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SUMMARY

In eukaryotic cells, proteasomes exist primarily as
26S holoenzymes, the most efficient configuration
for ubiquitinated protein degradation. Here, we
show that acute oxidative stress caused by environ-
mental insults or mitochondrial defects results in
rapid disassembly of 26S proteasomes into intact
20S core and 19S regulatory particles. Consequently,
polyubiquitinated substrates accumulate, mito-
chondrial networks fragment, and cellular reactive
oxygen species (ROS) levels increase. Oxidation of
cysteine residues is sufficient to induce proteasome
disassembly, and spontaneous reassembly from
existing components is observed both in vivo and
in vitro upon reduction. Ubiquitin-dependent sub-
strate turnover also resumes after treatment with
antioxidants. Reversible attenuation of 26S protea-
some activity induced by acute mitochondrial or
oxidative stress may be a short-term response
distinct from adaptation to long-term ROS exposure
or changes during aging.
INTRODUCTION

Stress conditions such as UV damage, heat-induced denatur-

ation, peptide-bond cleavage, protein crosslinking, and oxida-

tion of amino-acid side chains can alter protein tertiary structure.

Aggregation-prone misfolded proteins, such as those with

oxidative damage, require rapid removal, increasing the burden

on quality-control and disposal machineries. Reactive oxygen

species (ROS) that arise from both environmental and internal

sources, such as mitochondrial metabolism, determine the

cumulative oxidative stress on cells (Ambrosio et al., 1993). Mito-

chondrial failure accompanied by ROS production therefore

correlates with oxidized protein accumulation and age-related

pathologies (de Moura et al., 2010; Friguet et al., 2008; Page

et al., 2010; Vendelbo and Nair, 2011). Indeed, damaged mito-
C

chondria correlate with muscle atrophy, neurodegenerative pa-

thologies, and aging itself (Sheridan and Martin, 2010).

Numerous cellular mechanisms are linked to mitochondrial

quality control. The ubiquitin-proteasome system (UPS) is the

main eukaryotic apparatus for removing aberrant proteins that

may contribute to misregulation of processes and disease path-

ogenesis (Finley, 2009; Glickman and Ciechanover, 2002; Lay-

field et al., 2001). Fragmented, malfunctioning, or damaged

mitochondria can be removed by mitophagy (Green et al.,

2011; Rambold et al., 2011), and degradation of specific mito-

chondrial outer membrane (MOM) proteins by the UPS can

promote proper mitochondrial function and morphology (Liv-

nat-Levanon and Glickman, 2011; Taylor and Rutter, 2011).

A UPS-driven, mitochondria-associated degradation (MAD)

pathway, like the endoplasmic-reticulum-associated degrada-

tion [ERAD] pathway), has been postulated (Cohen et al., 2008;

Heo et al., 2010).

A UPS-dependent proteolytic event commences with poly-

ubiquitination of a target, followed by recognition of the conju-

gate by the 26S proteasome. Proteasomes unfold ubiquitinated

substrates, remove ubiquitin (Ub) tags, and hydrolyze the target

into short peptides (Finley, 2009). Proteasomes are highly

conserved 2.5 MDa molecular machines consisting of a barrel-

like 20S proteolytic core particle (CP) and a 19S regulatory

particle (RP) that recognize and translocate substrates into the

20S CP. Whether one 19S RP or two attach to a single 20S CP

defines the two forms of the 26S proteasome: RP1CP and

RP2CP, respectively (Beck et al., 2012; Glickman et al., 1998b).

Access to 20S CP active sites is restricted by a narrow gated

channel that is opened upon 19S RP attachment. Only a limited

repertoire of misfolded or damaged polypeptides can be

degraded by unaided 20S CP, yet this may explain the removal

of damaged proteins by 20S CP during oxidative stress (Bader

and Grune, 2006; Davies, 2001). Controlled degradation of glob-

ular or structurally stable substrates requires a regulator/

activator complex that traps, unfolds, and feeds substrates

into the 20S CP chamber. In cells, the majority of proteasomes

exist as 26S holoenzymes, the most efficient configuration for

ubiquitinated protein degradation (Bajorek et al., 2003; Kruegel

et al., 2011). However, in response to certain stress conditions

or upon exposure to oxidants, decreased 26S holoenzyme levels
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and increased free 20S CP have been reported (Demasi et al.,

2003; Reinheckel et al., 1998; Silva et al., 2012; Wang et al.,

2010).

To minimize the damaging effects of ROS, aerobic organisms

evolved different antioxidant defenses, including the expression

of catalases, peroxidases, superoxide dismutases (SODs), and

glutathione S-transferases (GSTs) (Hayes et al., 2005; Scandal-

ios, 2005). Ubiquitin and other UPS components are also upre-

gulated upon heat shock or other stresses that induce protein

damage (Layfield et al., 2001; Tonoki et al., 2009). Yet, as shown

here, 26S proteasome holoenzymes are sensitive to the oxida-

tive conditions under which they disassemble, leading to tran-

sient attenuation of ubiquitin-dependent proteolysis. We expand

on previous work that described oxidation-driven 26S protea-

some dissociation (Wang et al., 2010) by demonstrating compa-

rable shifts in proteasome populations from predominantly 26S

holoenzymes to free 20S CP in response to mitochondrial

dysfunction or oxidative stress. We find that proteasome disas-

sembly is reversible both in cells and in vitro. Proteolytically

active 20S CPs and stable 19S regulatory complexes can rapidly

reassociate, leading to resumption of ubiquitin-dependent pro-

tein turnover in cells, indicating that proteasomes adapt to envi-

ronmental conditions and cellular needs.

RESULTS

Proteasomes Dissociate in Response to Oxidative
Stress Caused by Mitochondrial Dysfunction
First, we explored whether proteasomes dissociate in response

to stimulation of ROS formation due to postdiauxic shift in a

respiration-deficient mitochondrial mutant (Dfzo1) of yeast.

Respiration attempts by defective mitochondria induced ROS

production in this strain (Figure S1) and proteasome disassembly

was accelerated (Figure 1A). This is a remarkable example of a

mitochondrial mutant with a proteasome phenotype. A similar

phenomenon was observed in a strain in which a proteasome

subunit-encoding gene was mutated (rpn11-m1; Figure 1A).

Fragmented mitochondria networks were previously reported

in rpn11-m1 (Rinaldi et al., 2002). Extending those observations,

we measured high levels of intracellular ROS (versus wild-type

[WT]) in both strains (Dfzo1 and rpn11-m1; Figure S1). Cellular

damage due to defective mitochondria attempting to respire

on low concentrations of nonfermentable carbon may be

the root cause of the observed altered proteasome activity

(Figure 1).

Next, we explored whether malfunctioning mitochondria can

directly induce proteasome disassembly, by testing the effect

of a mitochondrial respiration inhibitor (Antimycin A, a Cyto-

chrome C reductase inhibitor; Chen et al., 2003; Turrens, 1997)

on proteasomes. We found that treating rapidly dividing yeast

cells with Antimycin A resulted in rapid disassembly of 26S

proteasomes in vivo (Figure 1B), but had no direct effect on

purified proteasomes (Figure 1B). Proteasome disassembly in

cells correlated with altered oxidative phosphorylation in

mitochondria (i.e., an inability to utilize nonfermentative carbon;

Figure 1C), ROS release (Chen et al., 2003; Lin and Beal, 2006;

Sedensky and Morgan, 2006), and pervasive protein oxidation

(Figure 1C). Attenuated proteasomes were also observed in
1372 Cell Reports 7, 1371–1380, June 12, 2014 ª2014 The Authors
cell cultures subjected to direct oxidation. In both yeast and

mammalian cells, 26S proteasome activity decreased with

exposure to increasing concentrations of external oxidizing

reagents (Figure 1D). Concomitantly with diminished 26S protea-

some activity, increased 20S CP activity was measured, sug-

gesting that proteasome active sites were not hampered, but

rather the proteasome population shifted from predominantly

26S holoenzymes to primarily free 20S CP. 20S CP was de-

tached in its latent form and was chemically activatable (by

miniscule concentrations of SDS; Glickman et al., 1998a).

Notably, even at these considerably high concentrations of

H2O2 in the medium, cells were viable for at least a couple of

hours, and growth resumed (together with reassociated protea-

somes) when the oxidants were removed from the media or the

media were neutralized with a reducing agent (Figures 1D,

middle panel, and 2F). Thus, our findings demonstrate that

proteasome conformation is sensitive to oxidative stress, and

despite the essential role of proteasomes in protein turnover, un-

der the tested conditions, cells maintain viability even though the

activity of the 26S holoenzyme is attenuated.

Proteasomes Exhibit Reversible Redox-Dependent
Dissociation/Reassociation
We evaluated the direct effect of oxidation on the proteasome by

exposing purified proteasomes to oxidants and resolving the

breakdown products by nondenaturing gels (in order to keep

complexes intact and proteolytically active for enzymatic or

biochemical analysis). A dose-dependent detachment of active

20S CP from 26S proteasomes was observed upon addition of

H2O2 (Figure 2A, left panel), and the migration pattern mimicked

the behavior of proteasomes in stressed cells (Figure 1). In

parallel to increased levels of the 20S CP form, a second proteo-

lytically inactive complex containing 19S RP subunits appeared

at the expense of the diminishing 26S (Figure 2A, middle and

right panels). In yeast cells too, simultaneous accumulation of

complexes containing 19S RP or 20S CP subunits was observed

in response to acute oxidative stress concomitantly with dimin-

ished 26S proteasome levels (Figure 2A, right). We determined

the makeup of these complexes by mass spectrometry (MS)-

based, label-free quantitative analysis. All 19S RP subunits in

the proteolytically inactive complex were identified at roughly

stoichiometric levels (Figure 2B; Table S1). The quantity of intact

regulatory 19S complexes in the treated samples relative to the

untreated control increased significantly. Released 20S particles

were active but latent, and could be reactivated by treatment

with a low level of SDS (Figure 2A), similar to 20S CP generated

in stressed cells (Figure 1). Thus, these findings demonstrate that

in response to oxidative stress, 26S proteasome holoenzymes

dissociate into two subcomplexes, which remain stable and

intact.

We investigated whether proteasome disassembly is an irre-

versible consequence of oxidative damage or an environ-

mental-sensing mechanism by testing the effect of a reducing

reagent (dithiothreitol [DTT]) on cells after dissociation of protea-

some complexes. Proteasome disassembly was partially

reversed within minutes of adding DTT to the cell media (Fig-

ure 2C). Even disassembly of proteasomes that occurred natu-

rally over time in respiratory-defective cells (rpn11-m1) was
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Figure 1. Fragile Proteasomes in Response to Oxidative Stress

(A) Proteasome disassembly following postdiauxic shift. Dfzo1, rpn11-m1, and their isogenic WT strains were shifted from fermentative logarithmic growth to

diauxic respiration by glucose starvation. At the indicated days, equal numbers of cells were harvested, lysates were separated by nondenaturing PAGE (native

gel), and proteasome activity was detected by in-gel peptidase activity. The main proteasome species are marked (RP2CP, doubly capped 26S; RP1CP, singly

capped 26S; CP, 20S CPs). Latent 20S CP was activated by infusing 0.02% SDS (‘‘activated’’).

(B) Proteasome attenuation in response to mitochondria respiration. Yeast (left) or mammalian cells (middle) were incubated with 5 mM Antimycin A for 3 hr and

proteasome activity was monitored by native gel. Purified proteasomes were tested with Antimycin A for control (right).

(C) Antimycin A promoted protein oxidation. Cellular extracts following Antimycin A treatment were assayed for oxidized proteins by incubation with DNPH, a

reagent for oxidized amino-acid side chains (left). Following Antimycin A treatment, cells were also scored as 10-fold dilutions onto glucose-containing (top) or

glycerol-containing (bottom) media to evaluate respiration capability.

(D) Direct oxidation led to proteasome dissociation. H2O2 was added to logarithmically growing WT yeast or mammalian BHK-21 cells for 30 min prior to

harvesting and visualization of proteasome by in-gel peptidase assay.
partially corrected by adding DTT (Figure 2D). Diminished 26S

proteasome levels in cells chemically treated for a few hours

with a mitochondria inhibitor were also rapidly restored by add-

ing DTT (Figure 2E). Reassembly of oxidized proteasomes in vivo

did not require de novo synthesis of subunits, as it occurred

spontaneously even when protein synthesis was blocked with

cycloheximide (CHX, a ribosome inhibitor; Figure 2F). Consistent

with these findings, in vitro, purified 26S proteasomes were

rebuilt upon addition of DTT alone (i.e., without chaperones or
C

other factors) to the buffer (Figure 2G). These findings indicate

that reduction-oxidation (redox) of proteasome components

directly affects holocomplex stability, and that oxidized sub-

complexes remain competent and can reassemble under

permissive conditions.

We focused on the role of thiol residues in the dissociation/

reassembly process (which was postulated due to the reversible

nature of this redox-driven process) by repeating the experi-

ments with diamide, a cysteine-specific reagent that crosslinks
ell Reports 7, 1371–1380, June 12, 2014 ª2014 The Authors 1373
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Figure 2. Reversible 26S Proteasome

Disassociation in Response to Oxidative

Stress

(A) Free 20S CP and 19S RP detached from

oxidized proteasomes. Purified 26S proteasomes

were exposed to increasing concentrations of

H2O2 for 30 min and visualized by native gel:

peptidase activity (left), protein content, and im-

munoblots for proteasome subunits Rpn11 or

Rpn12 (middle). H2O2-treated yeast cells (as in

Figure 1D) were immunoblotted for the 19S RP

subunit (Rpn5) or the 20S CP subunit (right).

(B) Intact 19S RP subcomplex dissociated from

26S proteasomes. The subunit composition of

proteasome species was determined by label-free

MS/MS quantification. Proteasome subunits

compared before (**) and after (*) H2O2 treatment

verified the presence of inactive 19SRP (Table S1).

(C–G) Proteasome disassembly was reversed by a

reducing agent.

(C) Logarithmic-phase yeast was treated with

10 mM H2O2 for 30 min and lysed as is or with

20 mM DTT for in-gel peptidase activity.

(D) WT and rpn11-m1 cells were grown at 25�C
and lysed with or without 10 mM DTT.

(E) Mammalian BHK-21 cells were treated with

Antimycin A and lysed with or without 10 mM DTT

for visualization by native gel.

(F) Reassembly of dissociated proteasomes did

not require de novo synthesis. WT cells at loga-

rithmic phase (left lane) were treated with H2O2 for

30 min (second lane). H2O2 was removed, and

cells resumed growth in the presence of 200 mg/ml

CHX to block new protein synthesis. Proteasomes

in all samples were compared by native gel.

(G) Purified 26S proteasomes (left) were treated

with 30 mM H2O2 for 30 min, H2O2 was removed,

and the sample was split (half loaded ‘‘as is’’

[middle] and half supplemented with 10 mM DTT

[right]).
proximal thiols (Kosower and Kosower, 1995; Manalo et al.,

2002). Diamide alone was sufficient to drive dissociation of

26S proteasomes into intact 20S CP and 19S RP species (Fig-

ure 3A), mimicking the experimental results obtained by other

means of oxidation (Figures 1 and 2). Adding DTT reversed the

diamide effect, thereby demonstrating that redox of thiol groups

within the proteasome was sufficient to drive proteasome disso-

ciation/reassembly (Figure 3A). Although crosslinking subunits

may stabilize a complex, the 26S holocomplex was actually split

into two subcomplexes upon formation of internal dicysteine

bonds, suggesting that dicysteine formation did not link the

two subcomplexes, but rather occurred within each subcom-

plex. Tomap the oxidation-prone subunits, we labeled cysteines

that were oxidized upon proteasome disassociation with an
1374 Cell Reports 7, 1371–1380, June 12, 2014 ª2014 The Authors
epitope-tagged N-ethylmaleimide (NEM;

Figure 3B). In this assay, only cysteines

that were crosslinked in the free 20S

and 19S subcomplexes were labeled by

biotin-NEM (see details in legend for Fig-

ure 3 and in Supplemental Experimental
Procedures). Evidently, multiple subunits in both 19S RP and

20S CP directly participated in dicysteine bond formation. MS

of oxidized and labeled proteasomes identified the participating

cysteines in each subunit, and we compared cysteine modifica-

tions between diamide-treated and -untreated proteasomes by

differentially labeling cysteines in two proteasome preparations

(Table S2). Given that oxidized cysteines (a.k.a. cystines) were

identified in dissociated 20S CP and 19S RP subcomplexes,

but not in 26S holoenzymes, we conclude that crosslinks formed

within each of the two subcomplexes, but not across the 19S

RP-20S CP interface. We propose that such cystines (disulfur

bonds) probably altered the surface of the interaction and weak-

ened the 19S RP-20S CP association. The formation of disulfur

bonds may even protect proteasomes from more severe,
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Figure 3. 26S Dissociation by Dicysteine Crosslinking

(A) A specific cysteine modifier, diamide, drives reversible dissociation of 26S

proteasomes. Purified 26S proteasomes were incubated with diamide for

30 min at 30�C and resolved by native gel for activity (left) and protein content

(right); 10 mM DTT was added to one sample.

(B) Cysteines were crosslinked in dissociated 20S CP and 19S RP. After

treatment with 5 mM diamide, proteasomes were denatured with 6M urea and

all remaining reduced cysteines were irreversibly alkylated by 2 mM iodoa-

cetamide. Next, the crosslinked cysteines were reduced by 8 mM DTT, irre-

versibly labeled with NEM-biotin, and detected by horseradish peroxidase

(HRP)-streptavidin.

(C) Illustration of dicysteine bonds in oxidized 19S and 20S subcomplexes

identified by MS/MS. Red, single oxidized cysteine; yellow, multiple cysteines;

gray, no cysteines. Dicysteine bonds were confined to each subcomplex and

did not span the 19S-20S interface.
irreversible thiol oxidation (e.g., due to sulfinic or sulfonic acids)

in a manner similar to that observed for glutathione, one of the

common antioxidants in cytosols of eukaryotes (Hayes et al.,

2005; Scandalios, 2005).

Slowdown of Proteasome-Dependent Substrate
Turnover in Response to Acute Oxidative Stress
Next, we assessed the correlation between oxidative stress-

induced decrease in the cellular levels of active 26S protea-

somes and substrate turnover. Induction of cellular oxidative

stress in live C. elegans by knocking down mitochondrial respi-

ration components with RNAi (Figure 4A, left) resulted in accu-

mulation of a ubiquitin-fusion degradation model substrate

(UFD; Figure 4A, right). Stabilization of UFD substrates is typical

of 26S proteasome dysfunction (Bajorek et al., 2003; Rubin et al.,

1998; Segref et al., 2011). Supplying worms with an antioxidant

(N-acetylcysteine) restored UFD-substrate degradation (Fig-
C

ure 4B), even when mitochondria were still genetically impaired

(Segref et al., 2014), suggesting that the efficiency of UPS was

responsive to cellular oxidative conditions. Notably, the effects

of mitochondrial mutations (isp-1, nuo-6, and gas-1) on stabili-

zation of a UFD substrate were remarkably similar to those

obtained by direct interference with 26S function (rpn-6 and

rpn-11). Slower turnover of a natural UPS substrate, Fzo1, was

reflected by extended half-life following exposure of yeast to

an oxidant (Figure 4C). Accumulation of high-molecular-weight

polyubiquitin conjugates in oxidative-stressed cells was a broad

phenomenon (Figure 4D; see also Wang et al., 2010) and indi-

cated that bulk protein turnover was generally slowed down.

Thus, our findings suggest that UPS activity is malleable and

responds to the redox potential of the environment. Notably,

proteasome conformation is also modulated by similar condi-

tions, reinforcing the link between the two observations.

Mitochondrial Defects and Antioxidative Stress
Response Are Induced by Reduced Proteasome-
Dependent Proteolysis
We evaluated the contribution of proteasome capacity to cellular

oxidative stress bymonitoring the effect of proteasome inhibition

onmitochondrial morphology, oxidation damage, and antioxida-

tive stress response. In most tissues during typical growth con-

ditions, mitochondria form an ever-changing branched network

driven by fusion of membrane tips and fission into smaller organ-

elles (Okamoto and Shaw, 2005). Such a tubular-reticular

network of mitochondria was visualized in live C. elegans (in

the body-wall muscle cells; Figure 5A, left). A dense interlocked

network of mitochondria is also apparent in many mammalian

cells (see example in Figure 5B; left) and in WT yeast (Altmann

and Westermann, 2005; Merz and Westermann, 2009; Rinaldi

et al., 2002). Knocking down individual proteasome subunits

by RNAi (20S subunits pas-1 and pbs-2 or 19S subunits rpn-6,

rpn-11, and rpt-1) led to small fragmented mitochondria in

C. elegans (Figure 5A). Likewise, within hours of chemical in-

hibition of proteasomes in mammalian cells, the mitochondrial

morphology shifted rapidly from the characteristic tubular

network to multiple small and fragmented organelles (Figure 5B).

Although in both of these examples proteasome function was

significantly decreased, the phenotypic outcome was numerous

small, rounded mitochondria. This phenotype is also produced

by direct inhibition of oxidative phosphorylation, such as that

caused by antimycin A (Sheridan and Martin, 2010). In yeast

too, fragmented mitochondria have been characterized in pro-

teasome mutants (Rinaldi et al., 2002). In addition, proteasome

mutants accumulated oxidized proteins (Figure 5C), similar to

the results observed for mitochondrial malfunction (Figure 1).

Thus, these findings suggest that malfunctioning mitochondria

appear to be another outcome of insufficient proteasome/UPS

capacity.

Fragmented mitochondria (Figures 5A and 5B), elevated ROS

levels, and accumulation of damaged proteins (Figures S1 and

5C) all trigger the antioxidative stress response. Interestingly,

attenuation of UPS by RNAi knockdown of proteasome subunits

did so as well, as reflected by induction of the gst-4 gene in

C. elegans (Figure S3). GSTs serve as key enzymes in the antiox-

idative stress response bymaintaining appropriate cellular levels
ell Reports 7, 1371–1380, June 12, 2014 ª2014 The Authors 1375



Figure 4. Acute Oxidative Stress Attenuates Ubiquitin-Dependent Proteolysis

(A) Defects in mitochondrial respiration stabilized a UFD substrate. C. elegans expressing an oxidative stress marker, GFP::NLS, under the control of the gst-4

promoter (left), or a model UPS substrate, UbiV-GFP, under the control of the sur-5 promoter (right), were fed with RNAi-expressing bacteria and imaged 72 hr

after L1 stage (fluorescent and differential interference contrast [DIC], right). Scale bar indicates 100 mm.

(B) Accumulation of UbiV-GFP was reversed by reduction. Nematodes prepared as in (A) were exposed to N-acetylcysteine (NAC) for 24 hr or kept without the

antioxidant. Total lysates were immunoblotted by anti-GFP and anti-tubulin. Higher exposure showed that NAC had no effect on the UbiV-GFP substrate in WT

nematodes (left), but aided turnover when mitochondrial genes or proteasomal genes were knocked down (Figure S3).

(C) A UPS substrate, Fzo1, accumulated upon oxidative stress. Logarithmically growing WT yeast expressing HA-Fzo1 were exposed to 20 mMH2O2 for 30 min,

supplemented with 200 mM CHX to block protein synthesis, and immunoblotted for residual Fzo1 (top), Pgk1 (middle), and mitochondrial Porin (bottom).

Quantification of Fzo1-HA is shown in the graph on the right.

(D) Accumulation of polyubiquitin conjugates after acute oxidative stress. Lysates of log-phaseWT yeast exposed to H2O2 were assayed for ubiquitin conjugates

or Pgk1 (normalization control) relative to untreated cells.
of reduced GSH and inactivating oxidized functional groups on

cellular macromolecules (Hayes et al., 2005; Scandalios, 2005).

Another potent detoxification enzyme, SOD, was similarly

elevated in a proteasomemutant (rpn11-m1; Figure 5D), empha-

sizing the antioxidative stress response as a common conse-

quence of decreased proteasome capacity.

In order to grasp the full extent of reduced proteasome activity

on cellular response pathways, we compared the rpn11-m1

proteome in logarithmic phase with that of its congenic WT using

stable isotope labeling by amino acids in cell culture (SILAC)

followed by a comprehensive MS/MS analysis of total cell

lysates (see Table S3). Significant enrichment of proteins related

to oxidative stress response, carbohydrate catabolism, or pro-
1376 Cell Reports 7, 1371–1380, June 12, 2014 ª2014 The Authors
tein-folding pathways was measured in the rpn11-m1 proteome

relative to the WT (Figure 5E). Notably, induction of GST genes

was observed in response to diminished levels of the same

proteasome subunit Rpn11 in yeast (rpn11-m1; Figure 5E) and

in C. elegans (rpn-11; Figure S3), reflecting an evolutionarily

conserved strategy to combat oxidative stress caused by in-

sufficient proteasome capacity. Constitutive induction of reduc-

tases, scavenging enzymes, and chaperones (as in Figure 5F)

may explain how some strains with proteasome defects sustain

viability despite impaired mitochondria, inefficient oxidative

phosphorylation (Figures 5A, 5B, and S2), increased ROS

production (Figure S1), and misfolded/damaged proteins

(Figure 5C).



Figure 5. Attenuated Proteasomes and Impaired Mitochondria Display Antioxidative Stress Response Markers

(A) Defective proteasomes cause mitochondrial fragmentation. Fluorescent images of the mitochondrial network in body-wall muscle cells from 2-day-old adult

nematodes expressingmitochondria-localized GFP under control of themyo-3 promoter that were fed with RNAi bacteria from L3 larval stage for 72 hr. Scale bar

indicates 8 mm.

(B) Proteasome inhibition fragments mitochondria in mammalian cells. BHK-21 cells were treated with 10 mM MG132 for 3 hr, mitochondria were stained with

MitoTracker green FM, and nuclei were visualized using Hoechst at 633 magnification.

(C) Oxidized proteins correlated with impaired UPS. Total cell extracts from proteasome mutants (pre11-22 and rpn11-m1) and WT yeasts were reacted with

DNPH to evaluate oxidized proteins. Pgk1 immunoblot served for normalization.

(D) Proteasome defects induce the oxidative stress response. Nematodes expressing GFP::NLS under the control of the gst-4 promoter were fed with RNAi-

expressing bacteria from L3 larval stage for 48 hr (PAS-1 and PBS-2 are 20S a1 and b2 subunits, respectively) and imaged (left: GFP fluorescent; right: DIC). WT

and rpn11-1 strains were immunoblotted to detect SOD levels in whole-cell extract.

(E) Upregulation of the antioxidative stress response in a proteasome mutant, rpn11-1. WT and rpn11-m1 proteomes were compared by SILAC MS/MS analysis

of normalized cell lysates. Intensity ratios of identical peptides (heavy-to-light) were obtained by running the entire combined peptide data set throughMaxQuant

software (Cox and Mann, 2008). More than 100 proteins were significantly enriched in the proteome of rpn11-m1 relative to WT (Table S3). Representative

proteins enriched in rpn11-m1 (red), unchanged (yellow), or decreased in rpn11-m1 (green) are listed.

(F) Biological pathways significantly enriched in rpn11-m1 cells (rpn11-m1/WT > 3) were classified using the AmiGO program (right). For each category, the

‘‘enrichment factor’’ is the ratio between the category in highly enriched proteins relative to its proportion of the total proteome (red bar), along with the number of

proteins in the enriched sample.
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DISCUSSION

Prolonged proteasome inhibition often causes cell death. A

decrease in proteolytic capacity may lead to pervasive defects

such as protein aggregation, neurodegeneration, certain can-

cers, aging, and even apoptosis. It was surprising that despite

temporary 26S proteasome disassembly and attenuation of

ubiquitin-conjugate turnover that followed acute short-term

oxidative stress, organisms/cells remained viable. The reversible

nature of proteasome disassembly suggests an adaptive

response rather than protein damage. ‘‘Pausing’’ the ongoing

turnover of ubiquitinated proteins may allow cells to redirect

resources elsewhere. Simultaneously, thiol groups on 26S

proteasome subunits are blocked (by dicysteine formation or

glutathionylation) and protected from irreversible oxidation or

damage. For instance, glutathionylation of cysteine residues on

the surface of a-subunits was found to open the 20S channel,

thereby activating proteolysis (Silva et al., 2012). In this manner,

cysteine modifications may influence ratio of 20S to 26S, as well

as their relative activities. Subcomplexes released under stress

upon 26S proteasome oxidation may also play new roles. The

proteolytic activity of free 20SCP is expected to be less selective

than that of 26S holoenzymes and thus more efficient in tackling

misfolded/damaged proteins (Tsvetkov et al., 2012). Indeed, free

20S CP is highly efficient in proteolyzing certain loosely folded or

unstructured proteins in vitro (Bajorek et al., 2003; Glickman

et al., 1998a) and in a ubiquitin-independent, 20S-dependent

manner in vivo (Davies, 2001; Mukhopadhyay and Riezman,

2007; Orlowski and Wilk, 2003; Shringarpure et al., 2001,

2003). Thus, CPs may aid the oxidative stress response by de-

grading oxidized and damaged proteins (Bader and Grune,

2006; Grune et al., 2003; Reinheckel et al., 1998; Sitte et al.,

1998). Shifting the proteasome population from a majority of

26S to a greater proportion of 20S CP may be a mechanism

for adapting to the proteolytic capacity.

Proteostasis may be preserved by inducing compensatory

mechanisms even if the UPS is slowed down. Induction of anti-

oxidative stress response, detoxification enzymes, chaperones,

heat shock proteins, and mitophagy may alleviate the flux

through the UPS, whereas directing ubiquitin molecules toward

other protein quality-control systems, such as autophagy and

trafficking, may take up some of the slack (Yao, 2010; Ziv

et al., 2011). For example, administering a nontoxic low dose

of the proteasome inhibitor PS-341 (bortezomib) to rats induced

elevation of some of the same antioxidative defense enzymes

that we identified in rpn11-m1 (glutathione reductase, gluta-

thione synthetase, glutathione peroxidase 2, and SOD2) and

increased their ability to overcome oxidative stress (Bardag-

Gorce et al., 2011). The mutual dependence of proteostasis

pathways such as the UPS, autophagy, heat-shock system,

and antioxidative stress response may explain their similar

importance in staving off protein-based pathologies (Cecarini

et al., 2012; de Moura et al., 2010; Green et al., 2011; Ross

and Pickart, 2004). Moreover, proteasomal and mitochondrial

mutants have each been identified independently as root causes

of protein-aggregation and other neurodegenerative diseases

(Lin and Beal, 2006). Therefore, studies of metabolic syndromes,

mitochondrial disorders, and even aging-related phenomena
1378 Cell Reports 7, 1371–1380, June 12, 2014 ª2014 The Authors
may benefit by considering the malleable capacity of UPS-

dependent turnover. Apparently, proteasome dissociation/asso-

ciation is a reversible process that responds to cellular needs.

EXPERIMENTAL PROCEDURES

Nondenaturing PAGE and In-Gel Proteasome Activity

Native protein samples were resolved by nondenaturing PAGE and protea-

some activity was visualized as previously described in Glickman et al.

(1998a) and Bajorek et al. (2003). All gels and buffers used to assay proteaso-

mal stability upon oxidative stress were prepared without DTT.

Trichloroacetic Acid Precipitation

Samples were prepared as previously described (Matiuhin et al., 2008; Ziv

et al., 2011) and separated on an 8%SDS polyacrylamide gel to visualize ubiq-

uitin conjugates using a ubiquitin antibody (Dako).

CHX Chase

CHX (Sigma) was added to logarithmic-phase cultures (after removal of oxida-

tive reagents) to a final concentration of 200 mg/ml. Samples were taken at the

indicated time points, lysed, and loaded on native gel for activity assay. In

order to detect Fzo1 levels, CHX chase was performed as described previ-

ously (Cohen et al., 2008, 2011).

C. elegans Strains

TheBristol N2 strain was used as theWT strain. Strains carrying reporter genes

included dvIs19[pAF15(Pgst-4::GFP::NLS)], hhIs67 [unc-119(+); Psur-5::UbiV-

GFP];hhIs57 [unc-119(+); sur-5::GFP]; and unc-119(ed4), zcIs14[Pmyo-

3::GFP(mit)].

Other experimental procedures are detailed in Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

three figures, and four tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.04.030.
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