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Tensor LRR and Sparse Coding based Subspace
Clustering

Yifan Fu, Junbin Gao, David Tien, Zhouchen Lin and Xia Hong

Abstract—Subspace clustering groups a set of samples from a
union of several linear subspaces into clusters, so that samples
in the same cluster are drawn from the same linear subspace. In
the majority of existing work on subspace clustering, clusters are
built based on the samples’ feature information, while sample
correlations in their original spatial structure are simply ig-
nored. Besides, original high-dimensional feature vector contains
noisy/redundant information, and the time complexity grows
exponentially with the number of dimensions. To address these
issues, we propose a tensor low-rank representation (TLRR) and
sparse coding (SC) based subspace clustering method (TLRRSC)
by simultaneously considering the samples’ feature information
and spatial structures. TLRR seeks a lowest-rank representation
over original spatial structures along all spatial directions. Sparse
coding learns a dictionary along feature spaces, so that each
sample can be represented by a few atoms of the learned
dictionary. The affinity matrix used for spectral clustering is built
from the joint similarities in both spatial and feature spaces. TL-
RRSC can well capture the global structure and inherent feature
information of data, and provide a robust subspace segmentation
from corrupted data. Experimental results on both synthetic
and real-world datasets show that TLRRSC outperforms several
established state-of-the-art methods.

Index Terms—Tensor LRR, Subspace Clustering, Sparse Cod-
ing, Dictionary Learning

I. INTRODUCTION

IN recent years we have witnessed a huge growth of multi-
dimensional data due to technical advances in sensing, net-

working, data storage, and communications technologies. This
prompts the development of a low-dimensional representation
that best fits a set of samples in a high-dimensional space. Lin-
ear subspace learning is a type of traditional dimensionality
reduction technique that finds an optimal linear mapping to a
lower dimensional space. For example, Principle Component
Analysis (PCA) [40] is essentially based on the hypothesis that
the data are drawn from a low-dimensional subspace. However,
in practice, a data set is not often well described by a single
subspace. Therefore, it is more reasonable to consider data
residing on a union of multiple low-dimensional subspaces,
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with each subspace fitting a subgroup of data. The objective
of subspace clustering is to assign data to their relevant
subspace clusters based on, for example, assumed models. In
the last decade, subspace clustering has been widely applied to
many real-world applications, including motion segmentation
[14], [20], social community identification [9], and image
clustering [3]. A famous survey on subspace clustering [44]
classifies most existing subspace clustering algorithms into
three categories: statistical methods [19], algebraic methods
[38], [49] and spectral clustering-based methods [14], [29].
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Fig. 1. Illustration of subspace clustering with high-dimensional data.

In existing traditional subspace clustering algorithms [44],
one usually uses an “unfolding” process to re-arrange samples
into a list of individual vectors, represented by a matrix X =
[x1,x2, . . . ,xN ], with each sample xi (1 ≤ i ≤ N) being
denoted by a column vector. However, in many applications,
samples may have multi-dimensional spatial structural forms,
such as 2-dimension/mode hyperspectral images. In the 3-
dimensional hyperspectral image case, one wishes to cluster
all the pixels, each of which is represented as a spectrum
vector consisting of many bands as shown in Fig. 1. As
a result, the performance of traditional subspace clustering
algorithms may be compromised in practical applications for
two reasons: (1) they do not consider the inherent structure
and correlations in the original data, and (2) building a model
based on original high-dimensional features is not effective to
filter the noisy/redundant information in the original feature
spaces, and the time complexity grows exponentially with the
number of dimensions.

For the first issue, tensor is a suitable representation for such
multi-dimensional data like hyperspectral images, in a format
of a multi-way array. The order of a tensor is the number
of dimensions, also known as ways or modes. Thus, a set
of hyperspectral images with a 2-dimension spatial structure
can be denoted by an order-3 tensor X ∈ RI1×I2×I3 , with
mode-i (1 ≤ i ≤ 2 ) denoting the sample’s position along its
two spatial directions, and the mode-3 denoting the sample
feature direction, e.g. a range of wavelengths in the spectral
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TABLE I
NOTATIONS USED IN THE PAPER

X and E an input order-N tensor and an error order-N tensor
X(n) and E(n) the mode-n matricization of tensors X and E
Sk and Lk(k = 1, 2, ., , ,K) the kth subspace and its corresponding orthogonal basis
Xk and Zk samples drawn from subspace Sk and corresponding low-dimensional representation
S = [S1, S2, . . . , SK ] a set of multiple learnt subspaces
Z = [Z1, Z2, . . . , ZK ] the low-dimensional representations of X with respect to S
Un ∈ RIn×Rn(1 ≤ n ≤ N) the factor matrices along mode-n
D and A a learned dictionary and a sparse representation on X(N)

r and R the maximum number of non-zero elements in each instance and the matrix A
Φ(I1,...,IN−1,IN ) a transformation of inverse matricization
W the structured coefficient matrix
λ, Yn and µn > 0 a balance parameter, the Lagrange multiplier and a penalty parameter, respectively
‖ · ‖1, ‖ · ‖0, ‖ · ‖2,1, ‖ · ‖∗ and ‖ · ‖F the l1 norm, l0 norm , l2,1 norm, the nuclear and Frobenius norm

dimension. Fu. et al. [50] proposed a novel subspace clustering
method called TLRR where the input data are represented in
their original structural form as a tensor. It finds a lowest-rank
representation for the input tensor, which can be further used
to build an affinity matrix. The affinity matrix used for spectral
clustering [54] records pairwise similarity along the row and
column directions.

For the second issue, finding low-dimensional inherent
feature spaces is a promising solution. Dictionary learning
[51] is commonly used to seek the lowest rank [29], [53],
[52] or sparse representation [14], [55] with respect to a given
dictionary, which is often the data matrix X itself. Low-rank
representation (LRR) and sparse representation/sparse coding
(SC) take sparsity into account in different ways. The former
defines a holistic sparsity on a whole data representation
matrix, while the latter finds the sparsest representation of
each data vector individually. SC has been widely used in
numerous signal processing tasks, such as imaging denoising,
texture synthesis and image classification [26], [48], [36].
Nevertheless, the performance of SC deteriorates when data
are corrupted. Therefore, it is highly desirable to integrate
spatial information into SC to improve clustering performance
and reduce computational complexity as well.

Against this background, we propose a novel subspace
clustering method where the input data are represented in
their original structural form as a tensor. Our model finds
a lowest-rank representation for each spatial mode of input
tensor, and a sparse representation with respect to a learned
dictionary in the feature mode. The combination of similarities
in spatial and feature spaces is used to build an affinity matrix
for spectral clustering. In summary, the contribution of our
work is threefold:

• We propose a tensor low-rank representation to explore
spatial correlations among samples. Unlike previous work
which merely considers sample feature similarities and
reorder original data into a matrix, our model takes
sample spatial structure and correlations into account.
Specifically, our method directly seeks a low-rank rep-
resentation of samples’ natural structural form — a high-
order tensor.

• Our work integrates dictionary learning for sparse rep-
resentation in the feature mode of tensor. This setting
fits each individual sample with its sparsest representa-

tion with respect to the learned dictionary, consequently
resolving exponential complexity and memory usage is-
sues of some classical subspace clustering methods (e.g.
statistical and algebraic based methods) effectively.

• The new subspace clustering algorithm based on our
model is robust and capable of handling noise in the
data. Since our model considers both feature and spatial
similarities among samples, even if data are severely
corrupted, it can still maintain a good performance since
the spatial correlation information is utilized in order to
cluster data into their respective subspaces correctly.

II. RELATED WORK

The author of [44] classifies existing subspace clustering
algorithms into three categories: statistical methods, algebraic
methods, and spectral clustering-based methods.

Statistical models assume that mixed data are formed by
a set of independent samples from a mixture of a certain
distribution such as Gaussian. Each Gaussian distribution can
be considered as a single subspace, then subspace clustering
is transformed into a mixture of Gaussian model estimation
problems. This estimation can be obtained by the Expectation
Maximization (EM) algorithm in Mixture of Probabilistic
PCA [41], or serial subspace searching in Random Sample
Consensus (RANSAC) [17]. Unfortunately, these solutions are
sensitive to noise and outliers. Some efforts have been made to
improve algorithm robustness. For example, Agglomereative
Lossy Compression (ALC) [31] finds the optimal segmentation
that minimizes the overall coding length of the segmented data,
subject to each subspace being modelled as a degenerate Gaus-
sian. However, the optimization difficulty is still a bottleneck
in solving this problem.

Generalized Principle Component Analysis (GPCA) [45] is
an algebraic based method to estimate a mixture of linear
subspaces from sample data. It factorizes a homogeneous
polynomial whose degree is the number of subspaces and
the factors (roots) represent normal vectors of each subspace.
GPCA has no restriction on subspaces, and works well under
certain conditions. Nevertheless, the performance of algebraic
based methods in the presence of noise deteriorates as the
number of subspaces increases. Robust Algebraic Segmenta-
tion (RAS) [38] is proposed to improve its robustness, but the
complexity issue still exists. Iterative methods improve the
performance of algebraic based algorithms to handle noisy
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data in a repeated refinement. The k-subspace method [19],
[6] extends the k-means clustering algorithm from data dis-
tributed around cluster centres to data drawn from subspaces
of any dimensions. It alternates between assigning samples
to subspaces and re-estimating subspaces. The k-subspace
method can converge to a local optimum in a finite number
of iterations. Nevertheless, the final solution depends on good
initialization and is sensitive to outliers.

The works in [14], [29] and [38] are representative of
spectral clustering-based methods. They aim to find a linear
representation, Z, for all the samples in terms of all other
samples, which is solved by finding the optimal solution to
the following objective function:

min
Z
‖Z‖b +

λ

2
‖E‖q

s.t. X = XZ + E
(1)

where ‖ · ‖q and ‖ · ‖b denote the norms for error and the new
representation matrix Z, respectively, λ is the parameter to
balance the two terms. Using the resulting matrix Z, an affinity
matrix |Z|+|ZT | is built and used for spectral clustering. The
Sparse Subspace Clustering (SSC) [14] uses the l1 norm ‖Z‖1
in favour of a sparse representation, with the expectation that
within-cluster affinities are sparse (but not zero) and between-
cluster affinities shrink to zero. However, this method is not
designed to accurately capture the global structure of data
and may not be robust to noise in data. The Low-Rank
Representation (LRR) [29] employs the nuclear norm ‖Z‖∗
to guarantee a low-rank structure, and the l2,1 norm is used in
the error term to make it robust to outliers.

Dictionary learning for sparse representation aims at learn-
ing a dictionary D such that each sample in the dataset can
be represented as a sparse linear combination of the atoms of
D. The problem of dictionary learning is formulated as

min
D,zi(i=1,2,...,N)

N∑
i=1

‖xi −Dzi‖22

s.t. ‖zi‖0 = r

(2)

where ‖ · ‖2 denotes the l2 norm, ‖zi‖0 is the l0-norm of
the coefficient vector zi, which is defined as the number of
non-zero elements, and r is a pre-defined sparsity integer for
each sample. The optimization is carried out using an iterative
algorithm that is formed by two alternative steps: (i) the sparse
coding by fixing the dictionary D and (ii) the dictionary update
with a fixed sparse representation.

With regard to sparse coding for a given dictionary, existing
algorithms are divided into three categories: optimization
methods, greedy methods and thresholding-based methods.
Basis Pursuit (BP) is a commonly used optimization method,
which uses a convex optimization method to minimize the l1
norm ‖zi‖1 subject to the constraint xi = Dzi, if the vector
zi is sparse enough and the matrix D has sufficiently low
coherence [12], [42]. The computational complexity of BP
is very high, thus it is not suitable for large-scale problems.
In comparison, the greedy algorithm Matching Pursuit (MP)
has a significantly smaller complexity than BP, especially
when the sparsity level is low [43]. A popular extension

of MP is Orthogonal Matching Pursuit (OMP) [33], [34],
which iteratively refines a sparse representation by succes-
sively identifying one component at a time that yields the
greatest improvement in quality until an expected sparsity
level is achieved or the approximation error is below the
given threshold. The thresholding-based methods contains
algorithms that do not require an estimation of the sparsity. In
such algorihtms, the hard thresholding operator gives way to a
soft thresholding operator with a positive threshold, such as the
iterative hard thresholding algorithm (IHT) [5] and the hard
thresholding pursuit (HTP)[18]. Another important method for
sparse coding is the message-passing algorithm studied by
Donoho, Maleki, and Montanari in [11].

The main differences in dictionary update algorithms are
in the ways they update the dictionary. Sparsenet [35] and
Method of Optimal Directions (MOD) [15] perform the dictio-
nary update with fixed values of coefficients. Sparsenet updates
each atom of dictionary iteratively with a projected fixed step
gradient descent. MOD updates the whole dictionary in one
step by finding a closed-form solution of an unconstrained
least-square problem. Different from the above two algorithms,
K-SVD [1] updates each dictionary atom and the values of its
non-zero sparse coefficient simultaneously. The atom update
problem then becomes a PCA problem. The K-SVD algorithm
is flexible and can work with any pursuit methods.

III. NOTATIONS AND PROBLEM FORMULATION

A. Definition and Notations

Before formulating the subspace clustering problem, we first
introduce some tensor fundamentals and notations. Please refer
to [22] for more detailed definitions and notations.

Definition 1 (Tensor Matricization): Matricizaion is the
operation of rearranging the entries of a tensor so that it can
be represented as a matrix. Let X ∈ RI1×...×IN be a tensor
of order-N , the mode-n matricization of X reorders the
mode-n vectors into columns of the resulting matrix, denoted
by X(n) ∈ RIn×(In+1In+2...INI1I2...In−1).

Definition 2 (Kronecker Product [22]): The Kronecker
product of matrices A ∈ RI×J and B ∈ RP×L, denoted by
A⊗ B, is a matrix of size (IP )× (JL) defined by

A⊗ B =


a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 (3)

Definition 3 (The n-mode Product): The n-mode product
of a tensor X ∈ RI1×...×IN by a matrix U ∈ RJ×In , denoted
as X ×n U, is a tensor with entries:

(X ×n U)i1,...,in−1,j,in+1,...,iN =

In∑
in=1

xi1i2...iNujin (4)

The n-mode product is also denoted by each mode-n vector
multiplied by the matrix U. Thus, it can be expressed in terms
of tensor matricization as well:

Y = X ×n U ⇔ Y(n) = UX(n) (5)
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Definition 4 (Tucker Decomposition): Given an order-N
tensor X , its Tucker decomposition is an approximated tensor
defined by,

X̂ ≡ JG;U1, ...,UN K = G ×1 U1 ×2 . . .×N UN

=

R1∑
r1=1

R2∑
r2=1

. . .

RN∑
rN=1

gr1r2...rNu1
r1 ◦ u

2
r2 . . . ◦ u

N
rN (6)

where G ∈ RR1×R2×... RN is called a core tensor, Un =
[un1 ,u

n
2 , ...,u

n
Rn

] ∈ RIn×Rn(1 ≤ n ≤ N) are the factor
matrices and the symbol ◦ represents the vector outer product.

For ease of presentation, key symbols used in this paper are
listed in Table I.

B. Tensorial Datasets

Given an order-N tensor X ∈ RI1×I2×···×IN , we consider a
data set of all the IN dimensional vectors/features along X ’s
N -mode (also called N -mode fibres). The size of the data
set is (I1 × I2 × · · · × IN−1). Assume that these samples are
drawn from a union of K independent subspaces {Sk}Kk=1

of unknown dimensions, i.e.,
∑K
k=1 Sk =

⊕K
k=1 Sk, where⊕

is the direct sum. Our purpose is to cluster all the IN -
dimensional vectors from the tensor X into K subspaces by
incorporating their relevant spatial and feature information in
the tensor.

IV. SUBSPACE CLUSTERING VIA TENSOR LOW-RANK
REPRESENTATION AND SPARSE CODING

A. Tensor Low-Rank Representation on Spatial Modes

The new approach Low-Rank Representation (LRR) [29]
is very successful in subspace clustering for even highly
corrupted data, outliers or missing entries. Inspired by the idea
used in LRR, we consider a model of low-rank representation
for an input tensor X similar to problem (1). Specifically, we
decompose the input tensor X into a Tucker decomposition in
which the core tensor G is the input tensor itself along with a
factor matrix Un at each mode n ≤ N . That is, the proposed
data representation model is

X = JX ;U1,U2, ...,UN K + E . (7)

Here we are particularly interested in the case where UN =
IIN (identity matrix of order IN ). If we define Z = UN−1 ⊗
UN−2 ⊗ · · · ⊗ U1, then based on the above multiple linear
model, we may interpret the entries of Z as the similarities
between the pairs of all the vectors along the N -mode of the
data tensor X . These similarities are calculated based on the
similarities along all the N−1 spatial modes through the factor
matrices Un (n = 1, ..., N − 1), each of which measures the
similarity at the n-th spatial mode.

As in LRR, the model (7) uses the data to represent itself,
therefore we can expect low-rank factor matrices Un. It is well
known that it is very hard to solve an optimization problem
with matrix rank constraints. A common practice is to relax
the rank constraint by replacing it with the nuclear norm [32]
as suggested by matrix completion methods [8], [21]. Thus,

we finally formulate our model as follows,

min
U1,...,UN−1

N−1∑
n=1

‖Un‖∗ +
λ

2
‖E‖2F (8)

s.t. X = JX ;U1, ...,UN−1, IIN K + E

where ‖ · ‖∗ denotes the nuclear norm of a matrix, defined as
the sum of singular values of the matrix, ‖ · ‖F denotes the
Frobenius norm of a tensor, i.e. the square root of the sum
of the squares of all its entries, and λ > 0 is a parameter to
balance the two terms, which can be tuned empirically. That
is, TLRR seeks optimal low-rank solutions Un(1 ≤ n < N)
of the structured data X using itself as a dictionary [50].

Remark 1: There is a clear link between LRR and TLRR
in (8). If we consider the mode-N matricization in (8), we
will see that it can be converted to an LRR model with Z =
UN−1 ⊗UN−2 ⊗ · · · ⊗U1. However, in the standard LRR,
such an explicit Kronecker structure in Z has been ignored,
so the number of unknown parameters in Z is (I1 × I2 ×
· · · IN−1)2. This will cause difficulty in LRR algorithm doing
SVD. However, TLRR exploits the Kronecker structure with
the number of unknown parameters reduced to I21 +I22 + · · ·+
I2N−1. Our experiments demonstrate TLRR is much faster than
LRR.

B. Dictionary Learning for Sparse Representation on Feature
Mode

Dictionary learning for sparse representation has been
proven to be very effective in machine learning, neuroscience,
signal processing, and statistics [13], [37], [25]. Similar ideas
have been proposed for subspace clustering. Sparse subspace
clustering algorithm (SSC) [14] is an inspiring approach that
uses data itself as a given dictionary, sparsely representing
each sample as a linear combination of the rest of the data.
However, such representation is computationally expensive for
large-scale data. In addition, it is well known that such sparse
coding techniques strongly rely on the internal coherence of
the dictionary, and the performance depresses grossly as the
number of cluster grows. In contrast, our sparse modeling
framework exploits a sparse representation in the design of an
optimization procedure dedicated to the problem of dictionary
learning, with comparable memory consumption and a lower
computational cost than SSC.

Based on the model in Eq. (8), we consider a dictionary
learning model for sparse representation along the N -mode
(feature mode) of X . To be specific, we approximate the
mode-N matricization of tensor X(N) with a dictionary to
be learnt D ∈ RIN×m and a sparse representation A ∈
Rm×(I1×I2×...×IN−1) on feature spaces over all the samples,
so that the feature vectors of each sample can be represented
by a few atoms of D (i.e. ||ai||0 < r for 1 ≤ i ≤
I1 × I2 × . . .× IN−1). Thus, our sparse coding model in the
feature direction has a similar formulation to problem (2)

min
D,A
‖X(N) −DA‖22

s.t. ‖A‖0 = R
(9)
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where R = r × (I1 × I2 × . . .× IN−1) is maximum number
of non-zero elements in the matrix A. By solving problem
(9), we can obtain an optimal dictionary on the feature space
of the input tensor, and sparse factors for each sample with
respect to the learnt dictionary.

C. Tensor Spatial Low Rank Representation and Feature S-
parse Coding

By integrating the advantages of LRR and SC, we propose
a spectral based subspace clustering method, which simul-
taneously considers sample feature information and spatial
structures. More specifically, we first define a transformation
of inverse matricization Φ(I1,...,IN−1,IN ) which converts a
matrix M ∈ RIN×(I1I2···IN−1) back to an order-N tensor
M ∈ RI1×I2...×IN−1×IN , i.e., ΦI1,...,IN−1,IN (M) = M, see
[2].

Now we replace the fixed data tensor core in (8) with a
tensor re-converted from a matrix DA by applying the inverse
matricization operator Φ, i.e., the model is

X = JΦ(I1,I2,...,IN−1,IN )(DA);U1, · · · ,UN−1, IIN K + E .
(10)

where D ∈ RIN×m is the feature mode dictionary to be
learned and A ∈ Rm×(I1I2···IN−1) is the sparse representation
coefficient matrix. Finally, our proposed learning model can
be formulated as follows,

min
U1,...,UN−1,D,A

N−1∑
n=1

‖Un‖∗ +
λ

2
‖ E ‖2F (11)

s.t. X = JΦ(I1,I2,...,IN−1,IN )(DA);U1, · · · ,UN−1, IIN K + E
‖A‖0 = R,

where R is a given sparsity. Thus, our model (11) aims to find
the lowest-rank representations along all the spatial modes, and
learn a dictionary with its sparse representation over samples
on the feature mode at the same time.

Unlike Tensor LRR model in [50] merely consider multiple
space information, our model incorporates both spatial and
feature information into consideration. The advantage of our
model over the Tensor LRR model is illustrated in Figure 2.
Taking the mode-N matricization of X as an example, Tensor
LRR model uses X(N) as a dictionary, the coefficient matrix
Z = [U(N−1) ⊗ · · · ⊗ U1]T . However, our model learn a
dictionary D on the feature space, which makes

X(N) = DA[U(N−1) ⊗ · · · ⊗U1]T

as shown in Figure 2(b). Accordingly, the dictionary repre-
sentation of data X(N) is given by the structured coefficient
matrix Z = A[U(N−1) ⊗ · · · ⊗ U1]T . Thus both spatial
information encoded in Un’s and the feature relations encoded
in A make a contribution to the final dictionary representation.

Remark 2: Problem (11) is ill-posed due to the scaling be-
tween variables D,A and U. To make a well-posed problem,
we also require extra constraints, for example, the columns of
D are unit vectors and the largest entry of A to be 1.

  

  

  
 

 
(b) (a) Tensor LRR Model 

(a) (b) Our Model 

Fig. 2. the mode-N matricization of X decomposition for Tensor LRR
model and our algorithm.

Remark 3: Using the Frobenius norm means we are dealing
with Gaussian noises in the tensor data. If based on some
domain knowledge, we know some noise patterns along a
particular mode, for example, in multispectral imaging data,
noises in some spectral bands are significant, we may adapt
the so-called robust noise models like l2,1-norm [10] instead.

Remark 4: As pointed out in Remark 1, TLRR improves
the computational cost of the original LRR by introducing
the Kronecker structure into the expression matrix. Although
the new model looks more complicated than the traditional
dictionary model, the computational complexity won’t blow
up due to the Kronecker structure. The cost added over the
traditional dictionary learning is the overhead in handling low
rank constraint over spatial modes. This is the price we have
to pay for incorporating the spatial information of the data.

D. Solving the Optimization Problem

Optimizing (11) can be carried out using an iterative ap-
proach that solves the following two subproblems:

1) Solve Tensor LRR problem : Fix D and A to update
Un, where 1 ≤ n < N by

min
U1,...,UN−1

N−1∑
n=1

‖ Un ‖∗ +
λ

2
‖ E ‖2F (12)

s.t. X = JΦ(DA);U1, · · · ,UN−1, IIN K + E

2) Solve Dictionary learning for SC problem : Fix Un(1 ≤
n < N) to update D and A by

min
D,A

λ

2
‖X − JΦ(DA);U1, · · · ,UN−1, IIN K‖2F

s.t. ||A||0 = R, (13)

We will employ the Block Coordinate Descent (BCD) [4]
to solve the optimization problem (12) by fixing all the other
mode variables to solve one variable at a time alternatively.
For instance, TLRR fixes U1, . . . ,Un−1,Un+1, . . . ,UN−1
to minimize (12) with respect to the variable Un(n =
1, 2, . . . , N − 1), which is equivalent to solve the following
optimization subproblem:

min
Un

‖ Un ‖∗ +
λ

2
‖ E ‖2

s.t. X = JΦ(DA);U1, · · · ,UN−1, IIN K + E
(14)



6

Using tensorial matricization, the problem (14) can be
rewritten in terms of matrices as follows:

min
Un

‖ Un ‖∗ +
λ

2
‖ E(n) ‖2F

s.t. X(n) = UnB(n) + E(n)

(15)

where B(n) = Φ(DA)(n)(I ⊗UN−1 ⊗ · · ·Un+1 ⊗Un−1 ⊗
· · · ⊗U1)T .

Based on Eq.(15), each matrix Un(1 ≤ n < N) is
optimized alternatively, while the other matrices are held fixed.
All the matrices update iteratively until the change in fit drops
below a threshold or when the number of iterations reaches
a maximum, whichever comes first. The general process of
BCD is illustrated by Algorithm 1.

Algorithm 1 Solving Problem (12) by BCD
Input: data tensor X , dictionary D and A and the parameter λ
Output: factor matrices Un (n = 1, 2, . . . , N − 1)

1: randomly initialize Un ∈ RIn×Rn for n = 1, . . . , N − 1
2: for n = 1, . . . , N − 1 do
3: X(n) ← the mode-n matricization of the tensor X
4: Φ(DA)(n) ← the mode-n matricization the tensor Φ(DA)
5: end for
6: while reach maximum iterations or converge to stop do
7: for n = 1, . . . , N − 1 do
8: B(n) ← Φ(DA)(n)(I⊗UN−1⊗· · ·Un+1⊗Un−1⊗· · ·⊗

U1)T

9: Un ← solve the subproblem (15)
10: end for
11: end while

We use the Linearized Alternating Direction Method (LAD-
M) [30] to solve the constrained optimization problem (15).

First of all, the augmented Lagrange function of (15) can
be written as

L(E(n),Un,Yn) = ‖ Un ‖∗ +
λ

2
‖ E(n) ‖2F

+ tr[YT
n (X(n) −UnB(n) −E(n))]

+
µn
2
‖ X(n) −UnB(n) −E(n) ‖2F .

(16)

where Yn is the Lagrange multiplier and µn > 0 is a penalty
parameter.

Then the variables are updated by minimizing the augment-
ed Lagrangian function L alternately, i.e., minimizing one
variable at a time while the other variables are fixed. The
Lagrange multiplier is updated according to the feasibility
error. More specifically, the iterations of LADM go as follows

1) Fix all others to update E(n) by

min
E(n)

∥∥∥∥E(n) −
(
X(n) −UnB(n) +

Yn

µn

)∥∥∥∥2
F

+
λ

µn
‖E(n)‖2F

(17)
which is equivalent to a least square problem. The
solution is given by

En =
λ

λ+ µn

(
X(n) −UnB(n) +

Yn

µn

)
(18)

2) Fix all others to update Un by

min
Un

‖Un‖∗ − tr(YT
nUnB(n))

+
µn
2
‖ (X(n) −E(n))−UnB(n) ‖2F (19)

3) Fix all others to update Yn by

Yn ← Yn + µn(X(n) −UnB(n) −E(n)) (20)

However, there is no closed-form solution to problem (19)
because of the coefficient B(n) in the third term. We propose
to use the linearized approximation with an added proximal
term to approximate the objective in (19) as described in [27].
Suppose that Uk

(n) is the current approximated solution to (19)
and the sum of the last two terms is denoted by L, then the
first order Taylor expansion at Uk

(n) plus a proximal term is
given by

L ≈µn〈(Uk
nB(n) + En −X(n) −

Yn

µn
)BT

(n),Un −Uk
n〉

+
µnηn

2
‖Un −Uk

n‖2F + consts

Thus, solving (19) can be converted to iteratively solve the
following problem

min
Un

‖Un‖∗ +
µnηn

2
‖Un −Uk

n + Pn‖2F

where Pn = 1
ηn

(Uk
nB(n) +En−X(n)− Yn

µn
)BT

(n). The above
problem can be solved by applying the SVD thresholding
operator to Mn = Uk

n−Pn. Take SVD for Mn = WnΣnV
T
n ,

then the new iteration is given by

Uk+1
n = Wnsoft(Σn, ηnµn)VT

n (21)

where soft(Σ, σ) = max{0, (Σ)ii− 1
σ} is the soft thresholding

operator for a diagonal matrix, see [7].

Algorithm 2 Solving Problem (15) by LADM
Input: matrices X(n)and B(n), parameter λ
Output: : factor matrices Un

1: initialize: Un = 0,E(n) = 0,Yn = 0, µn = 10−6,maxu =
1010, ρ = 1.1, ε = 10−8 and ηn = ‖B(n)‖2.

2: while ‖ X(n) −UnB(n) −E(n) ‖∞≥ ε do
3: E(n) ← the solution (18) to the subproblem (17);
4: Un ← the iterative solution by (21) by for example five

iterations;
5: Yn ← Yn + µn(X(n) −UnB(n) −E(n))
6: µn ← min(ρµn,maxu)
7: end while

Now we consider solving Dictionary learning for SC prob-
lem (13). Using tensorial matricization, the problem (13) can
be equivalently written in terms of matrices as follows:

min
D,A

λ

2
‖E(N)‖2F

s.t. X(N) = DACT + E(N),

||A||0 = R,

(22)

where C = (UN−1⊗ · · ·⊗U1). The above problem (22) can
be solved by using a two-phase BCD approach. In the first
phase, we optimize A by fixing D; in the second phase, we
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update D by fixing A. The process repeats until some stop
criterion is satisfied.

When the dictionary D is given, the sparse representation
A can be obtained by solving (22) with fixed D.

The resulting problem becomes a 2D sparse coding problem,
which can be solved by the 2D-OMP [16].

Remark 5: 2D-OMP is in fact equivalent to 1D-OMP, with
exactly the same results. However, the memory usage of 2D-
OMP is much lower than 1D-OMP. Note that 2D-OMP only
need the memory usage of size IN×m+(I1×I2 . . .×I(N−1))2.
However, the 1D-OMP need (I1× I2 . . .× I(N))× (m× I1×
I2 . . .× I(N−1)).

Given the sparse coefficient matrix A, we define F = ACT ,
then the dictionary D can be updated by

min
D

λ

2
‖E(N)‖2F

s.t. X(N) = DF + E(N),
(23)

Actually, (23) is a least squares problem. As it is large scale,
a direct closed-form solution will cost too much overhead.
Here we propose an iterative way alternatively on the columns
of D based on the spare structures in F. Let us consider
only one column dj in the dictionary and its corresponding
coefficients, the j-th row in F, denoted as f j . Eq. (23) can be
rewritten as:

‖E(N)‖2F = ‖X(N) −
m∑
j=1

djf
j‖2F

= ‖(X(N) −
∑
j 6=l

djf
j)− dlf

l‖2F

= ‖El(N) − dlf
l‖2F

(24)

We have decomposed the multiplication DF into the sum of
m rank-1 matrices, where m is the number of atoms in D.
The matrix El(N) represents the error for all the m examples
when the l-th atom is removed. Indeed, we are using K-SVD
strategy [1] to update each atom dl and f l (1 ≤ l ≤ m) by
fixing all the other terms. However, the sparsity constraint is
enforced in such an update strategy.

The general process of dictionary learning for SC is listed
in Algorithm 3

Algorithm 3 Solving problem (13) by BCD
Input: matrices: X(N) and C
Output: dictionary D and sparse representation matrix A

1: initialize the dictionary D with a random strategy.
2: while reach maximum iterations do
3: sparse representation A← solve the problem (22) with fixed

D;
4: dictionary D← solve the problem (23) with K-SVD strategy;
5: end while

E. The Complete Subspace Clustering Algorithm

After iteratively solving two subproblems (12) and (13),
we finally obtain the low-rank and sparse representations
given by Ui(i = 1, 2, . . . , N − 1)) and A for the data X .
We create a similarity matrix on the spatial spaces Zs =

UN−1⊗UN−2⊗· · ·⊗U1. The affinity matrix is then defined
by |Zs|+|ZsT |+|ATA| 1©. Each element of the affinity matrix
is the joint similarity between a pair of mode-N vectorial
samples across all the N − 1 spatial modes/directions and
the N -th feature mode. Finally, we employ the Normalized
Cuts clustering method [39] to divide the samples into their
respective subspaces. Algorithm 4 outlines the whole subspace
clustering method of TLRRSC.

Algorithm 4 Subspace Clustering by TLRRSC
Input: structured data: tensor X , number of subspaces K
Output: : the cluster indicator vector l with terms of all samples

1: while reach maximum iterations or converge to stop do
2: lowest-rank representation Un(n = 1, 2, . . . , N−1)← solve

the problem (12)
3: sparse representation A and the dictionary D ←solve the

problem (13)
4: end while
5: Zs ← UN−1 ⊗UN−2 ⊗ · · · ⊗U1

6: l← Normalized Cuts(|Zs|+ |ZsT |+ |ATA|)

F. Computational Complexity

The TLRRSC algorithm composes of two iterative updating
parameters steps followed by an normalized cut on an affinity
matrix. Assuming the iteration times is t, IN = N , low rank
value is r and In = d,(1 ≤ n ≤ N − 1).

In the process of updating lowest-rank representation
Un(n = 1, 2, . . . , N−1), the complexity of computing DA is
O(N2dN−1), the computational costs regarding updating Bn,
Un and Yn to solve Problem (15) are O(N2dN−1), O(Nrd2)
and O(N2dN−1). Accordingly, the computational complexity
of Un(n = 1, 2, . . . , N − 1) is approximately O(N2dN−1)+
O(Nrd2).

In the dictionary learning process, the costs of updating A
and D are O(mdN−1) and O(N(k2m+2NdN−1)) respective-
ly, where k is the sparsity value in the KSVD algorithm.

After obtaining the final optimal Un(n = 1, 2, . . . , N − 1),
A and D, the time complexity of creating an affinity matrix
is O(dN−1). With the affinity matrix, the normalized cut can
be solved with a complexity of O(NlogN + d2(N−1)).

With above analysis, the total complexity of TLRRSC is

O(N2dN−1) +O(Nrd2) +O(mdN−1)+

O(N(k2m+ 2NdN−1)) +O(dN−1) +O(NlogN + d2(N−1))
(25)

As k, r � d, therefore the approximate complexity is O((N2+
m)dN−1) +O(NlogN + d2(N−1)).

V. EXPERIMENTAL RESULTS

In this section, we present a set of experimental results
on some synthetic and real data sets with multi-dimensional
spatial structures. The intention of these experiments is to
demonstrate our new method TLRRSC’s superiority over

1©To maintain scaling, we may use |(ATA)
1
2 |, but the experiments show

that the simple definition |Zs|+ |ZsT |+ |ATA| works well. Other possible
choices are |ZTZ|+ |ATA| and (|Z|+ |ZT |)� |ATA|.
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the state-of-art subspace clustering methods in prediction
accuracy, computation complexity, memory usage, and noise
robustness. To analyze the clustering performance, the Hun-
garian algorithm [23] is applied to measure the accuracy by
comparing the predicted clustering results with the ground
truth .

A. Baseline Methods

Because our proposed method is closely related to LRR
and SSC, we choose LRR, TLRR and SSC methods as
the baselines. Moreover, some previous subspace clustering
methods are also considered.

1) LRR: The LRR methods have been successfully applied
to subspace clustering for even highly corrupted data, outliers
or missing entries. In this paper, we consider an LRR method
introduced in [29], which is based on minimizing

min
Z
‖Z‖∗ +

λ

2
‖E‖2,1

s.t. X = XZ + E
(26)

However, this method conducts subspace clustering on a
rearranged matrix, ignoring data spatial correlations. Thus,
the entries of affinity matrix |Z|+|ZT | denote the pairwise
similarity in the low-dimensional feature spaces.

2) TLRR: As an improvement over LRR, TLRR finds
a low-rank representation for an input tensor by exploring
factors along each spatial dimension/mode, which aims to
solve the problem (8). An affinity matrix built for spectral
clustering records the pairwise similarity along all the spatial
modes.

3) SSC: SSC has a similar formulation to LRR, except
for the employment of the l1 norm ‖Z‖1 in favour of a
sparse representation. For fair comparisons, we implement two
versions of SSC, i.e., SSC1 is a l1-norm version (q = 2 and
b = 1 in (1)) and SSC2,1 is a l2,1-norm version (q = 2, 1
and b = 1 in (1)). SSC denotes SSC1 if not specified in the
following experiments.

4) Some Other Methods: We also consider for comparison
some previous subspace clustering methods, including GPCA
[45], Local Subspace Analysis (LSA) [47], and RANSAC [17].

In the following experiments, the parameter setting is as
follows: a balance parameter λ = 0.1, a penalty parameter
µn = 10−6, the convergence threshold ε = 10−8.

B. Results on Synthetic Datasets

In this section, we evaluate TLRRSC against state-of-the-art
subspace clustering methods on synthetic datasets. We use 3
synthetic data sets containing 3 subspaces, each of which is
formed by Nk samples of d dimension feature respectively,
where d ∈ {5, 10, 20}, k ∈ {1, 2, 3}, N1 = 30, N2 = 24,
and N3 = 10. The generation process is as follows: 1)
Select 3 cluster centre points ci ∈ Rd for above subspaces
respectively, which are far from each other. 2) Generate a
matrix Ck ∈ Rd×Nk , each column of which is drawn from
a Gaussian distribution N (·|ck,Σk), where Σk ∈ Rd×d is a
diagonal matrix such that the k-th element is 0.01 and others
1s. This setting guarantees each cluster lies roughly in a d−1

dimension subspace. 3) Combine samples in each subspace to
form an entire data set X = ∪Ck.

1) Performance with High Order Tensorial Data: To show
the TLRRSC’s advantage of handling high order tensorial
data over other baseline methods, we create 5 other synthetic
datasets from the above data X by reshaping it into a higher
j-mode tensor (3 ≤ j ≤ 7). Since all other baseline methods
except TLRR conduct subspace clustering on an input matrix,
i.e. a 2-mode tensor, we use X on all these baseline methods
for the purpose of fair comparisons. Fig. 3 reports the results
on all the baseline methods with different dimensions of
feature spaces.

As we can see, TLRRSC and TLRR perform much better
than other methods in the higher mode of tensor. This observa-
tion suggests that incorporating data structure information into
subspace clustering can boost clustering performance, while
the performance of other methods always stays still because
these methods treat each sample independently, ignoring in-
herent data spatial structure information. TLRRSC is always
superior to TLRR, which demonstrates that incorporating
feature similarity can further boost clustering performance.
Another interesting observation is that the performance gap
between TLRR and TLRRSC is enlarged with growth of
feature dimensions, which suggests that seeking the inherent
sparse representation in the high dimensional feature space
does help improve the clustering performance by filtering
redundant information.

To compare the accuracy and running time among LRR
based algorithms, we create a matrix X̃ ∈ R200×640 con-
taining 3 subspaces, each of which is formed by containing
3 subspaces, each of which is formed by Nk samples of
200 dimension features, where k ∈ {1, 2, 3}, N1 = 300,
N2 = 240, and N3 = 100. The generation process is similar
to the construction of X. Then we we create 5 other synthetic
datasets from the new data matrix X̃ by reshaping it into
a higher j-mode tensor (3 ≤ j ≤ 7). Fig. 4(a) and Fig.
4(b) compare the accuracy and running time among LRR
based algorithms on the data set with 200-dimensional feature
spaces. To investigate proposed algorithm’s performance with
different sparsity values S used in the dictionary learning
along the feature direction, we use three sparsity values S ∈
{10, 20, 40}. We observe that as the order of tensor increases,
the running time of TLRR and TLRRSC are significantly
reduced compared with LRR (as shown in Fig. 4(a)), and
the clustering accuracy of TLRR and TLRRSC is superior
to its vectorized counterpart LRR (as shown in Fig. 4(b)).
These observations suggest that the structural information has
an important impact on speeding up the subspace clustering
process and improving clustering accuracy.

As TLRRSC needs extra time to solve the sparse represen-
tation along the feature mode, the time cost of TLRRSC is a
little more expensive than TLRR. Moreover, when the sparsity
value is 20, TLRRSC performs best compared to other sparsity
values, which suggests that our method can accurately cluster
data with a small sparsity value. To sum up, our new method
TLRRSC can achieve better performance with a comparable
time cost in the higher mode of tensor.
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Fig. 3. Accuracy comparisons w.r.t. different orders of a tensor.(a) high order tensorial data with 5-dimensional feature spaces. (b) high order tensorial data
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2) Performance with Different Portions of Noisy Samples:
Consider the cases where there exist noisy samples in the
data. We randomly choose 0%, 10%,. . . , 100% of the sam-
ples of the above Ck respectively, and add Gaussian noises
N (·|ck, 0.3Σk) to these samples. Then a noisy data set X

′

is generated by combining the corrupted Ck to one. The
performances on SSC2,1, SSC1, LRR, TLRR and TLRRSC
are listed in Fig. 4(c). Obviously, low-rank representation
based subspace clustering methods TLRRSC, TLRR and LRR
maintain their accuracies even though 70% of samples are
corrupted by noise. Moreover, three LRR based methods
significantly outperform both SSC2,1 and SSC1, as shown
in Fig. 4(c), which suggests that low-rank representation is
good at handling noisy data, while SSC is not because it
solves the columns of the representation matrix independently.
For low-rank based methods, LRR method is inferior to the
structure based TLRR and TLRRSC. This is mainly because
TLRR and TLRRSC integrate data spatial information into
subspace clustering, resulting in a good performance even
when 90% of data are corrupted. Another interesting result is
that TLRRSC is marginally superior to TLRR when the noise
rate is less than 50%, but its performance becomes inferior to
TLRR as the noise rate continually increases to 100%. This
again proves that sparse coding is sensitive to noise. Although
TLRRSC maintains a good performance by exploring the spa-
tial correlations among samples, sparse representation along
the feature spaces induces more noises as the noise portion
increase. Therefore, the clustering performance depresses with
noisy feature similarities integrated in the affinity matrix.

3) Performance with Dictionary Learning for Sparse Cod-
ing: Like LRR and SSC, our model TLRRSC considers spar-
sity regarding low-dimensional representation on the feature
space. In contrast to LRR and SSC, using the input data as a
dictionary, TLRRSC learns a dictionary and its corresponding
sparse representation. In this section, we compare the perfor-
mances of different sparse strategies.

First of all, we create a matrix X̂ ∈ R30×64 containing
3 subspaces, each of which is formed by Nk samples of 30
dimensions, where k ∈ {1, 2, 3}, N1 = 30, N2 = 24, and
N3 = 10. The generation process is similar to the construction
of X, except each cluster centre points ck ∈ R30 and the
last 20 diagonal elements in Σk ∈ R30×30 is 0.01 and others
are 1s. This setting guarantees that each cluster lies roughly
in a 10 dimension subspace. Fig. 5 illustrates the evaluated
mean of each band on the reconstructed data matrix denoted
by the product of a dictionary and its sparse representation.
Obviously, the evaluated mean of our model TLRRSC is the
closest to the true value, compared to LRR and SSC. This
suggests that TLRRSC finds a better dictionary to fit the data,
instead of a fixed dictionary X̂ in the other two methods.
Moreover, Fig. 6 depicts the sparse representations obtained
for X̂. In our algorithm, we learn a dictionary D30×200 in the
feature space with 200 atoms, while the other two models use
given data as a dictionary, the corresponding sparse represen-
tation under the dictionary for baselines are illustrated in the
black blocks of Fig. 6. Each line in the white block statistics
of the total number of each atom used in the new sparse
representation of the given dataset (i.e.the relative magnitude).
For LRR algorithm, each atom in the dictionary is activated
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with almost the same relative magnitude, whereas in Fig. 6(b),
far fewer atoms are activated with a higher magnitudes. This
is mainly because LRR uses a holistic sparsity defined by
low rank, where in SSC, sparsity is represented individually.
The original high-dimensional data matrix X̂ needs 1290 byte
memory spaces, while all sparsity involved methods reduce
space costs to some extent as shown in Fig. 6. In Fig. 6(a), our
sparse representation only activates a few atoms with almost
the same high magnitude. We can clearly see the number of
lines in the white part of Fig. 6 (a) is fewer than that of Fig.
6(b). Although the memory usage of our model TLRRSC is
26% more than SSC, our sparse representation activates a far
fewer number of atoms (Fig. 6(a)) than for SSC (Fig. 6(b)).

4) Performance Comparisons with Other LRR+SC Sub-
space Clustering Algorithm: We compare our algorithm’s
performance with another state-of-art algorithm LRSSC in
[28], which also takes the advantage of SC and LRR. LRSSC
minimizes a weighted sum of nuclear norm and vector 1-
norm of the representation matrix simutanously, so as to
preserve the properties of interclass separation and intra-class
connectivity at the same time. Therefore, it works well in the
matrices where data distribution is skewed and subspaces are
not independent. Unlike LRSSC explicitly satisfies LRR and
SC property simultaneously, our model updates the parameters
for LRR and SC alternatively, and our model focuses on
multidimensional data with a high dimensional feature space.

In the experiments, we randomly generate 4 disjoint sub-
spaces of dimension 10 from R50, each sampled 20 data
points. 50 unit length random samples are drawn from each
subspace and we concatenate into a R50×80 data matrix. The
clustering results are illustrated in Fig. 7. As we can see, our
algorithm performs better than LRSSC, this is maybe because
the alterative update LRR parameters and SC parameters in
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Fig. 7. Subspace Clustering Algorithm Performance Comparisons

the iterations can help find better solution for each setting.

C. Results on Real Datasets

We evaluate our model on a clean dataset called the Indi-
anpines [24] and a corrupted dataset called Pavia University
database [46].

The Indianpines dataset is gathered by AVIRIS sensor
over the Indian Pines test site in North-western Indiana, and
consists of 145 × 145 pixels and 224 spectral reflectance
bands in the wavelength range 0.4-2.5 micrometers. The whole
data set is formed by 16 different classes having an available
ground truth. In our experiments, 24 bands covering the region
of water absorption are discarded. The task is to group pixels
into clusters according to their spectral reflectance bands
information.

The Pavia University database is acquired by the ROSIS
sensor with a geometric resolution of 1.3 meters, during a
flight campaign over Pavia, nothern Italy. Pavia University
consists of 610×340 pixels, each of which has 103 spectral
bands covering 0.43 to 0.86 µm. The data set contains 9
different classes with available groundtruths. We examine the
noise robustness of the proposed model by adding Guassian
white noises with intensities ranging from 20 to 60 with a step
of 20 to the whole database.

1) Subspace Clustering Performance: In this section, we
show TLRRSC’s performance in subspace clustering with
the subspace number given. Table II shows the results of
all baseline methods on both datasets. Clearly, our method
TLRRSC outperforms the other six baselines on this dataset.
The advantage of TLRRSC mainly comes from its ability to
incorporate 2 dimensional data structure information and 200
dimensional bands information into the low-rank representa-
tion and sparse representation.

Besides, the efficiency (in terms of running time) of TL-
RRSC is comparable to TLRR, GPCA and RANSAC methods.
TLRR costs more computational time because its optimization
procedure needs more iterations than GPCA and RANSAC to
converge. The results regarding time cost on TLRR and LRR
are consistent with Remark 1 in Section IV-A, which shows
that TLRR significantly reduces time cost by exploiting the
Kronecker structure along each space dimension. Although
GPCA and RANSAC are faster than LRR and TLRR, their
accuracy is much lower than those of LRR and TLRR.
Even though TLRRSC uses 22 more minutes than TLRR
for a dictionary learning task in the feature space, its overall
performance is better than TLRR.
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TABLE II
SUBSPACE CLUSTERING RESULTS ON THE REAL DATASETS

Subspace clustering accuracy(%)
GPCA LSA RANSAC SSC LRR TLRR TLRRSC

Indianpines

Mean 47.6 58.3 53.2 69.8 77.6 78.6 80.5
Std. 10.45 10.56 9.98 7.02 5.45 4.67 4.08
Max 70.9 81.5 78.3 80.7 85.4 89.7 92.4

Time (min.) 6.87 177.84 5.90 745.73 380.07 51.23 73.48

Pavia University

Intensity=20

Mean 30.2 51.65 46.7 61.9 72.3 74.6 76.8
Std. 12.83 10.69 8.76 8.95 5.38 4.54 3.97
Max 62.5 70.1 73.8 80.6 85.7 87.6 91.2

Time (hr.) 1.84 27.31 0.76 95.17 41.02 7.69 11.05

Intensity=40

Mean 25.68 48.7 44.2 57.7 69.1 70.4 73.5
Std. 11.79 13.69 7.68 9.75 6.74 6.01 3.08
Max 60.2 65.17 69.8 76.8 80.1 82.5 87.6

Time (hr.) 1.69 28.76 0.79 96.12 40.87 7.15 10.98

Intensity=60

Mean 23.2 44.12 42.07 52.78 66.8 67.8 69.8
Std. 10.68 15.09 8.67 8.99 4.96 4.02 3.17
Max 54.2 60.2 63.8 71.6 78.7 79.3 85.9

Time (hr.) 1.58 29.33 0.97 94.15 43.07 7.05 9.99

When data are corrupted, the performance of SSC is in-
ferior to all LRR based methods, which shows that sparse
representation is not good at handling corrupted data like
LRR. Alt hough our model employs a sparse representation
on the feature space, our model TLRRSC still performs best
among all the methods on the corrupted data set. This is
because TLRRSC explores data spatial correlation information
with a low-rank representation, which guarantees accurately
clustering data into different subgroups. Fig. 8 and Fig. 9
visualize the subspace clustering results on both datasets.
In the above two figures, each cluster is represented by a
particular color. Obviously, we can see many blue points
scattered in Fig. 8 and Fig. 9, which originally belonging to
other class are wrongly classified to the blue class. Similarly,
there are a few other colors scattered in the green class in
Fig.8 and the orange class in Fig. 9. Accordingly, it is easy to
see that the clustering results on TLRRSC are closest to the
groundtruths.

2) Choosing the Parameter λ: The parameter λ > 0 is
used to balance the effects of the two parts in problem (11).
Generally speaking, the choice of this parameter depends on
the prior knowledge of the error level of data. When the
errors are slight, a relatively larger λ should be used; while
when the errors are heavy, we should set a smaller value.
The blue curve in Fig. 10 is the evaluation results on the
Indianpines data set. While λ ranges from 0.04 to 0.2, the
clustering accuracy slightly varies from 80.34 % to 81.98
%. This phenomenon is mainly because TLRRSC employs
LRR representation to explore data structure information. It
has been proved that LRR works well on clean data (the
indianpines is a clean data set), and there is an “invariance” in
LRR that implies that it can be partially stable while λ varies
(For the proof of this property see Theorem 4.3 in [29]). Notice
that TLRRSC is more sensitive to λ on the Pavia University
data set than on the Indianpines data set. This is because the
samples in the Indianpines data set are clean, whereas the
Pavia University data set contains some corrupted information.
The more heavily data are corrupted, the performance of our
new mehtod is more influenced by the λ value.
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Fig. 8. Subspace Clustering results on Indianpines, each color represents a
class
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Fig. 9. Subspace Clustering results on Pavia University(Noise Intensity=60),
each color represents a class

 

Fig. 10. The influences of the parameter λ of TLRRSC. These results are
collected from the Indianpines data set and the Pavia University data set.

TABLE III
MEMORY USAGE COMPARISON ON REAL DATASETS

Memory Usage for Sparse Representation (MB)
Original TLRRSC SSC LRR

Indianpines 4.20 1.54 1.21 2.48
Pavia University 21.36 7.83 6.18 11.87

3) Memory Usage w.r.t. Different Sparsity Strategies: In
TLRRSC, we learn a sparse representation on the feature
mode (i.e. the 3rd mode) through a dictionary learning task. In
this section, we compare the memory usage among TLRRSC,
SSC and LRR on the mode-3 matricization of Indianpine
database and Pavia University database. For an order-3 tensor
X ∈ RI1×I2×I3 , the memory complexity of our model
TLRRSC and SSC are O(r × (I1 × I2)) at most, where
r is the maximum sparsity for each instance. While LRR
requires O(m × (I1 × I2)), where m is the rank of the
sparse representation. Usually (m � r). As shown in the
first row of Table III, SSC has the least memory cost, and
TLRRSC takes the second place. The reason behind this
phenomenon is that our dictionary learning model based on
both spatial information and feature relation involves more
structured sparse representation than feature based SSC model.
However, TLRRSC has an advantage over SSC in accuracy
and running time as shown in Table II. Accordingly, our model
maintains good performance with a comparable memory cost.
The second row in Table III shows the memory cost of TL-
RRSC, LRR and SSC on Pavia University. The memory usage
of SSC is the lowest, which is consistent with the result on
Indianpines. However, the performance of SSC depresses on
the corrupted data set as shown in Table II, while LRR is very
effective in handling noise. Moreover, our model’s memory
usage is comparable. Therefore, we assert that TLRRSC is a
noise robust method with low memory usage.

VI. CONCLUSIONS

We propose a tensor based low-rank representation (TLRR)
and sparse coding (SC) for subspace clustering in this paper.
Unlike existing subspace clustering methods work on an
unfolded matrix, TLRRSC builds a model on data original
structure form (i.e. tensor) and explores data similarities along
all spatial dimensions and feature dimension. On the synthetic
higher mode tensorial datasets, we show that our model
considering data structure maintains a good performance.
Moreover, the experimental results with different noise rates
show our model maintains a good performance on highly
corrupted data. On the real-world dataset, our method shows
promising results, with low computation gains and memory
usage. Moreover, our model is robust to noises, and capable
of recovering corrupted data.
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