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With the development of convection-permitting numericaather predic-
tion the efficient use of high-resolution observations itadassimilation is
becoming increasingly important. The operational assitiih of these obser-
vations, such as Doppler radar radial winds (DRWS), is nomrmoon, though
to avoid violating the assumption of uncorrelated obséowaerrors the ob-
servation density is severely reduced. To improve the dtyarftobservations
used and the impact that they have on the forecast requeasttibduction of
the full, potentially correlated, error statistics. Inghwork, observation error
statistics are calculated for the DRWs that are assimiliatedhe Met Office
high-resolution UK model using a diagnostic that makes fiseatistical aver-
ages of observation-minus-background and observationusranalysis resid-
uals. This is the first in-depth study using the diagnostiestimate both hor-
izontal and along-beam observation error statistics. Téve results obtained
show that the DRW error standard deviations are similar ts¢hused oper-
ationally and increase as the observation height increaSagprisingly the
estimated observation error correlation length-scaledarger than the op-
erational thinning distance. They are dependent both ohefght of the ob-
servation and on the distance of the observation away frennatar. Further
tests show that the long correlations cannot be attribudetie¢ background
error covariance matrix used in the assimilation, althotigdy are, in part, a
result of using superobservations and a simplified observaiperator. The
inclusion of correlated error statistics in the assimdatallows less thinning

of the data and hence better use of the high-resolution wéisens.
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1. Introduction

With the recent development of convection permitting nuoadrweather prediction (NWP),
such as the Met Office UK variable resolution (UKV) model (hes al. 2008; Tang et al. 2013),
the assimilation of observations that have high frequeratih n space and time has become in-
creasingly important (Park and Zupanski 2003; Dance 2004;e$ al. 2014; Ballard et al. 2016;
Clark et al. 2015). The potential for assimilating one suehas observations, the Doppler radar
radial winds (DRWSs) (Lindskog et al. 2004; Sun 2005), haseelored by a number of opera-
tional centers e.g., Lindskog et al. (2001); Salonen e8l07); Rihan et al. (2008); Salonen et al.
(2009). The assimilation of the DRWSs has been shown to peosigignificant positive impact
on the forecast (Xiao et al. 2005; Lindskog et al. 2004; Marmand Faccani 2009; Simonin
etal. 2014; Xue et al. 2013, 2014) and as a result they aremdwuded in operational assimilation
(Xiao et al. 2008; Simonin et al. 2014).

Currently at the Met Office the error statistics associatéti WRWs are assumed uncorrelated
(Simonin et al. 2014). To reduce the large quantity of dathemsure the assumption of uncorre-
lated errors is reasonable the DRW observations are ‘sbperd and thinned before assimilation
(Simonin et al. 2014). These processes result in a large auoflobservations being discarded.
To improve convection-permitting NWP it is necessary to mbg&tter use of high frequency DRW
observations. This requires less thinning of the obseyaatidata and, hence, the inclusion of
correlated observation error statistics in the assinatasiystem is required (Liu and Rabier 2003).
Currently the full observation error statistics assodatgth the DRWs are unknown. Therefore,
the aim of this manuscript is both to estimate and to providederstanding of the correlated
observation errors associated with DRW.

In general, the errors associated with the observationbeaitributed to four main sources:
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Instrument error.

Error introduced in the observation operator.

Errors of representativity - errors that arise where theeolrtions can resolve spatial scales

that the model cannot.

Pre-processing errors - errors introduced by pre-proogssi

For DRWs the instrument errors are independent and unedeckl Observation error correlations,
which may be state dependent and dependent on the modeltrespbre likely to arise from the
other sources of error (Janjic and Cohn 2006; Waller 2013|énat al. 2014a,b) (see Section 5
for a more detailed description). The inclusion of correthbbservation errors in the assimilation
has been shown to lead to a more accurate analysis, theiotlfamore observation information
content and improvements in the forecast skill score (Stestal. 2013; Stewart 2010; Healy and
White 2005; Stewart et al. 2008; Weston et al. 2014). Sigmfibenefit may even be provided by
using only a crude approximation to the observation erreagance matrix (Stewart et al. 2013,
Healy and White 2005).

A number of methods exist for estimating the observatioarezovariances e.g. Hollingsworth
and Lonnberg (1986); Dee and Da Silva (1999). Xu et al. (2@d&sented an innovation method
based on that of Hollingsworth and Lonnberg (1986) forreating DRW error and background
wind error covariances. Simonin et al. (2012) previouslicakated observation error statistics
for DRWs using the method of Xu et al. (2007). The work of Simmoet al. (2012) suggests
that the observation error standard deviation increaststive height of the observation and that
the observations errors have a correlation length scale3im. However, the Hollingsworth and
Lonnberg (1986) method was initially designed to provigigreates of the background error statis-

tics under the assumption of uncorrelated observationgriiche method can be used to estimate
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both correlated background and correlated observatiarserhowever, determining how to split

the estimated quantity into observation and backgrourat®rs non-trivial (Bormann and Bauer

2010). Indeed the result is subjective. To overcome thfgcdify most recent attempts to diagnose
the observation error correlations have made use of thend&g proposed in Desroziers et al.

(2005). Initially designed as a consistency check, therthatic provides an estimate of the obser-
vation error covariance matrix using the statistical ageraf observation-minus-background and
observation-minus-analysis residuals. However, in théaelies on the use of exact background
and observation error statistics in the assimilation. eghis limitation, the diagnostic has been
used to estimate inter-channel observation error stegi¢Btewart et al. 2009, 2014; Bormann and
Bauer 2010; Bormann et al. 2010; Weston et al. 2014) even wieeerror statistics used in the

assimilation are not exact. The method of Desroziers eR@DY) has also been used by Wattrelot
et al. (2012) to calculate observation error statisticslierDoppler radial winds assimilated into

the Météo-France system. Their results, published asnéemnce paper, show a similar error
standard deviation to those found in Simonin et al. (201@) shiggest that the observation errors
have a larger correlation length scale of approximatelyriOkwe cannot determine the length

scale precisely due the data thinning they have applied).

Here we present the first in-depth study using the diagnosiiesroziers et al. (2005) to calcu-
late observation error statistics for the DRWs assimilatéal the Met Office high resolution UK
(UKV) model. Due to the limitations of the diagnostic we cioles the sensitivity of the estimated
observation error statistics to the choice of assimilatackground error statistics. To aid our
understanding of the source of observation error we alsgidenthe sensitivity of the estimated
observation error statistics to the use of superobsemsitémd the use of a more sophisticated
observation operator. We find that, for summer season oasens, the DRW error standard devi-

ations are similar to those used operationally, thoughrsingly, the observation error correlation
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length scales are longer than the operational thinningucg. Due to the uncertainty in the results
arising from the diagnostic the estimated correlation teagales should be interpreted as indica-
tive, rather than necessarily quantitatively perfect. ldoer, results from the diagnostics can still
provide useful information as further tests show that thregloorrelations cannot be attributed to
the background error covariance matrix used in the asdiimilaalthough they may, in part, be a
result of using superobservations and a simplified observaiperator.
This paper is organised as follows. In Section 2 we give argegm of the diagnostic of

Desroziers et al. (2005). We describe the DRW observatiaodsiaeir model representations in
Section 3 and in Section 4 we describe the experimental dedig Section 5 we consider the

estimated observation error statistics from four différeases. Finally we conclude in Section 6.

2. The diagnostic of Desroziers et al. (2005)

Data assimilation techniques combine observatjoa®N’ with a model prediction of the state,
the background? ¢ RN", often determined by a previous forecast. HEeandN™ denote the
dimensions of the observation and model state vectors ctgely. In the assimilation the obser-
vations and background are weighted by their respective®rusing the background and obser-
vation error covariance matric&e RN"*N" andR € RN"*N®  to provide a best estimate of the
statex® € RN", known as the analysis. To calculate the analysis the baakgrmust be projected
into the observation space using the possibly non-lineaesfation operator# : RN” — RN™,
After an assimilation step the analysis is evolved forwartime to provide a background for the
next assimilation.

Desroziers et al. (2005) assume that the analysis is detednising,

x® =X+ K (y — 2(xP)), 1)
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whereK = BHT(HBHT + R)~! is the gain matrix andH is the linearised observation operator,
linearised about the current state.

The diagnostic described in Desroziers et al. (2005) esisthe observation error covariance
matrix by using the observation-minus-background and masien-minus-analysis residuals. The

background residual, also known as the innovation,

D=y— (X0, 2)

is the difference between the observatjoand the mapping of the forecast vecidt, into obser-

vation space by the observation operat6t. The analysis residual,

d2 = y—2(x®), 3)

~ y— . (xP) —HKdY. (4)

is similar to the background residuals, but with the for¢éwastor replaced by the analysis vector
x2. By taking the statistical expectation of the product of &malysis and background residuals

results in

E[d3d5T] ~ R, (5)

assuming that the forecast and observation errors are ahatwd. Equation (5) is exact if the
observation and background error statistics used in aksgion are exact. The theoretical work of
Waller et al. (2016) provides insight on how results from dhi@gnostic can be interpreted when
the incorrect background and observation error statistiesused in the assimilation. Due to the
statistical nature of the diagnostic the resulting matrik mot be symmetric. Therefore, if the

matrix is to be used it must be symmetrised.
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3. Doppler Radar radial wind observations and their model rgporesentation

a. The Met Office UKV model and 3D variational assimilationeste

The operational UKV model is a variable resolution convatpermitting model that covers the
UK (Lean et al. 2008; Tang et al. 2013). The model has 70 \&@itgvels. The horizontal grid has
a 1.5km fixed resolution on the interior surrounded by a \de@esolution grid which increases
smoothly in size to 4km. The variable resolution grid alldtws downscaled boundary conditions,
taken from the global model, to spin up before reaching thedfixterior grid. The initial condi-
tions are provided from a 3D variational assimilation sckeimt uses an incremental approach
(Courtier et al. 1994) and is a limited-area version of the R#fice variational data assimilation
scheme (Lorenc et al. 2000; Rawlins et al. 2007). The assilmi uses an adaptive mesh, that
allows the accurate representation of boundary layer stres (Piccolo and Cullen 2011, 2012) .

The background error covariance statistics used in thdystwe described in Section 4.

b. Doppler radar radial wind data

Doppler radar is an active remote sensing instrument treatighes observations of radial wind
by measuring the phase shift between a transmitted eleagnatic wave pulse and its backscatter
echo. The radial velocity of a scattering target is themested from the ‘Doppler shift’ (Doviak
and Zrnic 1993). While it is possible to derive clear air nadeturns e.g. Rennie et al. (2010,
2011), in this work we consider only observations where tatsring targets are assumed to be
raindrops. The DRW data used at the Met Office are acquiretyus8 C-Band weather radars.
Each radar completes a series of scans out to a range of 108y ® minutes at different el-
evation angles (typically® 2°, 4°, 6° and @) with a 1° x 600m resolution volume. Before

being assimilated the data is processed and a quality dgrtioedure is applied. This ensures

10
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that no observations that disagree with neighbouring olasiens or have a large departure from
the background are assimilated. The observations errerassumed Gaussian and uncorrelated
in space or time with standard deviations that range fro8m$ ! for observations close to the
radar to 28ms-1 for observations furthest away from the radar. Furtheritetd the operational

assimilation of DRWs at the Met Office can be found in Simoriale(2014).

1) THE CURRENT OPERATIONAL OBSERVATION OPERATOR

To compare the background with the observations it is necgse map the model state into
observation space. The current operational observatieratqr, following Lindskog et al. (2000),
first interpolates the NWP model horizontal and vertical dvaomponentsi, v andw to the ob-
servation location. The horizontal wind is then projectedhe direction of the radar beam and

projected onto the slant of the radar beam using,
Vi = (using+ vcosp) cog 0) +wsin(8), (6)

where@ is the radar azimuth angle clockwise from due north &nid the beam center elevation
angle. The elevation angk® = € + a includes a correction terng, that must be added to the

measurement elevation angleThe correction term

rcoqe)

a =tan 1(—
<rS|n(£)+ae+ hy

); (7)

whereh;, is the height of the radar above sea levels the range of the observation agagis
the effective earth radius (1.3 times the actual earth gaguired to take account of the earth’s
curvature and the radar beam refraction (Doviak and Zrni@3)9 The correction term is not
exact. The value o is only valid in the international standard atmosphere.s®iinple oper-
ational observation operator does not account for the beaawening or reflectivity weighting.

Additionally, only the horizontal wind components are ugathin the minimisation, the vertical

11
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component of wind is ignored, which for small elevation asgthould be acceptable. In addition
no information about hydrometeor fall speed is availabléhtassimilation system.

This operational observation operator is used in the mgjofiresults discussed in this article.

2) AN IMPROVED OBSERVATION OPERATOR

An improved observation operator has been trialled in therajonal system; it accounts for
some broadening of the beam (vertical only), as well as actefity weighting. Both of these
processes are often ignored in operational DRW assimilgii@e et al. 2010). This improved
observation operator is similar to the operator describediand Wei (2013), although it differs
in some important details. The beam broadening matlg), takes the form,

6

2
93d B

Whp(6z) = exp—2In(2) ) 8)

with 8, = 6 — 6, wheref is the beam centre elevation as in equation §§)s the elevation within
the beam andsgg is the half power bandwidth (angular range of the antenni@pain which at
least half of the maximum power is still emitted (Toomay arahHen 2004)). For the reflectivity

weighting, a climatological profile with heigltis used,
Wit (h) = Zh-+c, ©)

where,

—6dB: h < Brightban
Z= 4 : (10)

—2dB: h > Brightband,

cis a constant scaling factd@rightband is the lower limit of the Bright band an8rightbang, is
the upper limit of the Bright band. The height of the Brighhldga layer of melting ice resulting
in intense reflectivity return (Kitchen 1997)) is derivedrr the forecast model temperature field,

and has a thickness set to 250m. The reflectivity profile ases by 10dB from the bottom to

12
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the centre of the bright band and then decreases linearlg. bElam broadening and reflectivity
weighting are combined to give a single weight,= WetWy, and this weighting is included in
the new observation operator,

Vr = z W (using+ vcosp) cog0). (11)

M I‘el;\eam

The summation in 11 is made over the model levéld § .. ) present within the beam thick-

ness. In this formulatiory W is equal to one over thilLg . . The implementation of this new

observation operator has been shown to reduce the erroeibabkground residuals. This new
observation operator may be further improved (Fabry 20th@gh the operational use of a more
complex observation operator may not be feasible. Whilsgtemplifications and omissions in
the observation operator exist, they will introduce adstiéil error when the model background
is projected into observation space. These errors may veetidorelated and should ideally be

accounted for in the observation error covariance matrix.

3) SUPEROBSERVATION CREATION

To reduce the density of the observations, multiple obsienva are made into a single superob-
servation. Only observations that have passed the qualitiral procedure described in Simonin
et al. (2014) are combined to make the superobservationsreTdre a number of methods for
calculating the superobservations. The Doppler radarrsbgervations used at the Met Office
are calculated using innovations following the method doBen et al. (2008). The radar scan is

divided into @ by 3kmcells and one observation is created per cell using theviirlig procedure:
1. Project background winds into observation space usingtemn (6);
2. Calculate the background residual at each observataatitn;

3. Average all background residuals that fall within a sopservation cell;

13
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4. Add the average residual to the simulated backgroun@lradind at the center of the super-

observation cell to give a value for the superobservation.

The calculated superobservations are subject to a secatitqrontrol procedure (Simonin et al.
2014). They are then further thinned to 6km, where is assullm&idthe observations will have

uncorrelated error, using Poisson disk sampling (Bondarem al. 2007).

4) SUPEROBSERVATION ERROR

The calculated superobservations have an associatecbbsperation errorg=°. The literature
shows that the superobbing procedure reduces the undededartion of the error; however, the
correlated error is not reduced (Berger and Forsythe 20Béjger and Forsythe (2004) showed
that the covariance of the superobservation error will beivedent to the averaged observation
error covariance matrix for the raw observations (i.e. tngathe superobservations using the

background does not introduce any background errorapipif:

1. The observation and background errors are independent;

2. The background state errors are fully correlated withenguperobservation cell;

3. The background state errors in a superobservation ¢éldae the same magnitude and

4. The background residuals are equally weighted withingemabservation cell.

However, for DRWs it is not clear that all the assumptiond falld. In particular assumptions 1
and 2 are valid at close range to the radar where the supevaltisa cells are small. However, at
far range the superobservation cells are large and the gdiguns are likely to be invalid. There-
fore, it is possible that at large ranges there is a smallenite of the background errors on the

error associated with the superobservation.

14
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5) ERROR SOURCES FO®OPPLER RADAR RADIAL WINDS

In the introduction the four main sources of observatioweare introduced. The observation
error will not only be a function of the observation type, blgo of the observation pre-processing,
observation operator and model resolution. Here we listesofithe observation error sources

specific to DRWs:

e Errors introduced by clutter removal.

Error introduced when creating the superobservations.

Misrepresentation of radar beam bending.

Misrepresentation of beam broadening.

Approximation of volume measurement as point measurement.

Discrete approximation of continuous mapping from modeilieervation space .

Errors of representativity.

Instrument error.

There may be additional unknown sources of error.

It has been shown that some of these errors, such as thenmesitierror or those caused by
the misrepresentation of radar beam bending, are small X (2013). However there are
other errors, such as the error introduced when creatinguiberobservations, misrepresentation
of beam broadening and the approximation of volume measmeas a point measurement that
we hypothesise will have a more significant contributiorhdbservation error statistics. Indeed,

Fabry and Kilambi (2011), suggest that if the antenna beaithvand reflectivity weighting are

15
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ignored in the observation operator then the observatimrewill have long correlation length

scales greater than 10 km.

4. Experimental Design

To calculate estimates of the observation error covaremaerequire background and analysis
residuals. We use archived observations and backgrourdpdatiuced by the operational Met
Office system from June, July and August 2013. To generatarib/ses we run four different
assimilation configurations, detailed below. Using thesekigrounds, analyses and observations
we are able to determine the backgroudf], and analysisd3, residuals. Observations in this
study come from 9 of the 18 radars in the network. Althougheoketion errors are likely to be
state dependent (Waller et al. 2014b), we have used 3 morthh wf data to ensure that we
have enough data for the statistical sampling error to bdlsiva have restricted ourselves to the
summer season as we expect mainly convective rainfall (li¢aatl 2004; Hawcroft et al. 2012),
which is likely to result in state dependent observationmrwhich are all similar.

Case 1 uses residuals produced by running the UKV under theada 2014 operational con-
figuration. This uses superobservations (calculated agitled in Section 3) thinned to 6km and
the observation operator given in equation (6). The baakgicerror covariance (‘New’) has been
derived using the Covariances and VAR Transforms (CVT)vearfé which is the new Met Office
covariance calibration and diagnostic tool that analyssaing data representing forecast errors
(either using the so-called NMC lagged forecast techniquensemble perturbations). Here a
NMC method has been applied to (T+6 hour)-(T+3 hour) foredd&erences to diagnose a vari-
ance and correlation length scale for each vertical mode.

Case 2 considers the effect of using the old (used prior teialgn2013) operational UKV

background error covariance matrix (‘Old’). These statstvere generated from (T+24 hour)-

16
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(T+12 hour) forecast differences and, contrary to the CVprapch, the correlation functions
used specific fixed length scales (Ballard et al. 2016). Thtkground error covariance matrix
has larger variances than the matrix used in Case 1 and thedatmns length scales are slightly
longer. A comparison between Cases 1 and 2 shows the impalee afssimilated background
error covariance matrix on the estimated observation etatistics.

Case 3 uses the same background error covariance as Casedetbuaw observations (thinned
to 6km) rather than using the superobservations. A compafietween Cases 1 and 3 shows the
impact of the superobservations on the estimated obsernvetror statistics.

Case 4 uses the same design as Case 3, the assimilation digawations, but the operational
observation operator is replaced with the observationaipedescribed in equation (11). A com-
parison between Cases 3 and 4 shows the impact of the ohearegierator on the estimated
observation error statistics.

We summarise the different cases in Table 1. For each casav#ilable data for each radar
scan is stored in 3D arrays of sikE x N" x N whereNS is the number of scans containing data,
N" = 16 is the number of ranges amf = 120 is the number of azimuths. Figure 1 shows a
radar scan with the typical superobservation cells. Tha taalso separated by elevation, with
data available at elevation angle§ 2°, 4° and €. (We do not estimate the observation error
statistics for the 9beam due the lack of available data). The position of thesemhtions at
these elevations are shown in Figure 2, we note that the celtheme for each given elevation
is used throughout the figures in this manuscript. It is inguorto note that these observations
are only available in areas where there is precipitation iangl possible that only part of the
scan contains observations. Furthermore, the use of ther@ogervations, thinning and quality
control results in a limited amount of data in each scan. Theunt of data available differs for

each elevation, with data for the lower elevations avadahlt to far range (a result of the quality
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control procedures), and for higher elevations availalvily dor near range. This lack of data

means that standard deviations and correlations are nitdlalesfor every range at each elevation.
Results are only plotted for standard deviations if 1500 orersamples were available and for
correlations if the number of samples was greater than 50@& rinimum number of samples

is chosen to ensure that sampling error does not contanmo@testimates of the error statistics.
Observations may be correlated along the beam, horizgrdailertically. Here we consider both

horizontal correlations and those along the beam.

Horizontal correlations consider how observations at &mjikeight are correlated. The blue
cells in Figure 1 show a set of observations that would be @vetpfor a given height. For each
radar scan, data is sorted into 200m height bins. Here tlghhtikes into account the height of
the radar above sea level. All observations that fall intawipular height bin are considered. The
data is binned by separation distance for each pair of oasens and from this the correlations
are calculated.

When calculating along-beam correlations we consider hioseovations in the same beam are
correlated to each other, where correlations are exprefsseitie separation distance along the
beam. The red cells in Figure 1 show one set of observatiatswbuld be considered in this
case. Here the samples used for calculating equation ($leea to be the individual scans along
the azimuth. Samples are taken on all dates, from all ragat$ram each azimuth. When calcu-
lating results along the beam we do not expect to obtain symore®rrelation functions. When
considering the along-beam correlations at any given ralnggositive separation distance will
result in a different correlation to the negative separatistance. For example, say we are con-
sidering the correlations for the observation located &n3@ange, the correlation with the 18km
observation (-12km separation) will have a smaller measard volume whereas the observation

at 42km (+12km separation) will have a larger measuremelnive. This is an important factor
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to consider when analysing the along-beam correlationltsesiVhen plotting the along beam
correlation functions, it can appear as though the plotasimplete for data at low elevations, far
range and high height (e.g. Figures 10 and 11). This is atrestlie range limit of the radar. For
example, as depicted in Figure 2, at elevati8add height of 2.5km, the range of the observation
is 94km. There are no observations available beyond a rag@&m from the radar, so therefore
we are unable to calculate the correlation beyond a separdistance of +6km (i.e. 6km further
from the radar).

For both horizontal and along-beam correlations it is gaegb calculate an average correlation
function using all available data that is homogeneous ialaVvations, heights and ranges. These
average correlation functions provide an overall impmssif how the calculated covariance dif-
fers between cases. The average along-beam correlatictidogs are also comparable to those
calculated in Wattrelot et al. (2012). The disadvantagénisfinethod is that different elevations
represent different heights in the atmosphere, and alseihéeraction with different model levels.
Therefore it is difficult to distinguish how the error commébns arise, whether they are a result of
errors in the observation operator, or arise from the migsgntation of scales. In an attempt to
understand exactly what is contributing to the error we akoulate the correlations for different

elevations separately as this allows us to better undetskemnorigin and behaviour of the errors.

5. Results

a. Case 1 - Results from the operational system

We begin by calculating the observation error covarianoesfise 1. Here data was acquired

using the January 2014 operational system. This uses saig@mx@tions (calculated as described in
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Section 3) thinned to 6km, the observation operator givagunation (6) and the ‘new’ background

error covariance statistics.

1) HORIZONTAL CORRELATIONS

We first calculate the average horizontal correlation fiomctsing all data from all elevations.
We show the standard deviation for this case in Table 2 anddfrelation in Figure 3. (Note that
the table and figure contain results for all cases; in thit@eeve discuss the results for Case 1
only). The standard deviation falls within the range of @penal DRW standard deviations. We
see that the estimated correlation length scale (defineck tthd distance at which correlation
becomes insignificank( 0.2) (Liu and Rabier 2002)) is approximately 24km. This is miasger
than the distance of 1 - 3km calculated in Simonin et al. (20%#hg the method of Xu et al. (2007)
and the operational thinning distance of 6km. This indisadkat the assumption of uncorrelated
errors is incorrect.

We now consider the horizontal correlations for differeatgints and each elevation separately.
In Figure 4 we plot the standard deviation with height forteatevation. We see that the standard
deviations increase with height with the exception of thedst levels, and are similar for each
elevation. For each elevation the volume of atmosphere lgahtyy the observation increases with
height. (Note that at any given height the volume sampledhbygt beam will be smaller than the
1° beam). Observations that sample larger volumes are experteve a larger instrument error
as the Doppler shift is calculated from multiple scatteriagets in the measurement volume. In
addition these observations will be subject to more erromfthe observation operator as only
information from the model level nearest to the centre ofsd@ple volume is utilised, even when
the sample volume spans several model layers. The increased at the lowest height may be

a result of larger representativity errors as the obsesuatiat the lower heights sample smaller
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volumes than the model resolution. Our results supportipusvwork in Simonin et al. (2014)
and we find that the standard deviations are similar to thesd operationally.

Next we consider how the horizontal correlation length sadlanges for a given elevation at
different heights. We plot the calculated correlation fiimas for a range of heights in Figure 5.
We see that the correlation length scale increases witlhhaigl ranges between 17km and 32km.
For all heights the correlation length scale is longer thandperational thinning distance. An
increase in height corresponds to an increase in both thendis of observation away from the
radar and the volume of the measurement box and therefohtrege in correlation length scale
could be attributed to either of these variables.

In an attempt to determine the cause of the change in lengik 8@ consider the horizontal
correlations at the 2.5km height for the different elevasioAt any given height the measurement
volume of the observation is larger for lower elevationgufe 6 shows that the correlation length
scales are larger for the lower elevations. This suggestisiths the change in measurement
volume that affects the correlation length scale. As in tlaise the observation operator does not
account for the observation volume, it is likely that theretated error is, in part, caused by the
error in the observation operator.

It is also possible to compare observations at the same rabgervations will have the same
measurement volume but will be at different heights in thecgphere. In this case we find that
for each elevation the correlation length scale is simday, at a range of 40km each elevation has
a correlation length scale ef 23km (not shown). This suggests that the measurement vadiime
the observation has the largest impact on the horizontaélation length scale, with correlation

length scale increasing with measurement volume.
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2) ALONG-BEAM CORRELATIONS

Next we calculate the along-beam observation errors usieaglata from Case 1. We begin by
calculating the average observation error covariance antparing these results with those from
Météo-France (Wattrelot et al. 2012). We do not expedtreged statistics to be equal to those
found by Météo-France as there are differences in theabipeal set up (e.g. observation and
background error covariance statistics, observationgesitig, observation operators and thinning
distances) and the region and time scale covered by the data.

Our estimated standard deviation (Table 2) is larger tharsthndard deviation found by Météo-
France which is B1Ims 1. This is likely to be the result of the different operatiosat up and
observation processing. We plot our estimated correlafimction along with the correlation
found by Météo-France in Figure 7. We see that the coiogldength scales are approximately
5km longer than those found by Météo-France. Given the diffeloperational setup used by
Météo-France the similarities between the results aassering and suggest that we are obtaining
a reasonable estimate of the observation error correktion

Next we calculate the error statistics along the beam foh edevation. In Figure 8 (square
symbols) we plot the change in standard deviation with heigghbeam elevations® 2°, 4° and
6°. (For the horizontal correlations the height of the radanatsea level was accounted for; here
height is calculated assuming that the radar is at sea let@l) all elevations the observation error
standard deviation generally increases with height, véhexception of the lowest levels. This is
similar to the behaviour of the standard deviations for thedontal case. Unlike the horizontal
case the standard deviations for each elevation are natslasiFor any given height the standard

deviations are larger for the lower elevations. At any giveght the lower elevations will be
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sampling larger volumes of the atmosphere. Observatiompléag large volumes are subject to
both larger instrument error and more error in the obseovatiperator.

We now consider how the correlation length scale changes fgiven elevation at different
heights. The estimated observation error correlationa fange of heights are plotted in Figure 9.
The along-beam correlation length scales are shorter ti@hdrizontal correlations, though the
correlation length scale still increases with height foy giiven elevation. This highlights the
relationship between the increase in correlation lengéteswith the increasing height, range and
volume measurement of the observation.

In Figure 10 we consider how the correlation function ddéfevith measurement volume. We
plot the along-beam correlation function for each elevaiat a height of 2.5km. Here the height
for each observation is the same, but the measurementslame & different ranges with the
lowest elevation at the furthest range. Figure 10 showsth®atorrelation length scale increases
with range. Again this likely to be a result of the larger mgasnent volumes at far range.

In Figure 11 we plot the correlation function for each elematat a range of 40km. Here the
volume of measurement for each observation is the same, éagumements from lower elevations
are at lower heights. We see that the correlation lengtrestiéflers with elevation and decreases
with height. We hypothesise that the change in correlasarnesult of the different levels of the
atmosphere sampled by different beam elevations. For thelevation angles the beam gradient
is shallow, hence different gates measure similar heightee atmosphere; this results in larger
error correlations. Larger elevation angles have larganbgradients, different gates sample a

wider range of heights in the atmosphere; this results inllsshaervation error correlations.
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3) SUMMARY

For this case we have calculated observation error staissing background residuals from
June, July and August 2013, the analysis residuals are pedday running the UKV model using

the January 2014 operational configuration. We find that:

e DRW standard deviations increase with height (with the pkoe of the lowest heights).
This is likely due to the increasing measurement volume ight. The larger errors at the

lowest height are likely to be a result of representativitpes.

e The correlation length scale is larger than the thinningaaise of 6km chosen to ensure that

the assumption of uncorrelated errors is valid.

e For both horizontal and along-beam correlations and foelaVations the observation error
correlation length scale increases with height. We hyps#igethat this is in part due to the
larger errors in the observation operator and correlatpebservation errors at large range.

This will be the subject of further investigation (see saesi ¢ and d).

b. Case 2 - The effect of changing the assimilated backgrewod statistics

The diagnostic of Desroziers et al. (2005) uses the assamfitat the observation and back-
ground error covariance matrices used in the assimilatieregact. In the operational assimila-
tion, Case 1, the observation errors are assumed uncewdedaid the background error variance
and correlation length scale are believed to be too larglee (liet Office have an ongoing project
to develop an improved background error covariance mattnig;is expected to reduce error vari-
ances and correlation length scales compared to thosemgssbe 1 of this study). Results given
in Waller et al. (2016) relating to the diagnostic suggeat tinder these circumstances the diag-

nostic will underestimate the observation error correlatiength scale. Therefore it is possible
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that the true observation error statistics have longeretation lengths than those calculated for
Case 1.

To provide information on how results in Case 1 may comparthéotrue observation error
statistics, we consider the sensitivity of the estimateskolation error statistics to using different
background statistics. Here we use previous operationgtdraund error statistics that have
larger variances and larger length scales than the backdrerror statistics used in the previous

experiments.

1) HORIZONTAL CORRELATIONS

The average standard deviation given in Table 2 shows thatgdl of background error statistics
with larger variance and longer length scales results inngetastimate of the observation error
standard deviation. The correlation function, plotted igufe 3, shows clearly that using a dif-
ferent background error covariance matrix has reducedstimated observation error correlation
length scale. These results agree with the theoreticaltsaaulValler et al. (2016) (larger overes-
timates of variance and correlation length scale in thenakstied background statistics results in
more severe underestimates of observation error variamtea@relation length scale) and suggest
that the theoretical results developed under simplifyisguanptions are still applicable in an op-
erational setting. The theoretical work and results fromsé&3al and 2 suggest that if the variances
and length scales in the assumed covariance mBtrisere further reduced compared to Case 1,
the estimated observation error correlation length scatadd be larger.

Figure 4 shows that the change in standard deviation withhtéor each elevation is similar to
Case 1. However, the standard deviations for Case 2 areesrttadin those from Case 1, a result

of the larger background error variances used in the assiwl.
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As with the average correlations, results relating to theetations for each individual elevation
and height have smaller correlation length scales than Céset shown). However, we still find
that the qualitative behaviour of the correlation lengthles remains the same; that is, for any
elevation the correlation length scale increases withtiteagd for any given height the length

scale decreases as elevation increases.

2) ALONG-BEAM CORRELATIONS

For the average along-beam correlation we find the standaidtibn (Table 2) is reduced com-
pared to Case 1. The correlations plotted in Figure 7 alse laashorter length scale (approxi-
mately 10km) and are more comparable to those found by d4Etance.

When considering the standard deviations for each elavat®again see that they are reduced
(see diamonds Figure 8). Though the change in standardtaeviaith height is qualitatively
similar to Casel. We find that the shape of the correlationtfan is similar, but the length scales
are shorter than those calculated in Case 1 (not shown). d@hation in the correlation length

scale with elevation, height and range is, however, uredter

3) SUMMARY

For this case we have calculated observation error staistsing different background error

statistics which have larger variances and correlatiogtlescales. We find that:

e Estimated observation error standard deviations (lengéttes) are smaller (shorter) when
using the alternative background error statistics witlgéarstandard deviations and longer

correlation length scales. This result follows the theoedtwork of Waller et al. (2016).

e Changes in observation error standard deviation and etioel length scale with height re-

main qualitatively similar to Case 1.
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e Given that the background error standard deviations anctledion length scales in Case 1
are believed to be too large and long, it is likely that thetoloservation error statistics have

larger standard deviations and longer length scales trasetbalculated in Case 1.

c. Case 3 - The effect of the superobservations

The creation of the superobservations, discussed in se8tioesults in an observation error
that is only independent of the background error if the erinrthe background states used in the
calculation of each superobservation are of the same matgand are fully correlated (Berger
and Forsythe 2004). This assumption is true at close rangleetoadar, but it is possible that
it is violated at far range resulting in increased obseoragrror correlation length scales. To
determine if the superobservations have this effect weidenghe results from Case 3, where the

assimilation uses thinned raw data. We return to using tleevNbackground error statistics.

1) HORIZONTAL CORRELATIONS

Table 2 shows that the average standard deviation for tses isavery similar to that of Case 1.
However, the correlation length scale is slightly reducethpared to Case 1 (Figure 3). This
suggests that the use of superobservations may introdunce gbservation error correlation, but
does not appear to be the main source of correlations.

Figure 4 shows that the standard deviations for individlalaions are similar to those found
in Case 1. In general we find that the use of the thinned datitses slightly shorter observation
error correlation length scales for observations that ateveer elevations and far range. For ex-
ample, Figure 12 shows, for th& 8levation, that the use of the superobservtions has littfeict
on the correlation length scale at short range. Howevegratainge the correlation length scale

for Case 1 is approximately 5km longer than that for Case 3s fésult supports our hypothe-
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sis that the use of superobservations increases the oliearearor correlation length scale at far
range. This is a result of the invalid assumption that thersrin the background states used in the

superobservation creation are of the same magnitude aycctutelated.

2) ALONG-BEAM CORRELATIONS

From Table 2 we see that the average along-beam observatimrsandard deviation is similar
to that found using the data from Case 1. Figure 7 shows tleatdtrelation length scale is also
slightly reduced.

Figure 8 shows that the standard deviations for separatatelas are similar to Case 1. Figures
10 and 11 show that using the raw observations results in gasighaped correlation function
to Case 1 but with a slightly reduced length scale. The exuejx the highest elevation (closest
range) where the length scales are slightly larger. Thesdteesuggest that using the superobser-
vation has the opposite effect, namely the introductionasfedation at far range, but a reduction

of correlation in the higher elevations.

3) SUMMARY

We have calculated observation error statistics usinghddraw observations. We find that:

e Using thinned raw data has little impact on the estimateefasion error standard devia-

tions; these are similar to Case 1.

e In general, horizontal correlation length scales at fageaare reduced. This implies that
using superobservations introduces correlated errorratafege, possibly as a result of an

invalid assumption in the superobservation creation.

¢ In general along-beam correlation length scales are rethecehe lower elevations, however

they slightly increased for the’eam.
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d. Case 4 - The effect of an improved observation operator

The previous cases have all used the simplified observagierator described in equation (6).
The omission of the more complex terms introduces both efdit error variance and correlation
(Fabry 2010). It may not be possible to use a full observatjperator in operational assimilation,
though the use of the sophisticated observation operatequmtion (11) may be considered. In
this case we use this new observation operator to see ifdmdueam broadening and reflectiv-
ity weighting in the observation operator has any effectl@dbservation error statistics. Here
we use the thinned raw observations rather than the supsr@tions (the creation of the super-
observation involves the observation operator, and igea# wish to isolate the impact of the

observation operator in the assimilation), hence the resigre must be compared to Case 3.

1) HORIZONTAL CORRELATIONS

For the average horizontal error statistics both the stahdieviation and correlation length scale
have decreased compared to Case 3 (see Table 2 and Figure 3).

For the separate elevations, as with all previous cases,nddétat the standard deviations in-
crease with height (Figure 4), though here the actual vdiuethe lower elevations are reduced
compared to the standard deviations found in Case 3. Thectiedus not seen in the higher
elevations as observations are at near range where theseffebeam bending and broadening,
accounted for in the new observation operator, are not sufgignt. In general we find that the
correlations for every elevation are decreased when usi@gnproved observation operator. In
Figure 13 we show that using an improved observation operathuces the correlation length
scale slightly at near range and, at far range, by approxind0%.

When considering horizontal correlations we compare olagems at the same range away

from the radar that have the same measurement volume, and benew observation operator
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should have the same improvement for each observation weam@n The reduction in error
standard deviation and correlation shows that the inctusidhe beam broadening and reflectivity
weighting has improved the observation operator. It algygsests that the use of an even more

sophisticated observation operator may further reduceliservation error correlation.

2) ALONG-BEAM CORRELATIONS

In this case Table 2 and Figure 8 show that the error standaritibn is reduced compared
to Case 3 suggesting that the more sophisticated obsen@tierator is indeed an improved map
from background to observation space. Both Figure 7 anddirelations for separate elevations
suggest that introducing the new observation operatohtjigncreases the correlation length
scale. We hypothesise that this is a result of the inclusfah@beam broadening. When using
the old observation operator observations at differengeanat any elevation were unlikely to
consider data from the same model levels. With the intradonaif the beam broadening different
observations will now use information from the same modetleand this is likely to be the cause

of the increased correlation length scales.

3) SUMMARY

For this case we have calculated observation error staigting thinned raw observations and

an improved observation operator. We find that:

e Using the new observation operator reduces the error stdradviations for the lower ele-
vations. Less impact is seen in the higher elevations winereffects of beam bending and

broadening (accounted for in the new observation operaterhot so significant.
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e For the horizontal correlations using the new observatiperator reduces the estimated ob-
servation correlation length scale. This suggests that arthe observation operator may be

in part responsible for the large correlation length scales

e Using the new observation operator increases the alongrieearelation. This is likely to be

the result of close observation residuals sharing incekasgounts of background data.

6. Conclusions

With the development of convection-permitting NWP the @misition of high resolution obser-
vations is becoming increasingly important. Currenthgkaguantities of high resolution data are
discarded to ensure the assumption of uncorrelated oligmmnearors is reasonable. The assimila-
tion of high resolution observations will require less thimmg of the observational data and, hence,
the inclusion of correlated observation error statisticthie assimilation system. Observation er-
rors can be attributed to a number of different sources, sofnwehich may be state dependent
and dependent on the model resolution. Calculation of easien error statistics is difficult as
they cannot be measured directly. Recently the diagnos$tizesroziers et al. (2005) has been
used to estimate inter-channel observation error corogiatfor a number of different observation
types. When inexact background and observation errorssae in the assimilation cost function,
theory (Waller et al. 2016) shows that the results arisimgnfithe diagnostic are uncertain and
should be interpreted as indicative, rather than necdgsprantitatively perfect. However, results
from the diagnostics can still provide useful informatiam the sources of error correlation and
how it may be reduced. Furthermore, idealised studies usimglated observation error matrices
indicate that much of the benefit in assimilation accuracylzaobtained from using approximate
correlation structures (Stewart et al. 2013; Healy and ¥/B@05). The aim of this manuscript is

to use the diagnostic to estimate spatially correlatedrefar Doppler radar radial wind (DRW)
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observations that are assimilated into the Met Office UKV aloHrrors for DRWs may be corre-
lated horizontally, vertically or along the path of the radaam. In this work we consider both the
horizontal and along-beam error statistics. We also cemsdlif results from the Hollingsworth
and Lonnberg (1986) diagnostic could provide further infation. We note that, for the data used
in this study, there was no clear way to partition the redutisr the Hollingsworth and Lonnberg
(1986) diagnostic into the observation and background @uodions. Any observation error cor-
relations estimated from this data using the Hollingsweanid Lonnberg (1986) method would
have been highly dependent on the subjective choice oflatioe function fitted.

Initially error statistics were calculated for observasoassimilated into the UKV model oper-
ational in January 2014. This provided information on theegal structure of the observation
errors and how they vary throughout the atmosphere. Eradissits were also calculated using
data from an assimilation run using alternative backgroemmdr statistics. This provided infor-
mation on how sensitivity of the results to the specificatbbthe background error statistics. The
diagnostic was then applied to data from a further two adation runs. These evaluated the im-
pact that the use of superobservations and errors in thevaiss operator have on the estimated
observation error statistics.

Results from all four cases showed similar behaviour forast@mated statistics. We are able to
conclude, that most DRW error standard deviations, hoted@and along-beam correlation length
scales increase with height, as a function of the increaseei@asurement volume. Thus at least
part of the correlated errors are likely to be related to theeutainty in the observation opera-
tor. The exceptions are the standard deviations at the tdweeghts. Observations at the lowest
heights have the smallest measurement volumes, smallethibamodel grid spacing, and hence
representativity errors may well account for the largendtad deviations at lower heights. The

results presented here are for summer season observdimmeyer results considered for winter
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season observations show that the qualitative behaviotiveoéstimated DRW error statistics is
similar to the summer case.

Results showed that the estimated standard deviationsmailarsto those used operationally.
However for the majority of cases, with exception of tieb@am, the correlation length scales
are much larger than those found in Simonin et al. (2012) hasperational thinning distance of
6km. Despite the differences in operational system, oimeséd average along-beam correlations
are similar to those calculated by Météo-France (Wattret al. 2012). Furthermore, observation
error statistics estimated when using an alternative backgl error covariance matrix in the
assimilation and the results from Waller et al. (2016) imiblsit the observation error correlation
length scale is underestimated. This suggests that thesem® correlated to a degree that it should
be accounted for in the assimilation.

In an attempt to understand the source of the error corogigtithe effect of using superobser-
vations and an improved observation operator are congsidérbe use of the superobservations
does not affect the error standard deviations. Howeveujtsesuggest that the use of superobser-
vations introduces correlated error at far range, possiblg result of an invalid assumption in the
superobservation creation. The use of an improved obsenvaperator reduces the error standard
deviations, particularly at low elevations and at far ramndeere observations have large measure-
ment volumes. This is expected since the new observatioratgpegakes into account the beam
broadening and bending, both of which affect the beam mofstraange. The improvement in
the low elevations is related to the inclusion in the obsweoperator of information from more
model levels. These are denser in the lower atmosphere whelew elevations provide observa-
tions. The use of the new observation operator results inenease of the along-beam correlation
length scale. We hypothesise that this is a result of neasbgration residuals now sharing infor-

mation from the same model levels. However, the horizordaletations were slightly reduced.
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This suggests not only that some of the horizontal cor@hatipreviously seen were a result of
omissions in the observation operator, but also that thedtal correlation length scale may be
further reduced with the use of an even more complex obgervaperator.

These results provide a better understanding of DRW obBenvarror statistics and the sources
that contribute to them. We have shown that these obsernvatiors exhibit large spatial cor-
relations that are much larger that the operational thigmistance. This implies that, if high
resolution DRW observations are to be assimilated coeitté inclusion of correlated observa-

tion error statistics in the assimilation system is reqglire
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TABLE 1. Summary of experimental design for different cases

Case| B Superobservations Observation Operato
1 New Yes Old
2 old Yes old
3 New No old
4 New No New
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819 TABLE 2. Horizontal and along-beam standard deviations caledlttr Cases 1-4 using all available data up

s20 10 @ height of 5km.

Case | Horizontal standard| Along-Beam standard
deviation (s 1) deviation s 1)
1 1.97 1.95
2 1.57 1.59
3 1.96 1.99
4 1.82 1.89
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(Alternate background error statistics, diamonds), CagehBined raw data, triangles) and

Case 4 (New observation operator, circles) . Error con@atare deemed to be insignificant
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and, & (cyan) for Case 1 (Control, squares), Case 2 (Alternatedracid error statistics,
diamonds), Case 3 (Thinned raw data, triangles) and CaseewW @hservation operator,
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Correlations along the beam at height 2.5km for elevatiars approximate ranges’
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are deemed to be insignificant below the horizontal lineat O..

Correlations along the beam at range 40km for elevationsagpdoximate heights®l~
0.8km (black), 2 ~ 1.5km (blue), 2 ~ 3.0km (red) and , 6~ 4.3km (cyan) for superobbed
data (solid lines) and thinned raw data (dashed lines).rEEwaelations are deemed to be
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s0 Fig. 13. Horizontal observation correlations for elevatiohdt a range of 18km (solid) and 74km

g61 (dash) for Case 3 (Thinned raw data, triangles) and Case v (¥eervation operator, cir-
862 cles). Error correlations are deemed to be insignificanbWwehe horizontal line at 0.2.
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