmermann, A., M. Latif, R. Voss, and A. Grotzner (1998), Northern hemispheric in-

terdecadal variability: A coupled air-sea mode,Journal of Climate, 11(8), 1906–1931.

Toole, J., R. Curry, T. Joyce, M. McCartney, and B. Peña-Molino (2011), Transport of

the North Atlantic deep western boundary current about 39N,70W: 2004–2008,Deep

Sea Research Part II: Topical Studies in Oceanography, 58(17), 1768–1780.
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