An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.
Published version at: http://dx.doi.org/10.1016/j.jep.2016.05.009
To link to this article DOI: http://dx.doi.org/10.1016/j.jep.2016.05.009

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur
CentAUR
Central Archive at the University of Reading
Reading's research outputs online
An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco

Irene Teixidor-Toneu, Gary J. Martin, Ahmed Ouhammou, Rajindra K. Puri, Julie A. Hawkins

PII: S0378-8741(16)30271-9
DOI: http://dx.doi.org/10.1016/j.jep.2016.05.009
Reference: JEP10147

To appear in: Journal of Ethnopharmacology

Received date: 12 February 2016
Revised date: 3 May 2016
Accepted date: 4 May 2016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
An ethnomedicinal survey of a Tashelhit-speaking community in the High Atlas, Morocco

Irene Teixidor-Toneu¹, Gary J. Martin², Ahmed Ouhammou³, Rajindra K. Puri⁴, Julie A. Hawkins¹

¹Section of Ecology and Evolutionary Biology (EEB), Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6AS, UK

²Global Diversity Foundation, Marrakech, Morocco

³Department of Biology, Laboratory of Ecology and Environment, Regional Herbarium MARK, Faculty of Sciences Semlalia, Cadi Ayyad University, PO Box 2390, Marrakech, 40001, Morocco

⁴Centre for Biocultural Diversity, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK

i.teixidor-toneu@reading.ac.uk
gmartingdf@gmail.com
ouhammou@gmail.com
r.k.Puri@kent.ac.uk
j.a.hawkins@reading.ac.uk

ABSTRACT

Ethnopharmacological relevance

Traditional knowledge about medicinal plants from a poorly studied region, the High Atlas in Morocco, is reported here for the first time; this permits consideration of efficacy and safety of current practices whilst highlighting species previously not known to have traditional medicinal use.

Aim of the study

Our study aims to document local medicinal plant knowledge among Tashelhit speaking communities through ethnobotanical survey, identifying preferred species and new medicinal plant citations and illuminating the relationship between emic and etic ailment classifications.

Materials and methods

Ethnobotanical data were collected using standard methods and with prior informed consent obtained before all interactions, data were characterized using descriptive indices and medicinal plants and healing strategies relevant to local livelihoods were identified.

Results

151 vernacular names corresponding to 159 botanical species were found to be used to treat 36 folk ailments grouped in 14 biomedical use categories. Thirty-five (22%) are new medicinal plant records in Morocco, and 26 described as used for the first time anywhere. Fidelity levels (FL) revealed low specificity in plant use, particularly for the most commonly reported plants. Most plants are used in mixtures. Plant use is driven by local concepts of disease, including “hot” and “cold” classification and beliefs in supernatural forces.
Conclusion

Local medicinal plant knowledge is rich in the High Atlas, where local populations still rely on medicinal plants for healthcare. We found experimental evidence of safe and effective use of medicinal plants in the High Atlas; but we highlight the use of eight poisonous species.

Keywords: Ethnomedicine; traditional knowledge; medicinal plants; Informant Consensus Factor; Berber

1. INTRODUCTION

Herbal medicine is an important cultural tradition in Morocco (Bellakhdar, 1978, 1997; Bellakhdar et al., 1982; Benchââbâne & Abbad, 1997) and plays central role in the daily lives of many rural and urban Moroccans (Eddouks et al., 2002; El-Hilaly et al., 2003; Fakchich & Elachouri, 2014; Hmammouchi, 1999; Jouad et al., 2001; Merzouki et al., 2003; Sijelmassi, 1993; Tahraoui et al., 2007; Ziyyat et al., 1997). Medicinal plants are often collected from the wild, both for home use and as an additional source of income for rural families across the country (El-Hilaly et al., 2003; Ouarghidi et al., 2013). As reviewed by Ouaghidi et al. (2013), efforts have been made for the last 30 years to document traditional knowledge from poorly studied areas of Morocco focusing on the northern and north-eastern provinces (El-Hilaly et al., 2003; Fakchich & Elachouri, 2014; Hmammouchi, 1999; Merzouki et al., 2003), herbalists and healers (Bellakhdar et al., 1991; Claisse, 1990) and specific ailments including hypertension, diabetes and cardiac diseases (Eddouks et al., 2002; Jouad et al., 2001; Tahraoui et al., 2007; Ziyyat et al., 1997). Elements of the Moroccan ethno-pharmacopoeia are also documented in the grey literature (Bellakhdar, 1978, 1997; Bellakhdar et al., 1982; Benchââbâne & Abbad, 1997; Boulos, 1983; Sijelmassi, 1993). However, ethnobotanical local knowledge from many areas of Morocco, especially in the south, still remains poorly known (Ouarghidi et al. 2013). This is the case for medicinal plant knowledge in the High Atlas amongst Tashelhit speaking communities.

Understanding local uses of plants has social and public health implications (McDade et al., 2007; Reyes-García et al., 2008). Documenting the extent of reliance on medicinal plants is important because loss of local knowledge of medicinal plants challenges developing countries’ health care systems (Quinlan and Quinlan, 2007).
In ethnopharmacology, diseases are often described in biomedical terms and, while standard classifications are necessary, they often do not reflect the local perception of disease (Staub et al., 2015). In many traditional societies plants can be used due to beliefs in supernatural forces, sorcery and magic and it is necessary that ethnobotanical field studies take these into account (Heinrich et al., 2009). In the context of Moroccan ethnobotany, there have been few attempts to report the vernacular names for diseases, or to explain the relationships between local beliefs and plant use. El Rhaffari and Zaid (2002) mention the notions of “hot” and “cold” as a basis for diagnosis as well as the belief in supernatural causes of disease, which are common in the Arabo-Muslem traditional medicine (Greenwood, 1981; Ghazanfar, 1994), but do not integrate this in the analysis of their results.

Therefore, the main aims of this study are (i) to contribute to original documentation of medicinal plant use for Ashelhi people in the High Atlas which helps preserve valuable local knowledge, (ii) to find rare medicinal plans and uses which may inform further pharmacological studies by establishing comparisons with similar studies in Morocco and assess safety of use, and (iii) to provide novel insights into the relationship between local and biomedical disease concepts in Morocco, taking into account health-related beliefs, and their influence on medicinal plant use.

2. METHODOLOGY

2.1 Study area

The Kingdom of Morocco lies in the North-Western tip of Africa, between 21°-36°N and 1°-17°W. It neighbours Algeria (North-East), the Spanish cities of Ceuta and Melilla (North) and Mauritania (South, South-East) and is one of only two countries with both Atlantic and Mediterranean coastlines. Morocco has the widest plains and highest peaks in North Africa and is criss-crossed by four mountain ranges: the Rif, the Middle Atlas, the High Atlas and the Anti-Atlas (Figure 1). Broad coastal plains lay along the Atlantic Ocean, framed by the mountain ranges, which separate them from the Sahara desert. Topographic as well as climatic variability allows for great plant biodiversity: Morocco hosts more than 3913 native vascular plants species (Fennane and Ibn Tattou, 2012) of
which around 879 are endemic (Rankou et al., 2013), thus having the richest flora of any North African country and one of the most diverse of the Mediterranean region (Rankou et al., 2013).

Located approximately 200km south of Marrakech, the rural commune of Imegdale lies in the High Atlas (altitudes ranging from around 1000 to 2500m; Figure 1). The commune has an area of approximately 274 sq km with an approximate population of 5467 people in 1156 households (Haut Commissariat au Plan de la Statistique, 2014) dispersed in small villages. The population is almost entirely Ishelhin (Ashelhi), the southern Moroccan Amazigh ethnic group and Tashelhit is the first language spoken in the commune. At least 10% of the men are also fluent in Moroccan Arabic, whereas most have basic communication skills in this language (Haut Commissariat au Plan de la Statistique, 2014) and a proportion of younger women are also familiar with Moroccan Arabic which they learn through television and in schools established in the 1980s. The main livelihoods are subsistence agriculture and pastoralism (sheep and goats) combined with seasonal labour migration and specialized local occupations. In a neighbouring High Atlas valley, Bellaoui (1989) estimated that the agropastoral sector contributes to 75% of the local income. Temporary employment in urban centres for men, and a in local mining site, are the most important sources of monetary income for the commune after the sale of crops such as carob, apples, walnuts and other fruits, marginal crops such as orris root (*Iris germanica*) and livestock (mainly cows, sheep and goats). Barley, wheat and maize are produced and consumed locally, but not traded.

2.2 Field data collection

This study was carried out in collaboration with the Global Diversity Foundation in the context of the Darwin Initiative funded “Medicinal plant trade, conservation and local livelihoods in southern Morocco”, a community-based development and conservation project that addresses sustainable harvest of vulnerable plant resources in the High Atlas. Fieldwork was conducted between March and June 2015 and 106 adult informants were interviewed in nine of the 28 villages of Imegdale. Villages
were selected to be representative of the diversity of environments in the commune; four villages are at the top of the different watersheds that flow into the N’Fiss valley, where the other five villages are located. Eighty-five percent of the informants were women since men often referred us to their wives when we attempted to interview them. Women are known to be most knowledgeable about medicinal plants in Morocco (Fakchich and Elachouri, 2014). Since many women do not know their exact age, we classified the informants in age groups: young (<30 years old; 18%), middle aged (30-60; 55%) and older (>60; 27%). Interviews were conducted in Tashelhit with simultaneous translation to French and prior informed consent was always obtained verbally beforehand. Ethical guidelines of the American Anthropological Association (2012), the Code of Ethics of the International Society of Ethnobiology (2006) and University of Reading ethical protocols were followed. Approval from the Ethics Committee of the School of Biological Sciences, University of Reading, was obtained (Research Ethics Project Submission SBS 14-15 05). Random and snowball sampling techniques were used for selecting informants (Bernard, 2006). Interviews with herbalists about plants mixtures that locals usually acquire from them were conducted outside the commune, in the souks of Asni, Tlat N’Yakoub and Amizmiz (N=4). In addition, we interviewed nurses and doctors (N=5) working in the health centres that the villagers attend (one unattended health centre in the village of Imegdale and one health centre with a doctor and midwife in the neighbouring commune of Ouirgane).

2.3 Interviews: plant use, disease concepts, trade and plant population trends

Individual free-listing and semi-structured interviews were conducted, along with focus group discussions concerning local use of medicinal plant resources (Alexaides, 1996; Martin, 1995). Plant names were mostly given in Tashelhit, but vernacular names in Moroccan Arabic were recorded when mentioned. During discussions, focus was put on understanding local healing strategies, including the causes of sickness and their symptoms. Workers from primary health centres were asked about the correspondence of folk ailments with illnesses recognized by western medicine. The perception and preference about use of herbal remedies were evaluated for the workers of the health centres as well as lay people interviewed. Much understanding was also gained through participant observation.
(Martin, 1995) when joining villagers in plant collection activities and monitoring plants being processed and used.

Nineteen structured interviews were conducted at the end of the field study using herbarium specimens as visual clues to identify local plants. Eight interviewees were men (42%) and eleven were women (58%); 21% were young, 21% old and 58% middle aged. The specimens used are part of the local herbarium of Imegdale, established as part of ongoing ethnofloristic documentation work by the Global Diversity Foundation. One hundred nineteen herbarium specimens were selected to represent all the available medicinal plants reported during previous interviews, as well as the most common species in the area, different plant life-forms and plants from different habitats as part of a wider study of local ecological knowledge (Teixidor-Toneu et al., in prep.). For each specimen, informants were asked about the plant’s name, uses and parts used, plant life-form and location where it is found.

2.4 Botanical collection and plant identification

Voucher specimens were collected in the field with the collaboration of informants. Specimens from the local herbarium of Imegdale were used to identify species referred by vernacular names when collection was not possible. Vouchers have been deposited at the Marrakech Regional Herbarium (Morocco; MARK) and the University of Reading Herbarium (United Kingdom; RNG). Vouchers of the local herbarium of Imegdale are deposited in MARK and RAB (Institut Scientifique, Rabat). Market samples were purchased in the souks of Asni and Tlat N’Yakoub and deposited in the University of Reading Herbarium. Taxonomic identification follows the Flore Pratique du Maroc (Fennane et al., 1999, 2007, 2015) and nomenclature follows The Plant List (2013). For family assignments the Angiosperm Phylogeny Group III criteria were used (APG III, 2009; Reveal & Chase, 2011). For a comprehensive list of the herbarium specimens referenced in this paper see Table 2 in Teixidor-Toneu et al. (in press).
2.5 Data analysis

Data were structured in use reports, which refer to each mention of one plant for one therapeutic application given by one informant. Data collected for each use report include its local name(s), part(s) used, modes(s) of administration, intended therapeutic application, origin (wild, cultivated or acquired in the souk) and socioeconomic relevance. Part(s) used and mode(s) of administration were classified and codified according to the Economic Botany Data Standard (Cook, 1995). Three ethnobotanical indices were calculated to describe the data: Use Value (UV), Fidelity Level (FL) and Informant Consensus Factor (FiC; indices described in Table 1). In order to assess the agreement among informants (FiC) fourteen biomedical use categories were considered. Following suggestions made by Staub et al. (2015), most categories were based on body systems: cardiovascular, dermatological, endocrinological, gastrointestinal, gynaecological, musculoskeletal, ophthalmological, otolaryngological & respiratory and urological & nephrological. To this list, we added five locally relevant categories in order to better represent the ailments mentioned during interviews: cancer, general health, paediatric, injuries and ritual & spiritual. All calculations are based on vernacular names, not on the botanical species that correspond to the name (Berlin, 1973).

<TABLE 1>

The software anthropac (Borgatti, 1996) was used to find a consensus model (Romney et al., 1986) of known medicinal plants listed by informants. It was also used to elucidate patterns in herbal mixtures through Johnson’s Hierarchical Clustering (Johnson, 1967), based on plants that are mentioned in lists that show proximity in cluster analysis.

2.6 Identification of new or very rare medicinal plant citations and uses

A literature search was carried out in order to identify new citations and uses for medicinal plants in Morocco. Journals, edited books and other scientific databases (DOAJ, Google Scholar, PubMed, Science direct, and Scopus) were searched using combinations of the keywords “medicinal”, “ethnobotan*”, “Morocco” and “Maroc”. The studies were selected according to the following criteria:
(1) they must have been carried out in Morocco, (2) the species list must be the result of ethnobotanical fieldwork, i.e., not from bibliographical revisions, and (3) studies must explicitly state the collection of voucher specimens and deposition in recognized herbaria, since poor taxonomic practices are common in ethnopharmacology and correct botanical names linked to a voucher specimen are indispensable (Bennet & Balick, 2014; Rivera et al., 2014). Further pharmacological literature was searched to identify uses outside Morocco and seek experimental evidence for efficacy and safe use of the new citations of traditional medicines.

3. RESULTS AND DISCUSSION

3.1 Medicinal plant diversity

In total, 151 plant vernacular names were mentioned during the interviews, corresponding to 159 botanical species. A comprehensive inventory includes vernacular and scientific names, parts used and modes of administration, local use (folk ailments) and use categories, as well as the number of use reports (UR), use values (UV) and the highest fidelity level value (FL; see Table 1 in Teixidor-Toneu et al., in press). Details on herbarium specimens can be retrieved from Table 2 in Teixidor-Toneu et al, in press. Four vernacular names corresponded to mixtures normally bought at the herbalist. Medicinal plant diversity is concentrated in five plant families: Lamiaceae (25 species), Asteraceae (11 species), Apiaceae (10 species), Fabaceae (6 species) and Rosaceae (6 species). These results are similar to those from other parts of the country (Fakchich & Elachouri, 2014) and other Mediterranean regions (Bonet & Valles, 2003; Rigat et al., 2007). A high number of use reports correspond to the Lamiaceae, as well as Asteraceae, Cupressaceae, Apiaceae, Fabaceae, Rutaceae and Amaranthaceae. The consensus model or typical medicinal plant list in Imegdale includes: azukni (Thymus saturejoides; UV 1.43), shih (Artemisia herba-alba; 1.23), timja (Mentha suaveolens; 1.23), azuka (Tetraclinis articulata; 0.88) and timzurri (Lavandula dentata; 0.74). According to UV values, ifzi (Marrubium vulgare; 0.88), aurmi (Ruta chalepensis; 0.55), mkhinza (Dysphania ambrosioides: 0.52), tefedas (Trigonella foenum-graecum: 0.46), harmel (Peganum harmala: 0.44), tarubi (Rubia peregrina: 0.41), tlir (Dittrichia viscosa: 0.39), shanouj (Nigella sativa: 0.38), awgdmi (Armeria
alliacea: 0.35), hbrrchad (Lepidium sativum: 0.35), khzema (Lavandula angustifolia: 0.34), fliyou (Mentha pulegium: 0.33), uamsa (Foeniculum vulgare: 0.32), ijaumgar (Inula montana: 0.30) and zeet (Olea europaea: 0.26) are also locally important plants (Table 2).

TABLE 2

Medicinal plant diversity derives from the agro-pastoralist lifestyle and the influence of Arabo-Muslim pharmacology, which includes many traded plants from Asia (Bellakhdar, 1997). The agro-pastoralist character of the Ishelhin peoples is reflected in the environments where plants are sourced. Plants are mostly harvested in the wild (59%), mostly in mountain areas (adrar), semi-arid slopes with little soil and sparse vegetation (lbour) or around the fields (igran), where they can also be cultivated (14%). They can also be acquired in the souks (27%), where men trade local produce for foreign goods including imported plant species. Some of the plants acquired in the markets are those from the Zingiberaceae: skinjbir (Zingiber officinale), khoudenjal (Alpinia officinarum), khrom (Curcuma longa); but also spices from other plant families that have come to be central healing elements of Ashelhi households such as qrfa (Cinnamomum sp.), gusa & bsibissa (Myristica fragrans), l’aamer (Piper nigrum) and jawi (Styrax benzoin).

3.2 Modes of administration, plant parts used and diversity of uses

Medicinal plants are ingested orally as infusions (36% of the use reports), as reported in other regions of Morocco (Merzouki et al., 2000), or mixed with milk (12%), olive oil (20%), honey (18%) or food (38%). They can be chewed (<1%), used as ear drops (<0.5%), incense (6%) or inhaled directly (2%), applied externally in poultices (3.5%), baths (7%) and washes (<1%) or in ways not specified (5%), or carried on the body in little bundles (charms, <1%; Table 1 in Teixidor-Toneu et al, in press). Four species are used in qwi (<1%), a technique that uses dry plant stems burned at one end to make them hot and then applied to the afflicted person’s skin in specific places. Incense is the preferred mode of use to treat Ritual & spiritual ailments.

For 73% of the plants, more than one plant part is used medicinally (Table 1 in Teixidor-Toneu et al, in press). Leaves are the part most used (55%), followed by underground parts (40%, including roots,
tubers, bulbs and rhizomes), flowers and inflorescences (18%), seeds (16%) and fruits (15%). Barks, stems, wood, galls, oils and exudates are also used from one to three species each. This widespread use of Lamiaceae explains the preponderance of leaves and inflorescences.

Fidelity Level is one of the quantitative tools used to select plants from ethnopharmacological field studies for further pharmacological screening (under the assumption that plants that are used only for one ailment are more likely to be effective; Andrade-Cetto & Heinrich, 2011), but it can also be used to interpret plant use in local contexts. High FL values indicate that the plant tends to be used to cure one ailment and low FL values show that plants are used for a wide range of ailments (Tables 2 and 3, but see Table 1 in Teixidor-Toneu et al., in press for comprehensive results). Only 13 species show high fidelity values (FL ≥ 0.60; Table 3, species with low numbers of use reports have not been included). Mkhinza (Dysphania ambrosioides) and limoun (Citrus sinensis) constitute the main remedy against fever. Hmiku (Cistus laurifolius), tazugnit (Thymus marrocanus & Thymus willdenowii), asln (Fraxinus dimorpha), grunsh (Nasturtium officinale) and khoudenjal (Alpinia officinarum) are all “hot” plants used for “cold” ailments. The root bark of tasafi (Quercus ilex) and the fruits of uamsa (Foeniculum vulgare) and tekeda (Ceratonia siliqua) are used almost exclusively for stomach problems, as well as the fruit skin and flowers of rman (Punica granatum). The roots of tarubi (Rubia peregrina) are used against fardem (anaemia) due to the red coloration of its infusion, an association that could be attributed to the “doctrine of signatures”. Jawi (Styrax benzoin), harmel (Peganum harmala) and fassough (Ferula communis; 1) used as incense for all ailments since it is believed to relieve negative influences from jinni and sorcery. Zaafran (Crocus sativus) was mentioned as a key plant used by local healers, ferraggat, to heal children’s ailments which are sorcery-related. Henna (Lawsonia inermis) is used to treat dermatological problems. Finally, touma (Allium sativum) and fliyou (Mentha pulegium) are mostly used against cough and chest problems.

<table>
<thead>
<tr>
<th>TABLE 3</th>
</tr>
</thead>
</table>

Almost all the plants with high UV are used to treat wide range of ailments (FL < 0.50); only one of them has a specific therapeutic application (mkhinza, Dysphania ambrosioides, to treat fever). Moreover, many plants were used for all ailments (kolshi, which literally means “everything” in
Tashelhit) and those were also highly aromatic plants, possibly selected because of their attractive organoleptic properties (Leonti et al., 2002). Low fidelity levels of the most used plants are indicative of the popular character of Ishelhin medicine, where home remedies rather than plants prescribed by specialists are used. Similar results have also been found when comparing medicinal floras cross-culturally: families over-represented in medicinal floras as compared to the general flora tend to have a wide range of applications (Saslis-Lagoudakis et al., 2011).

3.3 New therapeutic applications of the most important local plants

The twenty most used medicinal plants in Imegdale are all known to have pharmacological activity, are also used medicinally in other regions of Morocco (Table 2). Only *ijaumgar* (*Inula montana*) had not previously been reported as a medicinal plant in Morocco, but it is a well known remedy in other Mediterranean countries (Obon et al, 2012). We report new uses for eleven of these highly reported plants. In most of the cases, we found pharmacological evidence for the new uses recorded (Table 2), however further studies should be carried out to study the therapeutic effects of *timzurri* (*Lavandula dentata*). Although pharmacological and phytochemical studies find evidence for the medicinal use of herbal remedies, locally perceived efficacy of these remedies may be influenced by cultural constructs of efficacy and the meaning response (Moerman & Jonas, 2002). Claiming evidence for safe use only on experimental studies fails to integrate local perceptions of health and illness (Wayland, 2004).

| TABLE 2 |

Safe use of four herbal remedies was confirmed by the literature and we identified two potentially toxic plants, but information on toxicity for most of the species is lacking. Decoctions of *mkhinza* (*Disphania ambrosoides*) may have genotoxic effects (Gadano et al, 2002). However the preferred mode of use of this plant in the High Atlas is as a poultice or bath; it is not often ingested orally. *Harmel* (*Peganum harmala*) is a well know poisonous species used to treat a wide range of ailments. Informants are aware of its toxicity and will only use small dosages or, more commonly, burn it as incense or use it externally.
3.4 Previously unreported medicinal plants in Morocco

Twenty-five ethnobotanical field studies were retrieved from our literature search, however 15 did not cite herbarium specimens, so botanical identifications may not be robust. Our medicinal plant list was compared to those in Abouri et al. (2012), Eddouks et al. (2002), El-Hilaly et al. (2003), El-Rhaffari & Zaid (2002), Fakchih and Elachouri (2014), Jouad et al. (2001), Merzouki et al. (2000), Ouarghidi et al. (2013), Tahraoui et al. (2007), and Ziyyat et al. (1997) to search for new medicinal plant citations and uses in Morocco. Thirty-five medicinal plants reported in this study (22%) have not been previously reported in the vouchered literature for medicinal plant use in Morocco, but nine have been reported as medicinal plants used in other Mediterranean countries (Table 4). Six of them are part of previously described generic complexes, used interchangeably with the other species with the same vernacular name.

Our literature review revealed pharmacological and/or phytochemical evidence of the therapeutic effect of nine new citations in Morocco, supporting the use reported in our study: Agrimonia eupatoria, Cistus laurifolius, Clematis flammula, Inula montana, Lavandula pedunculata, Malus domestica, Mercurialis annua, Nasturtium officinale and Salvia aucheri. For six species, studies have been carried out in related taxa, suggesting possible therapeutic effects of the reported plants as well and in five cases pharmacological studies had tested different plant parts or therapeutic effects for different ailments to those reported here. Fifteen species have not been screened for pharmacological activities; importantly, several of those are widely used in the High Atlas: Cirsium chrysacanthum, Cladanthus scariosus, Dioscorea communis, Onopordum acaulon, Polycarpon polycarpooides and Pterocephalus depressus.

For most of the new citations of medicinal plants we were unable to find studies on toxicity, but literature confirms the safe use of two of them and discourages the use of six of them. Nonetheless, all of the potentially toxic species have very low use values except for Dioscorea communis. Poisoning can result from ingestion of related species (Bhandari and Kawabata, 2005) and external application is equally not recommended (Cogne et al, 2001). Although Hyoscyamus niger may be occasionally
ingested to treat musculoskeletal problems (possibly due to its sedative effects); the local population is aware of its toxicity. Many informants considered this plant dangerous, and did not use it. *Solanum nigrum* is also toxic, but the more toxic fruits are not used, and only one or two leaves are used in mixtures. *Clematis flammula* leaves are also toxic but they are only used in baths; whether seeds are toxic is not known (Chawla et al., 2012); in Imegdale seeds are chewed but not ingested. Subacute toxic effects where observed in rats when a *Retama* species was administered repeatedly, indicating possible toxicity of the species reported here (Algandaby, 2015).

3.5 Mixtures
Mixtures are frequently used as remedies in Morocco (Bellakhdar, 1997; Merzouki et al., 2000) and this is also true for the High Atlas region. Mixtures are dried plants ground and added to food, fresh leaves used in showers or baths or dried plants burned as incense. Infused dried herbs are also normally used in combinations. Mixtures can be bought from the herbalists in the souk, which is the case for *msahan* (mixture added to food to treat “cold” ailments) and *ishgaf* (mixture used as incense to clean the ambience and heal ailments believed to be caused by sorcery deeds), or prepared at home. Locally recognized mixtures are listed in Table 3, whereas plants normally used in combination, but not formally recognized as a named mixture are explained below.

A well-known remedy for all ailments is called *tadouart nigran* or *ifskan* (literally “mixture of the fields” or “medicinal plants”) and includes up to 15 plants with individual recipes varying from informant to informant. *Tadouart nigran* was described as a mixture of “all you can find on your way to the fields”; it consists of a collection of fresh leaves from plants that grow in the village environs and in agricultural fields, infused and either drunk or used in a shower. It is used especially in cases of fever and as a preventive medicinal bath for babies.

Plant mixtures can also be used as incense in a practise called *bkhorr* in which plants are sprinkled on hot coals. *Harmel* (*Peganum harmala*; FL 0.64), *jawi* (*Styrax benzoin*; 0.75) and *fassough* (*Ferula communis*; 1.00) show high FL values for the Ritual & Spiritual use category and and tend to co-occur
in plant lists. Salaban (Boswellia sp.) and igg (Pistacia atlantica) are also regularly used in bkhorr. These incense plants can be used together or separately, contrary to the mixture of ishgaf which is sold by herbalists. This mixture includes harmel, sanouj (Nigella sativa), aurmi (Ruta chalepensis) and qzbor (Coriandrum sativum) as well as animal parts such as sea urchin shells, crab exoskeleton and cuttlebone, not included in the present study.

Shanouj (Nigella sativa), tefedas (Trigonella foenum-grecum) and hab rshad (Lepidium sativum), although not considered a mixture, are regularly used together (they present high levels of clustering within lists) in food to gain strength and weight and “warm” up the body. Plants used in the recipes of traditional desserts (sli lou and tummit) were mentioned for gastrointestinal problems: cawcaw (Arachyis hypogaea), habt halawa (Pimpinella anisum), jnjlan (Sesamum indicum) and gusa (Myristica fragrans). The boundary between medicinal plants and food condiments is indistinct (Etkin, 1996; Rigat et al., 2009) and especially spices have been used historically in food to preserve health in the Islamic world (García Sánchez, 2002). For example, aromatic plants are combined and used to flavour tea. As with food condiments, this blur this distinction between edible and medicinal categories.

Eye problems are treated by a mixture of khol (mineral galena, PbS) and medicinal plants including bzar (Piper nigrum), tini (Phoenix dactylifera), uamsa (Foeniculum vulgare) and alili (Nerium oleander). It has been argued that khol remedies constitute a health risk for the population, especially children, due to its high concentration of lead, but this is lowered by mixing khol with other products (Lekouch et al., 2001).

3.6 Folk ailments, categories of use and agreement among informants
Excluding results from herbarium specimen-based, structured interviews, 144 plants were mentioned for treating 36 folk ailments (including kolshi, a common answer meaning “everything” and corresponding to a “cure-all” in English; Table 3). The correspondence between folk ailments and biomedical terms is not always one-to-one; terms such as azbar, kolshi and asumid can refer to different use categories from a biomedical perspective since they encompass different biomedical
diseases locally defined and treated as one. For each use report, the liaison between folk and biomedical terms was made depending of the context in which the folk term was used and the symptomatology explained. *Iqdi, taumist* and *taqait* are jointly classified as *frigg* (FR) since they are ailments treated with the same set of plants by local healers. We have included the original local terms for folk ailments as recommended by Martin (1995).

As in many other rural and mountainous communities around the world (e.g. Mexican Maya as described in Berlin & Berlin, 1996; Andean Quechua as in Thomas, 2013), medicinal plants are commonly used to treat infectious diseases including gastrointestinal disorders which are easily transmitted, perhaps due to poor hygienic conditions, proximity to livestock and high-altitude harsh weather conditions. Folk ailments are generally diagnosed among local population according to two principles, by their symptoms and according to beliefs on disease causation, which play an important role on the later therapeutic application of plants. This is the case for “cold” ailments, but also for those conditions that are believed to have a supernatural cause, showing the syncretism between Galenic humoral medicine and Prophetic medicine (Greenwood, 1981). The personalistic aspect of ethnomedicinal systems, based on the idea of extra-natural causes of illness, is present in many traditional health systems (Cosminsky, 1977). In the rural communes of the High Atlas, illness is associated with “bad luck” and whenever someone in a household is sick, a cleansing of the house is performed with incense. Potentially, any disease can have a supernatural cause, but this is especially true for ailments of children, since they are considered to be more vulnerable to sorcery. Incense is regularly burned when there is a new-born in the house as a protective measure against sorcery and illness.

In the High Atlas, cold weather is the ultimate cause of *asumid*, literally meaning “cold”, a folk illness that can manifest in a range of ailments, from infertility (gynecological), muscular and joint pains (musculoskeletal), urine infections and kidney problems (urological & nephrological) to general lack of energy and poor health (general health). People with “weak constitution” are more prone to suffer from it. Plants considered “hot” are used to treat *asumid* although not all “hot” plants are used to treat the whole range of symptoms of *asumid*, nor all “cold” diseases (Alcorn, 1984). Underground parts of
plants are considered “hot”, and many of the plants used to treat asumid are medicinal roots included in the mixture izoran (Table 1 in Teixidor-Toneu et al, in press). Also, plants that grow in cold areas such as the alpine zone are “hot”. These include awgdm (Armeria alliacea), arshmush (Onopordum acaulon), izoran umil (Pteocephalus depressus) and hmiku (Cistus laurifolius). The msahan mixture is also used for “cold” ailments, especially by women to gain weight and treat fertility problems. This mixture is composed mostly of imported spices (Table 1 in Teixidor-Toneu et al, in press and Table 5) and is added to specific dishes prepared to improve women’s health. The distinction between “hot” and “cold” plants has been difficult to associate with specific chemical compounds (Ankli et al., 1999) but it has important symbolic meaning in medicinal plant use and is a common concept in areas as diverse as Latin America (Weller, 1983) and China (Anderson, 1987), along with culturally related areas such as the Arabian Peninsula (Ghazanfar, 1994). Unlike in Latin American cultures, where the “hot” and “cold” dichotomy is perceived as a balance that can destabilize to either pole (Foster, 1976), there is a marked asymmetry in Ishelhin medicine, as observed elsewhere in Morocco (Greenwood, 1981): most ailments are “cold” and most medicines are “hot”. However, some plants are considered “cold” and are mostly used during summer (e.g. tima, Mentha suaveolens) whereas “hot” ones are better for winter times (e.g. imzurri, Lavandula dentata). Like asumid, ado (literally “wind”) is a folk ailment due to natural causes. While asumid can be ultimately attributed to low environmental temperatures, ado is caused by exposure to sudden winds, which can produce cough (tuhat) or flu (ruah) as well as fever, ailments grouped under the otolaryngological & respiratory category.

There is little agreement between informants about plants used for musculoskeletal, urological & nephrological and cardiovascular problems. These values may be due to the use of a high diversity of “hot” species to deal with “cold” ailments in the case of the musculoskeletal and urological & nephrological use categories. The cardiovascular use category includes only one folk ailment, boumzui, described as palpitations in abdominal area after long periods of hard work and hunger or stress. The low agreement on which plants should be used to treat this ailment may be due to the fact that the most common remedy is rest and nourishment. The high F_{ic} values for general health and gastrointestinal are partially a consequence of high use report numbers, and the wide range of plants
used (up to two thirds and half of the total number of vernaculars mentioned, respectively). These
categories also include the most common ailments in the study area, which also explains the higher
agreement among informants about how to treat them.

High F_c values and low numbers of plants used are found for the categories of ritual & spiritual,
ophthalmological, injuries and cancer, indicating a narrower range of plants selected for those
ailments. High agreement about plants used in the ritual & spiritual and ophthalmological categories is
due to the use of few well-known mixtures and imported incense plants sold by herbalists. Similarly, a
narrow range of plants with antiseptic properties is used to treat injuries and only two species were
mentioned to treat cancer: ifzi (*Marrubium vulgare*) which is very bitter (in Tashelhit, *harr*) and alili
(*Nerium oleander*) which is toxic (Langford & Boor, 1996).

4 CONCLUSION

Although Mediterranean medicinal plants have been recorded since ancient Greek times, previously
unstudied rural areas still held potential of identifying previously un-cited medicinal species. The
most popular remedies used in the High Atlas are also medicinal plants used elsewhere in Morocco
but several new uses of these plants have been recorded here. There is pharmacological evidence for
the therapeutic use of these plants as well as for most of those that are listed here for the first time as
medicinal. However, a portion of the medicinal plants used in the High Atlas has potential poisonous
effects and their administration is not recommended according to the literature, but the local
community is only aware of the poisonous effects of some of these plants.

Ishelhin people of the High Atlas use a wide diversity of local and imported plants as medicine in
ways that are culture specific. Medicinal plants used reflect both these local concepts of disease
causation, including the “hot” and “cold” dichotomy, as well as the Ishelhin’s history and agro-
pastoralist lifestyle. Classification of medicinal plant uses into biomedical categories is problematic
since due to the local perception of disease severeal ailments are believed to have the same cause
(“cold”) and are not emically differenciated, hence reported folk ailments do not always correspond to
a single biomedical disease category. Moreover, the majority of the plants are not specific to one ailment, but are used in a variety of therapeutic applications. Many species have wide application, especially plants are used for *kolshi* (lit. “everything”). Most of the time plants are used in combination, either in mixtures bought from the herbalists or prepared at home.

Our literature survey found that the vernacular names for ailments are not reported in the Moroccan ethnobotanical literature. We therefore cannot evaluate how widespread, in Morocco, are the concepts of health and disease we report here. Reporting vernacular names for disease would allow this to be evaluated, and would also facilitate comparative studies of the plant uses as well as providing the necessary cultural context for further plant selection for pharmacological tests and drug development.

ACKNOWLEDGMENTS

This work has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under the grant agreement no. 606895. We would like to acknowledge in kind support provided by the Darwin Initiative (Project Number 20-013: Medicinal root trade, plant conservation and local livelihoods in Morocco). Heartfelt thanks to the people from Imegdale and all those who agreed to participate in this study; this work belongs to them and will return to the community. Conducting fieldwork in Morocco would have not been possible without the collaboration of H. Ait Baskad, F. Ait Iligh, M. El Haouzi, A. Ouarghidi and H. Rankou, many thanks to them. We are thankful to Y. Andrieu for designing the map of Morocco and H. Vilar and A. Burillo for their collaboration with the graphical abstract and three anonymous reviewers for comments on initial drafts of the manuscript.

REFERENCES

20

Bellakhdar, J., Honda, G., Miki, W., 1982. Herb drugs and herbalists in the Maghreb. Institute for the study of Languages and Cultures of Asia and Africa, Tokyo.

LIST OF FIGURES

Figure 1. Map of Morocco; the location of the rural commune of Imegdale indicated by a black dot.
Table 1. Indices used to describe medicinal plant knowledge.

<table>
<thead>
<tr>
<th>Use Value (UV)</th>
<th>Informant Consensus Factor (F_{ic})</th>
<th>Fidelity Level (FL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV evaluates the relative cultural importance of each plant based on the number of use reports. Based on Phillips and Gentry (1993), simplified by Rossato et al. (1999).</td>
<td>F_{ic} assesses the agreement among informants on the plants used for each use category. Based on Heinrich et al. (1998) and Trotter & Logan (1986).</td>
<td>FL identifies the main use of each plant, and calculates the relative importance of the number of use reports for each category of use. Based on Friedman et al. (1986).</td>
</tr>
</tbody>
</table>

$$UV = \frac{\sum U_is}{N}$$

Nuc is the total number of use reports in each use category and Nt is the number of plants used in that category.

$$FL = \left(\frac{Np}{N} \right) \times 100$$

Np is the number of use reports for one use category and N the total number of informants that cited the plant for any use.

ΣU_is is the sum of the total number of use reports concerning a given species and N is the total number of informants.

The most reported plants have the highest UV values. High F_{ic} values indicate agreement among informants on which plants to use for a particular use category. High FL values indicate that a plant is mainly used only for one use category. FL is artificially high for plants with few use reports, thus plants with less than 5 use reports were excluded from the discussion.

Table 2. Most reported medicinal plants (24 use reports or more). Uses highlighted in bold are uses not previously reported from Morocco. All vernacular plant names are in Tashelhit.

<table>
<thead>
<tr>
<th>Scientific name (family, voucher specimen)</th>
<th>Vernacular name</th>
<th>Part used</th>
<th>Administration</th>
<th>Use categories (folk ailments)</th>
<th>U</th>
<th>R</th>
<th>UV</th>
<th>Ethnomedicinal use outside of Morocco; pharmacological, toxicological and phytochemical literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armeria alliacea (Cav.) Hoffmanns. & Link (Plumbaginaceae, IME92)</td>
<td>Awgdmi Roots</td>
<td>Oral ingestion, tea</td>
<td>General health, gynaecological, musculoskeletal, endocrinological, paediatric (asumid, saht, meda, kolshi, azbar, fqrden, adis)</td>
<td>29</td>
<td>0.3</td>
<td>5</td>
<td>High anti-inflammatory effect (Rimbau et al, 1996). No reports on toxicity.</td>
<td></td>
</tr>
<tr>
<td>Artemisia herba-altas Asso (Asteraceae, IME17)</td>
<td>Shih All aerial parts</td>
<td>Tea, external application, oral ingestion, washes, chewing, incense, baths</td>
<td>General health, gastrointestinal, gynaecological, endocrinological, injuries, ophtalmological</td>
<td>10</td>
<td>1</td>
<td>3</td>
<td>Weak antimicrobial activities (Marrif et al, 1995). Several phytochemicals present in this</td>
<td></td>
</tr>
<tr>
<td>Plant Name</td>
<td>Species</td>
<td>Part Used</td>
<td>Applications</td>
<td>Health Properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>--------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dittrichia viscosa (L.) Greuter</td>
<td>Tlir</td>
<td>Leaves</td>
<td>Tea, baths, oral ingestion, poultice, external applications</td>
<td>General health, gastrointestinal, gynaecological, otolaryngological & respiratory, urological & nephrological, paediatric (kolshi, azbar, jerh, meda, asumid, okhass, skar, iurigh, frigg, atsirid, msran, klaui, jqeqa, ruah, alen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysphania ambrosoides (L.) Mosyakin & Clemants</td>
<td>Mkhinza</td>
<td>Leaves</td>
<td>Poultice, baths, oral ingestion, tea</td>
<td>General health, gastrointestinal, gynaecological, otolaryngological & respiratory, endocrinological, paediatric (kolshi, skhana, skar, meda, frigg, ruah, azbar, asumid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foeniculum vulgare Mill.</td>
<td>Uamsa</td>
<td>Fruits, leaves, roots</td>
<td>Oral ingestion, tea, external application</td>
<td>General health, gastrointestinal, opthalmological, urological & nephrological, endocrinological (meda, asumid, msran, klaui, alen, adis, azbar, kolshi, skar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inula montana L.</td>
<td>Ijaumgar</td>
<td>Leaves</td>
<td>Tea, oral ingestion</td>
<td>General health, gastrointestinal, urological & nephrological, endocrinological (meda, asumid, msran, klaui, alen, adis, azbar, kolshi, skar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plant are claimed to render it with beneficial health properties and very low degrees of toxicity have been observed (Moufid and Eddouks, 2012). No reports on toxicity.

Antiviral activities (Abad et al., 2000). Anti-cancerous activities proven for human cervical cells (Merghoub et al., 2009). There is also evidence of anti-inflammatory, antipyretic and anthelmintic properties (Abu Zarga et al., 1998). No reports on toxicity.

Use of this plant as a remedy for fever has been confirmed (Hallal et al., 2010), but decoctions and infusions of this plant may have a genotoxic effect (Gadano et al., 2002). This plant possesses significant oculohypotensive activity (Agarwal et al., 2008) and anti-cataract activity (Dongare et al., 2012). The plant is not toxic at therapeutic doses (Shah et al., 1991). Used medicinally in Spain (Obon et al., 2012) and Algeria.
<table>
<thead>
<tr>
<th>Species</th>
<th>Part(s)</th>
<th>Uses</th>
<th>Reports on Toxicity</th>
<th>Anti-inflammatory and Analgesic Properties</th>
<th>Antimicrobial Activity</th>
<th>Relaxant and Antinociceptive Activities</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavandula angustifolia Mill.</td>
<td>Leaves, inflorescences</td>
<td>Tea, oral ingestion, washes, baths, poultice</td>
<td>General health,</td>
<td>This plant has anti-inflammatory and analgesic properties (Hajhashemi et al, 2003) as well as antimicrobial, relaxant and antinociceptive activities (Cavanagh and Wilkinson, 2002). No reports on toxicity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lavandula dentata L.</td>
<td>Leaves, inflorescences</td>
<td>Tea, oral ingestion, baths, washes, poultice</td>
<td>General health,</td>
<td>Essential oils have antimicrobial activity (Imelouane et al, 2009). No tests have been carried out to evaluate its relaxant and antinociceptive activities, but this plant is likely to have similar effects to Lavandula angustifolia. No reports on toxicity.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepidium sativum L.</td>
<td>Seeds</td>
<td>Oral ingestion, tea</td>
<td>General health,</td>
<td>The seeds of this plant possess antipyretic, analgesic, anti-inflammatory and</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antioxidant activities have been observed (Belyagoubi-Benhammou et al, 2014). Antiparasitic activity has also been validated (Martin et al, 1998), supporting its traditional use to treat gastrointestinal disorders. No reports on toxicity.
Marrubium vulgare L.
(Lamiaceae, IME24)

| Ifzi | Leaves, stems | Tea, baths, oral ingestion, poultice, external application, incense, inhalant, chewing, washes, ear drops | General health, gastrointestinal, gynaecological, cancer, cardiovascular, endocrinological injuries, musculoskeletal, otolaryngological & respiratory, paediatric (kolshi, shhana, skar, asumid, frigg, jjeqa, cancer, msran, saht, bousfer, jerh, boumzui, imezguane, okhass, toqal, frigg, adis, fjqrdem, tuhut) | 72 | 0.8 | 8 |

The plant presents anti-inflammatory effects (Sahpaz et al, 2002), as well as antispasmodic and antinociceptive effects (De Jesus et al, 2000). The plant has also has antihyperglycemic and antioxidant activities (Elberry et al, 2015). No reports on toxicity.

Mentha pulegium L.
(Lamiaceae, IME39)

| Fliyou | Leaves | Tea, oral ingestion, external applications, inhalant | General health, gastrointestinal, otolaryngological & respiratory (ruah, kolshi, tuhut, iurigh, asumid) | 27 | 0.3 | 3 |

Antioxidant and antimicrobial activities are present in this species (Hajlaoui et al, 2009). No reports on toxicity. Decocts of this species has antioxidant and acetylcholinesterase inhibitory capacity (Ferreira et al, 2006). Its essential oils show antimicrobial and antifungal activity (Oumzil et al, 2002). Methanol extracts from this plant lack toxicity (Moreno et al, 2002).

Mentha suaveolens Ehrh.
(Lamiaceae, IME05, IME40, IME50)

| Timja | Leaves | Tea, oral ingestion, baths, inhalant, external application, poultice, incense, washes | General health, gastrointestinal, gynaecological, endocrinological injuries, musculoskeletal, otolaryngological & respiratory, paediatric (kolshi, azbar, meda, adis, asumid, frigg, ruah, shhana, herh, iurigh, skar, mrrara, jjeqa, okhass, saht, asumid) | 10 | 1.2 | 3 |

Decocts of this species has antioxidant and acetylcholinesterase inhibitory capacity (Ferreira et al, 2006). Its essential oils show antimicrobial and antifungal activity (Oumzil et al, 2002). Methanol extracts from this plant lack toxicity (Moreno et al, 2002).

Nigella sativa L.
(Ranunculaceae, MAR8)

| Shanouj | Seeds | Oral ingestion, inhalant | General health, gastrointestinal, gynaecological, otolaryngological & respiratory, coagulant activities, and free from side or toxic effects (Al-Yahya et al, 1994). | 31 | 0.3 | 8 |

This plant has antidiabetic, anticancer and immunomodulatory, analgesic, anti-inflammatory, antispasmodic, antinociceptive, antihyperglycemic, and antioxidant activities. No reports on toxicity.
Peganum harmala L. (Nitriaceae, IME101)

- **Harmel**
- **Seeds**

<table>
<thead>
<tr>
<th>Use</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incense, external applications, inhalant, poultice, tea, oral ingestion, baths, washes</td>
<td>urological & nephrological (asumid, saht, kolshi, klaui, azbar, meda, iurigh, ruah)</td>
</tr>
<tr>
<td>General health, dermatological, injuries, musculoskeletal, otalaryngologic & respiratory, ritual & spiritual, paediatric ('aceen, bkhor, jerh, jqeqa, kolshi; ch’aar, ruah, skhana, frigg, tuhut, asumid)</td>
<td>antimicrobial, anti-inflammatory, spasmyloitic, bronchodilator, hepatoprotective, antihypertensive, renal protective and antioxidant properties (Gilani et al, 2004). Mild toxicity has been observed from its fixed oil, but therapeutic doses are considered safe (Zaoui et al, 2002). This plant has antibacterial, antifungal, antiviral, antioxidant, antidiabetic, antitumor, antileishmanial, insecticidal and cytotoxic activities and hepatoprotective and antinociceptive effects (Asgarpanah and Ramezanloo, 2012). However, all plant parts are toxic and poisoning in humans has been reported (Mahmoudian et al, 2002).</td>
</tr>
</tbody>
</table>

Olea europaea L. (Oleaceae, IME22)

- **Zeet**
- **Leaves, oil, seeds, wood**

<table>
<thead>
<tr>
<th>Use</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baths, external applications, oral ingestion, incense, tea, poultice, inhalant</td>
<td>General health, dermatological, endocrinological, otalaryngologic & respiratory, ritual & spiritual, paediatric, ophthalomological (kolshi, ruah, alen, tuhut, imezguane, frigg, 3ain, frigg, skar, ch’aar)</td>
</tr>
<tr>
<td>General health, dermatological, injuries, musculoskeletal, otalaryngologic & respiratory, ritual & spiritual, paediatric, ophthalomological (kolshi, ruah, alen, tuhut, imezguane, frigg, 3ain, frigg, skar, ch’aar)</td>
<td>Leaves have antioxidant, antihypertensive, antiatherogenic, anti-inflammatory, hypoglycemic, and hypocholesterolic properties (Sedef and Karakaya, 2009). Olive oil has a powerful antioxidant, anti-inflammatory and antimicrobial</td>
</tr>
<tr>
<td>Species</td>
<td>Usage</td>
</tr>
<tr>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>Rubia peregrina L.</td>
<td>Tarubi Roots</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ruta chalepensis L.</td>
<td>Aurmi All aerial parts, roots</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetraclinis articulata (Vahl) Mast.</td>
<td>Azuka Leaves, fruits</td>
</tr>
<tr>
<td>(Cupressaceae, IME07)</td>
<td></td>
</tr>
<tr>
<td>Thymus saturejoides Coss.</td>
<td>Azukni Leaves, inflorescences</td>
</tr>
<tr>
<td>(Lamiaceae, IME37, IME49)</td>
<td></td>
</tr>
</tbody>
</table>
Trigonella foenum-graecum L.
(Fabaceae, IME60)

<table>
<thead>
<tr>
<th>Tefedas Seeds</th>
<th>Oral ingestion, incense, tea, inhalant, baths</th>
<th>Cardiovascular, endocrinological, general health, gastrointestinal, gynaecological, otolaryngological & respiratory, paediatric, ritual & spiritual (asumid, saht, kolshi, ruah, bkhor, meda, ein, mrrara, skar)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>38 0.4 6</td>
</tr>
</tbody>
</table>

This plant is effective to treat diabetes and its safe use has been reported (Basch et al, 2003). Anti-inflammatory, analgesic and antipyretic effects are present in the leaves (Ahmadiani et al, 2001) but the seeds have not been tested. No reports on toxicity.

Table 3. Categories of use, folk ailments and informant’s agreement (F_i). Number of use reports (UR), number of plant vernaculars (N) and F_i values per biomedical category of use (many vernacular names were used for different therapeutic applications) and plants with high FL for each category (only plants with more than 5 UR have been included). For a translation and description of the folk ailments see the glossary in Teixidor-Toneu in press (Table 3).

<table>
<thead>
<tr>
<th>Biomedical Use Categories (folk ailments)</th>
<th>Species with highest Fidelity Levels (FL)</th>
<th>UR</th>
<th>N</th>
<th>F_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>General health (azbar, skhana, kolshi, asumid, shqeqa, saht)</td>
<td>Cistus laurifolius (0.93), Dysphania ambrosoides (0.88), Fraxinus dimorpha (0.88), Nasturtium officinale (0.86), Citrus sinensis (0.85), Alpinia officinarum (0.83), Thymus maroccanus and T. willdenowii (0.77).</td>
<td>6 9 0,</td>
<td>7 5 8</td>
<td></td>
</tr>
<tr>
<td>Gastrointestinal (iurigh, msran, meda, azbar, mrrara, adis, touqal, zaqaz)</td>
<td>Quercus ilex (0.75), Punica granatum (0.73), Foeniculum vulgare (0.62), Ceratonia siliqua (0.60).</td>
<td>3 7 0,</td>
<td>1 0 7</td>
<td></td>
</tr>
<tr>
<td>Paediatric (kolshi, iqdi, taumist, taqait, frigg)</td>
<td>Crocus sativus (0.88)</td>
<td>1 6 0,</td>
<td>3 0 5</td>
<td></td>
</tr>
</tbody>
</table>

35
Table 4. New reports of medicinal plant species. Vernacular names marked with * are part of previously documented generic complexes. Moroccan Arabic names are indicated by (ary).

<table>
<thead>
<tr>
<th>Species (Family, voucher specimen)</th>
<th>Vernacular names</th>
<th>Part used</th>
<th>Administration</th>
<th>Use categories (folk ailments)</th>
<th>UR</th>
<th>UV</th>
<th>Evidence based uses and toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrimonia eupatoria L. (Rosaceae, IME144)</td>
<td>Touganlmeda</td>
<td>Leaves</td>
<td>Tea</td>
<td>Gastrointestinal (meda)</td>
<td>2</td>
<td>0.0</td>
<td>This plant is also used in Bulgaria and has antioxidant properties (Ivanova et al, 2005). Antioxidant capacity confirmed by further studies</td>
</tr>
</tbody>
</table>

Allium sativum (0.75), Mentha pulegium (0.70)
Rubia peregrina (0.82)
Ferula communis (1), Styrax benzoin (0.75), Peganum harmala (0.64)
Lawsonia inermis (0.62)

Gynæacological (azbar, asumid)
Otolaryngological & respiratory (ado, ruah, imezuane, okhass, tuhat)
Endocrinological (bousfer, skar, fiqdem)
Ritual & spiritual ('aen, bkhorr, lariah)
Ophthalmological (alen)
Musculoskeletal (asumid, azbar)
Urological & nephrological (klaui, asumid, atsirid)
Injuries (jerh)
Dermatological (ch’aar, tafalda)
Cardiovascular (boumzui)
Cancer
<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Part Used</th>
<th>Uses</th>
<th>Antioxidant Activities</th>
<th>Antinociceptive Activities</th>
<th>Antimicrobial Activity</th>
<th>Toxicity Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballota hirsuta
Benth.
(Lamiacea e, IME26)</td>
<td>Uarimsa, touga n’ifzi, tifziguyin</td>
<td>Leaves Tea, oral ingestion, baths</td>
<td>General health, gastrointestinal, gynecological, pediatric (kolshi, skhana, frigg, meda, asumid, azbar, mrrara, msran)</td>
<td>23 0.2 8</td>
<td>Antioxidant activities identified for other Ballota species (Citoglu et al, 2004). Antinociceptive activities have been observed for Ballota glandulosissima (Citoglu et al, 2005) and antimicrobial agents are present in Ballota nigra (Quave et al, 2008). No reports on toxicity.</td>
<td>No reports on toxicity.</td>
<td></td>
</tr>
<tr>
<td>Cerinthe major
L.
(Boraginaceae, IME75 & IME87)</td>
<td>Taililut</td>
<td>Leaves Tea, oral ingestion</td>
<td>General health, gynecological, otolaryngologic & respiratory (saht, azbar, asumid)</td>
<td>7 0.0 9</td>
<td>Also used medicinally in Italy (Loi et al, 2005) and India (Tiwari, 2008). No reports on pharmacological activities or toxicity.</td>
<td>No reports on toxicity.</td>
<td></td>
</tr>
<tr>
<td>Cirsium chrysacanthum
(Ball.) Jahand.
(Asteraceae, HAM126)</td>
<td>Teskra*</td>
<td>Roots Tea, oral ingestion</td>
<td>Gynecological, (asumid, klaui, ado, imeda)</td>
<td>8 0.1 0</td>
<td>No studies identified.</td>
<td>Medicinally used in Turkey; studies confirm antioxidant components in the plant (Sadhu et al, 2006). Anti-inflammatory and antinociceptive</td>
<td></td>
</tr>
<tr>
<td>Cistus laurifolius
L.
(Cistaceae, IME36)</td>
<td>Hmiku</td>
<td>Seeds Oral ingestion</td>
<td>General health, gastrointestinal (asumid, kolshi)</td>
<td>15 0.1 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
activities have also been shown in the plant’s leaves (Kupeli and Yesilada, 2007), as well as antiulcerogenic activities in the flowers and flower buds (Yesilada et al, 1997). No studies have evaluated the pharmacological activities of the seeds. No reports on toxicity.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common Name</th>
<th>Parts Used</th>
<th>Uses</th>
<th>General Health</th>
<th>Gastrointestinal</th>
<th>Gynaecological</th>
<th>Paediatric</th>
<th>Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cladanthus scarious (Ball.) Oberpr. & Vogt (Asteracea e, IME34)</td>
<td>Itzghi, ifskin uarras</td>
<td>Leaves, inflorescences</td>
<td>Tea, oral ingestion, baths</td>
<td>General health, gastrointestinal, gynaecological, paediatric (kolshi, skhana, meda, frigg, asumid, iurigh)</td>
<td>18</td>
<td>0.2</td>
<td>2</td>
<td>No studies identified</td>
</tr>
<tr>
<td>Clematis flammula L. (Ranunculaceae, HAM107)</td>
<td>Azenzou</td>
<td>Leaves, seeds</td>
<td>Bath, chewing</td>
<td>Paediatric, otolaryngological & respiratory (kolshi, okhass)</td>
<td>2</td>
<td>0.0</td>
<td>2</td>
<td>This plant is also used medicinally in Algeria (Atmani et al, 2009), and antioxidant activities have been observed. Further studies also report cytotoxic activity (Atmani et al, 2011). The species in the genus Clematis present protoanemonin and aristolochic acid which have severe toxic effects (Chawla et al, 2012).</td>
</tr>
<tr>
<td>Clinopodium atlanticum (Ball.) N.Galland (Lamiaceae)</td>
<td>Tzagzaut</td>
<td>Leaves</td>
<td>Oral ingestion (frigg)</td>
<td>Paediatric (frigg)</td>
<td>1</td>
<td>0.0</td>
<td>1</td>
<td>No studies identified</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Main Part</td>
<td>Uses</td>
<td>Rating (IC)</td>
<td>Rating (N)</td>
<td>Notes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrigiola litoralis L.</td>
<td>Roots</td>
<td>Incense, chewing, external applications</td>
<td>4</td>
<td>0.0</td>
<td>No studies identified.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tausserghiant*</td>
<td>Gyneacological, otolaryngologic & respiratory, paediatric, ritual & spiritual (kolshi, okhass)</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dioscorea communis (L.)</td>
<td>Tubercles</td>
<td>Oral ingestion, external application</td>
<td>12</td>
<td>0.1</td>
<td>Evidence for therapeutic use against rheumatism is found in Dioscorea sylvatica, however long term external application is not recommended (Cogne et al, 2001). Inflammatory activities and occasional toxicity can result from ingestion of other Dioscorea species (Bhandari and Kawabata, 2005). Although some therapeutic applications of this plant have been proven (Gilani et al, 2007), no studies have evaluated its effects agains rheumatism or to treat eye infections. Intoxications due to the ingestion of this plant have been reported and this plant is considered among those presenting</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agulz</td>
<td>General health, gastrointestinal, musculoskeletal, paediatric (saht, meda, asumid, frigg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyoscyamus niger L.</td>
<td>Leaves</td>
<td>Oral ingestion, incense</td>
<td>2</td>
<td>0.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Uaililu</td>
<td>Musculoskeletal, ophthalmologic (asumid, alen)</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Synonymy</th>
<th>Part</th>
<th>Uses</th>
<th>Dosages</th>
<th>Toxicological Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lavandula pedunculata Mill.</td>
<td>(Lamiaceae, IME85)</td>
<td>Tea, oral ingestion</td>
<td>Dermatological, general health, gastrointestinal, gynaecological, ophtalmological, otolaryngologic, pediatric</td>
<td>18</td>
<td>Also used medicinally in Portugal. Active metabolites in the plant have a positive effect on human health (Costa et al, 2013) and decoctions have acetylcholinesterase inhibitory capacity (Ferreira et al, 2006). No reports on toxicity. Related taxa has anti-inflammatory, antibacterial, antiviral, antioxidative and hepatoprotective activities (Shang et al, 2011) and this species does not have toxicity effects (Thanabhorn et al, 2006). Therapeutic effects of apple vinegar have been shown (Nakamura et al, 2010). No reports on toxicity. Used medicinally in Turkey and Jordan.</td>
</tr>
<tr>
<td>Lonicera biflora Desf.</td>
<td>(Caprifoliaceae, HAS90)</td>
<td>Leaves</td>
<td>General health, pediatric (skhana, kolshi)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Malus domestica Borkh.</td>
<td>(Rosaceae, NA)</td>
<td>Fruit (vinegar)</td>
<td>General health (skhana)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Malva neglecta Wallr.</td>
<td></td>
<td>Leaves</td>
<td>General health (asumid, saht)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
(Malvaceae, HAS148)

Antioxidant capacity similar or higher than herbs such as rosehip, cinnamon, oregano and multiple Chinese medicinal plants found in the leaves (Dalar et al., 2012). Safe use has been confirmed (Al-Qura’n, 2009).

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Use</th>
<th>Part</th>
<th>Form</th>
<th>Effect</th>
<th>Dosage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mentha gattefossei Maire (Lamiaceae, IME84)</td>
<td>Oral ingestion</td>
<td>Leaves</td>
<td>Tea</td>
<td>General health</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>Mercurialis annua L. (Euphorbiaceae, IME20)</td>
<td>Oral ingestion</td>
<td>Leaves</td>
<td>Oral</td>
<td>Paediatric</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Micromeria graeca (L.) Benth. ex Rchb. (Lamiaceae, IME112)</td>
<td>Oral ingestion</td>
<td>Leaves</td>
<td>Tea</td>
<td>General health, urological & nephrological</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>Micromeria hochreutineri (Briq.) Maire</td>
<td>Oral ingestion</td>
<td>Leaves</td>
<td>Tea</td>
<td>General health, urological & nephrological</td>
<td>2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

This plant is also used medicinally in Israel and has antioxidant activities and no toxic effects at low administration dosages (Ljubuncic et al., 2005).

See the closely related species, *Mentha pulegium* in Table 2.

Several Lamiaceae species are a rich source of acetylcholinesterase inhibitors and antioxidants (Vladimir-Knezevic et al., 2014). No reports on toxicity.

Several Lamiaceae species are a rich source of acetylcholinesterase inhibitors and antioxidants (Vladimir-Knezevic et al., 2014). No reports on toxicity.

This plant is also used medicinally in Israel and has antioxidant activities and no toxic effects at low administration dosages (Ljubuncic et al., 2005).

See the closely related species, *Mentha pulegium* in Table 2.
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Administered Form</th>
<th>Uses</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasturtium officinale R.Br.</td>
<td>Grunsh</td>
<td>Leaves</td>
<td>Oral ingestion, tea</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General health, paediatric</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(asumid, frigg)</td>
<td>9</td>
</tr>
<tr>
<td>Onopordum acaulon L.</td>
<td>Arshmush</td>
<td>Roots</td>
<td>Oral ingestion</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General health, gastrointestinal,</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>musculoskeletal, paediatric</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(asumid, saht, kolshi, adis)</td>
<td></td>
</tr>
<tr>
<td>Polycarpon polycarpoides (Biv.)</td>
<td>Talwurst</td>
<td>Fruits, roots, seeds</td>
<td>Oral ingestion</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General health, gastrointestinal,</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>gynaecological, musculoskeletal,</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>urinary & nephrological</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(asumid, azbar, kolshi)</td>
<td></td>
</tr>
<tr>
<td>Pterocephalus depressus Coss. & Balansa</td>
<td>Izoran melul, izoran umlii, igudi</td>
<td>Roots</td>
<td>Oral ingestion, tea</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>General health, gastrointestinal,</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>gynaecological, musculoskeletal</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(asumid, saht, azbar, meda, kolshi, adis)</td>
<td></td>
</tr>
</tbody>
</table>

This plant is also used medicinally in Iran and has cardioprotective potential (Bahramikia and Yazdanparast, 2008) and hypolipidaemic activity due to its antioxidative potential (Yazdanparast et al, 2008). No reports on toxicity. Antioxidant activities have been observed in Onopordum anatolicum (Tasdelen and Mammadov, 2014). No reports on toxicity. No studies identified.

Anti-inflammatory effects and no obvious toxicity observed in Pterocephalus hookeri (Xinlu et al, 2004). Further studies confirmed anti-inflammatory activities and analgesic effects in this related taxa.
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Ingestion Form</th>
<th>Reported Effect</th>
<th>Toxicity Score</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retama dasycarpa Coss. (Fabaceae, IME102)</td>
<td>Seeds</td>
<td>Oral ingestion</td>
<td>Urological & nephrological (klaui)</td>
<td>1, 0.0, 1</td>
<td>Subacute toxic effects were observed when another Retama species was repeatedly administered orally to rats (Algandaby, 2015).</td>
</tr>
<tr>
<td>Salix purpurea L. (Salicaceae, HAM97)</td>
<td>Tishki</td>
<td>Bath</td>
<td>General health (skhana, asumid)</td>
<td>1, 0.0, 1</td>
<td>No studies identified.</td>
</tr>
<tr>
<td>Salvia aucheri Benth. (Lamiaceae, MAR53)</td>
<td>Salmia n’udrar</td>
<td>Leaves, Tea, oral ingestion</td>
<td>General health, gastrointestinal, urological & nephrological (kolshi, meda, klaui)</td>
<td>3, 0.0, 4</td>
<td>The species has anticholinesterase inhibitory capacity and antioxidant activities (Orhan et al, 2007). It also has antimycobacterial activities (Askun et al, 2010). No reports on toxicity.</td>
</tr>
<tr>
<td>Salvia taraxicifolia Coss. ex Hook.f. (Lamiaceae, FD28)</td>
<td>Tzdit</td>
<td>Roots, Oral ingestion</td>
<td>General health (asumid)</td>
<td>1, 0.0, 1</td>
<td>Several Lamiaceae species are a rich source of acetylcholinesterase inhibitors and antioxidants (Vladimir-Knezevic et al, 2014). No reports on toxicity.</td>
</tr>
<tr>
<td>Scrophularia laevigata Vahl (Scrophulariaceae, IME66 & IME111)</td>
<td>Ifski n’ughul, flowers</td>
<td>Bath, oral ingestion, tea</td>
<td>General health, gastrointestinal (skhana, kolshi)</td>
<td>3, 0.0, 4</td>
<td>No studies identified.</td>
</tr>
<tr>
<td>Solanum nigrum L. (Solanaceae)</td>
<td>Tedalen*</td>
<td>Leaves</td>
<td>Oral ingestion</td>
<td>Paediatric (frigg)</td>
<td>1, 0.0, 1</td>
</tr>
</tbody>
</table>
and fruits have neuropharmacological activity (Perez et al, 1998).

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Health Aspect</th>
<th>Score</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solanum lycopersicum m L.</td>
<td>Fruit</td>
<td>Oral ingestion</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Matisha</td>
<td></td>
<td>General health (skhana)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tomatoes have antioxidant properties and a range of therapeutic effects on human health, such as prevention of some major chronic diseases, but their antipyretic activity has not been yet tested (Preedy and Watson, 2008).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Health Aspect</th>
<th>Score</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tagetes minuta L.</td>
<td>Flowers</td>
<td>Tea</td>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>Lgnbes</td>
<td></td>
<td>Musculoskeletal (asumid)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Leaves have antimicrobial activities (Tereschuk et al, 1997) but no test has been carried out from flower extracts. No reports on toxicity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Health Aspect</th>
<th>Score</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymus maroccanus Ball</td>
<td>Leaves, inflorescences</td>
<td>Tea, oral ingestion</td>
<td>13</td>
<td>0.1</td>
</tr>
<tr>
<td>Tazugnit</td>
<td></td>
<td>General health, gastrointestinal (asumid, azbar, meda, frigg)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>This species has been shown to have anti-inflammatory activity topically (Ismaili et al, 2001) but there are no reports that provide evidence of its therapeutic use when ingested.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Part Used</th>
<th>Health Aspect</th>
<th>Score</th>
<th>Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thymus wildenowi Boiss.</td>
<td>Leaves, inflorescences</td>
<td>Tea, oral ingestion</td>
<td>13</td>
<td>0.1</td>
</tr>
<tr>
<td>Tazugnit</td>
<td></td>
<td>General health, gastrointestinal (asumid, azbar, meda, frigg)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
No reports on toxicity. This plant has antibacterial and antioxidant activities in the roots and leaves (El Bouzidi et al., 2011), but no studies have tested yet the use of this plant for dermatological problems. Withania somnifera is considered toxic (Al-Qura’n, 2009).

Table 5. Mixtures. Vernacular names that could not be botanically identified are indicated by NA (identification Not Available).

<table>
<thead>
<tr>
<th>Mixture</th>
<th>Medicinal plants included</th>
<th>Plant acquisition & mode of preparation</th>
<th>Ailments treated (use category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tadouart</td>
<td>Mkhinza (Dysphania ambrosioides), izzg (Pistacia atlantica), imitik (Pistacia lentiscus), louz n’uili (Searsia tripartita), itzghi (Cladanthus scarious), Ignes (Tagetes sp.), shih (Artemisia herba-alba), iflr (Dittrichia viscosa), irifi (Lonicera bilflora), irgl (Cistus salviifolius, Cistus creticus), bilkm (Equisetum ramosissimum), algu (Retama dasyarpa), teked (Ceratonia siliqua), tswig (Juglans regia), azukni (Thymus saturejoides), afleyou (Mentha palegium), grzguel (Lavandula maroccana, Lavandula multifida), ifj (Marrubium vulgare), kimzri (Lavandula dentata), khzmt (Lavandula pedunculata, Lavandula stoechas), tatat (Micromeria graeca, Micromeria hochreutineri), tlba (Ajuga iva), timja (Mentha suaveolens), uarimsa (Ballota hirsuta), rman (Panica granatum), ashn (Fraxinus dimorpha), zeet 1bud (Olea europaea), tirqa (Globularia alypum), acenzou (Clematis flammula), ashdir (Rubus ulmifolius), louz (Prunus dulcis), tarubi (Rubia peregrina), safsaf (Populus alba), ifski n’ughli (Scrophularia laevigata), ifr tarrausht (Verbacum sp.), angarf (Vitex agnus-castus), adel (Vitis vinifera), azmour (NA) tajant (NA), iltanin (NA)</td>
<td>Plants collected from the wild or the fields close to villages.</td>
<td>General health, paediatric</td>
</tr>
<tr>
<td>Msahan</td>
<td>Bboukoua (Bunium bulbocastanum), taillit (Capparis spinosa), gusa & bsibisa (Myristica fragrans), knorfel</td>
<td>Mixture bought from herbalists.</td>
<td>General health, gynaecological,</td>
</tr>
<tr>
<td>Arabic</td>
<td>English</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ishgaf</td>
<td>Syzygium aromaticum, l’aamer (Piper nigrum), dar fil (Piper longum), nuwivira (Piper cubeba), l’wrd (Rosa centrifolia), badiana (Illicium verum), blalouz (Asphodelus microcarpus), khoudenjal (Alpinia officinarum), khorkom (Curcuma longa), skinjibir (Zingiber officinale)</td>
<td>Dried plants ground and mixed with food.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Qzbor (Coriandrum sativum), harmel (Peganum harmala), sanouj (Nigella sativa), aurmi (Ruta chalepensis)</td>
<td>Mixture bought from herbalists. Ritual & spiritual</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teskra tumil (Eryngium tricuspidatum), arshmush (Onopordum acaulon), taddad (NA), tefgha (Carlina gummifera), teskra krzes (Carlina sp.), igudi (Pterocephalus depressus), awgdmi (Armeria alliacea)</td>
<td>Plants burned as incense. General Health, gynecological, musculoskeletal</td>
<td></td>
</tr>
</tbody>
</table>