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ABSTRACT
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With the development of convection-permitting numerical weather predic-

tion the efficient use of high-resolution observations in data assimilation is

becoming increasingly important. The operational assimilation of these obser-

vations, such as Doppler radar radial winds (DRWs), is now common, though

to avoid violating the assumption of uncorrelated observation errors the ob-

servation density is severely reduced. To improve the quantity of observations

used and the impact that they have on the forecast requires the introduction of

the full, potentially correlated, error statistics. In this work, observation error

statistics are calculated for the DRWs that are assimilatedinto the Met Office

high-resolution UK model using a diagnostic that makes use of statistical aver-

ages of observation-minus-background and observation-minus-analysis resid-

uals. This is the first in-depth study using the diagnostic toestimate both hor-

izontal and along-beam observation error statistics. The new results obtained

show that the DRW error standard deviations are similar to those used oper-

ationally and increase as the observation height increases. Surprisingly the

estimated observation error correlation length-scales are longer than the op-

erational thinning distance. They are dependent both on theheight of the ob-

servation and on the distance of the observation away from the radar. Further

tests show that the long correlations cannot be attributed to the background

error covariance matrix used in the assimilation, althoughthey are, in part, a

result of using superobservations and a simplified observation operator. The

inclusion of correlated error statistics in the assimilation allows less thinning

of the data and hence better use of the high-resolution observations.
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1. Introduction5

With the recent development of convection permitting numerical weather prediction (NWP),6

such as the Met Office UK variable resolution (UKV) model (Lean et al. 2008; Tang et al. 2013),7

the assimilation of observations that have high frequency both in space and time has become in-8

creasingly important (Park and Zupanski 2003; Dance 2004; Sun et al. 2014; Ballard et al. 2016;9

Clark et al. 2015). The potential for assimilating one such set of observations, the Doppler radar10

radial winds (DRWs) (Lindskog et al. 2004; Sun 2005), has been explored by a number of opera-11

tional centers e.g., Lindskog et al. (2001); Salonen et al. (2007); Rihan et al. (2008); Salonen et al.12

(2009). The assimilation of the DRWs has been shown to provide a significant positive impact13

on the forecast (Xiao et al. 2005; Lindskog et al. 2004; Montmerle and Faccani 2009; Simonin14

et al. 2014; Xue et al. 2013, 2014) and as a result they are now included in operational assimilation15

(Xiao et al. 2008; Simonin et al. 2014).16

Currently at the Met Office the error statistics associated with DRWs are assumed uncorrelated17

(Simonin et al. 2014). To reduce the large quantity of data and ensure the assumption of uncorre-18

lated errors is reasonable the DRW observations are ‘superobbed’ and thinned before assimilation19

(Simonin et al. 2014). These processes result in a large number of observations being discarded.20

To improve convection-permitting NWP it is necessary to make better use of high frequency DRW21

observations. This requires less thinning of the observational data and, hence, the inclusion of22

correlated observation error statistics in the assimilation system is required (Liu and Rabier 2003).23

Currently the full observation error statistics associated with the DRWs are unknown. Therefore,24

the aim of this manuscript is both to estimate and to provide an understanding of the correlated25

observation errors associated with DRW.26

In general, the errors associated with the observations canbe attributed to four main sources:27
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• Instrument error.28

• Error introduced in the observation operator.29

• Errors of representativity - errors that arise where the observations can resolve spatial scales30

that the model cannot.31

• Pre-processing errors - errors introduced by pre-processing.32

For DRWs the instrument errors are independent and uncorrelated. Observation error correlations,33

which may be state dependent and dependent on the model resolution, are likely to arise from the34

other sources of error (Janjic and Cohn 2006; Waller 2013; Waller et al. 2014a,b) (see Section 535

for a more detailed description). The inclusion of correlated observation errors in the assimilation36

has been shown to lead to a more accurate analysis, the inclusion of more observation information37

content and improvements in the forecast skill score (Stewart et al. 2013; Stewart 2010; Healy and38

White 2005; Stewart et al. 2008; Weston et al. 2014). Significant benefit may even be provided by39

using only a crude approximation to the observation error covariance matrix (Stewart et al. 2013;40

Healy and White 2005).41

A number of methods exist for estimating the observation error covariances e.g. Hollingsworth42

and Lönnberg (1986); Dee and Da Silva (1999). Xu et al. (2007) presented an innovation method43

based on that of Hollingsworth and Lönnberg (1986) for estimating DRW error and background44

wind error covariances. Simonin et al. (2012) previously calculated observation error statistics45

for DRWs using the method of Xu et al. (2007). The work of Simonin et al. (2012) suggests46

that the observation error standard deviation increases with the height of the observation and that47

the observations errors have a correlation length scale of 1-3km. However, the Hollingsworth and48

Lönnberg (1986) method was initially designed to provide estimates of the background error statis-49

tics under the assumption of uncorrelated observation errors. The method can be used to estimate50
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both correlated background and correlated observation errors; however, determining how to split51

the estimated quantity into observation and background errors is non-trivial (Bormann and Bauer52

2010). Indeed the result is subjective. To overcome this difficulty most recent attempts to diagnose53

the observation error correlations have made use of the diagnostic proposed in Desroziers et al.54

(2005). Initially designed as a consistency check, the diagnostic provides an estimate of the obser-55

vation error covariance matrix using the statistical average of observation-minus-background and56

observation-minus-analysis residuals. However, in theory it relies on the use of exact background57

and observation error statistics in the assimilation. Despite this limitation, the diagnostic has been58

used to estimate inter-channel observation error statistics (Stewart et al. 2009, 2014; Bormann and59

Bauer 2010; Bormann et al. 2010; Weston et al. 2014) even whenthe error statistics used in the60

assimilation are not exact. The method of Desroziers et al. (2005) has also been used by Wattrelot61

et al. (2012) to calculate observation error statistics forthe Doppler radial winds assimilated into62

the Météo-France system. Their results, published as a conference paper, show a similar error63

standard deviation to those found in Simonin et al. (2012), but suggest that the observation errors64

have a larger correlation length scale of approximately 10km. (we cannot determine the length65

scale precisely due the data thinning they have applied).66

Here we present the first in-depth study using the diagnosticof Desroziers et al. (2005) to calcu-67

late observation error statistics for the DRWs assimilatedinto the Met Office high resolution UK68

(UKV) model. Due to the limitations of the diagnostic we consider the sensitivity of the estimated69

observation error statistics to the choice of assimilated background error statistics. To aid our70

understanding of the source of observation error we also consider the sensitivity of the estimated71

observation error statistics to the use of superobservations and the use of a more sophisticated72

observation operator. We find that, for summer season observations, the DRW error standard devi-73

ations are similar to those used operationally, though surprisingly, the observation error correlation74

7



length scales are longer than the operational thinning distance. Due to the uncertainty in the results75

arising from the diagnostic the estimated correlation lengthscales should be interpreted as indica-76

tive, rather than necessarily quantitatively perfect. However, results from the diagnostics can still77

provide useful information as further tests show that the long correlations cannot be attributed to78

the background error covariance matrix used in the assimilation, although they may, in part, be a79

result of using superobservations and a simplified observation operator.80

This paper is organised as follows. In Section 2 we give a description of the diagnostic of81

Desroziers et al. (2005). We describe the DRW observations and their model representations in82

Section 3 and in Section 4 we describe the experimental design. In Section 5 we consider the83

estimated observation error statistics from four different cases. Finally we conclude in Section 6.84

2. The diagnostic of Desroziers et al. (2005)85

Data assimilation techniques combine observationsy∈R
Np

with a model prediction of the state,86

the backgroundxb
∈ R

Nm
, often determined by a previous forecast. HereNp andNm denote the87

dimensions of the observation and model state vectors respectively. In the assimilation the obser-88

vations and background are weighted by their respective errors, using the background and obser-89

vation error covariance matricesB ∈ R
Nm

×Nm
andR ∈ R

Np
×Np

, to provide a best estimate of the90

state,xa
∈R

Nm
, known as the analysis. To calculate the analysis the background must be projected91

into the observation space using the possibly non-linear observation operator,H : R
Np

→ R
Nm

.92

After an assimilation step the analysis is evolved forward in time to provide a background for the93

next assimilation.94

Desroziers et al. (2005) assume that the analysis is determined using,95

xa = xb+K(y−H (xb)), (1)
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whereK = BHT(HBHT + R)−1 is the gain matrix andH is the linearised observation operator,96

linearised about the current state.97

The diagnostic described in Desroziers et al. (2005) estimates the observation error covariance98

matrix by using the observation-minus-background and observation-minus-analysis residuals. The99

background residual, also known as the innovation,100

do
b = y−H (xb), (2)

is the difference between the observationy and the mapping of the forecast vector,xb, into obser-101

vation space by the observation operatorH . The analysis residual,102

do
a = y−H (xa), (3)

≈ y−H (xb)−HKd o
b. (4)

is similar to the background residuals, but with the forecast vector replaced by the analysis vector103

xa. By taking the statistical expectation of the product of theanalysis and background residuals104

results in105

E[do
ado

b
T ] ≈ R, (5)

assuming that the forecast and observation errors are uncorrelated. Equation (5) is exact if the106

observation and background error statistics used in assimilation are exact. The theoretical work of107

Waller et al. (2016) provides insight on how results from thediagnostic can be interpreted when108

the incorrect background and observation error statisticsare used in the assimilation. Due to the109

statistical nature of the diagnostic the resulting matrix will not be symmetric. Therefore, if the110

matrix is to be used it must be symmetrised.111

9



3. Doppler Radar radial wind observations and their model representation112

a. The Met Office UKV model and 3D variational assimilation scheme113

The operational UKV model is a variable resolution convection permitting model that covers the114

UK (Lean et al. 2008; Tang et al. 2013). The model has 70 vertical levels. The horizontal grid has115

a 1.5km fixed resolution on the interior surrounded by a variable resolution grid which increases116

smoothly in size to 4km. The variable resolution grid allowsthe downscaled boundary conditions,117

taken from the global model, to spin up before reaching the fixed interior grid. The initial condi-118

tions are provided from a 3D variational assimilation scheme that uses an incremental approach119

(Courtier et al. 1994) and is a limited-area version of the Met Office variational data assimilation120

scheme (Lorenc et al. 2000; Rawlins et al. 2007). The assimilation uses an adaptive mesh, that121

allows the accurate representation of boundary layer structures (Piccolo and Cullen 2011, 2012) .122

The background error covariance statistics used in this study are described in Section 4.123

b. Doppler radar radial wind data124

Doppler radar is an active remote sensing instrument that provides observations of radial wind125

by measuring the phase shift between a transmitted electromagnetic wave pulse and its backscatter126

echo. The radial velocity of a scattering target is then estimated from the ‘Doppler shift’ (Doviak127

and Zrnic 1993). While it is possible to derive clear air radar returns e.g. Rennie et al. (2010,128

2011), in this work we consider only observations where the scattering targets are assumed to be129

raindrops. The DRW data used at the Met Office are acquired using 18 C-Band weather radars.130

Each radar completes a series of scans out to a range of 100km every 5 minutes at different el-131

evation angles (typically 1o, 2o, 4o, 6o and 9o) with a 1o
× 600m resolution volume. Before132

being assimilated the data is processed and a quality control procedure is applied. This ensures133
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that no observations that disagree with neighbouring observations or have a large departure from134

the background are assimilated. The observations errors are assumed Gaussian and uncorrelated135

in space or time with standard deviations that range from 1.8ms−1 for observations close to the136

radar to 2.8ms−1 for observations furthest away from the radar. Further details of the operational137

assimilation of DRWs at the Met Office can be found in Simonin et al. (2014).138

1) THE CURRENT OPERATIONAL OBSERVATION OPERATOR139

To compare the background with the observations it is necessary to map the model state into140

observation space. The current operational observation operator, following Lindskog et al. (2000),141

first interpolates the NWP model horizontal and vertical wind componentsu, v andw to the ob-142

servation location. The horizontal wind is then projected in the direction of the radar beam and143

projected onto the slant of the radar beam using,144

vr = (usinφ +vcosφ)cos(θ)+wsin(θ), (6)

whereφ is the radar azimuth angle clockwise from due north andθ is the beam center elevation145

angle. The elevation angleθ = ε + α includes a correction term,α, that must be added to the146

measurement elevation angleε. The correction term147

α = tan−1(
r cos(ε)

r sin(ε)+ae+hr
), (7)

wherehr is the height of the radar above sea level,r is the range of the observation andae is148

the effective earth radius (1.3 times the actual earth radius) required to take account of the earth’s149

curvature and the radar beam refraction (Doviak and Zrnic 1993). The correction term is not150

exact. The value ofae is only valid in the international standard atmosphere. This simple oper-151

ational observation operator does not account for the beam broadening or reflectivity weighting.152

Additionally, only the horizontal wind components are updated in the minimisation, the vertical153
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component of wind is ignored, which for small elevation angles should be acceptable. In addition154

no information about hydrometeor fall speed is available tothe assimilation system.155

This operational observation operator is used in the majority of results discussed in this article.156

2) AN IMPROVED OBSERVATION OPERATOR157

An improved observation operator has been trialled in the operational system; it accounts for158

some broadening of the beam (vertical only), as well as a reflectivity weighting. Both of these159

processes are often ignored in operational DRW assimilation (Ge et al. 2010). This improved160

observation operator is similar to the operator described by Xu and Wei (2013), although it differs161

in some important details. The beam broadening model,Wbb, takes the form,162

Wbb(θz) = exp(−2ln(2)
θ2

z

θ2
3dB

), (8)

with θz = θ −θb whereθ is the beam centre elevation as in equation (6),θb is the elevation within163

the beam andθ3dB is the half power bandwidth (angular range of the antenna pattern in which at164

least half of the maximum power is still emitted (Toomay and Hannen 2004)). For the reflectivity165

weighting, a climatological profile with heighth is used,166

Wre f (h) = Zh+c, (9)

where,167

Z =











−6dB : h < BrightbandL

−2dB : h > BrightbandU

, (10)

c is a constant scaling factor,BrightbandL is the lower limit of the Bright band andBrightbandU is168

the upper limit of the Bright band. The height of the Bright band (a layer of melting ice resulting169

in intense reflectivity return (Kitchen 1997)) is derived from the forecast model temperature field,170

and has a thickness set to 250m. The reflectivity profile increases by 10dB from the bottom to171
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the centre of the bright band and then decreases linearly. The beam broadening and reflectivity172

weighting are combined to give a single weight,W = Wre fWbb and this weighting is included in173

the new observation operator,174

vr = ∑
MLθbeam

W(usinφ +vcosφ)cos(θ). (11)

The summation in 11 is made over the model levels (MLθbeam) present within the beam thick-175

ness. In this formulation,∑W is equal to one over theMLθbeam. The implementation of this new176

observation operator has been shown to reduce the error in the background residuals. This new177

observation operator may be further improved (Fabry 2010),though the operational use of a more178

complex observation operator may not be feasible. While these simplifications and omissions in179

the observation operator exist, they will introduce additional error when the model background180

is projected into observation space. These errors may well be correlated and should ideally be181

accounted for in the observation error covariance matrix.182

3) SUPEROBSERVATION CREATION183

To reduce the density of the observations, multiple observations are made into a single superob-184

servation. Only observations that have passed the quality control procedure described in Simonin185

et al. (2014) are combined to make the superobservations. There are a number of methods for186

calculating the superobservations. The Doppler radar superobservations used at the Met Office187

are calculated using innovations following the method of Salonen et al. (2008). The radar scan is188

divided into 3o by 3kmcells and one observation is created per cell using the following procedure:189

1. Project background winds into observation space using equation (6);190

2. Calculate the background residual at each observation location;191

3. Average all background residuals that fall within a superobservation cell;192
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4. Add the average residual to the simulated background radial wind at the center of the super-193

observation cell to give a value for the superobservation.194

The calculated superobservations are subject to a second quality control procedure (Simonin et al.195

2014). They are then further thinned to 6km, where is assumedthat the observations will have196

uncorrelated error, using Poisson disk sampling (Bondarenko et al. 2007).197

4) SUPEROBSERVATION ERROR198

The calculated superobservations have an associated superobservation error,εso. The literature199

shows that the superobbing procedure reduces the uncorrelated portion of the error; however, the200

correlated error is not reduced (Berger and Forsythe 2004).Berger and Forsythe (2004) showed201

that the covariance of the superobservation error will be equivalent to the averaged observation202

error covariance matrix for the raw observations (i.e. creating the superobservations using the203

background does not introduce any background error intoεso) if:204

1. The observation and background errors are independent;205

2. The background state errors are fully correlated within the superobservation cell;206

3. The background state errors in a superobservation cell all have the same magnitude and207

4. The background residuals are equally weighted within a superobservation cell.208

However, for DRWs it is not clear that all the assumptions will hold. In particular assumptions 1209

and 2 are valid at close range to the radar where the superobservation cells are small. However, at210

far range the superobservation cells are large and the assumptions are likely to be invalid. There-211

fore, it is possible that at large ranges there is a small influence of the background errors on the212

error associated with the superobservation.213
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5) ERROR SOURCES FORDOPPLER RADAR RADIAL WINDS214

In the introduction the four main sources of observation error are introduced. The observation215

error will not only be a function of the observation type, butalso of the observation pre-processing,216

observation operator and model resolution. Here we list some of the observation error sources217

specific to DRWs:218

• Errors introduced by clutter removal.219

• Error introduced when creating the superobservations.220

• Misrepresentation of radar beam bending.221

• Misrepresentation of beam broadening.222

• Approximation of volume measurement as point measurement.223

• Discrete approximation of continuous mapping from model toobservation space .224

• Errors of representativity.225

• Instrument error.226

There may be additional unknown sources of error.227

It has been shown that some of these errors, such as the instrument error or those caused by228

the misrepresentation of radar beam bending, are small Xu and Wei (2013). However there are229

other errors, such as the error introduced when creating thesuperobservations, misrepresentation230

of beam broadening and the approximation of volume measurement as a point measurement that231

we hypothesise will have a more significant contribution to the observation error statistics. Indeed,232

Fabry and Kilambi (2011), suggest that if the antenna beamwidth and reflectivity weighting are233
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ignored in the observation operator then the observation errors will have long correlation length234

scales greater than 10 km.235

4. Experimental Design236

To calculate estimates of the observation error covariances we require background and analysis237

residuals. We use archived observations and background data produced by the operational Met238

Office system from June, July and August 2013. To generate theanalyses we run four different239

assimilation configurations, detailed below. Using these backgrounds, analyses and observations240

we are able to determine the background,do
b, and analysis,do

a, residuals. Observations in this241

study come from 9 of the 18 radars in the network. Although observation errors are likely to be242

state dependent (Waller et al. 2014b), we have used 3 months worth of data to ensure that we243

have enough data for the statistical sampling error to be small. We have restricted ourselves to the244

summer season as we expect mainly convective rainfall (Handet al. 2004; Hawcroft et al. 2012),245

which is likely to result in state dependent observation errors which are all similar.246

Case 1 uses residuals produced by running the UKV under the January 2014 operational con-247

figuration. This uses superobservations (calculated as described in Section 3) thinned to 6km and248

the observation operator given in equation (6). The background error covariance (‘New’) has been249

derived using the Covariances and VAR Transforms (CVT) software which is the new Met Office250

covariance calibration and diagnostic tool that analyses training data representing forecast errors251

(either using the so-called NMC lagged forecast technique or ensemble perturbations). Here a252

NMC method has been applied to (T+6 hour)-(T+3 hour) forecast differences to diagnose a vari-253

ance and correlation length scale for each vertical mode.254

Case 2 considers the effect of using the old (used prior to January 2013) operational UKV255

background error covariance matrix (‘Old’). These statistics were generated from (T+24 hour)-256
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(T+12 hour) forecast differences and, contrary to the CVT approach, the correlation functions257

used specific fixed length scales (Ballard et al. 2016). This background error covariance matrix258

has larger variances than the matrix used in Case 1 and the correlations length scales are slightly259

longer. A comparison between Cases 1 and 2 shows the impact ofthe assimilated background260

error covariance matrix on the estimated observation errorstatistics.261

Case 3 uses the same background error covariance as Case 1, but used raw observations (thinned262

to 6km) rather than using the superobservations. A comparison between Cases 1 and 3 shows the263

impact of the superobservations on the estimated observation error statistics.264

Case 4 uses the same design as Case 3, the assimilation of raw observations, but the operational265

observation operator is replaced with the observation operator described in equation (11). A com-266

parison between Cases 3 and 4 shows the impact of the observation operator on the estimated267

observation error statistics.268

We summarise the different cases in Table 1. For each case theavailable data for each radar269

scan is stored in 3D arrays of sizeNs
×Nr

×Na whereNs is the number of scans containing data,270

Nr = 16 is the number of ranges andNa = 120 is the number of azimuths. Figure 1 shows a271

radar scan with the typical superobservation cells. The data is also separated by elevation, with272

data available at elevation angles 1o, 2o, 4o and 6o. (We do not estimate the observation error273

statistics for the 9o beam due the lack of available data). The position of these observations at274

these elevations are shown in Figure 2, we note that the colour scheme for each given elevation275

is used throughout the figures in this manuscript. It is important to note that these observations276

are only available in areas where there is precipitation andit is possible that only part of the277

scan contains observations. Furthermore, the use of the superobservations, thinning and quality278

control results in a limited amount of data in each scan. The amount of data available differs for279

each elevation, with data for the lower elevations available out to far range (a result of the quality280
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control procedures), and for higher elevations available only for near range. This lack of data281

means that standard deviations and correlations are not available for every range at each elevation.282

Results are only plotted for standard deviations if 1500 or more samples were available and for283

correlations if the number of samples was greater than 500. The minimum number of samples284

is chosen to ensure that sampling error does not contaminateour estimates of the error statistics.285

Observations may be correlated along the beam, horizontally or vertically. Here we consider both286

horizontal correlations and those along the beam.287

Horizontal correlations consider how observations at a given height are correlated. The blue288

cells in Figure 1 show a set of observations that would be compared for a given height. For each289

radar scan, data is sorted into 200m height bins. Here the height takes into account the height of290

the radar above sea level. All observations that fall into a particular height bin are considered. The291

data is binned by separation distance for each pair of observations and from this the correlations292

are calculated.293

When calculating along-beam correlations we consider how observations in the same beam are294

correlated to each other, where correlations are expressedfor the separation distance along the295

beam. The red cells in Figure 1 show one set of observations that would be considered in this296

case. Here the samples used for calculating equation (5) aretaken to be the individual scans along297

the azimuth. Samples are taken on all dates, from all radars and from each azimuth. When calcu-298

lating results along the beam we do not expect to obtain symmetric correlation functions. When299

considering the along-beam correlations at any given rangethe positive separation distance will300

result in a different correlation to the negative separation distance. For example, say we are con-301

sidering the correlations for the observation located at 30km range, the correlation with the 18km302

observation (-12km separation) will have a smaller measurement volume whereas the observation303

at 42km (+12km separation) will have a larger measurement volume. This is an important factor304
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to consider when analysing the along-beam correlation results. When plotting the along beam305

correlation functions, it can appear as though the plot is incomplete for data at low elevations, far306

range and high height (e.g. Figures 10 and 11). This is a result of the range limit of the radar. For307

example, as depicted in Figure 2, at elevation 1o and height of 2.5km, the range of the observation308

is 94km. There are no observations available beyond a range of 100km from the radar, so therefore309

we are unable to calculate the correlation beyond a separation distance of +6km (i.e. 6km further310

from the radar).311

For both horizontal and along-beam correlations it is possible to calculate an average correlation312

function using all available data that is homogeneous for all elevations, heights and ranges. These313

average correlation functions provide an overall impression of how the calculated covariance dif-314

fers between cases. The average along-beam correlation functions are also comparable to those315

calculated in Wattrelot et al. (2012). The disadvantage of this method is that different elevations316

represent different heights in the atmosphere, and also have interaction with different model levels.317

Therefore it is difficult to distinguish how the error correlations arise, whether they are a result of318

errors in the observation operator, or arise from the misrepresentation of scales. In an attempt to319

understand exactly what is contributing to the error we alsocalculate the correlations for different320

elevations separately as this allows us to better understand the origin and behaviour of the errors.321

5. Results322

a. Case 1 - Results from the operational system323

We begin by calculating the observation error covariances for Case 1. Here data was acquired324

using the January 2014 operational system. This uses superobservations (calculated as described in325
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Section 3) thinned to 6km, the observation operator given inequation (6) and the ‘new’ background326

error covariance statistics.327

1) HORIZONTAL CORRELATIONS328

We first calculate the average horizontal correlation function using all data from all elevations.329

We show the standard deviation for this case in Table 2 and thecorrelation in Figure 3. (Note that330

the table and figure contain results for all cases; in this section we discuss the results for Case 1331

only). The standard deviation falls within the range of operational DRW standard deviations. We332

see that the estimated correlation length scale (defined to be the distance at which correlation333

becomes insignificant (< 0.2) (Liu and Rabier 2002)) is approximately 24km. This is muchlarger334

than the distance of 1 - 3km calculated in Simonin et al. (2012) using the method of Xu et al. (2007)335

and the operational thinning distance of 6km. This indicates that the assumption of uncorrelated336

errors is incorrect.337

We now consider the horizontal correlations for different heights and each elevation separately.338

In Figure 4 we plot the standard deviation with height for each elevation. We see that the standard339

deviations increase with height with the exception of the lowest levels, and are similar for each340

elevation. For each elevation the volume of atmosphere sampled by the observation increases with341

height. (Note that at any given height the volume sampled by the 6o beam will be smaller than the342

1o beam). Observations that sample larger volumes are expected to have a larger instrument error343

as the Doppler shift is calculated from multiple scatteringtargets in the measurement volume. In344

addition these observations will be subject to more error from the observation operator as only345

information from the model level nearest to the centre of thesample volume is utilised, even when346

the sample volume spans several model layers. The increasederrors at the lowest height may be347

a result of larger representativity errors as the observations at the lower heights sample smaller348
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volumes than the model resolution. Our results support previous work in Simonin et al. (2014)349

and we find that the standard deviations are similar to those used operationally.350

Next we consider how the horizontal correlation length scale changes for a given elevation at351

different heights. We plot the calculated correlation functions for a range of heights in Figure 5.352

We see that the correlation length scale increases with height and ranges between 17km and 32km.353

For all heights the correlation length scale is longer than the operational thinning distance. An354

increase in height corresponds to an increase in both the distance of observation away from the355

radar and the volume of the measurement box and therefore thechange in correlation length scale356

could be attributed to either of these variables.357

In an attempt to determine the cause of the change in length scale we consider the horizontal358

correlations at the 2.5km height for the different elevations. At any given height the measurement359

volume of the observation is larger for lower elevations. Figure 6 shows that the correlation length360

scales are larger for the lower elevations. This suggests that it is the change in measurement361

volume that affects the correlation length scale. As in thiscase the observation operator does not362

account for the observation volume, it is likely that the correlated error is, in part, caused by the363

error in the observation operator.364

It is also possible to compare observations at the same range, observations will have the same365

measurement volume but will be at different heights in the atmosphere. In this case we find that366

for each elevation the correlation length scale is similar,e.g. at a range of 40km each elevation has367

a correlation length scale of≈ 23km (not shown). This suggests that the measurement volumeof368

the observation has the largest impact on the horizontal correlation length scale, with correlation369

length scale increasing with measurement volume.370
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2) ALONG-BEAM CORRELATIONS371

Next we calculate the along-beam observation errors using the data from Case 1. We begin by372

calculating the average observation error covariance and comparing these results with those from373

Météo-France (Wattrelot et al. 2012). We do not expect estimated statistics to be equal to those374

found by Météo-France as there are differences in the operational set up (e.g. observation and375

background error covariance statistics, observation processing, observation operators and thinning376

distances) and the region and time scale covered by the data.377

Our estimated standard deviation (Table 2) is larger than the standard deviation found by Météo-378

France which is 1.51ms−1. This is likely to be the result of the different operationalset up and379

observation processing. We plot our estimated correlationfunction along with the correlation380

found by Météo-France in Figure 7. We see that the correlation length scales are approximately381

5km longer than those found by Météo-France. Given the different operational setup used by382

Météo-France the similarities between the results are reassuring and suggest that we are obtaining383

a reasonable estimate of the observation error correlations.384

Next we calculate the error statistics along the beam for each elevation. In Figure 8 (square385

symbols) we plot the change in standard deviation with height for beam elevations 1o, 2o, 4o and386

6o. (For the horizontal correlations the height of the radar above sea level was accounted for; here387

height is calculated assuming that the radar is at sea level). For all elevations the observation error388

standard deviation generally increases with height, with the exception of the lowest levels. This is389

similar to the behaviour of the standard deviations for the horizontal case. Unlike the horizontal390

case the standard deviations for each elevation are not so similar. For any given height the standard391

deviations are larger for the lower elevations. At any givenheight the lower elevations will be392
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sampling larger volumes of the atmosphere. Observations sampling large volumes are subject to393

both larger instrument error and more error in the observation operator.394

We now consider how the correlation length scale changes fora given elevation at different395

heights. The estimated observation error correlations fora range of heights are plotted in Figure 9.396

The along-beam correlation length scales are shorter than the horizontal correlations, though the397

correlation length scale still increases with height for any given elevation. This highlights the398

relationship between the increase in correlation length scale with the increasing height, range and399

volume measurement of the observation.400

In Figure 10 we consider how the correlation function differs with measurement volume. We401

plot the along-beam correlation function for each elevations at a height of 2.5km. Here the height402

for each observation is the same, but the measurements are taken at different ranges with the403

lowest elevation at the furthest range. Figure 10 shows thatthe correlation length scale increases404

with range. Again this likely to be a result of the larger measurement volumes at far range.405

In Figure 11 we plot the correlation function for each elevation at a range of 40km. Here the406

volume of measurement for each observation is the same, but measurements from lower elevations407

are at lower heights. We see that the correlation length scale differs with elevation and decreases408

with height. We hypothesise that the change in correlation is a result of the different levels of the409

atmosphere sampled by different beam elevations. For the low elevation angles the beam gradient410

is shallow, hence different gates measure similar heights in the atmosphere; this results in larger411

error correlations. Larger elevation angles have larger beam gradients, different gates sample a412

wider range of heights in the atmosphere; this results in small observation error correlations.413
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3) SUMMARY414

For this case we have calculated observation error statistics using background residuals from415

June, July and August 2013, the analysis residuals are produced by running the UKV model using416

the January 2014 operational configuration. We find that:417

• DRW standard deviations increase with height (with the exception of the lowest heights).418

This is likely due to the increasing measurement volume withheight. The larger errors at the419

lowest height are likely to be a result of representativity errors.420

• The correlation length scale is larger than the thinning distance of 6km chosen to ensure that421

the assumption of uncorrelated errors is valid.422

• For both horizontal and along-beam correlations and for allelevations the observation error423

correlation length scale increases with height. We hypothesise that this is in part due to the424

larger errors in the observation operator and correlated superobservation errors at large range.425

This will be the subject of further investigation (see sections c and d).426

b. Case 2 - The effect of changing the assimilated backgrounderror statistics427

The diagnostic of Desroziers et al. (2005) uses the assumption that the observation and back-428

ground error covariance matrices used in the assimilation are exact. In the operational assimila-429

tion, Case 1, the observation errors are assumed uncorrelated and the background error variance430

and correlation length scale are believed to be too large. (The Met Office have an ongoing project431

to develop an improved background error covariance matrix;this is expected to reduce error vari-432

ances and correlation length scales compared to those used in Case 1 of this study). Results given433

in Waller et al. (2016) relating to the diagnostic suggest that under these circumstances the diag-434

nostic will underestimate the observation error correlation length scale. Therefore it is possible435
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that the true observation error statistics have longer correlation lengths than those calculated for436

Case 1.437

To provide information on how results in Case 1 may compare tothe true observation error438

statistics, we consider the sensitivity of the estimated observation error statistics to using different439

background statistics. Here we use previous operational background error statistics that have440

larger variances and larger length scales than the background error statistics used in the previous441

experiments.442

1) HORIZONTAL CORRELATIONS443

The average standard deviation given in Table 2 shows that the use of background error statistics444

with larger variance and longer length scales results in a lower estimate of the observation error445

standard deviation. The correlation function, plotted in Figure 3, shows clearly that using a dif-446

ferent background error covariance matrix has reduced the estimated observation error correlation447

length scale. These results agree with the theoretical results in Waller et al. (2016) (larger overes-448

timates of variance and correlation length scale in the assimilated background statistics results in449

more severe underestimates of observation error variance and correlation length scale) and suggest450

that the theoretical results developed under simplifying assumptions are still applicable in an op-451

erational setting. The theoretical work and results from Cases 1 and 2 suggest that if the variances452

and length scales in the assumed covariance matrixB were further reduced compared to Case 1,453

the estimated observation error correlation length scaleswould be larger.454

Figure 4 shows that the change in standard deviation with height for each elevation is similar to455

Case 1. However, the standard deviations for Case 2 are smaller than those from Case 1, a result456

of the larger background error variances used in the assimilation.457
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As with the average correlations, results relating to the correlations for each individual elevation458

and height have smaller correlation length scales than Case1 (not shown). However, we still find459

that the qualitative behaviour of the correlation length scales remains the same; that is, for any460

elevation the correlation length scale increases with height and for any given height the length461

scale decreases as elevation increases.462

2) ALONG-BEAM CORRELATIONS463

For the average along-beam correlation we find the standard deviation (Table 2) is reduced com-464

pared to Case 1. The correlations plotted in Figure 7 also have a shorter length scale (approxi-465

mately 10km) and are more comparable to those found by Météo-France.466

When considering the standard deviations for each elevation we again see that they are reduced467

(see diamonds Figure 8). Though the change in standard deviation with height is qualitatively468

similar to Case1. We find that the shape of the correlation function is similar, but the length scales469

are shorter than those calculated in Case 1 (not shown). The variation in the correlation length470

scale with elevation, height and range is, however, unaltered.471

3) SUMMARY472

For this case we have calculated observation error statistics using different background error473

statistics which have larger variances and correlation length scales. We find that:474

• Estimated observation error standard deviations (length scales) are smaller (shorter) when475

using the alternative background error statistics with larger standard deviations and longer476

correlation length scales. This result follows the theoretical work of Waller et al. (2016).477

• Changes in observation error standard deviation and correlation length scale with height re-478

main qualitatively similar to Case 1.479
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• Given that the background error standard deviations and correlation length scales in Case 1480

are believed to be too large and long, it is likely that the true observation error statistics have481

larger standard deviations and longer length scales than those calculated in Case 1.482

c. Case 3 - The effect of the superobservations483

The creation of the superobservations, discussed in section 3, results in an observation error484

that is only independent of the background error if the errors in the background states used in the485

calculation of each superobservation are of the same magnitude and are fully correlated (Berger486

and Forsythe 2004). This assumption is true at close range tothe radar, but it is possible that487

it is violated at far range resulting in increased observation error correlation length scales. To488

determine if the superobservations have this effect we consider the results from Case 3, where the489

assimilation uses thinned raw data. We return to using the ‘New’ background error statistics.490

1) HORIZONTAL CORRELATIONS491

Table 2 shows that the average standard deviation for this case is very similar to that of Case 1.492

However, the correlation length scale is slightly reduced compared to Case 1 (Figure 3). This493

suggests that the use of superobservations may introduce some observation error correlation, but494

does not appear to be the main source of correlations.495

Figure 4 shows that the standard deviations for individual elevations are similar to those found496

in Case 1. In general we find that the use of the thinned data results in slightly shorter observation497

error correlation length scales for observations that are at lower elevations and far range. For ex-498

ample, Figure 12 shows, for the 2o elevation, that the use of the superobservtions has little impact499

on the correlation length scale at short range. However, at far range the correlation length scale500

for Case 1 is approximately 5km longer than that for Case 3. This result supports our hypothe-501
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sis that the use of superobservations increases the observation error correlation length scale at far502

range. This is a result of the invalid assumption that the errors in the background states used in the503

superobservation creation are of the same magnitude and fully correlated.504

2) ALONG-BEAM CORRELATIONS505

From Table 2 we see that the average along-beam observation error standard deviation is similar506

to that found using the data from Case 1. Figure 7 shows that the correlation length scale is also507

slightly reduced.508

Figure 8 shows that the standard deviations for separate elevations are similar to Case 1. Figures509

10 and 11 show that using the raw observations results in a similar shaped correlation function510

to Case 1 but with a slightly reduced length scale. The exception is the highest elevation (closest511

range) where the length scales are slightly larger. These results suggest that using the superobser-512

vation has the opposite effect, namely the introduction of correlation at far range, but a reduction513

of correlation in the higher elevations.514

3) SUMMARY515

We have calculated observation error statistics using thinned raw observations. We find that:516

• Using thinned raw data has little impact on the estimated observation error standard devia-517

tions; these are similar to Case 1.518

• In general, horizontal correlation length scales at far range are reduced. This implies that519

using superobservations introduces correlated error at far range, possibly as a result of an520

invalid assumption in the superobservation creation.521

• In general along-beam correlation length scales are reduced for the lower elevations, however522

they slightly increased for the 6o beam.523
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d. Case 4 - The effect of an improved observation operator524

The previous cases have all used the simplified observation operator described in equation (6).525

The omission of the more complex terms introduces both additional error variance and correlation526

(Fabry 2010). It may not be possible to use a full observationoperator in operational assimilation,527

though the use of the sophisticated observation operator inequation (11) may be considered. In528

this case we use this new observation operator to see if including beam broadening and reflectiv-529

ity weighting in the observation operator has any effect on the observation error statistics. Here530

we use the thinned raw observations rather than the superobservations (the creation of the super-531

observation involves the observation operator, and ideally we wish to isolate the impact of the532

observation operator in the assimilation), hence the results here must be compared to Case 3.533

1) HORIZONTAL CORRELATIONS534

For the average horizontal error statistics both the standard deviation and correlation length scale535

have decreased compared to Case 3 (see Table 2 and Figure 3).536

For the separate elevations, as with all previous cases, we find that the standard deviations in-537

crease with height (Figure 4), though here the actual valuesfor the lower elevations are reduced538

compared to the standard deviations found in Case 3. The reduction is not seen in the higher539

elevations as observations are at near range where the effects of beam bending and broadening,540

accounted for in the new observation operator, are not so significant. In general we find that the541

correlations for every elevation are decreased when using the improved observation operator. In542

Figure 13 we show that using an improved observation operator reduces the correlation length543

scale slightly at near range and, at far range, by approximately 40%.544

When considering horizontal correlations we compare observations at the same range away545

from the radar that have the same measurement volume, and hence the new observation operator546
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should have the same improvement for each observation we compare. The reduction in error547

standard deviation and correlation shows that the inclusion of the beam broadening and reflectivity548

weighting has improved the observation operator. It also suggests that the use of an even more549

sophisticated observation operator may further reduce theobservation error correlation.550

2) ALONG-BEAM CORRELATIONS551

In this case Table 2 and Figure 8 show that the error standard deviation is reduced compared552

to Case 3 suggesting that the more sophisticated observation operator is indeed an improved map553

from background to observation space. Both Figure 7 and the correlations for separate elevations554

suggest that introducing the new observation operator slightly increases the correlation length555

scale. We hypothesise that this is a result of the inclusion of the beam broadening. When using556

the old observation operator observations at different ranges at any elevation were unlikely to557

consider data from the same model levels. With the introduction of the beam broadening different558

observations will now use information from the same model levels and this is likely to be the cause559

of the increased correlation length scales.560

3) SUMMARY561

For this case we have calculated observation error statistics using thinned raw observations and562

an improved observation operator. We find that:563

• Using the new observation operator reduces the error standard deviations for the lower ele-564

vations. Less impact is seen in the higher elevations where the effects of beam bending and565

broadening (accounted for in the new observation operator)are not so significant.566
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• For the horizontal correlations using the new observation operator reduces the estimated ob-567

servation correlation length scale. This suggests that error in the observation operator may be568

in part responsible for the large correlation length scales.569

• Using the new observation operator increases the along-beam correlation. This is likely to be570

the result of close observation residuals sharing increased amounts of background data.571

6. Conclusions572

With the development of convection-permitting NWP the assimilation of high resolution obser-573

vations is becoming increasingly important. Currently large quantities of high resolution data are574

discarded to ensure the assumption of uncorrelated observation errors is reasonable. The assimila-575

tion of high resolution observations will require less thinning of the observational data and, hence,576

the inclusion of correlated observation error statistics in the assimilation system. Observation er-577

rors can be attributed to a number of different sources, someof which may be state dependent578

and dependent on the model resolution. Calculation of observation error statistics is difficult as579

they cannot be measured directly. Recently the diagnostic of Desroziers et al. (2005) has been580

used to estimate inter-channel observation error correlations for a number of different observation581

types. When inexact background and observation errors are used in the assimilation cost function,582

theory (Waller et al. 2016) shows that the results arising from the diagnostic are uncertain and583

should be interpreted as indicative, rather than necessarily quantitatively perfect. However, results584

from the diagnostics can still provide useful information on the sources of error correlation and585

how it may be reduced. Furthermore, idealised studies usingcorrelated observation error matrices586

indicate that much of the benefit in assimilation accuracy can be obtained from using approximate587

correlation structures (Stewart et al. 2013; Healy and White 2005). The aim of this manuscript is588

to use the diagnostic to estimate spatially correlated errors for Doppler radar radial wind (DRW)589
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observations that are assimilated into the Met Office UKV model. Errors for DRWs may be corre-590

lated horizontally, vertically or along the path of the radar beam. In this work we consider both the591

horizontal and along-beam error statistics. We also considered if results from the Hollingsworth592

and Lönnberg (1986) diagnostic could provide further information. We note that, for the data used593

in this study, there was no clear way to partition the resultsfrom the Hollingsworth and Lönnberg594

(1986) diagnostic into the observation and background error portions. Any observation error cor-595

relations estimated from this data using the Hollingsworthand Lönnberg (1986) method would596

have been highly dependent on the subjective choice of correlation function fitted.597

Initially error statistics were calculated for observations assimilated into the UKV model oper-598

ational in January 2014. This provided information on the general structure of the observation599

errors and how they vary throughout the atmosphere. Error statistics were also calculated using600

data from an assimilation run using alternative backgrounderror statistics. This provided infor-601

mation on how sensitivity of the results to the specificationof the background error statistics. The602

diagnostic was then applied to data from a further two assimilation runs. These evaluated the im-603

pact that the use of superobservations and errors in the observation operator have on the estimated604

observation error statistics.605

Results from all four cases showed similar behaviour for theestimated statistics. We are able to606

conclude, that most DRW error standard deviations, horizontal and along-beam correlation length607

scales increase with height, as a function of the increase inmeasurement volume. Thus at least608

part of the correlated errors are likely to be related to the uncertainty in the observation opera-609

tor. The exceptions are the standard deviations at the lowest heights. Observations at the lowest610

heights have the smallest measurement volumes, smaller than the model grid spacing, and hence611

representativity errors may well account for the larger standard deviations at lower heights. The612

results presented here are for summer season observations;however results considered for winter613
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season observations show that the qualitative behaviour ofthe estimated DRW error statistics is614

similar to the summer case.615

Results showed that the estimated standard deviations are similar to those used operationally.616

However for the majority of cases, with exception of the 6o beam, the correlation length scales617

are much larger than those found in Simonin et al. (2012) and the operational thinning distance of618

6km. Despite the differences in operational system, our estimated average along-beam correlations619

are similar to those calculated by Météo-France (Wattrelot et al. 2012). Furthermore, observation620

error statistics estimated when using an alternative background error covariance matrix in the621

assimilation and the results from Waller et al. (2016) implythat the observation error correlation622

length scale is underestimated. This suggests that the errors are correlated to a degree that it should623

be accounted for in the assimilation.624

In an attempt to understand the source of the error correlations, the effect of using superobser-625

vations and an improved observation operator are considered. The use of the superobservations626

does not affect the error standard deviations. However, results suggest that the use of superobser-627

vations introduces correlated error at far range, possiblyas a result of an invalid assumption in the628

superobservation creation. The use of an improved observation operator reduces the error standard629

deviations, particularly at low elevations and at far rangewhere observations have large measure-630

ment volumes. This is expected since the new observation operator takes into account the beam631

broadening and bending, both of which affect the beam most atfar range. The improvement in632

the low elevations is related to the inclusion in the observation operator of information from more633

model levels. These are denser in the lower atmosphere wherethe low elevations provide observa-634

tions. The use of the new observation operator results in an increase of the along-beam correlation635

length scale. We hypothesise that this is a result of nearby observation residuals now sharing infor-636

mation from the same model levels. However, the horizontal correlations were slightly reduced.637
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This suggests not only that some of the horizontal correlations previously seen were a result of638

omissions in the observation operator, but also that the horizontal correlation length scale may be639

further reduced with the use of an even more complex observation operator.640

These results provide a better understanding of DRW observation error statistics and the sources641

that contribute to them. We have shown that these observation errors exhibit large spatial cor-642

relations that are much larger that the operational thinning distance. This implies that, if high643

resolution DRW observations are to be assimilated correctly, the inclusion of correlated observa-644

tion error statistics in the assimilation system is required.645
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TABLE 1. Summary of experimental design for different cases

Case B Superobservations Observation Operator

1 New Yes Old
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TABLE 2. Horizontal and along-beam standard deviations calculated for Cases 1-4 using all available data up

to a height of 5km.

819

820

Case Horizontal standard Along-Beam standard

deviation (ms−1) deviation (ms−1)

1 1.97 1.95

2 1.57 1.59

3 1.96 1.99

4 1.82 1.89
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FIG. 1. A typical radar scan where each box is the location of a superobservation. The blue cells show a

group of observations, all at the same height, that would be compared to calculate horizontal correlations. The

red cells show observations that would be compared to calculate the along-beam correlations.
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FIG. 2. A typical radar beam at elevations 1o (black), 2o (blue), 4o (red) and 6o (cyan).
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FIG. 3. All elevation horizontal observation error correlations for Case 1 (Control, squares), Case 2 (Alter-

nate background error statistics, diamonds), Case 3 (Thinned raw data, triangles) and Case 4 (New observation

operator, circles) . Error correlations are deemed to be insignificant below the horizontal line at 0.2.
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FIG. 4. Horizontal observation error standard deviation for elevations 1o (black), 2o (blue), 4o (red) and, 6o

(cyan) for Case 1 (Control, squares), Case 2 (Alternate background error statistics, diamonds), Case 3 (Thinned

raw data, triangles) and Case 4 (New observation operator, circles).
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FIG. 5. Horizontal observation correlations for elevation 2o at height 1.1km (dot), 2.7km (dash), 3.5km (solid)

and 4.3km (dot-dash) for Case 1 (control). Error correlations are deemed to be insignificant below the horizontal

line at 0.2.
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FIG. 6. Horizontal correlations at height 2.5km for elevations1o (black), 2o (blue), 4o (red) and, 6o (cyan) for

Case 1 (Control). Error correlations are deemed to be insignificant below the horizontal line at 0.2.
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FIG. 7. All elevation along-beam observation error correlation for Cases 1 (Control, squares), 2 (Alternate

background error statistics, diamonds), 3 (Thinned raw data, triangles) and 4 (New observation operator, circles)

and those found previously by Météo-France (crosses). Error correlations are deemed to be insignificant below

the horizontal line at 0.2.
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FIG. 8. Along-beam observation error standard deviation for elevations 1o (black), 2o (blue), 4o (red) and, 6o

(cyan) for Case 1 (Control, squares), Case 2 (Alternate background error statistics, diamonds), Case 3 (Thinned

raw data, triangles) and Case 4 (New observation operator, circles).
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FIG. 9. Along-Beam observation correlations for elevation 2o at height 1.1km (dotted line), 3.0km (dashed

line) and 3.5km (solid line) for Case 1 (Control).
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FIG. 10. Correlations along the beam at height 2.5km for elevations and approximate ranges 1o
≈ 94km

(black), 2o ≈ 64km (blue), 4o ≈ 35km (red) and , 6o ≈ 22km (cyan) for superobbed data (squares/solid lines) and

thinned raw data (triangles/dashed lines). Error correlations are deemed to be insignificant below the horizontal

line at 0.2.
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FIG. 11. Correlations along the beam at range 40km for elevations and approximate heights 1o
≈ 0.8km

(black), 2o ≈ 1.5km (blue), 4o ≈ 3.0km (red) and , 6o ≈ 4.3km (cyan) for superobbed data (solid lines) and

thinned raw data (dashed lines). Error correlations are deemed to be insignificant below the horizontal line at

0.2.
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FIG. 12. Horizontal observation correlations for elevation 2o at a range of 24km (solid) and 90km (dash)

for Case 1 (control, squares) and Case 3 (Thinned raw data, triangles). Error correlations are deemed to be

insignificant below the horizontal line at 0.2.
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FIG. 13. Horizontal observation correlations for elevation 1o at a range of 18km (solid) and 74km (dash)

for Case 3 (Thinned raw data, triangles) and Case 4 (New observation operator, circles). Error correlations are

deemed to be insignificant below the horizontal line at 0.2.
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