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Summary 

Protein ligand binding site prediction methods aim to predict, from amino acid sequence, 

protein-ligand interactions, putative ligands and ligand binding site residues using either 

sequence information, structural information or a combination of both. In silico 

characterisation of protein-ligand interactions have become extremely important to help 

determine a protein functionality, as in vivo based functional elucidation is unable to keep 

pace with the current growth of sequence databases. Additionally, in vitro biochemical 

functional elucidation is time consuming, costly and may not be feasible for large scale 

analysis, such as drug discovery. Thus, in silico prediction of protein-ligand interactions need 

to be utilized to aid in functional elucidation.  

 

Here we briefly discuss protein function prediction, prediction of protein-ligand interactions, 

the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the 

Continuous Automated EvaluatiOn (CAMEO) competitions, along with their role in shaping 

the field. We also discuss, in detail, our cutting-edge web-server method FunFOLD for the 

structurally informed prediction of protein-ligand interactions. Furthermore, we provide a 

step-by-step guide on using the FunFOLD webserver and FunFOLD3 downloadable 

application, along with some real world examples, where the FunFOLD methods have been 

used to aid functional elucidation.  

 

Key Words 

Protein function prediction; Protein-ligand interactions; Binding-site residue prediction; 

Biochemical functional elucidation; Critical Assessment of Techniques for Protein Structure 

Prediction (CASP); Continuous Automated EvaluatiOn (CAMEO); Protein structure 
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prediction; Structure based function prediction; Quality assessment of protein-ligand binding 

site predictions; Protein-ligand interactions; Webserver; Downloadable application; 

 

1. Introduction 

Proteins play an essential role in all cellular activity, which includes; enzymatic catalysis; 

maintaining cellular defences; metabolism and catabolism; signalling within and between 

cells and the maintenance of the cells structural integrity. Hence, the identification and 

characterization of a protein binding site and associated ligands, is a crucial step in the 

determination of a proteins functionality [1-3].   

 

1.1 Predicting protein-ligand interactions  

Protein-ligand interaction prediction methods can be categorised into two broad groups: 

sequence based methods and structure based methods [4,1,5]. Sequence based methods utilize 

evolutionary conservation to determine residues, which may be structurally or functionally 

important. These methods include firestar [6,7], WSsas [8], INTREPID [9], Multi-RELIEF 

[10], ConSurf [11], ConFunc [12], DISCERN [13], TargetS [14] and LigandRFs [15]. 

Structure based methods can additionally be separated into geometric-based methods 

(FINDSITE [16], Surflex-PSIM [17], LISE [18], Patch-Surfer2.0 [19], CYscore [20], LigDig 

[21] and EvolutionaryTrace [22,23]), energetic methods (SITEHOUND [24]) and 

miscellaneous methods that utilize information from homology modelling (FunFOLD [3], 

FunFOLD2 [2], COACH [25], COFACTOR [26], GalaxySite [27] and GASS [28]), surface 

accessibility (LigSiteCSC [29]) and physiochemical properties, utilized by methods including 

SCREEN [30]. 
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1.2 The role of CASP and CAMEO on the development of protein-ligand interaction 

methods 

In recent years there has been an explosion in the development and availability of protein 

ligand binding site prediction methods. This is a direct result of the inclusion of a ligand-

binding site prediction category in the Critical Assessment of Techniques for Protein 

Structure Prediction (CASP) competition [31-33], along with the subsequent inclusion of 

ligand-binding site prediction in the Continuous Automated EvaluatiOn (CAMEO) 

competition [34].  

 

Ligand-binding site residue prediction was first introduced in CASP8 [31], with the idea to 

predict putative binding site residues, in the target protein, which may interact with a bound 

biologically relevant ligand. The top methods in CASP8 (LEE [4] and 3DLigandSite [35]) 

utilized homologous structures with bound biologically relevant ligands in their prediction 

strategies. In both CASP9 [32] and CASP10 [33], protein-ligand interaction methods 

converged on similar strategies; the  structural superposition of models, onto templates bound 

to biologically relevant ligands [1].  

 

After the CASP10 competition the protein-ligand interaction analysis moved to the CAMEO 

[34] continuous evaluation competition. This was a direct result of a lack of targets for 

evaluation, over the 3 month prediction period of the CASP competition. Although, 

predictions were still accepted for the CASP11 competition. This also resulted in a change of 

prediction format, where methods not only have to predict potential ligand binding site 

residues, but also predict the probability that each residue binds to a specific ligand type; I - 

Ion; O - Organic ligand; N - nucleotide and P - peptide. In addition to the most likely ligand 

type that the protein may bind [34]. The continuous weekly assessment of CAMEO allows 
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for a much better picture, of how a method performs, on a large diverse dataset, containing a 

wide diversity of ligand types [34].  

 

1.3 Metrics to assess protein-ligand interactions 

Both CASP and CAMEO utilise a number of different metrics to analyse protein-ligand 

interaction predictions. The first score utilised in CASP8 [31] was the Matthews Correlation 

Coefficient (MCC score) [36]. The MCC score is a statistical score for the comparison of 

predicted ligand binding site residues to observed ligand binding site residues, by analysing 

the number of residues assigned as true positives, false positives, true negatives and false 

negatives, resulting in a score between -1 and 1 (1 is a perfect prediction, 0 is a random 

prediction). The disadvantage of the MCC score is that it is a statistical measure, which does 

not take into account the 3D nature of a protein. Additionally, it is often a subjective matter to 

assign observed ligand binding site residues, even in an experimental structure, which is 

another disadvantage of using a purely statistical metric.  

 

Thus, we proposed a new scoring metric: the Binding-site Distance Test (BDT score) [37], 

which addresses some of the problems associated with the MCC score. The BDT score takes 

into account the distance in 3D space a predicted binding site residue is from an observed 

binding site residue. The BDT score ranges from 0 to 1 (1 is a perfect prediction, 0 is a 

random prediction). Binding sites which are predicted close to the observed binding site, 

scores higher that binding sites predicted far from the observed site. The BDT score was used 

in addition to the MCC score in both the CASP9 [32] and CASP10 [33] assessments and is 

now a standard assessment metric used in CAMEO [34].  
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1.4 The FunFOLD2 server for the prediction of protein-ligand interactions  

The FunFOLD server has been developed with the user in mind, providing an intuitive 

interface (Figure 1), which allows users to easily predict protein-ligand interactions for their 

protein of interest [2]. Additionally, for the more expert user, a PDB file of the top 

IntFOLD2-TS [38] model containing the biologically relevant ligand cluster can be 

downloaded for further interrogation, along with predicted ligand-protein interaction quality 

scores. Additionally, the results are available in CASP FN and CAMEO-LB format. The 

FunFOLD2 server takes as input a protein sequence, and optionally a short name for the 

target protein. Also, the user has the option to include an email address, to allow for easy 

results delivery or the submission page can be bookmarked and returned to later, when results 

are available. The FunFOLD2 server runs the IntFOLD2-TS structure prediction algorithm to 

produce a set of models and related templates that can be used to predict protein-ligand 

interactions. The FunFOLD2 [2] method combines the original FunFOLD method [5] for 

ligand binding site residue prediction, the FunFOLDQA method [1] for ligand binding site 

quality assessment and a number of scores to comply with the CAEMO-LB prediction format 

[34].  

 

The original FunFOLD method [5] was designed based on the following concept: protein 

structural templates from the PDB containing biologically relevant ligands, and having the 

same fold (according to TM-align [39]), as the model built for the target under analysis, may 

contain similar binding sites. Firstly, the FunFOLD algorithm takes as input a model and a set 

of template PDB IDs (generated by IntFOLD2-TS [38]). Secondly, TM-align [40] is used to 

superpose each template determined to contain a biologically relevant ligand onto the target 

model (originally the method used an in-house curated ligand list, now the latest version, 

FunFOLD3, described below, makes use of the BioLip database [41]). Template-model 

superpositions having a TM-score ≥ 0.4 are used in the next step.TM-scores ranging from 0.4 
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to 0.6 has been shown to mark the transition step of significantly related folds [42]. Thirdly, 

all retained templates are superposed onto the model and ligands are assigned to clusters 

using an agglomerative hierarchical clustering algorithm, identifying each continuous mass of 

contacting ligands, thus locating potential binding pockets. Ligands are determined to be in 

contact within a cluster if the contact distance is less than or equal to the Van der Waal radius 

of the contacting atoms plus 0.5 Å. The location of the largest ligand cluster is thus 

determined to be the putative binding site.  

 

Fourthly, putative ligand binding site residues are determined using a novel residue voting 

method. The distance between all atoms in the ligand cluster and all atoms in the modelled 

3D protein are calculated. Again, residues are determined to be in contact with the ligand 

cluster, if the contact distance between any atom in the residue and any atom in the ligand 

cluster is less than or equal to the Van der Waal radius of the contacting atoms plus 0.5 Å. 

Finally, the next step is “residue voting”, where all residues determined to be in contact with 

the ligand cluster are further analysed and included in the final prediction if a residues has at 

least one contact to 2 ligands within the cluster and at least 25% of the ligands in the cluster 

[3].   

 

The next tool utilized by the FunFOLD2 server [2] is the FunFOLDQA algorithm [1], which 

assesses the quality of the FunFOLD prediction [3], outputting a set of quality scores. The 

FunFOLDQA algorithm produces five feature based scores; BDTalign, Identity; Rescaled 

BLOSUM62 score; Equivalent Residue Ligand Distance Score and 3D Model Quality (using 

ModFOLDclust2 [43]), which are subsequently combined using a neural network to produce 

predicted MCC and BDT scores. The predicted MCC and BDT scores can be used to rank the 

FunFOLD predictions of the top 10 IntFOLD2-TS models, to find the best prediction. This 

has been shown to statistically significantly improve protein-ligand prediction quality over 
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using FunFOLD alone [1]. The BDTalign score basically determines the fit of the model 

binding site into the binding sites of the templates used in the prediction. The Identity score 

assesses the relationship between the binding site residues, which are equivalent in 3D space, 

between the model and the templates, scoring them according to their amino acid identity. 

The Rescaled BLOSUM62 score utilizes the same concept as the Identity score, but scores 

equivalent residues in 3D space according to the BLOSUM62 scoring matrix. Furthermore, 

the Equivalent Residue Ligand Distance score scores equivalent residues in 3D space 

between the model and each template according to their distance from the bound ligand.  

 

The final component of the FunFOLD2 server [2] is to score the resultant ligand binding site 

residues, from the top prediction, based on the CAMEO-LB criteria. The first score is a 

global functional propensity metric, which calculates the probability that the protein will bind 

to each ligand type (I- Ion; O - Organic; N- Nucleotide; P - Peptide). The second score is the 

per-residue functional propensity metric, which determines the propensity that each predicted 

ligand binding site residue is in contact with each ligand type (I, O, N & P) [2].  

 

1.5 The FunFOLD3 algorithm for the prediction of protein-ligand interactions  

The FunFOLD3 algorithm, is the latest implementation of FunFOLD. FunFOLD3 was 

designed to produce predictions to comply with the CAMEO-LB prediction format [34], 

including the development new metrics to predict per-atom P-values. Another major change 

in FunFOLD3 is the use of the BioLip database [41], for the determination of biologically 

relevant ligands at multiple binding sites. In addition to the provision of functional 

annotations, namely EC [44] numbers and GO terms [45]. The FunFOLD3 algorithm along 

with FunFOLDQA [1] have been integrated into the latest version of the IntFOLD server 

pipeline [46] and is available as an executable JAR file. The executable version of 
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FunFOLD3 does not incorporate the FunFOLDQA binding site quality scoring module, 

which can be downloaded as a separate JAR executable if desired. 

 

The FunFOLD2 method and its previous implementations have been benchmarked at CASP9 

and CASP10 and were amongst the top performing methods [33,32]. In addition to CASP the 

FunFOLD2 and FunFOLD3 methods are now continuously benchmarked by CAMEO [34] 

(http://www.cameo3d.org). Furthermore, the FunFOLD algorithms have been utilized in 

numerous studies, including on barley powdery mildew proteins [47,48], calcium binding 

proteins [49] and olfactory proteins [50], which have resulted in interesting biological 

findings.  

 

In summary, the use of computational methods for the prediction of protein-ligand 

interactions is essential in the era of high-throughput next-generation sequencing, as 

experimental methods are unable to keep pace. The prediction of protein-ligand interactions 

can lead to the interpretation of a protein’s general function. These predictions can be further 

utilized in subsequent in silico, in vivo and in vitro studies, for the discovery of new 

functions, as well as in drug discovery, which can impact on issues such as health and 

disease. 

 

2. Materials and Systems Requirements 

 

2.1 Web server requirements  

1. For the FunFOLD2 webserver [2], internet access and a web browser are required. 

The server is freely accessible at: http://www.reading.ac.uk/bioinf/FunFOLD/ (See 

Figure 1 and Note 1). The FunFOLD2 server has been extensively tested on Google 

Chrome and Firefox, which are recommended for proper use. The server also works 

http://www.cameo3d.org/
http://www.reading.ac.uk/bioinf/FunFOLD/
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on other browsers such as Internet Explorer, Safari and Opera, but these browsers 

have not been tested as extensively.  

2. To run your protein-ligand interaction predictions on the FunFOLD2 server you 

require an amino acid sequence for your protein of interest, in single letter code 

format. Additionally, a short name can be given for the target sequence submitted and 

an email address can be included to inform the user when the prediction is complete. 

If the length of the target amino acid sequence is longer than 500 amino acids, it is 

best to divide the target sequence into domains, using PFAM [51] or SMART [52], 

then submit each domain sequence separately. For a more detailed explanation along 

with potential problems that can be encountered at the submission stage see Note 1.  

 

2.2 Requirements for the FunFOLD3 downloadable executable 

A downloadable version of the FunFOLD3 method is available as an executable JAR file, 

which can be run locally. The executable has several dependencies and system requirements 

which are briefly described below. The executable along with a detailed README file and 

example input and output data can be downloaded from the following location: 

http://www.reading.ac.uk/bioinf/downloads/. (See Note 3 for potential errors that may be 

encountered). 

 

2.2.1 FunFOLD3 

The system requirements are as follows: 

1. A linux based operating system such as Ubuntu. 

2. A recent version of Java (www.java.com/getjava/). 

3. A recent version of PyMOL (www.pymol.org). 

4. The TM-align program [39] (http://zhanglab.ccmb.med.umich.edu/TM-align/) . 

Please ensure the TM-align program is working on your system before attempting to 

http://www.reading.ac.uk/bioinf/downloads/
http://www.java.com/getjava/
http://www.pymol.org/
http://zhanglab.ccmb.med.umich.edu/TM-align/
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run FunFOLD3. Ensure that you have the correct 32bit/64bit version for your 

hardware and that the TMalign file is made executable: chmod +x TMalign 

5. wget and ImageMagick installed system wide. 

6. The CIF chemical components database file [53] should be downloaded from here: 

ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif.  

1. The BioLip databases [41] containing ligand and receptor PDB files is also required 

(up to 30 GB or disc space may be required). The databases need to be downloaded in 

2 sections firstly all annotations prior to 6/3/2013 can be downloaded from here for 

the receptor database: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/receptor_2013-03-6.tar.bz2  

(3.6 G) and from here for the ligand database: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/ligand_2013-03-6.tar.bz2 

(438 M). The Text File of the BioLip annotations can be downloaded from here: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2. To update the 

databases to include annotations after 2013-03-6 it is recommended to download and 

use this perl script which will update the databases: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/download_all_sets.pl. The 

BioLip text file: 

http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2 and all the 

weekly update text files should be concatenated to form a large text file containing all 

of the annotations. Furthermore, it is recommended to regularly update your BioLip 

and CIF databases. Additionally, a shell script is available downloadBioLipdata.sh, 

which can be download from here: http://www.reading.ac.uk/bioinf/downloads/, in a 

compressed directory: FunFOLDPackage.tar.gz. To run the shell script simply edit the 

file paths for the location of the BioLip databases and the executable directory. 

ftp://ftp.wwpdb.org/pub/pdb/data/monomers/components.cif
http://zhanglab.ccmb.med.umich.edu/BioLiP/download/receptor_2013-03-6.tar.bz2
http://zhanglab.ccmb.med.umich.edu/BioLiP/download/ligand_2013-03-6.tar.bz2
http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2
http://zhanglab.ccmb.med.umich.edu/BioLiP/download/download_all_sets.pl
http://zhanglab.ccmb.med.umich.edu/BioLiP/download/BioLiP.tar.bz2
http://www.reading.ac.uk/bioinf/downloads/
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7. Please ensure your system environment is set to English, as utilizing other languages 

may cause problems with the FunFOLD calculations: export LC_ALL=en_US.utf-8. 

8. Note the FunFOLD3 executable does not contain the FunFOLDQA code. The 

FunFOLDQA code is available to download as a separate executable if desired.  

 

3. Methods 

In this section we present a step-by-step guide on utilizing the FunFOLD2 server and the 

FunFOLD3 downloadable executable, to produce protein-ligand interaction predictions for 

the user’s sequence of interest. We also describe interesting case studies of the FunFOLD3 

method and its previous implementations.  

 

3.1 The FunFOLD2 server  

3.1.1 The submission process 

1. Navigate to the FunFOLD2 submission page: 

http://www.reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html. 

2. The next step is to paste the full single-letter format amino acid sequence of your 

protein of interest into the text box provided on the submission page (see Figure 1).  

3. Optionally, the user can provide a short name for their target sequence. 

4. The user has the option to supply their email address, which enables an email to be 

sent to the user once the results of the target sequences become available.  

5. Once all of the required information boxes, on the submission page, have been filled, 

the user then needs to click on the submit button to enable submission of their 

prediction. 

6. Presently, submissions are limited to one per IP address, to enable the maintenance of 

speed and server capacity. Upon completion of the user’s prediction, their IP address 

http://www.reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html
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is automatically unlocked and they can then submit their next target sequence. See 

Note 1 for common problems encountered at the submission step. 

 

3.1.2 How to interpret the results  

1. Upon job completion an email is sent to the user, which contains a link to the 

prediction results for the target sequence. See Figure 2 for an example results page 

(FunFOLD3 via the IntFOLD server) and Figure 3 for example results from CASP11. 

2. The results page contains graphical results for the target sequence, in addition to 

downloadable machine readable results in CASP format. Firstly, a graphical 

representation of the ligand binding site, showing putative binding site residues, 

rendered using PyMOL (www.pymol.org) is shown. The backbone of the protein is 

shown as a green ribbon, while the putative ligand binding site residues are labelled 

and shown as blue sticks. Secondly, a link is also available to download a PDB file 

containing the putative ligand binding site cluster within the top IntFOLD [54] model. 

Thirdly, the CASP FN format results are shown. This includes a list of putative ligand 

binding site residues. The most likely ligand, which is the most likely ligand to be 

bound to the target protein according to the FunFOLD prediction. This is followed by 

the centroid ligand and a list of all ligands within the putative ligand cluster is also 

included. The centroid and most likely ligand have an associated residue number that 

corresponds to their residue number in the downloadable PDB file, the residue 

number can be easily used to locate the ligand in the PDB file for a more detailed 

examination of the results.  

3. The final section of the results page is a JSmol view of the ligand binding site within 

the target protein, which can be easily used to examine the prediction in 3D space. 
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There are a number of options to rotate the protein, show and hide the ligands as well 

as alter the way the ligands are represented.  

4. In addition, predicted quality scores from FunFOLDQA [1] are also provided: 

BDTalign, Identity; Rescaled BLOSUM62 score; Equivalent Residue Ligand 

Distance Score and Model Quality along with the predicted MCC and BDT scores 

(See 1.4 for a description of these scores). Furthermore, the propensity that the target 

protein binds to each ligand type (I- Ion; O - Organic; N- Nucleotide; P - Peptide) is 

also provided in CAMEO-LB  format [34]. (See Note 2 for potential errors that may 

be encountered and Note 4 for current method limitations). 

5. Moreover, for the version of FunFOLD (FunFOLD3) integrated into the IntFOLD 

pipeline [46], putative EC [44] and GO [45] codes, derived from templates used in the 

prediction from the BioLip [41] database are included. (See Note 3 for details on the 

IntFOLD server [46,55]). 

 

3.2 The FunFOLD3 executable 

For large scale analysis or to integrate the FunFOLD3 method into a structure prediction 

pipeline or web server (See Note 2 and Note 5) a downloadable executable JAR file, which 

has been developed to run on linux based operating systems is available 

(http://www.reading.ac.uk/bioinf/downloads/). This version of the program has been tested 

on recent versions of Ubuntu, but it should work on all linux based systems that have bash 

installed and meet the system requirements (See Section 2.2.1).  

2. To run the program you can simply edit the shell script (FunFOLD3.sh) or you can 

follow the steps below. 

3. The user can optionally set the bash environment variable for Java, TM-align and 

PyMOL if they have not installed it system wide, along with the location of the 

http://www.reading.ac.uk/bioinf/downloads/
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databases and database files e.g. 

export LC_ALL=en_US.utf-8 

export PYMOL_HOME=/usr/bin/ 

export TMALIGN_HOME=/home/roche/bin/ 

export JAVA_HOME=/usr/bin/ 

export BIOLIP_Directory=/home/roche/bin/BioLip/FunFOLDBioLip/ 

export BIOLIP_LIGAND=/home/roche/bin/BioLip/FunFOLDBioLip/ligand/ 

export BIOLIP_RECEPTOR=/home/roche/bin/BioLip/FunFOLDBioLip/receptor/ 

export BIOLIP_TXT=/home/roche/bin/BioLip/FunFOLDBioLip/BioLiP.txt 

export CIF=/home/roche/bin/BioLip/FunFOLDBioLip/components.cif 

 

$BIOLIP_Directory = BioLip directory location  

$BIOLIP_TXT = BioLip database text file including the full directory path 

$BIOLIP_LIGAND = BioLip ligand directory  

$BIOLIP_RECEPTOR = BioLip receptor directory  

$CIF = CIF file including the full directory path  

4. For example, if the path of your model was 

“/home/roche/bin/FunFOLD3/MUProt_TS3”, your list of templates was 

“/home/roche/bin/FunFOLD3/T0470_PARENTNew.dat” (all templates should be 

listed on a single line separated by a space), your FASTA sequence file was 

“/home/roche/bin/FunFOLD3/T0470.fasta”, your output directory was 

“/home/roche/bin/FunFOLD3/” and your target was called T0470: 

$JAVA_HOME/java -jar FunFOLD3.jar /home/roche/bin/FunFOLD3/MUProt_TS3 

T0470 /home/roche/bin/FunFOLD3/ 

/home/roche/bin/FunFOLD3/T0470_PARENTNew.dat 
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/home/roche/bin/FunFOLD3/T0470.fasta $BIOLIP_TXT $BIOLIP_LIGAND 

$BIOLIP_RECEPTOR $CIF 

Or, using the shell script provided: 

./FunFOLD3.sh /home/roche/bin/FunFOLD3/MUProt_TS3 T0470 

/home/roche/bin/FunFOLD3/ /home/roche/bin/FunFOLD3/T0470_PARENTNew.dat 

/home/roche/bin/FunFOLD3/T0470.fasta  

5. Basically, the user requires a model generated for their target protein, this can be 

achieved using a homology modelling method either in-house or via a webserver such 

as IntFOLD [38] (see Note 3). Additionally, the user needs a list of structurally 

similar templates. Again this list of templates can be generated from the list of 

templates used to generate the target protein model. The program utilises the 

templates that have the same fold and contain biologically relevant ligands in the 

prediction process. Furthermore, it is important to download and install the BioLip 

databases [41] and CIF chemical components library file [53]. Additionally, it is 

important that the full paths for all input files are used, the output directory should 

also end with a "/" and must contain the input model, template list and FASTA 

sequence file. 

6. Additionally, a shell script is available called downloadBioLipdata.sh, which can be 

used to download and update the BioLip and CIF libraries. The shell script and the 

required perl script can be found on the downloads page, in a compressed directory: 

downloadBioLip_CIF.tar.gz. To run the shell script simply edit the file paths for the 

location of the BioLip databases and the executable directory. 
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A number of output files are produced in the output directory (e.g. 

“/home/roche/bin/FunFOLD3/”) and a log of the prediction process is output to screen as 

standard output. A description of the output files are as follows:  

1. The final ligand binding site prediction file “T0470_FN.txt” is supplied, conforming 

to CASP FN format. This file contains a list of predicted binding site residues, 

ligands, along with associated EC and GO terms. 

2. The final binding site prediction file “T0470_FN2_CAMEO-LB.txt” is additionally 

supplied in CAMEO-LB format. This file contains the predicted propensity that each 

ligand type is in contact with the predicted binding site residues.  

3. A PDB file “T0470_lig.pdb”, which contains superpositions of all templates, having 

the same fold and containing biologically relevant ligands, onto the model is 

produced. 

4. A reduced version of the PDB file “T0470_lig2.pdb”, which contains only the target 

model with all possible ligands is also produced. 

5. Another reduced version of the PDB file “T0470_lig3.pdb”, which contains only the 

target model with the predicted centroid ligand, is additionally output. 

6. A graphical representation of the protein-ligand interaction prediction 

“T0470_binding_site.png” is automatically generated using PyMOL. 

7. Finally, the PyMOL script “pymol.script” that was used to generate the image file is 

also output. 

8. An example of output produced by FunFOLD3 for target T0470 can be found in the 

compressed directory: “T0470_Results.tar.gz” along with an example of the required 

input: “T0470_Input.tar.gz”. These example directories can be found on the 

downloads page: http://www.reading.ac.uk/bioinf/downloads/.  

 

3.3 Server fair usage policy 

http://www.reading.ac.uk/bioinf/downloads/
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To enable timely throughput and wide use of the server, a fair usage policy is implemented. 

Users are allowed to submit one prediction per IP address. Once the first job is complete, a 

notification is sent to the user via email, if an email address has been provided. If a user does 

not provide an email address, then a link to the results page is provided which users are 

recommended to bookmark during the submission process. Once the job has been completed, 

the users IP address is unlocked and the server is ready to receive the next submission. The 

results for each complete job is saved for 30 days. It is recommended for large scale analysis 

of a large number of proteins (proteome level) to download the executable version of 

FunFOLD3 (See section 3.2 and Note 2 and Note 5).  

 

3.4 Case studies  

The FunFOLD3 method and its previous implementation have been used in a number of 

studies [47-50], which have led to interesting biological findings, here we discuss one such 

study. Furthermore, in-house analysis of the CASP11 FN predictions produced by the 

FunFOLD3 algorithm, via the IntFOLD server are evaluated (CASP11 group ID: TS133).  

 

3.4.1 Analysis of the barley powdery mildew proteome 

The first study combined proteogenomic and in silico structural and functional annotations 

(prediction of protein-ligand interactions), to enable the investigation of the pathogen 

proteome of barley powdery mildew [47,48]. Basically, genomic scale structure prediction 

was carried out using IntFOLD [55]. Both the global and per-residue model quality was 

assessed utilizing ModFOLD3 [54,56] and putative protein-ligand interactions, were 

additionally predicted using FunFOLD [5]. The results lead to interesting conclusions about 

the structural and functional diversity of the proteomes. Firstly, only 6 protein could be 

modelled with a model quality score above 0.4, leading to a conclusion that the genome is 

very structurally diverse and may have many novel folds. Secondly, for the 6 predicted 
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structures, FunFOLD [5] was able to predict that the proteins were carbohydrate binding, and 

using the models and other additional data it was conclude that they were probably glycosyl 

hydrolases. Furthermore, the putative functionality was experimentally verified. In 

conclusion the FunFOLD method was crucial in the putative functionality assignment of 

these enzymes, which were subsequently experimentally verified.  

 

3.4.2 CASP 11 functional prediction 

The second case study focuses on the analysis of FunFOLD3 blind predictions from the 

CASP11 competition. Briefly, all CASP11 targets with associated PDB IDs were analysed. 

Firstly, targets were analysed using the BioLip [41] database to determine if they contained 

biologically relevant ligands. Secondly, targets deemed to contain biologically relevant 

ligands were further investigated to determine ligand binding site residues, using the standard 

CASP distance cut-off; the Van der Waal radius of the contacting atom of a residue and the 

contacting ligand atom plus 0.5 Å. This resulted in a set of 11 proteins containing 

biologically relevant ligands and binding site residues.  

 

In CASP11, the FunFOLD3 method was integrated into the IntFOLD TS predictions 

(TS133). Protein-ligand interactions were predicted for 8 out of the 11 FN targets (described 

above), with a mean MCC score of 0.554 and a mean BDT score of 0.478. Four of the top 

predictions, are subsequently discussed in detail. Figure 3 highlights the four assessed 

predictions, compared to the observed binding sites, with BDT scores ranging from 0.753 to 

0.849. Figure 3A shows the predicted ligand binding site for a HAD-superfamily hydrolase, 

subfamily IA, variant 1 from Geobacter sulfurreducens (CASP ID T0854 and PDB ID 4rn3), 

with correctly predicted binding site residues in blue (16,18 and 173) and under (177) and 

over-predictions (19) in red, the MG ligand is coloured by element. The prediction resulted in 

a BDT score of 0.845 and an MCC score of 0.745. Figure 3B shows the observed binding site 
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for T0854 (PDB ID 4rn3), with binding site residues coloured in blue and the ligand MG 

coloured by element. A minority of residues were either under or over-predicted for this 

target as a result of the centroid ligand and the ligand cluster not being well superposed. The 

binding sites of the templates were not well superposed onto the model binding site, thus, the 

ligand cluster was not optimally located in the binding site. 

 

The second CASP11 target is a cGMP Dependent Protein Kinase II from Rattus norvegicus 

(CASP ID T0798 and PDB ID 4ojk). Figure 3C shows the predicted ligand binding site, with 

correctly predicted binding site residues (14, 15, 16, 17, 18, 19, 29, 30, 31, 117, 118, 120, 

121, 147, 148, 149) in blue and under (12, 32) and over-predictions (13, 33, 35, 36, 61, 62) in 

red, the GDP ligand is coloured by element. This prediction has a BDT score of 0.797 and an 

MCC score of 0.754. The observed ligand binding site for T0798 (PDB ID 4ojk), with 

binding site residues coloured in blue and the ligand GDP coloured by element can be seen in 

Figure 3D. Again, the minority of under and over-predictions are caused by firstly having a 

very large ligand binding site, which did not have the ligands cluster in the correct location 

within the large binding site, in part due to a number of templates having larger cofactor 

ligands and others having an additional MG ion bound with the cofactor.  

 

The third example is of an aldo/keto reductase from Klebsiella pneumoniae (CASP ID T0807 

and PDB ID 4wgh). Figure 3E shows the predicted ligand binding site, with correctly 

predicted binding site residues (20, 21, 22, 50, 55, 143, 165, 193, 194, 195, 196, 198, 199, 

201, 224, 240, 241, 242, 244, 248, 251) in blue and under (80, 142, 243, 245, 252) and over-

predictions (23, 54, 113, 197, 200, 207) in red, the NAP ligand is coloured by element. This 

prediction resulted in a BDT score of 0.849 and an MCC score of 0.771. In addition, the 

observed ligand binding site can be seen in Figure 3F, with binding site residues coloured in 

blue and the ligand NAP coloured by element. Furthermore, the over and under-predictions 
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seem to be a direct result of a number of templates having an additional ligand bound along 

with the cofactor, resulting in an extended ligand binding site. 

 

The final CASP11 target that we will analyse is a histidinol-phosphate aminotransferase from 

Sinorhizobium meliloti (CASP ID T0819 and PDB ID 4wbt). Figure 3G shows the predicted 

ligand binding site, with correctly predicted binding site residues (93, 94, 95, 119, 167, 194, 

197, 223, 225, 226, 234) in blue and under (161, 196) and over-predictions (347) in red, the 

PLP ligand is coloured by element. The prediction results in a BDT score of 0.753 and an 

MCC score of 0.877. In addition, Figure 3H shows the observed ligand binding site for 

T0819 (PDB ID 4wbt), with binding site residues coloured in blue and the ligand PLP 

coloured by element. Here, the under and over-predictions are a result of the incorrect 

orientation of residues in one case away from the binding site (TYR 161), in the other cases 

the under-predicted residue (ALA 196) and the over-predicted residue (ARG 347) are located 

on flexible loops.  

 

These four CASP11 examples and the results [31-33] from previous CASP assessments, 

along with in-house evaluations [3,1], highlight the usefulness of the FunFOLD methods for 

the accurate prediction of protein-ligand interactions, for a wide range of proteins and ligand 

binding sites. See Note 4 for current method limitations.  

 

4. Notes 
1. When using the FunFOLD server [1,2,5], several problems may be encountered. 

These mainly include but are not limited to, providing the incorrect data to the server. 

It is important to input a sequence in plain text and single letter code format, into the 

text box labelled “Input sequence of target protein”. Additionally, it is recommended 

not to submit sequences longer than 500 amino acids. Firstly, these sequences usually 

contain multiple domains, thus it may not be possible to find a good template to 
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model multiple domains, resulting in one or more domains not being modelled well. 

Secondly, if both domains contain ligand binding sites only one will be predicted and 

displayed in the results page. Hence, it is advisable to partition the sequence into 

domains and submit each domain sequence as a separate job.  

The next place where errors can occur is the next submission box “Short name 

for protein target”; inputting a short name for your protein sequence is useful to keep 

track of your prediction by providing a meaningful description. The short descriptor is 

limited to a set of characters: letters A to Z (either case), the numbers 0 to 9 and the 

following characters: .~_-. The protein descriptor supplied by the user, is 

subsequently utilized in the subject line of the email sent to the user, which contains a 

link to the FunFOLD results for their target protein.  

The final text box to be completed is the “E-mail address”. This will enable a 

link of the graphical and machine readable results to be sent to the user, upon job 

completion. Here errors can occur if the user incorrectly inputs their email address. 

2. For the downloadable Java application FunFOLD3, errors can occur but are not 

limited to the following reasons: Firstly, errors can occur if the dependencies - Java, 

TM-align [39], BioLip [41] and PyMOL  - are not installed or not installed correctly; 

Secondly, if the full paths to the input files, BioLip database, CIF database and output 

directory are not included; Thirdly, if the target model to be analysed is not in the 

output directory; Fourthly, if the list of templates used in the prediction contains non-

existent PDB IDs or the PDB IDs (including chain identifiers) are not all on the same 

line of the text file, the program will not run; Fifthly, if the input sequence file is not 

in FASTA format; Finally, it is recommended to limit the template list to 40 template 

structures, for efficient prediction and this is near the limit of the number of structure 
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files PyMOL can handle (See Section 3.2 and the README file downloaded with the 

executable). 

Moreover, downloading the BioLip database may be time consuming and is an 

area where problems may occur if the instructions available on the BioLip website 

and contained in the README are not followed. Alternatively, if the user has the I-

TASSER [57] pipeline installed on their system, the BioLip databases [41] will have 

been installed as part of the I-TASSER installation process. 

3. The IntFOLD server [55,46] is a novel independent server, which gives users easy 

access to a number of cutting edge methods, for the prediction of structure and 

function from sequence. The idea behind the IntFOLD server is to provide easy access 

to our methods from a single location, producing easily understandable integrated 

output of results, enabling ease of access for the non-expert user. The IntFOLD server 

provides output in graphical form, enabling users to interpret results at a glance as 

well as CASP formatted text files, allowing a more in-depth analysis of the prediction 

results. The IntFOLD pipeline integrates a number of methods, to enable users to 

simply input a target sequence and produce a set of models (IntFOLD3-TS [38]), with 

associated global and per-residue model quality (ModFOLD5 [56]), disorder 

prediction (DISOclust3 [58]), domain partitioning (DomFOLD3) and function 

prediction results utilizing FunFOLD3 [1,2,5]. The component methods of the 

IntFOLD server have been ranked amongst the top methods in their respective 

categories at recent CASP and CAMEO competitions.  

4. Predicting protein-ligand interactions is a difficult task, which results in a number of 

limitations to current prediction methods. The following is a non-exhaustive list of the 

most common limitations currently encountered in the field; 1. If the server or 

prediction algorithm is unable to build a model for the target sequence, then no 
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protein-ligand interactions are predicted. The solution to this problem is to utilize 

sequence based methods (see Section 1.1 for suggestions of sequence based prediction 

methods), which are less accurate; 2. If structurally similar templates to the target, 

which containing biologically relevant ligands cannot be found, then no prediction 

can be made; 3. The FunFOLD server currently outputs predictions based on the top 

IntFOLD model, which has the highest global model quality score. This model may 

not have the best per-residue model quality around the binding site location, resulting 

in under or over-predicted ligand binding site residues.  

5. The user has the option of using the server version of FunFOLD, IntFOLD, or the 

downloadable java application. The user has to leverage which option they would like 

to utilize. The server only permits users to submit one job at a time due to server load 

balancing. If the user would like to carry our large scale analysis, for example 

predicting protein-ligand interactions for a proteome, it is then recommended to 

download and use the executable java application for FunFOLD3. This allows the 

user the freedom in the number of structures they can analyse, provided they have 

adequate CPU capacity. 

For light use (several predictions a week), server prediction is adequate for the 

user, whereas for heavy users (greater than 5-10 predictions a week) the 

downloadable application would be the most useful. Extensive help pages are 

available for the FunFOLD server. Furthermore, at least 30 GB of disc space is 

required to download the complete BioLip libraries. In addition, an extensive 

README file, example input and output files are available to aid the user in the 

installation and running of the FunFOLD3 downloadable java application.  
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Figure Legends  

Figure 1. Submission page for the FunFOLD server. 

Figure 2. The IntFOLD3-FN (FunFOLD3) server results page for CASP11 target T0807 

(PDB ID - 4wgh). 

Figure 3. Comparison of FunFOLD3 ligand binding site predictions (A, C, E, G) for 4 CASP 

11 targets, compared to the observed ligand binding sites (B, D, F, H). A. Predicted ligand 

binding site for T0854 (PDB ID 4rn3), with correctly predicted binding site residues in blue 

and under and over-predictions in red, the MG ligand is coloured by element. BDT score of 

0.845 and MCC score of 0.745. B. The observed ligand binding site for T0854 (PDB ID 

4rn3), with binding site residues coloured in blue and the ligand MG coloured by element. C. 

Predicted ligand binding site for T0798 (PDB ID 4ojk), with correctly predicted binding site 

residues in blue and under and over-predictions in red, the GDP ligand is coloured by 

element. BDT score of 0.797 and MCC score of 0.754. D. The observed ligand binding site 

for T0798 (PDB ID 4ojk), with binding site residues coloured in blue and the ligand GDP 

coloured by element. E. Predicted ligand binding site for T0807 (PDB ID 4wgh), with 

correctly predicted binding site residues in blue and under and over-predictions in red, the 

NAP ligand is coloured by element. BDT score of 0.849 and MCC score of 0.771. F. The 

observed ligand binding site for T0807 (PDB ID 4wgh), with binding site residues coloured 

in blue and the ligand NAP coloured by element. G. Predicted ligand binding site for T0819 

(PDB ID 4wbt), with correctly predicted binding site residues in blue and under and over-

predictions in red, the PLP ligand is coloured by element. BDT score of 0.753 and MCC 

score of 0.877. H. The observed ligand binding site for T0819 (PDB ID 4wbt), with binding 

site residues coloured in blue and the ligand PLP coloured by element. All images were 

rendered using PyMOL (http://www.pymol.org/). 

 


