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Abstract.

This work provides a performance comparison of fdifferent machine learning classifiers: multinomia
logistic regression with ridge estimators (MLR)sddier, k-nearest neighbours (KNN), support vectachine
(SVM) and naive Bayes (NB) as applied to terahg€rtdz) transient time domain sequences associatdd wi
pixelated images of different powder samples. Tikesabstances considered, although have similaicapt
properties, their complex insertion loss at the Tpéat of the spectrum is significantly differentchese of
differences in both their frequency dependent Tktinetion coefficient as well as differences inithefractive
index and scattering properties. As scattering banunquantifiable in many spectroscopic experiments
classification solely on differences in complexer®n loss can be inconclusive. The problem isreskbd
using two-dimensional (2-D) cross-correlations hessv background and sample interferograms, thesgesns
good noise suppression of the datasets and previdege of statistical features that are subselyuesed as
inputs to the above classifiers. A cross-validatmocedure is adopted to assess the performandbeof
classifiers. Firstly the measurements related topées that had thicknesses of 2mm were classitieeh
samples at thicknesses of 4 mm, and after that 3uama classified and the success rate and consjstéreach
classifier was recorded. In addition, mixtures hgwhicknesses of 2 and 4 mm as well as mixtures 8fand 4
mm were presented simultaneously to all classifigtss approach provided further cross-validatidnthe
classification consistency of each algorithm. Thsuits confirm the superiority in classificationcaacy and
robustness of the MLR (least accuracy 88.24%) amdNK(least accuracy 90.19%) algorithms which
consistently outperformed the SVM (least accuragyp¥%) and NB (least accuracy 56.86%) classifiergtie
same number of feature vectors across all stud@ites work establishes a general methodology forsagsg the
performance of other hyperspectral dataset classifon the basis of 2-D cross-correlations in frifnared
spectroscopy or other parts of the electromagngpectrum. It also advances the wider proliferatain
automated THz imaging systems across new applicaieas e.g., biomedical imaging, industrial preices

and quality control where interpretation of hypexspal images is still under development.

Key-words. Terahertz spectroscopy; 2-D cross-correlation; Maihial logistic regression classifier:iearest

neighboursSupport vector machine; Naive Bayes.
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Over the past 20 years, terahertz (THz or T-rayqa imaging has become an increasingly
popular complementary imaging modality due to idity to simultaneously acquire both
spatial and spectral information at a previouslgcoessible part of the electromagnetic
spectrum [1]. The technique nicely complementst@gsmethods in the XUV, UV, visible
and infrared parts of the spectrum. T-rays haveiraber of unique characteristics, which
give rise to a large number of potential applicagian very diverse fields such as, security,
pharmaceutical quality control, medical imaging amaterial science [2]. In addition, owing
to their low photon energy, T-rays are non-ionizargl are thus considered of not inducing
damage to tissue or DNA. Therefore, they are ctiy@onsidered as viable alternatives to
X-rays for imaging in biomedical applications whée subject may not be irradiated by X-
rays e.g., for mammograms in pregnant or lactatv@men. Alternative applications
benefitting from this technology include retecti@etection of hidden objects or substances
within a package), where THz tomographic image resttcan be superior to conventional
methods such as X-rays that only differentiate abj@r regions in an image mainly on the
basis of different sample density but have diffi@sl in detecting plastic objects or soft
biological materials of similar density. In contra$-ray wavelengths can pass through dry
substances (e.g. thin cardboard and plastics), eds a8 through non-polar, non-metallic
materials and can show spectral differences dwedifferent extinction coefficient between
samples. Concealed weapons or products containgdastic packages and non-metallic
components that are not readily detectable by ategins can therefore be easily detected
using THz imaging techniques. The approach is pésticularly promising for the detection
of specific chemical and biological agents [3, thfough chemical fingerprinting. Within a
pharmaceutical setting, such systems can perforntipheu functions [5] enabling the
identification of drug polymorphisms [6], providingformation on coating structures [7-10],
enabling the identification of phase transitionscieemical compounds [11] or degree of
substance crystallinity [12-15] providing opportigs for tailoring the formulations at each
processing step or enabling the monitoring of ploaiemical product deterioration during
processing or storage [16-17]. Furthermore, tlgh hransparency of polymer materials to
THz waves enables non-destructive inspection ofsulated substances such as drugs [18],
making this imaging modality particularly useful tbe pharmaceutical industry. It is
therefore clear that quality control for pharmagmlt industry is therefore seen as a
potentially important application area for THz invag systems [19-22] provided reliable
machine learning techniques can be integrated tvéhsensing equipment. The use of T-ray

pulse transients for simultaneously extracting rimfation on densities, thicknesses and
2
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number of absorber molecules per unit volume ifedéht powder samples forms the basis
for simultaneously addressing detection and classibn requirements across both
pharmaceutical [23-25] as well as security indastfR5-26].

It is worth noting that THz imaging spectrometexsite samples with femtosecond
duration pulses which are extremely broadband, leerpulse spectrum spans over a
frequency range between 100 GHz (such excitati@sssciated with a wavelength of 3 mm)
up to 3 THz (with a corresponding wavelength of Guh) and in some systems all the way
up to 10 THz (with a corresponding wavelength dd30mm). As a consequence, many
experiments may also contain spectral signaturescaged with measurement artefacts at
the Rayleigh to Mie transition region where thei@ation wavelength becomes similar to the
size of the particles that need to be characteri&ed consequence, in all femtosecond pulse
based THz imaging systems it is not uncommon thehsurements of many powdered
samples can miss out a scattering component of ltteeradiation, especially at frequencies
closer to the infrared part of the spectrum. Soatjecan cause particularly severe problems
in THz time domain spectrometry, such instruments anly reliable at measuring
transmittance (by measuring attenuation), or reflac(impedance mismatch) within a well-
defined aperture, at a well-defined sample-airrfat® and across a single plane defined
perpendicularly to the direction of propagationtleé THz pulse. From these measurements
absorption can finally be estimated, under the igron that scattering is negligible. In the
datasets chosen to be investigated in the curtedy,sthere is some unquantifiable by other
means scattering component because the samplegfans of different dimensions, hence
there is a problem in adopting standard procesmmbpperform classification solely based on
information associated with specific spectral feagu Since THz pulse imaging is extremely
broadband, there may be different degree of soagtaissociated with the spectral signatures
across different spectral bands, this is espedially if samples are in powdered form. Such
problems may further be exacerbated if the powdsaedple is elliptical in shape [27]. As a
result one would expect different degree of deoratof the obtained absorption results
associated with complex insertion loss measuremantdifferent spectral bands and the
calculated spectral extinction coefficient may #igantly deviate from its true value.
Finally, contrary to continuous wave based measenénsystems [28], pulse transient
systems spatially focus the THz radiation dram#jic® as to improve on the signal-to-noise
ratio during the measurement process, this hadiadal adverse effects in that there are
deviations in the extraction of the complex insertiloss function which requires an

assumption that an angular spectrum of plane wavegident on the sample, clearly such
3
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focusing can lead to additional systematic errarestimating the complex insertion loss
function while also exacerbates the effects oftedag as sample excitation takes place over
a range of angles across the sample aperture; aughlar dependency of the degree of
scattering makes also collection of scattered gndiffjicult to perform and quantify [29].
These problems lead to a need for reassessmertiatfoan be considered as useful features
that can be meaningfully extracted in a THz imagexperiment so that an automated
machine learning methodology for the classificatidrsamples using THz imaging systems
can be developed.

A further aim of the proposed approach is to pres@ompatibility with other de-
noising techniques. Typically, the THz pulse sigrantain noise due to both systematic and
random errors and thus the signal-to-noise ratothé acquired THz spectra are low. This
introduces significant problems in the analysis ardrpretation of spectra as well as the
classification of samples (there are collineartiyues at spectral bands where the signal to
noise ratio is low, such collinearity results inkgs in the error because calculation of the
complex insertion loss is based on a ratiometmc@ss). It is therefore often the case that the
acquired complex insertion loss signatures mayasoritmited discriminative information.
One method to reduce errors due to noise is tovecage subsequent measurements for the
same pixel, however this dramatically increases time required to perform the
measurement, with several images reported in theer@uliterature being acquired over a
period of several minutes or even several hoursh @pproach also does not address spectral
bands where the source output spectral power is low

Although there is an extensive literature on tlgmal processing of THz spectra, 2-D
cross-correlation technigues [30-32] have attratdésd attention despite their de-noising or
feature extraction potential. Such approach reptesa natural extension of existing THz
deconvolution approaches [33] and complements d&ngpalgorithms using auto-regression
with exogenous inputs (ARX) and subspace approaf3®s5], or other state-of-the-art
signal analysis approaches [e.g.36, 37]. It is aitgresting to note that cross-correlations are
extensively used in different spectral bands (XWX, visible, infra-red) but are not as
widespread within the THz community. By performiad@-D cross correlation between the
sample and background time domain signals, exdeltBnnoising is achieved while
preserving any phase differences (which are assalcvaith the dispersion of the sample) that
might be present between the two signals. The médacross-correlogram is a nearly noise-
free signal that can convey superior discriminatplegase information compared to the

original time domain interferogram signal [30].
4
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In recent years, a humber of methods have beerogedpfor feature extraction in
conjunction with sample classification on the badiFHz pulsed signatures. Most recently,
Yin et al., [38] used directly both the real as well as complalues associated with the
Fourier Transform (FT) of the corresponding timena@mn signatures to perform de-noising
and sample classification. Furthermore, in [39); ¥i al, established that it is possible to use
specific features form the Fourier spectrum of shenple to extract T-ray feature sets for
binary and multi-class classification. The geneapproach in that method is based on
selecting specific feature vectors in the frequethmyain by taking the FT after de-
convolving the measured signals with a referenclsepuAlternative feature extraction
algorithms using adaptive wavelet coefficients amjanction with ARX, ARMAX as well as
subspace algorithms for signal de-embedding hase lzen suggested in the THz literature,
confirming the merits of this approach [34, 35,.4fj)ese measurements, however, were not
performed on powdered samples but on samples hawiigrm thickness or well controlled
thickness (micro-spectroscopy using waveguidesithEtmore, in order to use information
associated with the dispersion of the sample inucmtion with the molecular extinction
coefficient and number of absorbers across thetgpecof the measurements, alternative
classification approaches making use of the discvedvelet transforms (DWT) in T-ray
measured powder samples have also been reportpdrf# goal to further reduce the input
vector of the classifier so as not to compromisegéneralization ability has led to the
development of a hybrid pre-processing algorithat tised Auto Regressive (AR) modelling
within the wavelet decomposed sub-bands of the Pdised signals [24]. The work
complemented previous attempts by Fergusbral., [37] to classify powders concealed
within envelopes, despite the presence of stroaffestng. To our knowledge these studies
and the extreme learning approach recently devdl¢p@] are the only ones that combine
advanced signal pre-processing with classificatanpowdered samples imaged using THz
transient spectrometry. In addition, to the bestoaf knowledge, 2-D cross-correlation
techniques have never been used for feature exinaat T-ray spectra of powdered samples.
Finally, within an Analytical Chemistry context,oss-correlation techniques are not usually
explored within a machine learning perspective &g mainly discussed as a viable de-
noising tool or to elucidate fast transient proesssbserved using pump-probe techniques.
This differentiates the current study as it is &ex in advancing current algorithms from a
machine learning perspective. Such consideratianse Hed us to develop the proposed

methodology.
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A further aim of the work is also to assess theepiil of combining 2-D cross-
correlation at the pre-processing feature extracitep while systematically assessing its
impact to the performance of different classifiefiis is achieved by focusing the
investigations on the identification of several plewsamples of different composition. Our
goal is to demonstrate a generic feature extracmproach that fully utilizes the different
characteristic features found in THz pulse sigrsdsthat may be used with minimal
reformulation across different T-ray data sets.hSapproach paves the way towards the
development of a suitable machine learning clasgifbn algorithm that could be reliably
used to identify different materials independenttlo¢ir thickness on the basis of their
estimated spectrally dependent extinction coefiicieven in the presence of some
unquantifiable scattering. Feature extraction e mfost crucial step in this type of pattern
recognition because the classification performandé be significantly degraded if the
features are not chosen wisely [42]. A further asmto reduce the extracted features to
prevent over fitting while retaining most of theefid information residing in the original
vector. In order to reduce the dimensionality of ttross-correlation sequences, it is also
proposed that ten statistical features are exuidctan each cross-correlation sequence. The
validity of the cross-correlogram features as prefeinputs is subsequently evaluated in a
systematic manner by considering four machine Iegralgorithms: multinomial logistic
regression classifier with ridge estimators (MLR)nearest neighbours (KNN)upport
vector machine (SVM) and naive Bayes (NB). The obh@f these classifiers is based on
their simplicity and effectiveness in their implemttion. Investigations are performed to test
both multi-class as well as binary classificatidT aay pulse transmission signals. A 10-fold
cross-validation method is used for assessing énpnance of the proposed methodology.
This procedure divides the feature vector sets tato approximately equal-sized distinct
partitions. One partition is used for testing, vz the other partitions are used for training
the classifiers. To further improve the estimalte, procedure was repeated 10 times and all
performance metrics over these runs are averadedaVerage performances associated with
the test data is then adopted as the preferrechlbymrformance evaluation criterion. The
investigations aim to elucidate which one of tharfolassifiers would consistently achieve
the most reliable classification. The powder sampised in the study have similar optical
properties but different composition and differenmplex insertion loss at the THz part of
the spectrum.

The paper is organized as follows: Section 2 pesidn overview of the algorithm

adopted to perform the cross-correlation procestild of the statistical feature extraction
6
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process, feature aggregation and cross-validasowedl as a brief outline of the methods
associated with the four classifiers. This sectso provides information regarding the
nature of the datasets. In Section 3, the apphicatif the 2D cross-correlation procedure to
the THz datasets is discussed. The selection amapt parameter values for the reported
classifiers and the performance evaluation critemia also discussed in this section. A
performance comparison of all the classifiers sspnted and discussed in Section 4. Finally

Section 5 draws some conclusions and providestdirecfor further research.

2. Proposed classification methodology

2. 1. Overview of the pre-processing and classifier design

The general classifier structure consists of fowinmprocessing blocks: computation of
cross- correlation sequence, statistical featurgaetton, feature aggregation and cross
validation and classifier decision observation. ThB cross correlation technique extracts
the information from the T-ray pulsed signals anduares cross-correlation sequences from
each sample class. In this study, each powder auiestis considered to belong to a single
class: sand (class 1), talcum (class 2), saltgcks powdered sugar (class 4), wheat flour
(class 5), and baking soda (class 6). The sampbteh{ree-space equivalent of a cuvette)
signal is the reference signal used for evaluatimg complex insertion loss. Using the
reference signal in conjunction with the other skrgignal in a class, a cross-correlation
sequence is computed on a pixel by pixel basishiey 2-D cross correlation. Once the
characteristic features are extracted from eaclsetorrelation sequence associated with
every class, all features are integrated formirfgadure set. Following this process, cross-
validation is applied to generate training andimgssets for evaluation. The detection stage
identifies the several powder categories on thesbaisthe feature sets. Finally classifier

decisions are observed.

2.1.1. Computation of cross-correlation sequences

The 2-D cross-correlation technique [30,43-44] sedi to calculate a cross-correlation
sequence (denoted bgC(k,l)) between the reference signal and any other sigglanging
to a distinct class. The graphical presentatiom @foss-correlation sequence is commonly
known as a cross-correlogram. The 2-D cross-cdioelaf X (M-by-N matrix) andH (P-by-
Q matrix) is a matrixCC of size M+P-1) x (N+Q-1):

7
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cclkd= (M Hm ko ) = PD< k& M1s( Gds £ N1 L)

m=0 n=0
where X is considered as the reference signal &hds regarded as any other signal
belonging to a class of T-ray pulsed signals. TAedverH denotes complex conjugation.
The output matrixCC(k,l), has negative and positive row and column indidesegative
row index corresponds to an upward shift of the gt H. A negative column index
corresponds to a leftward shift of the columndHofA positive row index corresponds to a
downward shift of the rows d¢f. A positive column index corresponds to a rightivehift of
the columns. It is worth mentioning that if eachtloé signalsX andH consist of a finite
number sampleS, the resultant cross-correlation sequence Bassamples.

The THz transient transmission reference signaoissidered as noiseless for most
parts of the spectrum, so the variance in the nsfsn ratioing a sample with a background
does not get disproportionally amplified [45]. Eapowder sample is considered as
belonging to a distinct class. Fig. 1 illustratesvha cross-correlogram is obtained from a
reference signal (holder) and any of the other $aisignals, on the basis of Eq. (1).

- x10*

2-D cross

—» correlation —p> K

E . . . . . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time (ps) Time (ps)

Fig. 1. Typical cross-correlogram from THz backgrdwand sample time domain signatures

The cross-correlogram signals convey greater indion than the original powder spectra of
the sample and reference signals and thus have@uggnal to noise ratio than the original
signals. In addition, cross-correlograms contaiditaahal information regarding the spectral
coherence of the waveforms. As the cross-correladeguences contain a large number of
data points, these needs to be further compressedimore parsimonious feature space so

as not to overwhelm the classifier.

2.1.2. Statistical feature extraction

In order to reduce the dimensions of the crossetation sequences, this study considers ten

statistical features. These amean, standard deviation, skewness, kurtoSisjuartile(Q.),

8
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39 quartile (Qs), inter-quartile range(IQR), median, maximum and minimurthat are
calculated from each cross-correlation sequencés itiormation is used to create the
feature vector sets. There are several valid reagon the considerations of these ten
guantitative feature descriptors. Mean and standaxdation are particularly informative in
describing a distribution [46-47]. Skewness prosiddormation on the degree of asymmetry
of the observed distribution around its mean [43]rtosis provides a measure of flatness
relative to a normal distributior®); andQz;, measure how the data are distributed in the two
sides of the medianQR is the difference betwee@; and Q; that is used in measuring the
spread of a data set, such information can be wsegclude outliers [48-49Median which

is associated with the observation encountered rofteh is also an additional valuable
metric that needs to be retained for classificaparposes. Maximum and minimuwalues

are also used to describe the range of observatidhs the distribution. Each of the above
subroutines is run for each cross-correlation secgiassociated with each powder substance.
All ten statistical features from each cross catieh sequence and each powder substance

form the content of a feature set that is finalig@ciated with each powder material.

2.1.3. Feature aggregation and cross validation

In this stage, the obtained feature set from eawmhdpr material are combined to form a
composite feature set that contains all the featdirem all T-ray pulse signals of each
powder substance. This feature set is used to genemrining and testing sets through the
cross- validation process. In order to reduce aay obf training and test datakdold cross-
validation technique is employed [48, 50, 51] setki=10. This technique is implemented to
create the training set and testing set for evanatGenerally, withk-fold cross validation,
the feature vector set is divided irkasubsets of (approximately) equal size. The proposed
classifiers are trained and testetimes. Each time, one of the subsets from traimsnigft

out. One of the subsets (folds) is used as a &tsirgl the othek-1 subsets (folds) are put
together to form a training set. Then the averageiracy across ak trials is computed to

assess the performance of the classifier.

2.1.4. Overview of THz pulsesignal classifier algorithms

In the following section, the utility of the caleméd feature sets is evaluated through four well

established machine learning classifiers: multirdmpgistic regression classifier with ridge
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estimators (MLR), k-nearest neighbours (KNN), supp@ctor machine (SVM) and naive Bayes
(NB). Overviews of the adopted algorithms are pied below.

MULTINOMIAL LOGISTIC REGRESSION CLASSIFIER WITH RIDGE
ESTIMATORS (MLR)

Ridge estimators are used in multinomial logistegression to improve the parameter
estimates and to diminish the error made by furirediction when the application of
maximum likelihood estimators (MLE) is inappropeadiecause of the non-uniqueness of the
solution in the data fitting process. When the nemtf explanatory variables are relatively
large and / or when the explanatory variables aghly correlated, the estimates of
parameters are unstable, and are not uniquelyate{some are infinite) so the maximum of
log-likelihood is achieved at O value [52, 53].thns situation, ridge estimators are used to
generate finiteness and uniqueness of MLE to oweecsuch problems. The above rationale
provides the necessary justification for considgiine use of such classifier to the current

task. For a response variabfe(){1,2,...k} with k possible values (categories), there lare

classes fon instances withm attributes (explanatory variables), the parametatrix B that
requires to be calculated will have dimensiox(k-1). In this case, the probability for clgss

with the exception of the last class is given from:

exf % B) @
k

exp X B) +1
=1

P (%)=

J
The last class has a probability of occurring gilsgn

R () ©)

K-1
i=1 exp( % B)+1
J=1

and the (negative) multinomial log-likelihoodgaren from:

n k-1 k-1 k-1

L=L=- (YiJ-XIn(Pj(X)))+ 1- Y xini1-  P(X) + ridge B (6)

=1 j=1 j=1 j=1
In order to find the matriB for which L is minimised, a Quasi-Newton method is used to
search for the optimized values of tim&(k-1) variables [52]. At this stage it is worth nafin
that in the current implementation of the algorithtvefore we use the optimization
procedure, we 'squeeze' the maBiinto a mx k-1) matrix. A more detail description of the
MLR adopted can be found in [52, 53]. In the cursldy, X indicates the obtained feature

10
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set associated with the six powder substances Yardknotes the different categories

associated with the six the powder substances.

K-NEAREST NEIGHBOURS (KNN) CLASSIFIER

The rationale for choosing the use of a KNN aldonitis based on the fact that it is a very
intuitive method in which the classifier labels thigservations based on their similarity in the
training dataset. Among the various methods of siigped statistical pattern recognition, the
KNN rule is known to achieve consistently high pemiance, withoug priori assumptions

regarding the distributions from which the trainiegamples are drawn [54]. Given a query
vectorxp and a set oN labelled instance{sg, yl}lN the task of the classifier is to predict the

class label of&, on the predefine® classes. The KNN classification algorithm trieditw

the k nearest neighbours of and uses a majority vote to determine the classl laf xo.
Without prior knowledge, th&KNN classifier usually evaluates Euclidean distancesaa
metric [55]. An appropriate value should be selécfer k, because the success of
classification is very much dependent on this valteere are several methods to choose the
k-value; a well-established practical approach isrun the algorithm many times with
differentk-values k =1, 2,..., 20), and choose the one with the begbpeance. A detailed
discussion of this method can be found in [56-%7]the current investigation, we consider
the feature vector associated with the powder sardptasets asx§ and the six powder

categories as class labg|¥
SUPPORT VECTOR MACHINE (SVM) CLASSIFIER

The SVM is most popular machines learning tool tteat classify data separated by non-
linear and linear boundaries, originated from Vamnstatistical learning theory [58]. The

main concept in all SVM algorithms is to first tehiorm the input data into a higher

dimensional space and then construct an optimaragpg hyper-plane (OSH) between the
two classes in the transformed space [39,59]. Thlasa vectors nearest to the constructed
line in the transformed space are referred to @stipport vectors. SVM algorithms belong to
the more general area of “structural risk minimait algorithms which have been

developed specifically to attain a low probabildf generalization error. Because of their
versatility and universal applicability to a vayieif classification tasks, they have also been
considered in the current study. In order to salgalinear problems, when the data are not

11
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linearly separable, SVMs usually adopt a nonlineamnel function [39, 59], which allows

better fitting of the hyperplane to the datasets tireed to be classified. Recently, SVMs have
also been extended to solve multi-class classifingiroblems. One frequently used method
in practice is to use a set of pair-wise classfidrased on one-against-one decomposition

[39]. The decision function for binary classifiaatiis given from:

f(x)=sgn  ya k(x,x)+ b;0<a,<C 7)

i=1
where, sgn is the signum functiok(x;, X) is a kernel function an is the bias of the training
samples. In this work, a radial basis function (lRRérnel is considered as a choice for identifying
different categories of T-ray signals because thias found to give the best classification
performance. Her€ is the regularization parameter used to tune rdetoff between minimizing

empirical risk (e.g. training error). In the curtemwork, the complexity of the machine

N , : : -
C=———— is always set to its default value, wheke denotes the size of the training

) K(X,X)

i=
set,x indicates thei ™ input feature vector set (with a dimensionality&fandy; (i=1,2,..6) is the
class label ok; containing one of six categories of powder sulzstan

In the multiclass problem, SVM classification isrfpemed using a collection of decision

functionsf,. Herekl indicates each pair of classes selected from stgghtarget classes. The class

decision can be achieved by summing up the pairdésésion functions [39].

n

f ()= san(f, X)) (8)
i=1
Heren refers to the number of separated target clags$esalgorithm proceeds as follows:
first assign a label to the class: arg Mm@x), (k=1,2,...n). In the above equation, the signum
function (sgn) is used to denote a hard thresholécistbns [39] i.e.,
fu (x)>0

sgn(f, (X)) = :
n(f0N= o
The pairwise classification then converts thelass classification problem inte(n-1) /2

two-class problems which cover all pairs of clasgesoverview of SVM pattern recognition
techniques associated with the proposed methodohayybe found in [39, 58, 59].

NAIVE BAYESIAN (NB) CLASSIFIER
The NB is chosen for the current study as it igraightforward and frequently used probabilistic
classifier based on applyirfgayes' theoremvith strong (naive)ndependencassumptions [60-62].
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The NB classifier assumes that the presence (@nab3 of a particular feature of a class is uneelat
to the presence (or absence) of any other feagpending on the precise nature of the adopted
probability model, the NB classifier can be trairvedy efficiently in asupervised learningetting. In
practical applications, parameter estimation fav@d@ayes models uses the methodhaximum
likelihood. In this classifier, each class with highest gosibability is addressed as the resulting
class.

SupposeX={ Xy, Xz, Xs,.....,%} IS a feature vector set that contai@s (k=1,2,.m) classes of
data to be classified. Each class has a probalfg) that represents the prior probability of
identifying a feature int€ and the values &?(C,) can be estimated from the training dataset. For th
n feature values oX, the goal of classification is clearly to find tbenditional probability? (G X,

X2, X3,.....,%). By Bayes’s rule, this probability is equivaleat t

P(G) Xy, X X geveee Xl C,)

P Q( Xl, Xz, X3 ....... X1 = 9
(& ) P(C) P(Xy, X, Xgeee s X, ICL) ®)
The final decision rule for the NB classifier is:
classify( X X.... X)=arg maxg Q)ﬂ RXl © (10)
C, 1=

In the current study, we used the obtained feataotor set as the input in equation
(10) andCy (k=1,2,..6) indicates the number of the six powdeegaries that the data had to
be classified. In the training stade(X|Cy) is estimated with respect to the training data. In
the testing stage, based on the posterior probabB{Ci|Xi), a decision whether a test sample
belongs to a clasSg is made. A detailed description of the method lsarfound elsewhere
[54, 60-62].

2.2. Details of the THz sample datasets

The current study explores the ability of T-ray @pescopy to detect different densities,
thicknesses, and concentrations of specific powdeiples. This is a powder recognition task
for six different powdered substances of 2 mm amah4dthickness where their spectroscopic
signature needs to be de-convolved from that ohthider. The powders are: sand, talcum,
salt, powdered sugar, wheat flour, and baking sddaaddition, we also explore the
classification fidelity attained for a mixture om2n and 4mm thickness samples across all
powder substances.

In order to further assess the performance andistemcy of the proposed methods,
data from 3mm thickness powder samples for the samepowder substances is also
considered in this study. The 3mm thickness powdenples have the same composition as
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their corresponding 2mm and 4mm thickness powdepka datasetsA well set-up T-ray
imaging system which generates femtosecond durédi@anertz pulses is used to detect the
T-ray sample responses [36, 39]. The 2-D T-ray enafj the sample is obtained after
separately recording the sample holder transmitamd then inserting the powder sample.
The geometry of the experiment preserves the artl@guassociated with the effects of
different scattering paths and minor variationspowder thickness across the aperture
(pseudo-coherence effects) and density due totlligtiferent compaction levels across the
six substances observed. Sample transmittancedosded by broadband time-domain THz
transient spectrometry. The reported measurements Iheen conducted at the University of
Adelaide Australia [39]. A detailed description thie dataset acquisition process using the

THz imaging spectrometer can be found in [38-39, 37

3. Systematic evaluation of the classifier performance

To systematically evaluate the performance of thgp@sed 2-D cross-correlation based
machine learning algorithms, THz time-domain smectrom all six known powder
substances were used. These samples had very rsioptecal properties but different
absorption features at the THz part of the spectiine classification task was to correctly
identify the specific powders given they had unknasensity, thickness and concentration.
A preliminary exploration of different powder reeogon tasks was first conducted with 2
mm and 4 mm thickness samples. Collected spect@rporated the distortion from the
sample holder, this signature was eliminated byigassy the holder spectrum in the
experiments as background (reference) and ratibiegpowdered sample spectrum with that
of the background so as to extract the complexrtioseloss. The following investigations
were carried out: (i) multiclass classification tbe six categories of powder samples at a
thickness of 2mm:; (ii) multiclass classification tbe six categories of powder samples at a
thickness of 4mm (iii) binary classification in @apowder substance for a mixture of 2mm
and 4mm thickness samples. In order to obtainthduassessment of the consistency of the
proposed methodology, we performed the multicldassdication of the six categories of
powder samples at a thickness of 3 mm and alsaate the success of the algorithm to
perform multiclass classification in each powddbstance for a mixture of 2mm, 3mm and
4mm thickness sampleall the powder sample classification runs were pered using the
MATLAB version R2013b software on a personal comeputnning Windows 7 with an
Intel(R) Core(TM) i5-4570S CPU (2.90 GHz) and 8 @Bmemory. The following four
classification algorithms were used: MLR, KNN, Svahd NB implemented in WEKA
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machine learning toolkit [63]. LIBSVM (version 3./§4] is used for the SVM classification
in WEKA.

3.1. Selection of optimal parameter valuesfor the adopted classifiers

In the MLR method, the parameters are obtainednaatically through the ridge estimator. The KNN
model has only one parametewhich refers to the number of nearest neighborsv@yingk, the
model can be made more flexible. In the currentlstwe have chosen the appropriatealue
through an automatic process following aelection error log as there is no simple rulestlecting

k. We consider the range kivalues between 1 and 20, and picked an approgriaatie that results

in lowest error rate as this is associated withbtb&t model. In the experimental results, we olitaen
lowest error rate fok=1. For the SVM, the RBF kernel function was emplbys an optimal kernel
function over several different kernel functionattivere tested. As there are no specific guidelioes
set the values of the parameters for the MLR ard¥IM classifiers, we considered the parameter
values that have been used in WEKA as default patemsettings. The NB consists of humber of
parameters that are estimated from the trainingnples. Parameter estimation for the NB models

uses the method of maximum likelihood.

3.2. Performance evaluation criteria

In this study, we assess the performance of thpgsex classifiers using widely accepted
metrics such as accuracy, true positive rate (T@RIRp called sensitivity or recall), false
positive rate (FPR) (also called false alarm rate(lospecifity)), precision (also called
positive predictive value), F-measure, mean absautor (MAE) and kappa statistics. These
criteria were applied to assess all extracted featiata. The evaluation metric adopted is
accuracy rate as percentage of correct predic6dr6[/]. The TPR provides the fraction of
positive cases that are classified as positive 89, The FPR [49, 69] is the percentage of
false positives predicted as positive from samplgenging to the negative class. The FPR
usually refers to the expectancy of the false pasitatio. Precision is a measure which is
used to estimate the probability that a positivedmtion is correct. F-measure is a combined
measure for precision and recall calculated as&iBion*Recall /(Precision + Recall) [49].
Mean absolute error (MAE) is used to measure haseclpredictions are to the eventual
outcomes [49]. Kappa is a chance-corrected meadagreement between the classifications
and the true classes [49, 70]. It's calculatedaking the agreement expected by chance away

from the observed agreement and dividing by theimawn possible agreement.
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3.3. Evaluation of the 2-D cross correlation pre-processing step

The images of powder samples consist of 6 x 516=@Kels. For each pixel, the number of
samples associated to a pulse time transient ®©s#21. Fig. 2 (a) and (b) shows the time
domain responses associated with the THz transrodtaf the powdered samples with 2 mm

and 4 mm thickness,

Reference (holder) Reference (holder)
Sand (2mm) Sand (4mm)
.......... Talc(2mm) weseeenees: Talo(4mm)
....... Salt(2mm) 3l — - Salt(4mm)
Sugar(2mm) Sugar(4mm)

Flour(2mm) oL Flour(4mm)
Soda(4mm)

Soda(2mm)

—IN 93 T—e0D A C—
o

—DN 93 T A —
=)

Time (ps) Time (ps)

Fig. 2. (a): lllustration of T-rays pulses througmm Fig. 2. (b): lllustration of T-rays pulses througimm
thickness of six different powders and their holde thickness of six different powders and their holde
(reference) in the time domain (reference) in the time domain

respectively. It can be seen that the weakest (ratishuated) signals are seen for the
powders with sand and salt. According to expeatati@as the thickness of the powders were
varied the T-rays pulse showed a linear increagihase (or delay of the time domain pulse)
and an exponential decay in amplitude with thicknes

In the proposed methodology, each pixel (a T-ragesignal) signal in a powder
substance is cross-correlated with the referemgeabi(holder signal) so that it produces a
cross-correlogram
sequence. Each of the six powder substances isagadmwf a 51 pixels signal irrespective of
thickness (e.g. 2mm, 4mm, 3mm, the mixture of 2nmmud 4mm, and the mixture of 2mm,
3mm and 4mm thick samples whether they are in farre or mixture. The reference signal
also is composed of 51 pixel signals and each miglal contains 401 data points. In the
proposed scheme, the reference signal is crosslatad with the data of a class with the 51
pixel signals using equation (1) and thus for epotvdered substance, 51 cross-correlation
sequences are obtained where each sequence co@@indata points. As mentioned in
Section 2.1.1, if a reference sign¥) (and any other signaHj of a class consists &

number of samples, the resultant cross-correlat@muence ha®S-1samples. Here5=401.
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Hence, each class powder samples corresponds s-aooselation sequence matrix with

dimension 801x51. The proposed 2D cross-correlagipproach ensures far superior de-

noising than a traditional single pixel by pixebss-correlation but at the expense of
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Fig. 3. An example of T-ray signal for 2mm sandt;,taalt, sugar, flour and soda with their correxping cross-

correlation sequence

additional computations. Fig. 3 shows an examplethaf calculated cross-correlogram

patterns. Each cross-correlogram is calculatetjusguation (1) for each tinkeg. From this

figure, one can see that in most of the caseshhpes of the curves are not exactly the same,

this indicates statistical independency.

This pre-processing stage is followed by calcutaid the ten statistical parameters

(see discussion in Section 2.1.2) from each obtheross-correlation sequences in a class so

as to obtain feature matrices with dimension 51xttus, for all six categories of powder

data samples, we
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(a) Accuracy: 2mm powder data
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Fig. 4. Classification performances for differeotmber of features on 2mm thickness powder dateadqedracy
(b) TPR (c) FPR (d) Precision and (e) F-measure.

acquire a total of 306 feature vectors with 10 disens. MATLAB functions were
employed for calculating mean, standard deviatsgewness, kurtosi€i, Qs, IQR, median,
maximum and minimum from each cross-correlationusege. Using thelO-fold cross
validation method, the obtained feature vectoriselivided into a training set and a testing
set. The training set is applied to train the dfessand the testing vectors are used to verify
the performances and the effectiveness of

the classifiers. The feature vectors were evalutdtesligh all four classifiers. Classification

performances are evaluated in term of accuracy, HPR, precision and F-measure.
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Fig. 4 (a)-(e) shows the variation in performanimeshe mentioned four classifiers as

a function of increased number of input featurethin 2mm thickness powder dataset. The

number of

Frecesion (%)

Accuracy (%)

(a) Accuracy: 4mmpowder data
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Fig. 5. Classification performances for differenmber of features on 4mm thickness powder datade)racy
(b) TPR (c) FPR (d) Precision and (f) F-measure.

the input features is varied from 2 to 10. It da seen that the corresponding accuracy, TPR,

precision and F-measure for each four classifiersrecreased monotonically and almost linearly with

the number of feature vectors and the FPR of eauh dlassifiers are going to decrease with the

increase number of feature vectors, this indicatassistency in the proposed analysis. From these

figures, it is also observed that in all performaravaluations, the MLR classifier yields a better
performance individually, for 2, 4, 6, 8 and 10tteas compared to the KNN, SVM and NB
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classifiers. As shown in Figs. 4(a)-(e), among thported four classifiers, the MLR classifier
produces the best performances when using 10 &satuhile the NB classifier consistently displays

the lowest performances.
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Fig. 6. Classification performances for differentmber of features on the mixture of 2mm and 4mmasod

powder data: (a) accuracy (b) TPR (c) FPR(d) Piatiand (e) F-measure.

Figs. 5 (a)-(e) depict the performance of all tlessifiers on the basis of the number
of features in the 4mm thickness powder samplesd&taSimilarly to the results in Fig. 4,
the classification performance for each of the foassifiers increases when the number of
features is increased. The MLR classifier yieldstdveperformance in most of the cases

compared to the other three classifiers while tBechssifier performance is the lowest.
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Fig. 6 (a)-(e) illustrates the classification a@my, TPR, FPR, precision and F-
measure for all classifiers as a function of nunddeieatures for the mixture of 2mm and 4
mm thickness soda powder data. As can be seerpdafiermance of each of classifiers
improves when the number of features considereeases. The highest performances are
obtained when assuming 10 features and the lowe&t features. In these figures, both MLR
and KNN show similar performance, this is supetiothat of the other two classifiers on the
mixture of 2mm and 4mm thickness soda sample.ntatso be seen that the NB classifier is
the least successful in the classification task ttiee other three. This is a very positive
overall outcome as it indicates stability consisteand robustness in the results with the 2-D
cross correlation feature extraction methodology #éime adopted classifier performance
evaluation method. These results point to a netyegsiuse all 10 features for the further
evaluation of the proposed classifiers as discusstte following sections.

4. Results and discussions

Tables 1-3 presents the classification resultglidiour classifiers in more detail assuming 10
features are used for all powder sample composition 2 mm, 4 mm and the mixture of

2mm and 4mm sample thicknesses, respectively. désetithree tables, the class-specific
performances for each powder substance and alsalbperformances in terms of accuracy,
TPR, FPR, precision and F-measure are reportedabie 1, it can be observed that the
performances (the values of accuracy, TPR, pretiama F-measure) for the MLR classifier

are most promising, which is 100% across

Table 1: Classification results on 2mm thicknessger data

Classifier Performance Classes and their performance (in percentage)
parameters

Sand Talc Salt Sugar Flour Soda Overall

Accuracy 100 100 100 100 100 100 100

MLR TPR 100 100 100 100 100 100 100

FPR 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Precision 100 100 100 100 100 100 100

F-measure 100 100 100 100 100 100 100
KNN Accuracy 100  98.04 100 98.04 100 100 99.35
TPR 100  98.0C 100 98.00 100 100 99.33
FPR 0.0 0.40 0.0 0.40 0.0 0.0 0.133
Precision 100 98.0C 100 98.00 100 100 99.33
F-measure 100  98.0C 100 98.00 100 100 99.33
SVM Accuracy 100 84.31 100 90.20 100 100 95.75
TPR 100 84.3cC 100 90.20 100 100 95.75

FPR 0.0 2.00 0.0 3.10 0.0 0.0 0.85
Precision 100  89.6C 100 85.20 100 100 95.80
F-measure 100  86.9C 100 87.60 100 100 95.75
NB Accuracy 98.04 64.7¢ 96.08 68.63 96.08 100 87.26
TPR 98.00 62.7C 96.10 68.60 96.10 100 86.92
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FPR 1.20 6.70 0.40 7.10 0.40 0.0 2.63
Precision 9430 65.3C 98.00 66.00 98.00 100 86.93
F-measure 96.20 64.0C 97.00 67.30 97.00 100 86.92

every category irrespective of powder substancethad-PR is also 0%. Furthermore, the

performance parameter values for the KNN classiieslightly better than those of the SVM
and NB classifiers while the SVM classifier perf@armetter than the NB classifier. In
addition, the soda powder samples are the easibst $eparated, with classification accuracy
of 100% in all cases, whereas the talc and sugad@osamples are the most difficult to
classify. The results in Table 1 also clearly showat the MLR classifier using al0 feature
set yields the best performance across all classifand the NB classifier shows a
consistently inferior performance.

As shown in Table 2, the overall accuracy of the RVLKNN, SVM and NB
classifiers are 98.69%, 98.37%, 95.75% and 87.2&Xpectively for the 4mm thickness
powder samples on the basis of 10 features bekegppted at their inputs. The overall TPR
for the MLR, KNN, SVM and NB classifiers are 98.7%3.37%, 94.45% and 85.95%,
respectively and the FPR values are 0.27%, 0.33P4,2% and 2.80% respectively. The
overall precision and F-measure are 98.7% and 98168 the MLR, 98.37% and 98.35% for
the KNN, 94.80%, 94.40% for the SVM and 85.87% and

Table 2: Classification results on 4mm thicknessger data

Classifier Performance Classes and their performance (in percentage)
parameters
Sand Talc Salt Sugar  Flour Soda Overall
Accuracy 100 96.08 100 96.08 100 100 98.69
MLR TPR 100 96.10 100 96.10 100 100 98.7
FPR 0.0 0.80 0.0 0.40 0.40 0.0 0.27
Precision 100 96.10 100 98.00 98.10 100 98.7
F-measure 100 96.10 100 97.00 99.00 100 98.68
KNN Accuracy 100 96.08 100 94.12 100 100 98.37
TPR 100 96.10 100 94.10 100 100 98.37
FPR 0.0 1.20 0.0 0.80 0.0 0.0 0.33
Precision 100 94.20 100 96.00 100 100 98.37
F-measure 100 95.10 100 95.00 100 100 98.35
SVM Accuracy 100 92.16 100 74.51 100 100 94.45
TPR 100 92.20 100 74.50 100 100 94.45
FPR 0.0 5.10 0.0 1.60 0.0 0.0 01.12
Precision 100 78.30 100 90.50 100 100 94.80
F-measure 100 84.70 100 81.70 100 100 94.40
NB Accuracy 100 60.78 100 56.86 100 98.04 85.95
TPR 100 60.80 100 56.90 100 98.00 85.95
FPR 0.0 8.60 0.40 7.80 0.0 0.0 2.80
Precision 100 58.50 98.10 59.20 100 100 85.97
F-measure 100 59.60 99.00 58.00 100 99.00 85.93

85.93% for the NB. Thus, in most of the cases, MHeR classifier yields the highest
performance and the NB lowest one. Moreover, thel ggowder samples are easiest to
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separate (classification accuracy of 100% acrosfoaf classifiers), whereas the talc and
sugar powder samples are more challenging to tassi

Table 3 reports the experimental classificatiorcontes for the mixture of 2mm and
4mm thickness samples for all six powder substantess classification is performed as a
binary process (2 class classification). Here,2tmen powder substance is considered as one
class and the powder substance of 4mm thicknessonsidered as another class e.g.
classification of a 2 mm sand sample
and a 4 mm sand sample. As can be seen from thles the powder samples of sand, talc,
salt, sugar and flour are easiest to be separataticoMLR, KNN and SVM classifiers,
(where a classification accuracy of 100% was addawnder all the cases), whereas the soda
powder sample proved more difficult to classify.eTNB classifier could not classify
successfully powder substance mixtures. Also, thdaspowder sample was consistently

more difficult to classify.

Table 3: Classification results on the mixture wfr@ and 4mm thickness powder data

Classifier ~ Performance Classes and their performance (in percentage)
parameters Sand Talc Salt Sugar Flour Soda
2mm Amm  2mm 4mm 2mm 4mm 2mm 4mm 2mm 4mm 2mm 4mm
MLR Accuracy 100 100 100 100 100 100 100 100 100 100 98.04 100
TPR 100 100 100 100 100 100 100 100 100 100 98.0 100
FPR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
Precision 100 100 100 100 100 100 100 100 100 100 100 98.10
F-measure 100 100 100 100 100 100 100 100 100 100 99.0 99.0
KNN Accuracy 100 100 100 100 100 100 100 100 100 100 100 100
TPR 100 100 100 100 100 100 100 100 100 100 100 100
FPR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Precision 100 100 100 100 100 100 100 100 100 100 100 100
F-measure 100 100 100 100 100 100 100 100 100 100 100 100
SVM Accuracy 100 100 100 100 100 100 100 100 100 100 100 100
TPR 100 100 100 100 100 100 100 100 100 100 100 100
FPR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Precision 100 100 100 100 100 100 100 100 100 100 100 100
F-measure 100 100 100 100 100 100 100 100 100 100 100 100
NB Accuracy 92.16 100 96.08 98.04 98.04 100 92.16 98.04 96.08 100 100 98.04
TPR 92.20 100 96.10 98.00 98.00 100 92.20 98.00 96.10 100 100 98.0
FPR 0.0 7.80 2.0 3.90 0.0 2.0 2.0 7.80 0.0 3.90 2.0 0.0
Precision 100 92.7 98.00 96.20 100 98.10 97.90 92.60 100 96.20 98.10 100
F-measure 95.9 96.2 97.00 97.10 99.00 99.00 94.90 95.20 98.00 98.10 99.0 99.0

In order to further demonstrate the effectivendsthe proposed methods, we also
apply our methodology on results obtained usingn® sample thicknesses and the results are
reported in terms of accuracy, TPR, FPR, precisioth F-measure. These details are shown
in Table 4. It can be seen that the overall acqui@icthe MLR, KNN, SVM and NB
classifiers with the 10 features set are 96.73%38¥, 95.42% and 89.87%, respectively for
the 3mm thickness powder samples. Here, the accufathe KNN classifier is a little bit

higher than the MLR classifier while it is the lostefor the NB classifier, this result is
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reasonably consistent to those obtained by clasgifthe 2mm and 4mm powder datasets.
The other performance criteria show also similansistency in classification accuracy.

Similarly to the case of the 2mm and 4mm thickremsd and soda powder samples, the 3
mm samples are the easiest to be separated, aghifatation accuracy of 100% in all cases
for all four reported classifiers, whereas the tahd sugar powder samples are the most

difficult to classify.
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Table 4: Classification results on 3mm thicknessger data

Classifier Performance Classes and their performance (in percentage)
parameters
Sand Talc Salt Sugar  Flour Soda Overall
Accuracy 100 88.24 96.08 96.08 100 100 96.73
MLR TPR 100 88.20 96.10 96.10 100 100 96.70
FPR 1.20 0.8 0.0 1.60 0.0 0.40 0.70
Precision 94.40 95.70 100.0 9250 100.0 98.10 96.80
F-measure 97.10 91.80 98.0 94.20 100 99.00 96.70
KNN Accuracy 100.0 90.19 100.0 94.12 100.0 100.0 97.38
TPR 100.0 90.20 100.0 94.10 100.0 100.0 97.40
FPR 0.0 1.20 0.0 2.00 0.0 0.0 0.50
Precision 100.0 93.90 100.0 90.60 100.0 100.0 97.40
F-measure 100.0 92.00 100.0 92.30 100.0 100.0 97.40
SVM Accuracy 100.0 78.43 100.0 94.12 100.0 100.0 95.42
TPR 100.0 78.40 100.0 94.10 100.0 100.0 95.40
FPR 0.0 1.20 0.0 4.30 0.0 0.0 0.90
Precision 100.0 93.00 100.0 81.40 100.0 100.0 95.70
F-measure 100.0 85.10 100.0 87.30 100.0 100.0 95.40
NB Accuracy 100.0 76.47 1000 7451 88.23 100.0 89.87
TPR 100.0 76.50 100.0 74.50 88.20 100.0 89.90
FPR 0.0 7.50 0.0 4.70 0.0 0.0 2.00
Precision 100.0 67.20 100.0 76.00 100.0 100.0 90.50
F-measure 100.0 71.60 100.0 75.20 93.80 100.0 90.10

Table 5 reports the classification outcomes forrtineture of 2mm, 3mm and 4mm thickness
samples for all six powder substances. This classibn task is set up as a three class
problem. Here, the 2mm thickness powder substamcensidered as belonging to the first
class, the 3mm thickness powder substance is amesics belonging to the second class and
the 4mm thickness powder substance is considerbdlasging to the third class. As can be
seen from this table, the overall accuracy forMieR is 99.56% for all the powder samples
while this value is 99.35% for KNN, 91.83% for SVihd 91.82% for NB classifier.
Similarly to the classification results discussedhe previous sections, in most of the cases,
the MLR classifier consistently yields the highpstformance whereas the NB classifier the
lowest one. As shown in Table 5, the good clas#ifim performance and classification
consistency of the proposed method in discrimilgaéioross samples in a mixture consisting
of three thickness (2mm, 3mm and 4mm) powder data when from a compositional
perspective these samples were originally very bamiscriminate, demonstrate that the 2D
cross correlation based feature extraction appreachessfully de-noises the datasets while
at the same time enables us to resolve usefulrésain the time domain signals associated
with each pixel in the image in a consistent manfars is significant bearing in mind that
classification tasks that were difficult to perfoim the past due to the presence of some
unquantifiable scattering become now possiblesltaiso worth noting that although in

analytical sciences, cross-correlation techniquagehbeen mainly explored within a de-
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noising context, the proposed methodology placesafalgorithms within a machine learning

context. It may also be concluded that the MLR owerful and less

Table 5: Classification results on 2mm, 3mm and 4fiokness powder data

Classifi | Performa Classification performance (in percentage) among three thickness: 2mm, 3mm and 4mm of each powder
er nce
parameter Sand Talc Salt Sugar Flour Soda
s 2mm 3mm 4mm 2mm 3mm 4mm 2mm 3mm 4mm 2m | 3m | 4m 2mm 3m | 4m | 2m 3mm 4m
m m m m m m m
Accuracy 98.04 98.04 98.04 100 10 100 100 100 1p098. 10 | 100 100 10| 10 10 100 100
MLR 04 0 0 0 0
TPR 98.0 98.0 98.0 100 100 104 10 100 1QC 98. 10 | 100 100 10| 10 10 100 100
0 0 0 0 0
FPR 0.0 2.0 1.0 0.0 0.0 0.0 1.0 0.0 0. q.0 .0 [1.00.0 00| 0.0[ 0.0 0.0 0.4
Precision 100 96.2 98.0 100 104 10 100 190 100 1ao 98. 100 10 10 10 100 100
0 0 10 0 0 0
F-measure 99.0 97.1 98. 10 10p 100 100 1po 1009. (910 99. 100 10 10 10 100 100
0 0 0 0 0 0
KNN Accuracy 100 96.08 100 100 10q 10! 10p 96/08 98040 | 10 | 100 100 10| 10 | 9s. 100 100
0 0 0 0 04
TPR 100 96.10 100 100 100| 10d 10 96.10 94.0 1010 | 100 100 10| 10 | 9s. 100 100
0 0 0 0 0
FPR 0.0 0.0 2.0 0.0 0.0 0.0 0.0 1.4 2. 4.0 .0 p.00.0 00| 0.0[ 0.0 1.0 0.4
Precision 100 100 96.2 100 104 10 10D 98,0 96,200 (110 | 100 100 10| 10 10 98.10 100
0 0 0 0 0
F-measure 100 98.0/ 98.1 104 10D 100 100 9.0  97.100 | 10 | 100 100 10| 10 | 99. | 99.0 | 100
0 0 0 0 0
SVM Accuracy 100 98.04| 92.14 96.08 98.04 96.p8 100 143 100 80.| 62. | 100 100 96.| 94. | 10 | 96.08 | 100
39 75 08 12 0
TPR 100 98.0 92.2| 96.10 98.d 96.10 10p 43110 1p0 . [8®2. | 100 100 96.| 94. | 10 | 96.10 | 100
40 70 10 10 0
FPR 0.0 3.9 1.0 1.0 3.9 0.0 0.0 0.9 28.40 89.8 0.0 0.0 29| 2.0 0.0 0.0 2.0
6 0
Precision 100 92.6 97.9 98.Q 92.6 100 100 100 63.868. | 76. | 100 100 94.| 96. 10 100 96.
30 | 20 20 0 0 20
F-measure 100 95.2 94.9 97. 95.20 98,0 100 60.3 .907y 73. | 68. | 100 100 95.| 95. 10 98.0 98.
90 | 80 10 0 0 10
NB Accuracy 90.19| 96.08 9412 8627 8431 7843 88/280.39 | 90.19| 90.| 86. | 94. | 96.08 | 74.| 96. | 92. | 82.35 | 74.
19 | 27 | 12 51 | 08 | 16 51
TPR 90.2 | 96.10| 94.10 86.3 8430 78.40 8820 80400.20 | 90.| 86. | 94. | 96.10 | 74.| 96. | 92. | 82.40 | 74.
20 30 10 50 10 20 50
FPR 1.0 2.0 6.9 3.90 14.7 6.9 0.4 9.8 108 P09 [2.9.8 7.8 20| 69| 29 167 | 59
0
Precision 97.90 96.10 87.3 91.70 74.10 8510 1p0 0.408| 80.70 95.| 93. | 82. 86.0 95. | 87. | 94. | 71.20 86.
80 | 60 | 80 0 50 0 40
F-measure 93.90 96.1 90.6) 88.90 7890 8160 93.880.40 85.20 92.| 89. | 88. 90.70 83.| 91. | 93. | 76.40 80.
90 | 80 | 10 50 | 60 | 10 0

complex algorithm for THz pulse signals classificat The proposed technique should

extend the use of classification algorithms to expents where samples are not placed in a

cuvette, a sample holder or compressed in peltet fo order to perform the spectroscopic

investigations, and points towards a new way ofgpering industrial quality control using

THz imaging systems ‘in situ’ when samples aré stipowder form where different degree

of scattering may also be present in the measureprecess across the different spectral

bands. The proposed methodology therefore has dbengmal to significantly extend the

applications domain of classifiers for material retderization; this has important

applications in high value manufacturing such asgharmaceutical industry as well as for

tissue differentiation and characterization in baoiical imaging.

Fig.7 displays the proposed algorithm executioretior all four classifiers for a 10

feature input across all sample thicknesses. It lmarseen that, in every cases the SVM
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classifier takes more time than all other repodiedsifiers and the NB and KNN algorithms

are the fastest to execute.

0.8

0.7 EMLR mkNN @mSVM mNB
0.6 -
0.5 -
0.4
0.3 -

0.2 1

Elapsed time (sec.)

0.1

Thickness categories of powder data

2mm 3mm 4mm Soda 2mm 4mm Soda 2mm 3mm_4mm

Fig. 7. Elapsed time (in second) for the MLR, KNWB and SVM classifiers on 2mm, 3mm and 4mm thicknes
powder data and the mixture of 2mm & 4mm soda powdeple as well as the mixture of 2mm, 3mm & 4mm

soda powder sample dataset.

The shape of the MAE for each of the four reporiedsifiers is illustrated in Fig.8.

The lower MAE score indicates a higher performaincthe proposed approach. We can see

that irrespective of thickness the score of MAEignificantly lower for the MLR classifier
compared to the other three classifiers. On therottand, the NB classification method

consistently yields a very high MAE score. Parely, in the cases of mixture of 2mm,

3mm and 4mm powder samples, both

N MLR

oSOR

Scroe of MSE (%)
=]

ot o @

2
mm 3mm

Flour
(2_3_4mm) Soda
(2_3_4mm)

(2_3_4mm)

Fig. 8. 3-D stacked area graph showing MAE scordatfe MLR, KNN, SVM and NB classifiers for differen

thickness powder samples.
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NB and SVM generate very high MAE scores while Wadues are very low for the MLR
classifier. Once again the MLR classifier seemddothe best choice to classify the THz
pulses signal datasets associated with differentlpo compositions.

Fig. 9 displays kappa statistics for all classd#fiassuming a 10 feature input. The aim
of the kappa statistics test is to evaluate thesistency of the classifiers. Consistency is
considered mild if kappa values are less than 202, fair if it lies between 0.21-0.40 (21-
40%), moderate if it lies between 0.41-0.60 (41-B0860d if it is between 0.61-0.80 (61-
80%), and excellent if it is greater than 0.81 (31%s shown in Fig.9, the highest kappa
values are obtained by the MLR on both 2mm thickrezsmple datasets (100%), as well as
4mm (98.43%) datasets. In addition, highest kapgdaes are obtained for the mixture of
2mm, 3mm and 4mm samples of talc (100%), salt ()Q®ur (100%) and soda (100%).
The KNN algorithm also demonstrated very good pertnce (second best overall) as can
be seen in the case of the 3mm thickness sampsatat(96.86%), and the mixtures of 2mm,
3mm and 4mm sand (98.04%), talc (100%), sugar (30886 flour (100%). The kappa
values of the other two classifiers (SVM and NB) aystematically lower compared to those
achieved by the MLR and KNN irrespective of sampype, furthermore the values are
consistently lowest for the NB classifier. In tligure, the error bars indicate the associated
kappa value standard error. In most of the cdbeshighest kappa values are obtained using

the MLR algorithm.

Kappa value (")

Sand Tale Salt Sugar Flour Soda

3mm Amm o 3 amm) | (2.3 4mm) | (2.3 4mm) | (2.3 4mm) | (23 4mm) | (2.3 4mm)
OMLR| 100 96.08 98.43 97.06 100 100 99.02 100 100
BKNN|  99.22 96.86 98.04 98.04 100 97.06 100 100 99.02
asvM| 949 94 51 9333 951 951 7157 7157 95.1 98.04
(™ 8431 87.84 83.14 902 7451 79.41 85.29 83.33 st |

Fig. 9. Kappa statistics values for the MLR, KNN, SVM and Nlassifiers for datasets associated with

different powder thickness samples.

In order to compare our research outcomes withtiagisones in the literature the only

reference that can be found is discussed in [24{héir work, however, the focus on the study was
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placed on the derivation of hybrid AR and ARMA mizdeith further wavelet compression for very
parsimonious feature extraction aiming to improvetloe generalization ability of the classifier. In
that study, wavelet-based de-noising with softghodd shrinkage was applied to the measured T-ray
signals prior to modeling. It is also worth notitigat a simple Mahalanobis distance classifier was
used at that time for the classification of the dewsamples and the emphasis was placed on feature
extraction as opposed to address state-of-the-adhime learning approaches. An overall 98%
classification accuracy for all thickness powderaswachieved with that approach whereas the
proposed method based on 2D-cross-correlation and/laR classifier yielded a classification
accuracy of 99.56%.

In this study, in most of the circumstances, theRvilgorithm produced better results
compared to other reported three classifiers aaddtal performance of the KNN classifier
was alike to the MLR classifier. As mentioned befof-rays pulse signals contains multi-
correlation in different powder substance data abse screening items are often highly
correlated in terms of particle shape and dimendibe effect can also manifest itself at
specific measurement angles due to possible scaftéfhe one of the main advantages of
the MLR is to properly handle multicollinearity Wih a large number of covariates that
cause unstable in the parameter estimation andrlaagiance in the associated distributions
used as inputs to the classifiers. These effectieatiwely have an overall effect of
systematically degrading classification accuracye Qlrawback of the MLR may be the
computational demand needed when images are cochpbsevery large number of pixels.
On the other hand, the key advantage of the KNNsdiar is, it does not require a priori
assumptions regarding the distributions from whibk training examples are drawn. It
makes this method to be simple in implementatiotih W\éss computation time. But the core
limitation of this method is, it's classifying acaey decreases in the presence of high
dimensional feature data. Hence, it seems that frecurrent study, the MLR promises to
offer the better performance for detection of powsdebstance using T-rays pulse signal
datasets reducing overfitting error.

5. Conclusions

This paper presented the first systematic evaloatfomachine learning algorithms tailored
specifically to the classification of THz datasebdained using a THz transient spectrometer.
A further aim was to establish alternative newecré that would capture some of the features
present in the time-domain signals so that ungfiablié scattering effects that would

otherwise degrade the discriminating ability of ttassifiers would be minimized. A 2-D
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cross correlation technique was adopted for featuteaction prior to sample classification.
The dimensions of the calculated cross-correlasiequences were also further compressed
extracting additional statistical features. Seve@hder substances of various thickness and
composition were successfully classified using theposed algorithms. Systematic
evaluation of the performance of the four classsfieonsidered using multiple datasets of
powdered samples and a comprehensive cross-validatethodology showed that, in most
of the cases, the MLR classifier with ridge estionatutperformed the KNN, SVM and NB
classifiers. It is worth noting however, that theell performance of the KNN classifier was
very similar to that of the MLR classifier. Thusettstudy concluded that the 2-D cross-
correlation based MLR or KNN algorithm in conjuracti with the proposed 2-D cross-
correlation technique can lead to a systematic mgdmaent in THz transient dataset
classification success rate. The proposed methgygbaves the way for establishing new
robust and consistent approaches for the analysis amtomated classification of THz
transient biomedical imaging datasets which areeodly difficult to classify because of the
large signal attenuation of tissue associated wh#h quenching from the tissue’s water
content. Algorithmic expert systems are currentigisidered to be the Achilles’ heel in THz
signal analysis. Thus the work addresses a fund@ieroblem which so far has
consistently delayed the further proliferation andmmercialization of THz transient
spectrometers. Future investigations will assesssdier performance when the THz
transient data vectors are systematically overpézanor under-sampled (always above the
Nyquist's criterion), so as to assess opportunitbesoptimizing signal to noise ratio for a
given data acquisition time frame, this is a topit significant interest to clinicians
considering the adoption of this imaging modaliy foutine patient screening. Beyond the
THz community, the proposed methodology may alsoidesl for the systematic assessment
of different classifiers and automated expert systas applied to other datasets across the
entire electromagnetic spectrum e.g. X-ray, UViblés infrared or microwave spectrometry,
electron spin resonance spectrometry, nuclear niagesonance imaging, positron emission

tomography etc. Thus the work is generic and @vahce across all physical sciences.
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