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Abstract 22 

Precipitation is expected to respond differently to various drivers of anthropogenic climate change. We 23 

present the first results from the Precipitation Driver and Response Model Intercomparison Project 24 

(PDRMIP), where nine global climate models have perturbed CO2, CH4, BC, sulfate and solar insolation. 25 

We divide the resulting changes to global mean and regional precipitation into fast responses that scale 26 

with changes in atmospheric absorption, and slow responses scaling with surface temperature change. 27 

While the overall features are broadly similar between models, we find significant regional inter-model 28 

variability, especially over land. Black carbon stands out as a component that may cause significant 29 

model diversity in predicted precipitation change. Processes linked to atmospheric absorption are less 30 

consistently modeled than those linked to top-of-atmosphere radiative forcing. We identify a number of 31 

land regions where the model ensemble consistently predicts that fast precipitation responses to 32 

climate perturbations dominate over the slow, temperature driven responses. 33 

Key points 34 

- Precipitation response from five climate drivers shown for nine climate models 35 

- Fast responses scale with atmospheric absorption, slow with surface temperature  36 

- Over some land regions, fast precipitation responses dominate the slow response 37 

Introduction 38 

Global precipitation levels and patterns are changing in response to global warming [Hartmann, 2013]. 39 

Climate change is presently caused by the interaction of drivers such as changing concentrations of 40 
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greenhouse gases, natural and anthropogenic aerosol emissions, and changes to solar insolation [Myhre 41 

et al., 2013a]. While the connection between a changing temperature and the hydrological cycle may be 42 

understood through energy balance analyses [Allen and Ingram, 2002; O’Gorman et al., 2012], future 43 

precipitation changes are poorly constrained in state of the art climate models [Collins et al., 2013; 44 

Knutti and Sedláček, 2012]. Present models also tend to underestimate the solar absorption response to 45 

changes in water vapor following a climate perturbation, overestimating the resulting change in global 46 

mean precipitation [DeAngelis et al., 2015]. Even when identically perturbed by an ensemble of climate 47 

forcers, differences in present models’ individual atmospheric responses to these forcers give rise to 48 

significant uncertainties. Improving such precipitation forecasts, both globally and regionally, and on 49 

short and long time scales, is an important topic in present climate research, since precipitation is one of 50 

the climate factors that most closely affects human society.  51 

The global apparent hydrological sensitivity, defined as the total change in precipitation per degree of 52 

global warming, differs between climate drivers such as CO2 and solar insolation [Allen and Ingram, 53 

2002]. Further, the precipitation response to a climate forcer is usually thought to happen on two 54 

timescales: A rapid adjustment of the atmosphere to the change in energy balance as a direct result of 55 

the climate driver, and one slower response, scaling with the change in surface temperature (see e.g 56 

[Boucher, 2013; Cao et al., 2012; Kamae and Watanabe, 2012; Myhre et al., 2013a; Sherwood et al., 57 

2015]). The realization that these processes may be very differently represented in models led to the 58 

suggestion [Bala et al., 2010] that fast and slow responses be compared separately in multi-model 59 

intercomparisons to uncover robust responses in the hydrological cycle. Other publications have noted 60 

that the slow precipitation change per degree of warming is well constrained, indicating that the main 61 

differences in apparent response lie in the rapid adjustments [Timothy Andrews and Forster, 2010; 62 

Fläschner et al., 2016]. 63 
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Recently, several single model studies have investigated the response to climate drivers in isolation. 64 

Timothy Andrews et al. [2010] forced the HadGEM1 model with greenhouse gas, aerosol, albedo and 65 

solar insolation perturbations. They found strong correlations between the top of atmosphere forcing of 66 

a perturbation and the slow, temperature driven precipitation change, and between the modeled 67 

atmospheric absorption and the fast precipitation change. Kvalevåg et al. [2013] repeated the studies 68 

using the NCAR CESM1 model and the CAM4 atmospheric component. They found very similar overall 69 

results and correlations to Andrews et al. [2010], but a number of significant differences in response to 70 

otherwise identical climate perturbations.  71 

No coordinated effort has however yet been made to compare the precipitation response to identical 72 

single driver perturbations across a broad range of models. To perform such a comparison was the 73 

formative idea behind the Precipitation Driver and Response Model Intercomparison Project (PDRMIP). 74 

In the following sections, we present the first results of the PDRMIP effort, based on results reported by 75 

nine global climate models. The experiment design broadly follows that used in [Timothy Andrews and 76 

Forster, 2010] and [Kvalevåg et al., 2013], but with some differences implemented in order to allow as 77 

many models as possible to apply identical perturbations to their climate simulations. The details of the 78 

PDRMIP setup, aerosol distributions and simulations will be covered in a separate publication. Here, we 79 

present the first analysis of the PDRMIP precipitation responses to five climate drivers, and extend the 80 

analysis to separate the responses over ocean and various land regions. Upcoming publications will 81 

further explore the hydrological sensitivities, energy balances and circulation changes that underlie the 82 

present results. 83 

Methods 84 

In PDRMIP, global coupled climate models have performed simulations with comparable configurations, 85 

forcing baseline, equilibrated climates with individual drivers. In the following, we define the 86 



5 
 

perturbations, present the participating models, and show how the temperature, precipitation and 87 

radiative forcing responses were calculated. The models used for the present analysis are CanESM2, 88 

NorESM1, HadGEM2, HadGEM3-GA4, GISS-E2, NCAR CESM1 CAM4, NCAR CESM1 CAM5, MPI-ESM and 89 

MIROC-SPRINTARS. (See Table S1 for details and model references.) 90 

For the present analysis, five perturbations were simulated: A doubling of CO2 concentration (hereafter 91 

denoted CO2x2), tripling of CH4 concentration (CH4x3), 2% increase in solar insolation (Sol+2%), ten 92 

times BC concentration or emissions (BCx10) and five times SO4 concentrations or emissions (SO4x5). All 93 

perturbations were abrupt, relative to present day or preindustrial values. Greenhouse gas and solar 94 

insolation perturbations were applied relative to the models’ own baseline values. For the aerosol 95 

perturbations, multi-model mean monthly present day concentrations were extracted from the 96 

submissions to AeroCom Phase II (see e.g. [Myhre et al., 2013b; Samset et al., 2013]). To form 97 

perturbations they were multiplied by the stated factor, and both baseline and perturbed fields were 98 

regridded to the native resolution of the PDRMIP models. Some models were however unable to 99 

perform simulations with prescribed concentrations. These models instead ran a baseline with present 100 

day emissions, and then multiplied these emissions by the prescribed factors.  101 

For the baseline and each perturbation, each model ran two sets of simulations: One keeping sea 102 

surface temperatures fixed (hereafter denoted fSST), and one with a slab ocean or fully coupled ocean 103 

(coupled). The fSST simulations were run for 15 years, and the coupled simulations for 100 years. Only 104 

one ensemble member was used for each model.  Note that for the present analysis, focusing on sub-105 

centennial responses, the use of a long simulation with constant forcings is equivalent to a perturbed 106 

initial-condition ensemble. 107 

Table S1 summarizes the nine models that were used for the present analysis, including their ocean 108 

setup and native resolutions, and whether they used emissions or prescribed aerosol concentrations. All 109 
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models simulated all perturbations, except MPI-ESM which did not have the capability for performing 110 

the aerosol perturbations. One model (CESM-CAM4) used a slab ocean setup for the coupled simulations, 111 

the others used a full ocean representation. 112 

Radiative forcing (RF) due to a climate perturbation was diagnosed using use the difference in global 113 

mean flux for years 6-15 from the fSST simulations. The analysis was performed at top-of-atmosphere 114 

(TOA, RFTOA) and at the surface (RFsurf). The change in atmospheric absorption due to the climate 115 

perturbation was then defined as Atm.abs. = RFTOA – RFsurf. The run length was determined based on 116 

earlier observations that the present models equilibrate well within 5 years of fSST running (see e.g. 117 

[Kvalevåg et al., 2013]). A Gregory-style regression was also performed [Gregory and Webb, 2008], 118 

regressing the global, annual mean flux change relative to the baseline simulation against the change in 119 

surface air temperature (ΔTS) in the coupled simulations. Both methods yield comparable results – see 120 

Supplementary Information. 121 

Temperature and precipitation responses to the perturbations were calculated as averages of annual 122 

means from the last 10 years of fSST simulations, or the last 50 years of the coupled simulations. The 123 

time windows were chosen to allow both for approximate model equilibration (see Discussion), and to 124 

encompass internal annual and decadal variability. For the regional analyses, all modeled precipitation 125 

responses were regridded to 1°x1° resolution.  126 

To diagnose the fast precipitation response due to rapid adjustments, Pfast, we used the response in the 127 

fSST simulations. In the coupled simulations, we have assumed that the response over the last 50 years 128 

is a linear combination of the fast response and a slow response due to surface temperature change. 129 

Hence the slow response can be calculated as Pslow = Ptotal – Pfast.  130 
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Results 131 

We first compare the near-surface temperature change and total (fast+slow) precipitation responses to 132 

the five climate perturbations, regionally and globally averaged, for all participating models. We then 133 

highlight similarities and differences across the multi-model ensemble and for each forcing agent; for RF, 134 

fast and slow precipitation responses, and contrasts in behavior between land and ocean.  135 

Figure 1 shows the global mean temperature and precipitation responses to the climate perturbations. 136 

For CO2x2, the temperature response varies between about 2-4 K, consistent with the range in modeled 137 

climate sensitivities found in CMIP5 [T. Andrews et al., 2012]. We note, however, that most models have 138 

not achieved equilibrium 100 years after the perturbation, and hence the full temperature response is 139 

likely higher. The precipitation response to CO2x2 ranges from 1-6 %, correlated with the temperature 140 

response. The bottom left panel of Figure 1 illustrates this, showing the hydrological sensitivity (HS) for 141 

CO2x2 across the models. The HS, defined as Ptotal/T (in recent publications termed the apparent 142 

hydrological sensitivity parameter [Fläschner et al., 2016], a terminology which we adopt here) shows 143 

much less spread, with a multi-model mean HS of 1.4 ± 0.3 %/K for CO2x2. The error indicates one 144 

standard deviation across the present model sample. One model (GISS-E2) stands out as having a 145 

markedly lower response than the others, in temperature, precipitation and HS. This is consistent with 146 

this model having amongst the lowest equilibrium climate sensitivities of the CMIP5 models [Forster et 147 

al., 2013], and being flagged as an outlier in another recent multi-model study investigating CO2 forcing 148 

in CMIP5 [DeAngelis et al., 2015]. 149 

For CH4x3 and Sol+2% the pattern between models is qualitatively similar to CO2x2, although the 150 

apparent HS is higher; 1.7 ± 0.4 %/K for CH4x3 and 2.4 ± 0.2 %/K for Sol+2%. This is in line with earlier 151 

modelling studies [Allen and Ingram, 2002].  152 
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Black carbon shows an opposite precipitation response to the other forcing agents, i.e. it has a negative 153 

apparent HS, due to its strong atmospheric absorption of shortwave radiation. All models give a positive 154 

temperature response in the BCx10 case, but with a relatively large spread. The precipitation response is 155 

consistently negative, except in one model (HadGEM3-GA4) where it is consistent with zero. The 156 

apparent HS for BCx10 shows sizeable spread.  157 

The sulfate perturbation yields a negative response in both temperature and precipitation, across all 158 

models. The HS for SO4x5 is similar to that for Sol+2%, and stronger than for the greenhouse gases. One 159 

model (HadGEM3-GA4) finds a markedly strong response to SO4x5 in both temperature and 160 

precipitation, but has a HS in line with the other models. This model version simulates a relatively high 161 

sulfate aerosol optical depth per unit mass, and has previously been shown to have a strong indirect 162 

aerosol effect relative to comparable models [Wilcox et al., 2015]. NCAR CESM CAM4, which does not 163 

include any indirect aerosol effects on clouds, has a sulfate response and a HS that is well within the 164 

multi-model spread.  165 

Inspired by earlier single model studies [Timothy Andrews et al., 2010; Kvalevåg et al., 2013], we 166 

investigate correlations of precipitation changes with energetic quantities (Figure 2). The left panel 167 

shows the regressed change in net atmospheric absorption against the global mean fast precipitation 168 

response. RF values were calculated using the fSST method. Figure S1 shows the corresponding results 169 

when using 20 year Gregory regressions. As in the previous single model studies, we find a strong 170 

negative correlation. The main reason for this is that the greater change in absorption through the 171 

atmospheric column, the more convection is suppressed, leading to reduced precipitation and latent 172 

heating. All models show atmospheric absorption consistent with zero for SO4x5 (except one model, 173 

CAM5, which calculates 1 W m-2), and around 0.5 W m-2 for CH4x3 and Sol+2%. CO2x2 results in around 174 

2 to 3 W m-2 of atmospheric absorption for all models, with a corresponding fast precipitation response 175 

of -20 to -40 mm/yr. BCx10 displays significant absorption in all models, but with a very large range, 176 
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from 1 to more than 5 W m-2. The resulting fast precipitation response however largely follows the 177 

multi-model, multi-perturbation regression line. Deviations from this regression line can occur because 178 

the change in the atmospheric energy budget also depends on changes in surface sensible heat flux, as 179 

well as the radiative and latent-heat terms. See e.g. [Fläschner et al., 2016]. 180 

The right panel of Figure 2 regresses the change in near-surface temperature (TS) against the slow 181 

precipitation response. We find a strong positive correlation, again in line with previous single model 182 

studies. The results for a single driver show a spread in accordance with the climate sensitivities of the 183 

PDMIP model sample (generally the same versions as in CMIP5, see [Forster et al., 2013]). For BCx10 two 184 

models (CanESM2, HadGEM2) fall well outside the correlation line, however the temperature change 185 

due to the BC perturbation used here is also very low (<2K for all models). The HadGEM3-GA4 response 186 

to SO4x5 stands out as particularly strong, but still follows the general trend.  187 

Broadly, Figure 2 confirms the physical picture drawn in [Timothy Andrews et al., 2010] and [Kvalevåg et 188 

al., 2013]. The precipitation response to a global climate driver can be subdivided into two broad 189 

components: A fast response, which scales with changes in the atmospheric absorption, and a slower 190 

response related to changes in surface temperature, scaling with the surface temperature change (and, 191 

more broadly, TOA RF). Inter-model differences are however significant. The scaling with climate 192 

sensitivity in the right panel is far from perfect, and the left panel indicates a wide range of modeled 193 

atmospheric absorptions and fast responses for comparable perturbations. Investigating the internal 194 

processes that link TOA RF, surface temperature change and atmospheric absorption to precipitation 195 

change in these models therefore is a promising way to understand inter-model spread and potentially 196 

reduce multi-model uncertainty in precipitation.  197 

Table S2 lists the multi-model average global mean responses to the five perturbations, for radiative 198 

forcing, temperature, and total, fast and slow precipitation. The PDRMIP ensemble confirms earlier 199 
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model studies indicating a stronger apparent hydrological sensitivity for changes to solar irradiance 200 

(2.4 %/K) relative to the greenhouse gases (1.4 %/K). Further, the modeled climates are also more 201 

sensitive to aerosol perturbations than to forcing from greenhouse gases, albeit with a significantly 202 

higher ensemble uncertainty for BCx10. Recent publications have studied how the precipitation 203 

response to a climate driver scales with surface temperature change alone, termed the slow 204 

hydrological sensitivity (e.g. [Timothy Andrews et al., 2010; Fläschner et al., 2016]), and found that it 205 

varies less between models and drivers than the apparent HS. This will be explored for the PDRMIP 206 

model ensemble in an upcoming publication.  207 

Figure 3 shows the multi-model mean geographical patterns of the total, fast and slow precipitation 208 

responses to the individual perturbations. For most regions and perturbations, the models do not all 209 

agree on the sign of the responses, however some robust features are still apparent.  210 

For CO2x2 (top row), the total response is comprised of a negative fast response at most latitudes, and a 211 

stronger positive slow response at all latitudes but with a few exceptions in the inter-tropical 212 

convergence (ITCZ) regions. The former is mainly due to the stabilizing effect of the atmospheric 213 

absorption of CO2, the latter due to the gradual increase in surface temperature. The total precipitation 214 

change is strongest around the Equator, dominated by the slow change over the Pacific Ocean. Most 215 

regions are dominated by the slow response, but some land regions are dominated by the fast changes. 216 

(See below).  217 

CH4x3 and Sol+2% (second and third rows) show broadly similar total and slow precipitation response 218 

features to CO2x2, except that CH4x3 has lower absolute response due to the weaker RF (as also seen in 219 

Figure 1). The model mean fast response to CH4x3 is non-significant for all latitudes, as expected for 220 

climate perturbations with low atmospheric absorption. SO4x5 (bottom row) shows an inverted pattern 221 

to the solar and greenhouse gas perturbations, with virtually no (significant) fast response in the zonal 222 
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mean. For CO2x2, CH4x3, Sol+2% and SO4x5, there is a clear land/ocean difference, in line with earlier 223 

analyses based on the CMIP5 model ensemble [Richardson et al., 2016]. Tropical land areas generally 224 

see a positive fast precipitation response, largely canceled out in the zonal and global means by a 225 

corresponding negative response over tropical oceans.  226 

BCx10 (fourth row) shows a markedly different response pattern to the other perturbations. There is 227 

little slow response, except in the tropics where the zonal mean shows a small positive precipitation 228 

change north of Equator and a smaller negative one south of Equator. The total is dominated by the fast 229 

response, which is generally negative at most latitudes. The aerosol perturbations tend to shift the ITCZ 230 

more (southwards for SO4x5, north for BCx10) than the solar and GHG changes, due to the more 231 

hemispherically heterogeneous RF that they cause. 232 

A common misconception about the change in precipitation caused by a given driver is that it is 233 

composed of an initial, weak fast response due to rapid adjustments, which will over time be 234 

overwhelmed by the slow, temperature driven response. Figure 3, however, indicates that in several 235 

regions, the fast response may dominate even when the climate system approaches a new equilibrium, 236 

in line with what has previously been observed for tropical precipitation under rising CO2 concentrations 237 

[Bony et al., 2013].  In Figure 4, top row, we explore this by comparing the total, fast and slow 238 

precipitation responses over land and ocean separately, and over six land regions: North America, South 239 

America, Europe, Africa, South Asia and Australia (for region definitions, see Figure S2). There are clearly 240 

large regional and inter-model differences, but some significant features still emerge. Over the ocean, 241 

the climate drivers cause a fast response opposed by a slow response. Over some land regions, however, 242 

the fast and slow responses have the same sign. This signature is particularly clear over South Asia.  243 

To determine whether fast or slow precipitation responses dominate over years 51-100 of the PDRMIP 244 

simulations, we define the response ratio Rresp = (|Pfast|-|Pslow|)/(|Pfast|+|Pslow|).  Rresp will be 245 
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positive when rapid adjustments dominate the long term precipitation response, and negative when the 246 

slow response dominates. For the extreme cases of only fast or slow responses, Rresp will be +1 or -1 247 

respectively. The lower panel of Figure 4 shows the multi-model mean Rresp for all PDRMIP drivers, for 248 

land, ocean and the six regions defined above. For most regions and drivers, the models do not 249 

consistently agree on the dominating response (not shown). The response over oceans is, however, 250 

consistently dominated by the slow response for all drivers and models, except for BCx10 where all 251 

models but one predict that the fast precipitation response still dominates at near-equilibrium. 252 

Considering land regions, South America and Africa are mainly dominated by the fast response for all 253 

perturbations. Australia shows a similar pattern, albeit with a much larger intermodel spread. Southeast 254 

Asia sees a dominance of the slow response, while North America and Europe have a more mixed 255 

response to the different drivers. The latter mainly reflects a large inter-model spread in the results, 256 

probably at least partly due to differences in aerosol treatment and lifetime (where emissions were used) 257 

for the BCx10 and SO4x5 cases. For the CO2x2 case, one factor likely contributing to the dominance of 258 

fast responses over land is the physiological forcing from CO2-induced stomatal response, which has 259 

been shown to significantly affect both surface temperature response and water balance in previous 260 

model studies [Cao et al., 2010]. 261 

Discussion 262 

Overall, the results presented in the previous section agree with earlier single model studies of the 263 

precipitation impacts of individual forcers, and confirm our expectations based on simple energetics. 264 

The internal mechanisms linking changes to the energy balance to altered precipitation rates however 265 

differ between models, and we do see significant inter-model variability.  266 

The hydrological sensitivity for a BCx10 perturbation varies strongly between models. One model even 267 

shows a positive (non-significant) apparent HS. This is likely due to the multiple ways in which BC can 268 
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affect climate – both directly, through absorption and scattering of incoming sunlight, indirectly through 269 

modifications of cloud microphysical properties, and semidirectly, through heating ambient air and thus 270 

altering stability and/or burning off clouds from within [Bond et al., 2013; Samset and Myhre, 2015]. This 271 

range of effects is much larger than e.g. for SO4x5, where the additional particles mainly scatter 272 

incoming sunlight and affect cloud microphysics. BC–climate interactions are treated very differently in 273 

present global climate models, as are transport and removal processes, factors which cause strong 274 

variations even for direct radiative forcing (see e.g. [Samset et al., 2013]). E.g. it is interesting to note 275 

that the responses for HadGEM2 and HadGEM3-GA4 are markedly different, even though they use the 276 

same aerosol physics schemes. Also, some models have used prescribed concentrations based on 277 

AeroCom Phase II, and some have used native emissions. As we have not attempted to normalize the 278 

responses to the simulated aerosol burden, or to any differences in vertical profile, this is one likely 279 

contributor to the observed diversity [Ban-Weiss et al., 2011; Hodnebrog et al., 2014; Samset and Myhre, 280 

2015]. The precipitation response to BC perturbations in PDRMIP will be investigated in detail in a 281 

follow-up publication. We note that the differences seen here will have been present for CMIP5, 282 

meaning that BC is likely a strong contributor to the prediction diversity seen there.  283 

As noted above, most PDRMIP models ran their coupled simulations with a fully coupled ocean. This 284 

means that for strong perturbations like CO2x2, they will likely not have reached their equilibrium 285 

warming within the 100 years simulated here. Recently, Caldeira and Myhrvold [2013] found that in the 286 

CMIP5 model ensemble, on average 80% of the equilibrium warming after a 4xCO2 perturbation had 287 

been realized after the first 100 simulation years. One PDRMIP model (GISS-E2) ran an additional 250 288 

years for our CO2x2 case, and found an additional 0.5K warming beyond the 1.5K realized over their first 289 

100 years. Another (CanESM2) found an additional 0.6K beyond the 2.7K in the first 100 years when 290 

running the model for 800 years. Both of these results are consistent with the Caldeira and Myhrvold 291 

[2013] analysis, indicating that we could expect similar extra, long term warming for the other models in 292 
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the PDRMIP ensemble. For the present analysis, this non-equilibrium is not crucial for the main 293 

conclusions, as models are then well within the regimes where changes to precipitation scale with the 294 

slow increase in surface temperature. Hence, for fully equilibrated models both the temperature and 295 

precipitation responses to the perturbations would have been stronger, but still follow the trends shown 296 

in Figure 2.  The ratio of fast to slow precipitation response would however likely change on such long 297 

time-scales, changing the regional patterns found in Figures 3 and 4.  298 

A further potential issue with the present analysis is the temperature response over land in the fSST 299 

simulations. In principle, the fast response as diagnosed above could have a slow component, as the 300 

land surface temperature may increase somewhat with time even if sea surface temperatures are kept 301 

constant. We tested the impact of this by calculating the global mean temperature change over land in 302 

the fSST case, assuming a resulting precipitation change of (Pslow / Tland,coupled) x Tland,fSST, and 303 

reinterpreting it as part of the slow response. While this procedure changes the results by up to 10% for 304 

some models, the multi-model mean results presented above are not affected within the uncertainties 305 

given. 306 

Conclusions 307 

We have presented the response to perturbations to five climate forcers (CO2x2, CH4x3, Sol+2%, BCx10 308 

and SO4x5) across nine global climate models, as part of the PDRMIP project. As in previous single 309 

model studies, we find that global mean precipitation responds on two timescales: One fast response, 310 

acting on the timescale of months, that scales closely with the atmospheric energy net absorption due 311 

to the forcing agent, and a slower response that  scales with the long term change in global surface 312 

temperature. All models show broadly similar responses to the perturbations, but beyond this there is 313 

still significant inter-model variability, indicating differences in how the atmosphere reacts to altered 314 

absorption and surface temperature. Black carbon stands out as the forcing agent with the largest inter-315 
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model spread in hydrological sensitivity. The precipitation response over oceans is quite uniform 316 

between models, and dominates the global mean values. Over land, where the precipitation response to 317 

climate drivers is arguably much more relevant for human activities, we find large regions where the 318 

rapid adjustments dominate over the slow response across the entire model ensemble, even 100 years 319 

after the perturbation was applied. The main results in the present paper will be further explored in 320 

upcoming PDRMIP publications, with emphasis on hydrological sensitivities, energy balances, circulation 321 

changes and radiative forcing. 322 
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 Figures 414 

 415 

Figure 1: Global, annual mean temperature (top row) and precipitation (middle) change for years 51-100 416 

following a climate perturbation, and the resulting apparent hydrological sensitivity. The numbers 417 

indicate the participating models. Error bars indicate ± one standard deviation of interannual variability. 418 

 419 

Figure 2: Regression of fast precipitation change vs. atmospheric absorption (left) and slow precipitation 420 

change vs. top-of-atmosphere radiative forcing (right). The shown regression lines and Pearson 421 

coefficients of correlation (R) are for the combined data from all models and climate perturbations.  422 
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 423 

 424 

Figure 3: Geographical patterns of multi-model mean precipitation change. Each row shows a different 425 

climate perturbation. Hatched regions indicate where the multi-model mean is more than one standard 426 

deviation away from zero. Left map column: Total change. Center map column: Fast change due to rapid 427 

adjustments. Right map column: Slow change due to surface temperature change. Rightmost column: 428 
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Multi-model zonal means, showing fast (blue), slow (red) and total (black) precipitation changes. The 429 

shaded bands show ±1 of the 9-model ensemble.  430 

 431 

 432 

Figure 4: Top row: Regional precipitation response, divided into fast and slow components for 5 climate 433 

drivers. The left panel shows the land and ocean respones separately. The right panel shows the reponse 434 

for the land-only regions of North America (NAM), South America (SAM), Europe (EUR), Africa (AFR), the 435 

major aerosol emission regions of South Asia (SAS), and Australia (AUS). See Figure S2 for definitions. 436 

Bottom  row: Response ratio (see text), calculated from the multi-model mean values in the top row.   437 

 438 


