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Abstract: 9 

With the increasing pressure on crop production from the evolution of herbicide resistance, 10 

farmers are increasingly adopting Integrated Weed Management (IWM) strategies to augment 11 

their weed control. These include measures to increase the competitiveness of the crop 12 

canopy such as increased sowing rate and the use of more competitive cultivars. While there 13 

are data on the relative impact of these non-chemical weed control methods assessed in 14 

isolation, there is uncertainty about their combined contribution, which may be hindering 15 

their adoption. In this article, the INTERCOM simulation model of crop / weed competition 16 

was used to examine the combined impact of crop density, sowing date and cultivar choice on 17 

the outcomes of competition between wheat (Triticum aestivum) and Alopecurus 18 

myosuroides. Alopecurus myosuroides is a problematic weed of cereal crops in North-19 

Western Europe and the primary target for IWM in the UK because it has evolved resistance 20 

to a range of herbicides. The model was parameterised for two cultivars with contrasting 21 

competitive ability, and simulations run across 10 years at different crop densities and two 22 

sowing dates. The results suggest that sowing date, sowing density and cultivar choice largely 23 

work in a complementary fashion, allowing enhanced competitive ability against weeds when 24 

used in combination. However, the relative benefit of choosing a more competitive cultivar 25 

decreases at later sowing dates and higher crop densities. Modelling approaches could be 26 

further employed to examine the effectiveness of IWM, reducing the need for more expensive 27 

and cumbersome long-term in situ experimentation.  28 
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1. Introduction 31 

In agricultural systems, a careful balance is required between producing a high value crop 32 

yield and minimising costs. In this regard, weeds are the most serious potential threat to 33 

maintaining profitable farming systems, responsible for inflicting approximately 34% 34 

potential yield loss globally (Oerke, 2006). The introduction of herbicides in the 1960s 35 

allowed effective and relatively cheap control of weed species. Unfortunately, over-reliance 36 

on herbicides has led to widespread resistance in many problematic weed species (Heap 37 

1997; Moss et al., 2011) and the current herbicide-based weed control paradigm is widely 38 

considered to be unsustainable. In response, an approach which combines herbicides with a 39 

range of non-chemical (or ‘cultural’) weed management options, termed Integrated Weed 40 

Management (IWM), is increasingly being employed to compensate for loss of herbicide 41 

efficacy (Bond and Grundy 2001; Lutman et al., 2013; Andrew et al., 2015). 42 

Non-chemical control techniques employed in IWM are numerous and can be divided into 43 

those implemented over several seasons, including rotational ploughing and increased crop 44 

diversity, and within-season measures. The latter include increased sowing rate and growing 45 

more competitive cultivars to minimise weed seed return. Within-season options, that aim to 46 

shift the competitive balance in favour of the crop, are the focus of this paper. In most 47 

systems, non-chemical weed management options will be employed in combination with 48 

herbicides but by increasing crop competitiveness, the required efficacy and reliance on 49 

herbicide control is reduced. In the UK, non-chemical techniques are increasingly being 50 

utilised to enhance control of the weed species Alopecurus myosuroides Huds. in winter 51 

wheat (Triticum aestivum L). This annual grass species can cause substantial losses to wheat 52 

(Storkey et al., 2003) and herbicide resistance is widespread in North-West Europe (Moss et 53 

al., 2011; Lutman et al., 2013; Keshtkar et al., 2015), and is the focus of this study.  54 



Non-chemical control tools require financial or temporal investments and their effectiveness 55 

varies from year to year. The resulting uncertainty means non-chemical control strategies 56 

tend only to be utilised when herbicides begin to fail (Bastiaans et al., 2008), as is currently 57 

the case for the control of A.myosuroides in the UK. Recommended non-chemical control 58 

options for A. myosuroides in the UK include rotational ploughing, use of spring crops (A. 59 

myosuroides mainly germinates in the autumn), delayed sowing date (to allow the use of a 60 

stale seedbed), increased crop sowing rate and the use of more competitive crop cultivars 61 

(Lutman et al., 2012).  62 

Non-chemical control techniques are infrequently studied in combination, owing to the scale 63 

of experiment required, and data are therefore lacking on whether combined effects are 64 

additive, synergistic or antagonistic. Weed control measures have previously been examined 65 

with the use of simulation models. Models allow a means of studying scenarios in silico, 66 

providing insight without the need for large-scale experimentation.  One well developed and 67 

validated model of crop / weed competition is INTERCOM, initially developed by Kropff 68 

and Spitters (1992) which has been parameterised for several crop and weed species since its 69 

inception (van Ittersum et al., 2003). When tested using sugar beet and Chenopodium album 70 

L., the original model explained 98% of the variation in yield loss (Kropff et al., 1992) and 71 

since then has been adapted to model competition from a range of weed species, including 72 

A.myosuroides in winter wheat under UK conditions (Storkey & Cussans, 2007). The model 73 

includes a range of eco-physiological parameters that determine the competitive balance 74 

between crops and different weed species and is weather driven allowing variability in output 75 

owing to environmental stochasticity to be quantified. The model can be used to examine the 76 

impact of sowing density, sowing date and crop cultivar on the outcome of crop / weed 77 

competition.  78 



In this paper, we demonstrate how the INTERCOM model of plant competition can be 79 

utilised to observe the combined effect of sowing density, sowing date and cultivar choice, 80 

using wheat and A. myosuroides as model species. Furthermore, we discuss the advantages 81 

and disadvantages in employing models to understanding weed control initiatives and 82 

advising on their future use to support the implementation of IWM. 83 

2. Materials and methods 84 

2.1. Description of the INTERCOM model 85 

The INTERCOM model makes predictions of the outcomes of competition between a crop 86 

and a weed based on leaf area production and distribution through the canopy in daily time 87 

steps (Kropff & van Laar, 1993). The primary driving environmental variables are 88 

photoperiod, temperature and available water. Temperature and water are growth-limiting, 89 

whilst accumulated photoperiod and thermal time mediate switches between developmental 90 

stages. The model has three discrete periods. Before plants begin competing for resources, 91 

growth is sink limited and modelled using an exponential relationship with biological time. In 92 

the original model, thermal time was used but, in later versions, a variable incorporating 93 

incident radiation (effective day degrees) was found to better capture differences between the 94 

growth of autumn and spring emerging cohorts (Storkey, 2004). A total green area index 95 

(GAI) of 0.75 is used as a switch between sink and source limiting growth – the next phase of 96 

the model. The ability of crop and weed to intercept light is determined through their share of 97 

the canopy (leaf area index), leaf traits related to light absorption (such as specific leaf area) 98 

and the vertical distribution of leaf area through the canopy. The model also accounts for 99 

changes in leaf traits and light absorption over time (Storkey, 2005). Plant height growth is 100 

predicted to follow the logistic function against accumulated photothermal time, as defined 101 

by Spitters (1989). Precipitation data and soil water balance functions are included in the 102 



model, using calculated rates of transpiration and evaporation. Water becomes limiting when 103 

soil moisture falls below a pre-determined level, and the relationship between the potential 104 

growth rate and water limited growth determined from an empirically derived relationship 105 

The final phase of the model is senescence and, for wheat, grain filling. Re-allocation of 106 

resource from stems and leaves to grain is modelled using functions from the Sirius model of 107 

wheat growth (Jamieson et al., 1998).  108 

The version of INTERCOM utilised in this study has been parameterised for winter-sown 109 

wheat and A. myosuroides for improved description of winter wheat growth and partitioning 110 

(see Storkey & Cussans, 2007, where a detailed description of the model can be found). It 111 

was amended for the purposes of this study in C++ as described below. 112 

2.2. Parameterising INTERCOM for wheat cultivars 113 

In the winter wheat / A. myosuroides model, wheat was originally parameterised using data 114 

from the cultivar Consort (Storkey & Cussans, 2007). However, it has been frequently 115 

demonstrated that wheat cultivars differ in their ability to compete against weeds. While 116 

INTERCOM has been used in the past to inform the breeding of competitive rice cultivars 117 

(Bastiaans et al., 1997), here, we take the novel approach of using the model to quantify the 118 

relative impact of cultivar choice on weed competition in the context of variable sowing rate 119 

and sowing date. The variability in cultivar competitive ability has been attributed to 120 

numerous plant traits, including height, leaf area and developmental speed (Andrew et al., 121 

2015). Many of these are traits utilised by INTERCOM to make predictions of competitive 122 

outcomes.  123 

The model was parameterised for two contrasting wheat cultivars, Duxford and KWS 124 

Santiago. These cultivars were selected based on three years of study (2012, 2013, 2014) in 125 

outdoors containers, where they represented the extremes in terms of competitiveness when 126 



compared to a range of ten modern wheat cultivars. Duxford was frequently reported as the 127 

strongest suppressor of A. myosuroides across three years of study, whilst KWS Santiago was 128 

frequently the poorest performer (Andrew, 2016). Using data collected from a series of 129 

outdoor, container-based experiments based at Rothamsted Research, UK, data were 130 

available to parameterise the model for different cultivars.  To parameterise seedling growth 131 

rate, the protocol used in Storkey (2004) was followed; sequentially sampling seedlings over 132 

a two month period. For parameters determining resource competition, the cultivars were 133 

grown in competition with A. myosuroides in outdoor containers (40 x 32 cm) in a fully 134 

replicated experimental design repeated over three years and a range of morphological traits 135 

measured through the season. A selection of the original model parameters for wheat (cv. 136 

Consort) and for the two contrasting cultivars can be found in Table 1. The model was 137 

separately parameterised for each cultivar in C++. The main differences between the cultivars 138 

were in their rate of development, early height and early vigour (Figure 1). Duxford tended to 139 

have a relatively erect canopy structure early on and a high seedling growth rate (related to a 140 

higher specific leaf area and lower partitioning to roots) whereas KWS Santiago tended to 141 

delay shoot extension and be relatively prostrate in the seedling stage. 142 

Table 1 and figure 1 near here 143 

2.3. Simulations 144 

A number of in silico experiments were done using INTERCOM. Firstly, data input for 145 

INTERCOM can be amended to reflect the density of wheat and A. myosuroides in the stand 146 

and wheat sowing date; the interaction of these two factors was analysed using the original 147 

parameters for the cultivar, Consort. Crop densities between 100 and 400 wheat plants m
-2

 148 

were selected to represent the potential to increase the competitive ability of the wheat 149 

canopy with A. myosuroides without changing cultivar choice. A range of sowing dates was 150 



chosen to reflect a realistic period for sowing winter wheat in the UK (15 September – 14 151 

November). Emergence times after sowing were kept constant at seven days for A. 152 

myosuroides and 10 days for wheat, and the A. myosuroides density was maintained at 80 153 

plants m
-2

 across all simulations. To quantify the interaction of sowing date and sowing rate 154 

on crop canopy competitiveness, the model was run using 49 combinations of rate x date, 155 

using intervals of 50 plants m
-2

 for crop density and 10 days for sowing date. The simulation 156 

model was run using radiation, temperature and precipitation data recorded at Rothamsted 157 

meteorological station for harvest years 2005-2014, providing yearly predictions of 158 

percentage crop yield loss and A. myosuroides above-ground dry weight (m
-2

).  159 

The second experiment analysed the differences between the cultivars, Duxford and KWS 160 

Santiago, at a range of crop densities (this time increased to a maximum of 600 plants m
-2

) 161 

and a similar range of sowing dates as the first experiment. The ten years of weather data 162 

were used and the mean and standard error for crop yield loss calculated for each 163 

combination of cultivar x crop density or cultivar x sowing date. Finally, the effect of 164 

variable weather was made the focus of a further analysis, using a small number of cultivar x 165 

sowing date x crop density scenarios.  A preferred sowing date under weed-free scenarios (20 166 

September) was chosen along with a later sowing date, utilised to reduce A. myosuroides 167 

competitive ability and its germination within the crop competitive ability (20 October) 168 

(Melander, 1995; Lutman et al., 2013). Two realistic crop densities were also chosen, 150 or 169 

300 plants m
-2

. Each combination of sowing date and crop density was input into 170 

INTERCOM using the parameters for either Duxford or KWS Santiago using weather data 171 

from each of the ten years. We assumed that the yearly weather data are temporally 172 

independent which allowed the differences between the cultivars, sowing dates or drilling 173 

dates (and interactions between them) to be analysed in the context of this inter-annual 174 



environmental variability using ANOVA. All statistical analysis of data was conducted in 175 

Genstat 16 (VSN International, 2013). 176 

3. Results 177 

In the model’s predictions, percentage yield loss and A. myosuroides biomass at maturity 178 

were closely correlated (r = 0.86; P<0.001). As such, although percentage yield loss is 179 

presented, the model predicted an equivalent reduction in weed biomass. In addition, the 180 

relationship between A. myosuroides biomass at maturity and seed production is observed to 181 

be positively correlated, allowing the output to be used to predict seed return under different 182 

scenarios. An increase of 10% yield loss was associated with approximately 15000 additional 183 

weed seeds produced. When using parameters for a standard cultivar, Consort, the model 184 

predicted decreasing yield loss with both increasing crop density and a later sowing date; in 185 

both cases the relationship was non-linear (Figure 2).     186 

Figure 2 near here 187 

Higher yield loss was always observed for KWS Santiago (F1,76=34.33, P<0.001), regardless 188 

of crop density or sowing date. However, yield loss varied for both cultivars across the 189 

different seasons and the relative difference between the cultivars was highly weather 190 

dependent (Figure 3a). These predictions are in line with empirical observations of weed 191 

suppression from the container experiments used to parameterise the model for Duxford and 192 

KWS Santiago (Figure 4). 193 

Figure 3 & 4 near here 194 

 195 

 196 



 Accumulated thermal time was an important determinant of yield loss predictions in the 197 

INTERCOM model for both cultivars, with lower temperatures resulting in decreased yield 198 

loss (F1,76=21.62, P<0.001) and reduced differences between the cultivars. In the coldest year, 199 

2013, the model reported the lowest yield loss prediction of 3.2%, whilst the second highest 200 

was in the warmest year (2006), with 17% yield loss. The predicted weed-free yield of wheat 201 

suffered no equivalent detriment in the colder years (Figure 3b), implying that temperature 202 

has a stronger impact on A. myosuroides competitive performance. 203 

Figure 5 near here 204 

Percentage yield loss at a crop density of 150 plants m
-2

 averaged 15%, decreasing to 9.4% 205 

when crop density was increased to 300 plants m
-2 

(P = 0.01; 1 d.f.). Delaying sowing by 30 206 

days also reduced percentage yield loss, with 19.1% yield loss on 20 September sowing dates 207 

and 5.3% yield loss when the crop was sown on 20 October (P<0.001; 1 d.f.) (Table 2). 208 

The INTERCOM model predicts that Duxford is the most competitive cultivar across all 209 

simulation years, with KWS Santiago suffering 18.5% yield loss whilst Duxford only 210 

suffered 5.89% yield loss (P<0.001; 1 d.f.) (Table 2). There was no significant interaction 211 

between sowing date, sowing density and cultivar choice, suggesting they behave 212 

cumulatively when employed together to reduce percentage yield loss.  213 

The effects of changing crop cultivar, sowing density and sowing date on weed-free yield 214 

was restricted only to sowing date, with delayed sowing resulting in a mean decrease in yield 215 

from 13.56 t ha
-1

 to 12.79 t ha
-1

 (P<0.002; d.f. 1) (Table 3). 216 

Table 2 & table 3 near here 217 

The model anticipates Duxford to outperform KWS Santiago at all densities, and the benefit 218 

of increased sowing density reduces with each subsequent increase (Figure 5a). In order for 219 



KWS Santiago to achieve a similar yield loss to Duxford when sown at 150 plants m
-2

 (mean 220 

percentage yield loss of 11.7), its stand density must be increased to 640 plants m
-2

 (Figure 221 

5a). A similar effect is observed with sowing date, with Duxford consistently more 222 

competitive than KWS Santiago and the benefit of delayed sowing is reduced with each 223 

additional day (Figure 5b). In order for KWS Santiago to achieve a similar yield loss as 224 

Duxford sown at 150 plants m
-2

 on 20 September, it must be sown on 16 October. However, 225 

as sowing density increased or sowing date was delayed, the relative benefit of using a 226 

competitive cultivar decreased. 227 

Figure 5 near here 228 

4. Discussion  229 

There are various non-chemical control strategies available to farmers, and these are often 230 

utilised in IWM. However, there is a need to understand how they perform in combination 231 

and how they interact with variable weather in order to maximise weed control and minimise 232 

yield loss (Barzman et al., 2015). The necessary field experiments to investigate this would 233 

require a scale (temporal and spatial) that would make them difficult to conduct and 234 

complicated to analyse. The use of simulation models such as INTERCOM can provide 235 

valuable insight into their combined effect on crop-weed competitive interactions (van 236 

Ittersum et al., 2003).  237 

The predictions of the reduction in yield loss with increasing crop density were in agreement 238 

with the published literature (Mennan and Zandstra, 2005). The model predicted an average 239 

reduction in seed production of 25% when crop density was increased from 100 to 300 plant 240 

m
-2

. This is an equivalent increase in crop competitiveness as was reported in Lutman et al. 241 

(2013) where these treatments resulted in reductions in A. myosuroides head density of 242 

approximately 32%.  243 



A similar comparison cannot be made with data from Lutman et al. (2013) on the impact of 244 

delayed sowing on weed competition as we did not incorporate the effect of reduced weed 245 

establishment at late sowing dates. This would be a useful improvement of the models. 246 

However, the model output was realistic in that it predicted that in the wheat – A. 247 

myosuroides scenario, the crop acquires a competitive advantage when sown at higher 248 

densities and at later sowing dates. The benefit of increased sowing density has been 249 

observed in various crop-weed associations (Christensen et al., 1994; Melander, 1995; Cosser 250 

et al., 1997; Roberts et al., 2001; Lutman et al., 2013). However, we demonstrated an 251 

additional benefit of delayed sowing; the difference in relative growth rate between the crop 252 

and the weed is greatest at warmer temperatures, earlier in the sowing window. By delaying 253 

sowing, the competitive advantage of the weed is reduced. This finding would be welcomed 254 

by those seeking a boost to their weed control by delaying sowing wheat in the fields with the 255 

worst weed problems.  256 

The maximum reduction in A. myosuroides head density caused by cultivar differences was 257 

reported as 52%, with a mean across multiple experiments of 30% (Lutman et al., 2013). This 258 

compares to the current study with a maximum difference in A. myosuroides biomass and, 259 

therefore, seed production between the two cultivars in a given year of up to 80%. This may 260 

be because there are facets of competition that the model does not capture. Below-ground 261 

competition is estimated based on the proportional share of root space between the competing 262 

species, which may not provide an accurate representation of acquisition of limited soil 263 

resources. In situ validation of the model’s predictions of the combined impact of cultivar 264 

choice, crop density and sowing date would be of value (Deen et al., 2002). It is possible that 265 

there is a trade-off between early vigour (where Duxford ‘wins’) and later season competition 266 

for below-ground resources which would have the effect of reducing the differences between 267 

the cultivars. Due to the lack of data on rooting characteristics, when assessing cultivar 268 



differences, the model is weighted towards above-ground early growth traits. Because of this, 269 

the predictions of absolute differences need to be treated with caution. However, it is likely 270 

that the pattern of the interaction with sowing rate and sowing date are more robust. 271 

The model suggests that cultivar choice is a viable, low-risk alternative in weed management. 272 

Cultivars are observed to differ in competitive ability in field studies (Christensen et al., 273 

1994; Lemerle et al., 1996; Wicks et al., 1986), and to work in combination with sowing 274 

density (Mennan and Zandstra, 2005). Studies have reported a lack of consistency in the 275 

ranking of cultivars in studies comprising of multiple years (Vandeleur and Gill, 2004). In 276 

addition, the degree of weed control and tolerance to weed competition is observed to vary 277 

between years. This degree of uncertainty is reflected in the model and attributed to lower 278 

temperatures, perhaps compromising the ability of A. myosuroides to compete (Melander, 279 

1995).  280 

The use of a competitive cultivar has an additive affect, suggesting that similar cultivars may 281 

be employed in combination with later sowing and higher crop densities to enhance weed 282 

control. Many farmers are familiar with the benefits of delaying sowing and increasing 283 

sowing density in order to control A. myosuroides, but uptake can be restricted when farmers 284 

are less certain of their outcomes (Lutman et al., 2013). The competitive ability of modern 285 

cultivars is less understood, and its understanding is confounded by their short commercial 286 

lifespan within UK agriculture (Andrew et al., 2015). In order for farmers to utilise this tool, 287 

they need to know the additional benefit a competitive cultivar would confer. It is proposed 288 

that this is best communicated in reference to other weed control strategies. For example, 289 

INTERCOM predicts that, in order for KWS Santiago to reduce yield loss to the same extent 290 

as Duxford at 150 plants m
-2

, it must be sown at over 600 plants m
-2

. Such a high density of 291 

wheat is an unrealistic target for producers due to increased risk of lodging and the cost of the 292 

additional seed, making Duxford a viable alternative to increase crop competitive ability.  293 



The same principle applies to sowing date. In order for KWS Santiago to match Duxford’s 294 

lower percentage yield loss when sown on 20 September, an approximate sowing date of 16 295 

October is advised by the model. Delayed sowing has associated risks not captured by 296 

INTERCOM, such as poor crop establishment or poor weather in late autumn preventing the 297 

farmer from sowing the crop at all. Although maximal benefit is achieved by delaying until 298 

early November, few growers are willing to risk a late sowing date (Lutman et al., 2013). 299 

Selecting Duxford over KWS Santiago would allow for the equivalent reduction without the 300 

risk.  301 

An increase to crop density and sowing date follows the principle of diminishing returns, 302 

expressed as a rectangular hyperbola, which is accounted for by the model. For density, this 303 

is owing to the fact that each additional wheat plant added to the stand will increase crop 304 

canopy dominance by a smaller relative quantity and intraspecific competition becomes more 305 

important (Cousens, 1985). As such, the use of a more competitive cultivar would produce an 306 

additional benefit which cannot be acquired through increasing sowing density alone. 307 

The INTERCOM model is one of the most widely-employed models of crop / weed 308 

competitive interactions, and has been parameterised and validated for use in numerous 309 

species combinations (Zimdahl, 2004). Here, we have used the model to demonstrate its 310 

utility in predicting the behaviour of a specific crop / weed combination of immediate 311 

relevance to European cereal production. However, there is the potential to take a similar 312 

approach to study systems with alternative or multiple weed species (Storkey & Cussans 313 

2007) to ask questions such as ‘are the differences in weed suppression between cultivars 314 

similar when competing with different weeds’? In these scenarios, the model could provide 315 

enormous insight into the combined benefit of non-chemical control options and reduce the 316 

need for large, complex experiments. It’s flexibility in adjusting for growth rates, density and 317 

sowing date allow it to examine crop canopy competition under different climatic conditions, 318 



and it is readily adaptable to suit the crop / weed scenario of interest where light availability 319 

is a crucial component in determining the outcomes of competition. A more detailed 320 

understanding of below-ground competition may be required to increase the robustness of the 321 

predictions when water or nutrients are limiting. 322 

5. Conclusions 323 

The INTERCOM model for wheat – A. myosuroides simulates IWM on final competitive 324 

outcomes as would be largely expected from the literature, and implies that delayed sowing 325 

date, increased crop density and competitive cultivars work well in combination. Sowing a 326 

cultivar more similar to Duxford than to KWS Santiago could provide enhanced A. 327 

myosuroides suppression and yield retention without the risks inherent to sowing date and 328 

crop density. This approach, if applied to other crop-weed combinations, could provide 329 

valuable information on IWM measures, reducing the need for repeated, expensive and long-330 

term experimentation and help growers to make better informed weed management decisions. 331 
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Figure 1. Differences between two contrasting cultivars used in the in silico  experiments for 420 

two traits: a) relative growth rate of green area (cm
2
 cm

-2
 day

-1
) calculated using the daily 421 

mean temperature averaged over ten years and b) increase in plant height calculated using 422 

photothermal time, (- - -) KWS Santiago, (. .  . ) Duxford and (
___

) A.myosuroides. 423 

Figure 2. Interaction of crop density (100 – 400 plants m
-2

) and sowing date (15
th

 September 424 

to 14
th

 November) calculated as the mean output for each combination of density x date using 425 

weather data from 2005-2014. In all scenarios, a weed density of 80 plants m
-2

 was used and 426 

an emergence date for crop and weed of 7 and 10 days after sowing respectively. 427 

Figure 3. INTERCOM predictions using two contrasting cultivars showing impact of 428 

variable weather on a) percentage yield loss from years 2005-2014, and b) weed free wheat 429 

yield; the accumulated thermal time of each year is included as the dashed line.  = Duxford;  430 

 = KWS Santiago. Crop density 300 plants m
-2

, sown 20 September, A. myosuroides 431 

density 80 plants m
-2 432 

Figure 4. The seed return per plant of A. myosuroides (approx. 80 plants m
-2

 equiv.) when 433 

grown alongside one of two cultivars (275 plants m
-2

 equiv.) across three years in a container-434 

based experiment.  = Duxford;   = KWS Santiago. Mean temperature in 2011-12 was 435 

8.3°C, in 2012-13 was 6.3°C and in 2013-14 was 8.9°C 436 

Figure 5. The predicted percentage yield loss for () Duxford and () KWS Santiago when 437 

sown at a) different densities (with a sowing date of 20 September) and b) different sowing 438 

dates (with a crop density of 150 plants m
-2

). In both cases, weed density was 80 plants m
-2

 439 

and dates of emergence were 10 and 7 days after sowing for the crop and weed respectively. 440 

  441 



Table 1 - Parameter values for the INTERCOM model. Values for cultivar 

Consort are those included in the original version of the model developed for 

winter wheat (Storkey and Cussans, 2007). Cultivar values are those used to 

parameterise for respective cultivar. RWR = root weight ratio, SSA = specific 

stem area, SLA = specific leaf area, RGRGA = relative growth rate of green 

area, L0 = initial green area, a = initial height, c = height asymptote, b = 

maximum growth rate, m = time of the point of inflexion (just prior to 

achieving the asymptote). 

Trait 

Consort 

(Storkey & 

Cussans, 

2007) 

 

Duxford 

KWS 

Santiago 

RWR 0.71 0.705 0.681 

SSA (m
2
 g

-1
) 0.003 0.00545 0.00504 

Phyllochron (dd leaf
-1

) 90 67.5 69.5 

SLA (m
2
 g

-1
) 0.019 0.0385 0.0346 

RGRGA (cm
-2

 cm
-2

 tt
-1

) 0.0089 0.0116 0.0096 

L0 (cm) 0.64 0.674 0.715 

Logistic functions for 

height 

   a (cm) 7.4 1.36 5.73 

c (cm) 77.9 81.845 77.299 

b (cm ptt
-1

) 0.0085 0.004218 0.005559 

m (ptt) 624 685.0 822.6 

 

 442 

  443 



Table 2 – The percentage yield loss predicted by INTERCOM for wheat cultivars Duxford 

and KWS Santiago under different crop density and sowing date combinations. ± indicates 

standard error. 

  20 September 20 October 

Cultivar 
Density 

Sowing date 
(plants m

-2
) 

Duxford 
300 7.8 ± 0.524 1.6 ± 0.119 

150 11.7 ± 0.613 2.5 ± 0.206 

KWS 

Santiago 

300 21.7 ± 0.953 6.6 ± 0.441 

150 35.3 ± 1.327 10.5 ± 0.789 
 

 444 

Table 3 – The weed-free yield (t ha
-1

) predicted by INTERCOM for wheat cultivars Duxford 

and KWS Santiago under different crop density and sowing date combinations. ± indicates 

standard error. 

  20 September 20 October 

Cultivar 
Density 

Sowing date 
(plants m

-2
) 

Duxford 
300 13.8 ± 0.118 12.9 ± 0.088 

150 13.7 ± 0.122 12.9 ± 0.087 

KWS 

Santiago 

300 13.4 ± 0.126 12.7 ± 0.087 

150 13.4 ± 0.135 12.7 ± 0.086 
 

 445 
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