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Equilibrium behavior of symmetric ABA triblock copolymer melts 
M. W. Matsena) and R. B. Thompson 
Polymer Science Center, University of Reading, Whiteknights, Reading RG6 6AF, United Kingdom 

(Received 16 June 1999; accepted 27 July 1999) 

Melts of ABA triblock copolymer molecules with identical end blocks are examined using 
self-consistent field theory (SCFT). Phase diagrams are calculated and compared with those of 
homologous AB diblock copolymers formed by snipping the triblocks in half. This creates 
additional end segments which decreases the degree of segregation. Consequently, triblock melts 
remain ordered to higher temperatures than their diblock counterparts. We also find that 
middle-block domains are easier to stretch than end-block domains. As a result, domain spacings are 
slightly larger, the complex phase regions are shifted towards smaller A-segment compositions, and 
the perforated-lamellar phase becomes more metastable in triblock melts as compared to diblock 
melts. Although triblock and diblock melts exhibit very similar phase behavior, their mechanical 
properties can differ substantially due to triblock copolymers that bridge between otherwise 
disconnected A domains. We evaluate the bridging fraction for lamellar, cylindrical, and spherical 
morphologies to be about 40%–45%, 60%–65%, and 75%–80%, respectively. These fractions only 
depend weakly on the degree of segregation and the copolymer composition. © 1999 American 
Institute of Physics. [S0021-9606(99)51139-2] 
a)Author to whom correspondence should be addressed. 

I. INTRODUCTION 

Block copolymers have received considerable attention 
due to the intriguing periodic ordered morphologies they ex
hibit. Much of this attention has been focused on the AB 
diblock copolymer because it has the simplest possible archi
tecture. As a result, we have developed a very thorough un
derstanding of its equilibrium behavior.1,2 However, there 
are a wide variety of other flavors. AB-type block copoly
mers alone have been synthesized to form triblocks, linear 
multiblocks, combs, stars with diblock arms, hetero-arm 
stars, H-shaped copolymers, and various other architectures.3 

It is somewhat surprising that this rich selection of AB-type 
copolymers seems to exhibit the same common set of or
dered morphologies displayed in Fig. 1. This includes the 
classical lamellar (L), cylindrical (C), and spherical (S) 
phases plus the complex gyroid (G) structure. Nevertheless, 
variations in the architecture do significantly shift the loca
tion of the phase boundaries.4 They may also stabilize the 
perforated-lamellar (PL) phase, which in diblock copolymer 
melts is highly metastable in the region where G is stable.5 

To understand why changing the architecture of AB-type 
block copolymers has a limited effect on phase behavior, 
consider an ordered melt of symmetric ABA triblocks of 
polymerization 2N (see Fig. 2). If the melt is well segre
gated, then the polymer chains will stretch significantly in 
order to reduce the amount of interface. However, the middle 
of the B block, which is typically near the center of a B-rich 
domain, is relatively unstretched. Consequently, the free en
ergy of the melt remains virtually unaffected if all the tri
blocks are snipped at this location producing a system of 
diblocks.6 In fact, the phase behavior of ABA triblocks and 
their homologous AB diblocks of polymerization N becomes 
0021-9606/99/111(15)/7139/8/$15.00 713
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identical in the strong-segregation limit.7 Similar arguments 
can be applied to more complicated multiblock copolymers. 

One distinct difference between the two architectures is 
that ABA triblocks have both ends of their B block con
strained to an interface. Therefore, we can distinguish be
tween looped and bridged configurations in morphologies 
where there are distinct interfaces (see Fig. 2). In a looped 
configuration, both ends of the B block reside on the same 
interface, but in a bridged configuration, the two ends lie on 
different interfaces. Although this issue has very little effect 
on the equilibrium phase behavior, the presence of bridges 
linking separate interfaces together strongly affects the me
chanical properties of the material.8,9 In fact, bridges are a 
crucial aspect of thermoplastic elastomers, which are one of 
the most successful applications of block copolymers. 

There has already been a considerable amount of re
search directed towards ABA triblock copolymer melts. 
Early on, Helfand and Wasserman6 predicted that the phase 
behavior of homologous triblock and diblock melts would be 
nearly identical at strong segregations. Indeed, experiments 
commonly observe the same three classical phases, L, C, and 
S, as found in diblock melts. Furthermore, recent 
experiments10 have identified gyroid phases on both sides of 
the triblock lamellar region, suggesting that the complex 
phase behavior is also the same. Matsushita et al.11 have 
confirmed that the lamellar domain spacings of homologous 
triblock and diblock melts are similar, although accurate ex
periments of Mai et al.12 have recently found the spacings to 
be slightly larger in the triblock system. Mayes and Olvera 
de la Cruz have calculated the mean-field phase boundaries 
in the weak-segregation limit13 and have subsequently com
puted fluctuation corrections.14 Although their triblock phase 
diagram is topologically the same as that for diblocks, it does 
predict a significant shift in the order–disorder transition 
(ODT). This has since been confirmed by numerous experi
9 © 1999 American Institute of Physics 
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7140 J. Chem. Phys., Vol. 111, No. 15, 15 October 1999 M. W. Matsen and R. B. Thompson 
mental groups.8,12 Despite such similar phase behavior, vari
ous experiments8,9 have documented large mechanical differ
ences indicating that triblock copolymers commonly adopt 
bridged configurations. Indeed, theoretical calculations7,15 

have predicted the bridging fraction in the lamellar morphol
ogy to be about 40%. Watanabe16 has since confirmed this 
experimentally. 

FIG. 1. Illustrations of AB-type block copolymer microstructures showing 
the domains occupied by the minority-component blocks. The remaining 
space is filled by the majority-component blocks. 

Recent developments17,18 in self-consistent field theory 
(SCFT) have now made it possible to apply exact mean-field 
theory to block copolymer melts over the complete spectrum 
of segregations.19 Such calculations have already been used 
to provide detailed explanations for AB diblock copolymer 
phase behavior.1,2 Here, we now apply this state-of-the-art 
theory to symmetric ABA triblock copolymer melts. The 
SCFT is used to examine phase diagrams, segment distribu
tions, interfacial widths, domain spacings, and bridging frac
tions. Our study also includes detailed comparisons between 
ABA triblock melts and homologous AB diblock melts in an 
effort to better understand how architecture affects phase be
havior. 

II. THEORY 

This section briefly describes the self-consistent field 
theory (SCFT) (Refs. 17–20) for a monodisperse melt of n 
symmetric ABA triblock copolymers. Each triblock mol
ecule is composed of 2N segments of which f AN form each 
A block and the remaining 2(1- f A)N form the middle B 
block. The A and B segments are assumed to be incompress
ible and are defined based on a common segment volume 
p0 , so that the total volume of the melt remains fixed at 
V=2nN/p0. The A and B segments are also assumed to be 
completely flexible with statistical lengths aA and aB , 
respectively;21 i.e., the unperturbed rms end-to-end length of 

-1 
Downloaded 29 Apr 2005 to 134.225.1.162. Redistribution subject to AIP
FIG. 2. Typical configurations of AB diblock and ABA triblock copolymers 
in a lamellar morphology. Triblock molecules are shown in both bridge- and 
loop-type configurations. 

a(2N)1/2 2a triblock molecule is , where a=( f AaA+(1 
2 )1/2- f A)aB . The interaction between A and B segments is 

controlled by the usual Flory–Huggins x parameter. We pa
rameterize the contour of each copolymer by s, which in
creases from 0 to 2 over the length of the molecule. This 
allows us to define 

{ A, if 0<s< f A , 

v(s)= B, if  f A<s<2- f A , 

A, if 2- f A<s<2, 

(1) 

to specify the segment type along the chain. Furthermore, the 
parameterization allows us to define the space curve ra(s) in  
order to specify the configuration of the ath copolymer. 

In SCFT, the molecular interactions are represented by 
two static fields, wA(r) and wB(r), which act on the A and B 
segments, respectively. This mean-field approximation al
lows us to perform the statistical mechanics of a triblock 
copolymer exactly. The first step in this process is to evalu
ate 

q(r, s)= f Drao(r- ra(s))  

2s 3 d 
Xexp{ -f dt[ 1 ra( t )120 2Nav(t) 

dt 

+wv(t)(ra( t )) , ] )
 (2)

which is the partition function for the (0,s) portion of the 
chain with the sth segment fixed at position r. The two terms 
in the exponential represent the entropy loss for stretching 
the chain and the energy resulting from the fields, respec
tively. This function conveniently satisfies the modified dif
fusion equation, 

a 2q(r, s)=[ 16Nav(s)V
2-wv(s)(r )]q(r, s), 

as 
(3)

with the initial condition q(r,0) =1.17 

The product q(r, s)q(r,2- s) provides the partition 
function for a complete triblock molecule with its sth seg
ment constrained to position r. Summing this over all pos
sible positions provides the partition function for an uncon
strained triblock, 
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp 
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Q=f drq (r, s)q(r,2- s). (4) 

This integral is independent of s as it must be. Furthermore, 
q(r, s)q(r,2- s) is proportional to the distribution function 
p(r, s) for the sth segment. If we choose to normalize the 
distribution so that its average is one, then 

V 
p( r, s)= q( r, s)q(r,2- s). Q 

(5)

Given that, it follows that the total A and B segment distri
butions are 

1A(r )= 
V 

Qf 
0 

f A 
dsq(r, s)q(r,2- s), (6) 

1B(r )= 
V 

Q f A 

1 

dsq(r, s)q( r,2- s), f (7) 

respectively, where we have used the fact the triblock mol
ecule is symmetric about its middle (i.e., s=1). 

The fields are produced by and thus are related to the 
segment distributions by self-consistent field equations,18 

wA(r )=xN1B( r )+t(r ), (8) 

wB(r )=xN1A( r )+t(r ). (9) 

In both expressions, the first term represents the segment 
interactions, and the last term is a Lagrange multipler used to 
enforce the incompressibility constraint, 

1A(r )+1B( r )=1. (10) 

These equations are satisfied by adjusting the fields using a 
quasi-Newton–Raphson method. There are multiple solu
tions each representing a different phase. The stable phase is 
the one with the lowest free energy F given by 

F 1 Q xN 
=- ln - f dr1A( r )1B( r ). 

2nkBT 2 V V 
(11)

For the uniform disordered phase, this expression reduces to 
F/2nkBT=xN fA(1- f A). If the phase is ordered, F has to 
be minimized with respect to the domain spacing. All the 
ordered phases considered in this study are periodic, and 
therefore we solve their equations using the Fourier method 
in Ref. 18 with up to 400 basis functions. 

It is a straightforward calculation to determine the equi
librium fraction of triblocks existing in bridged and looped 
configurations (see Fig. 2). The first step is to evaluate the 
partition function, 

{
q(r, f A)
q̄( r, f A)=

0, 

,

otherwise, 
(12)


if  rE 1st cell,
 

for an A block with its s= f A junction constrained to the first 
unit cell. By propagating this with the modified diffusion Eq. 
(3), we obtain the partition function q̄(r, s) for the (0,s) 
portion of a chain with the first junction constrained to the 
first unit cell and the sth segment (s� f A) fixed at position r. 
[Because q̄(r, s) is not periodic, it is calculated in real space 
using the Crank–Nicolson algorithm.] We can then evaluate 
Downloaded 29 Apr 2005 to 134.225.1.162. Redistribution subject to AIP
the distribution p̄(r, s) of the sth segment (s� f A) from all 
the triblocks with their first junction in the first unit cell 
using 

p̄(r, s)= 
V

q̄(r, s)q( r,2- s). Q (13)

These triblocks form loops provided their second junction is 
also in the first unit cell, and thus the fraction of looped 
configurations is 

1 
vL = f dr p̄(r,2- f A), Vcell 1st cell 

(14)

where Vcell is the volume of a unit cell. Naturally, the remain
ing triblocks must form bridges, and therefore the bridging 
fraction is vB =1-vL . 

III. RESULTS 

The phase diagrams in Fig. 3 for symmetric ABA tri
block copolymer melts are evaluated by comparing the free 
energies of the disordered phase and each ordered phase 
shown in Fig. 1. Diagrams are presented for three different 
statistical segment length ratios. In each case, the topology of 
the diagram is equivalent to that of the standard AB diblock 
system.1,2 The sequence of ordered phases from the middle 
( f A=0.5) outwards is lamellae (L), gyroid (G), hexagonal 
cylinders (C), body-centered-cubic spheres (S), and close-
packed spheres (Scp). All three classical phases, L, C, and S, 
extend upwards from mean-field critical points denoted by 
solid dots, but the G and Scp regions do not begin until the 
melt becomes well segregated. Presumably, the G regions 
eventually pinch off at high segregations as a result of pack
ing frustration,1,2 but we could not confirm this due to nu
merical limitations that prevented us from calculating the 
free energy of G accurately at strong segregations. This is the 
reason that some of the phase boundaries in Fig. 3 had to be 
extrapolated with dashed lines. The Scp phase, however, is 
expected to extend to the strong-segregation limit in narrow 
regions along the order–disorder transition (ODT). These re
gions occur when the thermal energy is sufficient to pull a 
significant fraction of minority blocks from their spherical 
domains. This swells the matrix, which relieves packing 
frustration and allows the spheres to order into a close-
packed lattice as favored by the effective interactions be
tween them.22 The mean-field phase diagrams in Fig. 3 are 
modified somewhat along the ODT by fluctuation effects, 
which will be discussed in the next section. 

The perforated-lamellar (PL) phase competes closely 
with the G phase for stability, because it has a similar degree 
of interfacial curvature.1,2 However, the PL phase possesses 
slightly more packing frustration, and consequently it re
mains unstable relative to the G phase.1,2 Nevertheless, its 
high degree of metastability is sufficient that it can persist for 
extremely long periods of time before converting to the G 
morphology.5 Figure 4 examines the free energy difference 
!FPL between the PL and G phases along the G/L phase 
boundary. PL is most metastable along this side of the G 
regions, because its interfacial curvature is slightly less than 
that of G. The plots demonstrate that the PL phase is far 
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp 
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more metastable on the small-f A side of the phase diagram, 
where the outer A blocks form the perforated lamellae. Also, 
an appropriate conformational asymmetry increases its meta
stability just as it does in the diblock system.21 It is quite 
possible that a higher level of asymmetry could, in fact, sta
bilize the PL phase. 

FIG. 3. Mean-field phase diagrams for symmetric ABA triblock copolymers 
of polymerization 2N for a selection of statistical segment length ratios. The 
ordered phases are labeled as L (lamellar), G (gyroid), C (cylindrical), and S 
(spherical). Above the solid diamonds along the order-disorder transition 
(ODT) are narrow regions where the Scp (close-packed spherical) phase is 
stable. The solid dots denote mean-field critical points, and the dashed 
curves are extrapolated phase boundaries. 

The interfacial width w between A and B domains is a 
good indicator of the degree of segregation. Figure 5 com
pares the interfacial widths in an f A=0.5 ABA triblock melt 
and its AB diblock counterpart as a function of xN. (We 
define the width as w=(d1A /dz)-1 evaluated at the 
interface.)19 The width is generally narrower in the triblock 
system indicating a higher level of order. To understand how 
snipping triblocks in half reduces the segregation, we exam
ine segment profiles p(z,s) in  an  f A =0.5 lamellar phase, 
where z is the coordinate orthogonal to the lamellae. The 
solid curves in Fig. 6 show the profiles of the first junction 
Downloaded 29 Apr 2005 to 134.225.1.162. Redistribution subject to AIP
FIG. 4. Excess free energy !FPL of the perforated-lamellar (PL) phase 
along the L/G phase boundary for the three statistical segment length ratios 
considered in Fig. 3. The upper and lower sets of curves correspond to the 
large-f A and small-f A sides, respectively, of the phase diagrams in Fig. 3. 

FIG. 5. Interfacial width w plotted as a function of segregation xN in an 
f A =0.5 lamellar phase. The solid curve corresponds to triblocks of poly
merization 2N, and the dashed curve is for diblocks of polymerization N. 

(s= f A) and of the middle segment (s=1). The dashed 
curves then show how these two distributions change for a 
triblock snipped at its midpoint (i.e., diblock segment distri
butions are calculated in the fields for the triblock melt). 
While the junction distribution is nearly unaffected, the 
middle segment distribution of the triblock broadens signifi
cantly when it becomes the end segment of a diblock. Al
though this effect will diminish in the strong-segregation 
limit, comparing the xN=15 and 30 results indicates that the 
effect remains significant to very high values of xN even 
though it stops influencing the interfacial width by xN 
=30. 

Figure 7 compares the domain spacings in triblock melts 
(solid curves) to those in diblock melts (dashed curves). The 
top plot shows the domain spacing D* of an f A =0.5 lamel
lar phase as a function of segregation xN, and the lower plot 
examines D* as a function of composition f A . To compare 
spacings in different morphologies, we define D*=2�/q*, 
where q* is the principal wave vector. There are discontinu
ous jumps in D* at each phase transition consistent with 
experimental observations in both triblock and diblock 
melts.9 In general, the period of a triblock morphology is 
about 5% greater than that in the corresponding diblock melt. 
Unlike the small difference observed in the interfacial widths 
w, this difference persists to very high degrees of segrega-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp 
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tion. Notice that in both systems, the spacing in the spherical 
phases increases sharply as the ODT is approached; this is 
due to minority blocks pulling free of their domains and 
swelling the matrix as discussed above. 

FIG. 6. Segment distributions p(z,s) plotted over one period of an f A 

=0.5 lamellar phase at (a) xN=15 and (b) xN=30. The solid and dashed 
curves are calculated for ABA triblock and AB diblock copolymers, respec
tively. The s=0.5 junction distributions are virtually identical, but the s 
=1.0 distributions, comparing the middle of a triblock and a B-end of a 
diblock, are considerably different. 

A previous SCFT calculation7 has calculated the bridg
ing fraction vB in the L morphology. Here, we extend that 
calculation to evaluate the fraction of B blocks that bridge 
between A-rich cylinders and spheres in the C, S, and Scp 

phases (i.e., the small-f A side of the phase diagrams in Fig. 
3). The procedure is illustrated in Fig. 8 for the L and C 
morphologies. The first step is to determine the s= f A junc

tion distribution p̄(r, f A) from a single minority A domain as 
displayed in Figs. 8(a) and 8(c). This distribution is then 
propagated as described in Sec. II to obtain the distribution 

p̄(r,2- f A) of the connected s=2- f A junctions as shown in 
Figs. 8(b) and 8(d). The looping fraction vL is determined by 

integrating the volume under p̄(r,2- f A) remaining in the 
initial unit cell. The bridging fraction is then given by vB 

=1-vL . Figure 9 shows the bridging fraction vB calculated 
as a function of f A for three values of xN. As determined 
earlier for the L phase,7,15 vB only depends weakly on the 
segregation and composition of the melt. However, vB 

changes significantly with morphology, except at the S to Scp 

transition where the change is not noticeable on the scale of 
Fig. 9. 
Downloaded 29 Apr 2005 to 134.225.1.162. Redistribution subject to AIP
FIG. 7. Principal domain spacings D* as a function of (a) segregation xN at 
fixed f A =0.5 and of (b) composition f A at fixed xN=30. The solid curves 
correspond to triblocks of polymerization 2N, and the dashed curves are for 
diblocks of polymerization N. In  (b), the solid dots denote phase transitions, 
where D* changes discontinuously. For the L phase the layer spacing equals 
D*, for G the size of the cubic unit cell is 61/2D*, for C the spacing 
between cylinders is (4/3)1/2D*, and for S and Scp the nearest-neighbor 
spacing of spheres is (3/2)1/2D*. 

IV. DISCUSSION 

The same general principles that govern the behavior of 
AB diblock copolymer melts apply equally to ABA triblock 
copolymer melts, and consequently their phase diagrams are 
very similar. First of all, the same competition between A/B 
interfacial tension and chain stretching selects the domain 
size. Just as in diblock melts, a competition between the 
stretching energies of the A and B blocks produces a pre
ferred curvature in the A/B interface. This preferred curva
ture increases in magnitude as f A deviates from -0.5, which 
causes the system to select morphologies with more and 
more interfacial curvature. The ratio of the statistical seg
ment lengths also affects the preferred curvature.21 Decreas
ing aA /aB makes B blocks easier to stretch relative to A 
blocks, which favors B on the inside of curvature and there
fore causes a shift in the phase boundaries towards lower f A 

(see Fig. 3). Between the classical lamellar (L) and cylindri
cal (C) phases, numerous complex phases possess appropri
ate interfacial curvature, and thus they compete for 
stability.1,2 As in the diblock system, the triblock melt selects 
the gyroid phase,10 because it is best able to simultaneously 
produce interfaces of uniform curvature and domains of uni
form thickness.1,2 These tendencies are a result of interfacial 
tension and chain stretching, respectively. 

Although the phase behavior of symmetric ABA tri-
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp 
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blocks and AB diblocks is very similar, SCFT does predict 
several significant differences. This is evident in Figs. 5, 6, 
and 7 for the interfacial width, segment distributions, and 
domain spacings, respectively. Figure 10 also demonstrates 
significant shifts in the phase boundaries between homolo
gous triblock and diblock phase diagrams. All these differ
ences are reasonably straightforward to explain. 

FIG. 8. Density plots of the segment distributions p̄(r, s) from triblock 
copolymers with their s= f A junctions confined to a particular minority A 
domain. The top two plots are for a lamellar morphology (xN=30 and f A 

=0.328), and the bottom two are for a cylinder morphology (xN=30 and 
f A =0.299). The left two plots are distributions of the s= f A junctions, and 
the right two are distributions of their associated s=2- f A junctions. The 
bridging fraction vB is obtained by appropriately integrating the distribu
tions in (b) and (d). 

FIG. 9. Bridging fraction vB as a function of copolymer composition f A at 
xN=15, 20, and 30. The upper, middle, and lower curves correspond to the 
S, C, and L phases, respectively. The solid dots denote phase transitions, and 
the dotted lines are simply there to connect curves of the same xN. 

Snipping triblocks in half turns middle segments into 
end segments. This is particularly important at weak segre
gations, where B blocks can significantly penetrate A-rich 
domains. In this regime, the B end of a diblock can enter an 
A domain more easily than the middle B segment of a tri
block, because the end segment only has to drag half as 
much B chain into the domain. Consequently, triblock melts 
remain ordered down to lower xN than their homologous 
Downloaded 29 Apr 2005 to 134.225.1.162. Redistribution subject to AIP
FIG. 10. Diblock copolymer phase diagram (dashed curves) overlaid on the 
triblock copolymer phase diagram (solid curves) from Fig. 3(b). 

diblock counterparts. This effect is far more pronounced on 
the large-f A side of the phase diagram, because this is where 
the morphologies disorder as a result of B blocks pulling free 
of their domains. On the other side, the ODT occurs prima
rily as a result of A blocks coming free of their domains, and 
since both architectures have equivalent A blocks, their 
ODT’s are nearly the same. 

The slightly higher segregation in triblock melts causes 
their interfacial width to be narrower relative to diblock 
melts, however, the difference becomes negligible beyond 
xN=30. Contrary to this prediction, an experiment by Anas
tasiadis et al.23 found the interface in a highly segregated 
triblock melt to be 38% narrower. Unfortunately, their tri
blocks and diblocks were of equal size, which is not the most 
useful comparison. When compared at the same degree of 
polymerization N, SCFT predicts triblocks to have a wider 
interface, but with a difference that depends significantly on 
xN. For the estimated xN=110 in Ref. 23, SCFT predicts 
the triblock interface to be 5.9% wider. The situation im
proves slightly when the SCFT prediction is corrected for 
interfacial fluctuations.24,25 Since the diblock melt has a 
larger period (when the copolymers are compared on an 
equal size basis), its interface will be broadened more by 
fluctuations. Nevertheless, the fluctuation correction does not 
even come close to accounting for the 38% difference. Since 
past comparisons between experiments and fluctuation-
corrected SCFT predictions have been very impressive,24,26 

we are lead to question the accuracy of Ref. 23. Their ex
periment required inverting neutron reflectivity data, which 
relies on their assumptions regarding the segment profile. 
They apparently assume that all the interfaces in their thin 
film have the same width, when in fact the widths should 
decrease near the film surface.27 An assumption such as this, 
coupled with the fact that reflectivity experiments are not 
particularly sensitive to the details of the interfacial profile, 
could be sufficient to explain this apparent disagreement be
tween theory and experiment. We note that another analo
gous experiment28 on a nearly identical triblock copolymer 
reported a far thinner interfacial width. Although this does 
not improve the situation, it does stress that the interpretation 
of neutron reflectivity data can be unreliable. Hopefully, fu
ture experiments will reexamine this issue, next time com
paring homologous triblock and diblock pairs. 
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp 

http://jcp.aip.org/jcp/copyright.jsp
http:surface.27


J. Chem. Phys., Vol. 111, No. 15, 15 October 1999 Triblock copolymer melts 7145 
Away from the ODT, the ordered triblock melt becomes 
well segregated and behaves very similarly to its diblock 
counterpart. Both have virtually equivalent A domains and 
nearly identical A/B interfacial profiles. The only significant 
difference lies in the elastic properties of their B-rich do
mains. Evidently the B domains in a triblock melt are 
slightly softer (i.e., easier to stretch) than those of the diblock 
melt formed by snipping all the B blocks in half. Although 
the explanation for this is not obvious, the conclusion is well 
supported by our results. 

One clear consequence of the softer B-rich domains is 
that the triblock morphologies have slightly larger domain 
spacings (on the order of 5%) than the analogous diblock 
morphologies (see Fig. 7). Early experiments11 established 
that the lamellar spacing in f A =0.5 triblock melts is similar 
to that of homologous diblock melts, but they did not detect 
the small difference predicted in Fig. 7(a). However, accu
rate measurements by Mai et al.12 have recently observed a 
difference in the lamellar spacing, which is in excellent 
agreement with our SCFT prediction. 

When the B domain becomes softer, the interface will 
tend to curve towards it. Although this requires the B blocks 
to stretch, that is more than compensated for by the fact the 
A blocks can relax. This change in preferred curvature 
causes the gyroid regions of the triblock system to shift to
wards lower f A relative to those of the diblock system (see 
Fig. 10). Note that this is the same shift that occurs in Fig. 3 
when aA /aB decreases, and furthermore the explanation is 
precisely the same. 

Previous calculations1,2 have demonstrated that the PL 
phase is slightly less stable than the G phase because of 
packing frustration in its majority domain. Packing frustra
tion occurs when certain regions in the domain require ex
cessive chain stretching. Naturally, the packing frustration 
will be reduced when the majority domain becomes softer. In 
agreement with this hypothesis, the PL phase is far more 
metastable on the small-f A side of the phase diagram where 
B forms the majority domain. Also note that this metastabil
ity increases when the majority domain is made even softer 
by changing the ratio aA /aB . 

In triblock morphologies with isolated A-rich domains, 
the bridging fraction vB is of particular interest, because of 
its strong influence on the mechanical properties.8,9 The 
bridging fraction in the lamellar phase (L) has been calcu
lated using the Scheutjens–Fleer lattice SCFT,15 the Se
menov strong-segregation theory,7 and the Helfand SCFT.7 

All three methods predict bridging fractions of -40%, which 
is consistent with experimental measurements.16 Li and 
Ruckenstein29 have since calculated equilibrium bridging 
fractions in the L, C, and S phases using an alternative lattice 
theory. Their approach also considers chain stiffness, but this 
is of minor importance for high-molecular-weight polymers. 
However, it is troubling that the predictions in Ref. 29 are far 
lower than those calculated here and elsewhere; for example, 
they only predict a -18% bridging fraction for the L phase 
as compared to the well established value of -40%. Consid
ering that the SCFT used here is an exact mean-field theory 
that, for example, determines the shape and size of the do
mains by minimizing the free energy and properly accounts 
Downloaded 29 Apr 2005 to 134.225.1.162. Redistribution subject to AIP
for the two- and three-dimensional geometries of the C and S 
phases, respectively, there is virtually no doubt that the 
present calculation is more reliable. 

The only inherent deficiency of SCFT is that it neglects 
several fluctuation effects, but in polymeric systems these are 
generally of minor importance, and furthermore they are well 
understood. The small interfacial fluctuations in well segre
gated melts, discussed above, can be treated as in Refs. 25 
and 26 or by the more sophisticated method of Shi et al.30 

Fluctuations may also destroy the long-range order in the Scp 

phase, because the spheres are so weakly bound.1 This would 
be consistent with recent experiments31 that observe closely-
packed spheres in the disordered phase just before it orders 
into the bcc spherical phase. The most notable effect of fluc
tuations occurs at weak segregations. Leibler32 originally 
noted that because the disordered-state structure function di
verges on a sphere, Brazovskii-type33 fluctuations would de
stroy the weakly-ordered morphologies pushing the ODT to 
higher xN. Fredrickson and Helfand34 later accounted for 
these fluctuations using the mean-field Landau free energy 
functional derived by Leibler. Since then, Mayes and Olvera 
de la Cruz14 have repeated the calculation for triblocks. Al
though these calculations have greatly improved our under
standing of Brazovskii fluctuations, they may be quantita
tively unreliable given that they use the mean-field Landau 
free energy, which is inaccurate at weak segregations. Incon
sistencies between Flory–Huggins x parameters as measured 
from the ODT’s of polymer blends and diblock copolymer 
melts have recently been attributed to this.35 This suggests 
the need for a more rigorous fluctuation correction along the 
lines proposed by Stepanow.36 Nevertheless, we have to con
sider other possible explanations for the inconsistent x pa
rameters, since issues such as chain stiffness37 and small 
nematic interactions38 can have a significant effect on the 
ODT’s. 

V. CONCLUSIONS 

We have investigated effects of block copolymer archi
tecture by comparing the equilibrium phase behavior of sym
metric ABA triblock copolymers of polymerization 2N to 
that of AB diblock copolymers of polymerization N. The 
presence of B ends in diblock melts reduces the segregation, 
and thus the triblock melts remain ordered down to lower 
values of xN. This is particularly true at large f A , where the 
melt disorders due to the small energy required to dislodge B 
blocks from their domains. For well segregated melts, the 
A-rich domains and the A/B interfaces are virtually identical 
in the triblock and diblock systems. The only significant dif
ference is that the B-rich domains are slightly softer in tri
block melts. As a consequence, triblock morphologies have 
larger domain spacings, their complex phase regions are 
shifted to smaller f A , and their PL phase is more metastable 
when B forms the majority domain. 

Although the equilibrium behavior of homologous tri
block and diblock melts is very similar, the mechanical prop
erties can differ substantially in morphologies where ABA 
triblocks can bridge between distinct A-rich domains. 
Theory7,15 has previously established that about 40%–45% 
of triblocks form bridges in the L phase. Here, we calculate a 
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bridging fraction of about 60%–65% in the C phase and 
about 75%–80% in the S and Scp phases. For a given mor
phology, the bridging fraction only depends weakly on seg
regation and copolymer composition. 

Experiments have already supported a number of the 
SCFT predictions. For example, the bridging fraction in the 
lamellar phase has been measured to be -40%. Furthermore, 
experiments10 have located stable gyroid (G) phases on both 
sides of the triblock lamellar phase. Various comparisons8,12 

between homologous triblocks and diblocks have confirmed 
the predicted shift in the ODT (see Fig. 10). Furthermore, 
Mai et al.12 have observed the slightly elevated lamellar 
spacing predicted for triblocks in Fig. 7. Mai and co-workers 
are also conducting experiments that will determine whether 
the complex phase regions in triblock melts are shifted rela
tive to those of diblock melts as predicted in Fig. 10. Still, 
further experiments are required to establish complete confi
dence in our SCFT predictions. In particular, the interfacial 
widths should be reexamined given the apparent disagree
ment with experiment.23 Detailed studies of this nature will 
improve our general understanding of how architecture af
fects phase behavior, and this will give us the ability to an
ticipate the behavior of more complicated block copolymers. 
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