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Abstract 

Given the importance of freshwater ecosystems to human health and wellbeing, the 

resilience of aquatic communities to pollution from a variety of sources is of increasing 

concern. Current indices concentrate on structural measures to define stream health. These 

include community assemblages, in-stream water chemistry, and hydrological impairment 

through physical modifications. However, ecosystem services provided by freshwater 

communities rely on the underlying biogeochemical cycles that are a function of metabolic 

processes. At present, these are not routinely used in assessments of ecological status. 

A paired sub-catchment approach was used to study the effects of different land 

management practices on in-stream water chemistry, and their consequences to aquatic 

functional integrity in an agricultural landscape. The study provided an opportunity to assess 

the potential for ecosystem functional measures to complement the structural measures 

that are used to define impact on aquatic communities. 

High resolution analysis of the nutrient chemistry within two study reaches underpinned 

comparisons of community aerobic respiration, greenhouse gas transfer across the 

sediment-water interface and macro-invertebrate mediated processing of organic matter. 

This programme of measures identified clear differences between the study sub-

catchments. It revealed that the management of animal waste, and control on the delivery 

of fine sediments to a watercourse, were key influences on in-stream functional integrity. 

The delivery of inorganic nutrients as a result of fertiliser application was also evident. 

However, the significance of this signal was masked by the overriding effect of high loads of 

organically loaded fine sediments and low flow in the Priors Farm reach. 
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List of sampling sites and associated abbreviations. 

These abbreviations are used throughout the thesis and refer to the sites described in 

chapter 4 and illustrated on page 69. 

Daily sampling sites: 

Cool’s Cottage downstream      CCDS 

Priors farm downstream      PFDS 

Weekly sampling sites: 

Cool’s Cottage headwater      CCHW 

Cool’s Cottage upstream      CCUS 

Cool’s Cottage piped spring      CCSP 

Priors Farm, tributary 1      PF1 

Priors Farm, tributary 2      PF2 

Priors Farm, tributary 3      PF3 

Priors Farm upstream       PFUS 

Occasional sites: 

Cool’s Cottage headspring      CC1 

Cool’s Cottage Ruddlemoor      CCRU 

Cool’s Cottage sinkhole 

Cool’s Cottage woodland edge 

Cool’s Cottage culvert (road drain) 

Priors Farm confluence      PF conf 
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Abbreviations. 

List of abbreviations, commonly used throughout the thesis: 

Chl-a Chlorophyll-a 

Defra Department of the environment, food 

and rural affairs 

DWPA Diffuse Water Pollution from Agriculture 

DOC Dissolved Oxygen 

DOC       Dissolved organic carbon 

DON       Dissolved organic nitrogen 

DTC       Demonstration Test Catchments 

EA       Environment Agency 

ER       Community Aerobic Respiration 

EU       European Union 

ESS       Environmental Stewardship Schemes 

GPP       Gross Primary Production 

NEP       Net Ecosystem Production 

NH4-N       Total ammonium Nitrogen 

PON       Particulate Organic Nitrogen 

PP       Particulate Phosphorus 

SRP       Soluble Reactive Phosphorus 

SUP       Soluble Unreactive Phosphorus 

TDN       Total Dissolved Nitrogen 

TDP       Total Dissolved Phosphorus 

TN       Total Nitrogen 

TON       Total Oxidised Nitrogen 

WFD       Water Framework Directive 



Page v 
 

Table of Contents 

Abstract ...................................................................................................................................... i 

Acknowledgements: .................................................................................................................. ii 

List of sampling sites and associated abbreviations. ............................................................... iii 

Abbreviations. ...........................................................................................................................iv 

Table of Contents ...................................................................................................................... v 

Table of Figures ....................................................................................................................... xiii 

Table of Tables ......................................................................................................................... xxi 

 Introduction. ............................................................................................................ 1 Chapter 1.

1.1. Research questions ......................................................................................................... 5 

1.2. Thesis structure .............................................................................................................. 5 

 Pressures and controls on stream health. ............................................................... 8 Chapter 2.

2.1. Agricultural sources of diffuse pollution. ....................................................................... 8 

2.2. Legislative and economic drivers, Demonstration Test Catchments and some existing 

mitigation measures. ............................................................................................................. 8 

2.3. Physical controls on nutrients. ..................................................................................... 12 

2.4. Biological controls on nutrients.................................................................................... 13 

 Stoichiometry. ....................................................................................................... 14 2.4.1.

 Organic carbon. ..................................................................................................... 16 2.4.2.

2.5. Nitrogen and phosphorus. ............................................................................................ 17 



Page vi 
 

 Nitrogen: ................................................................................................................ 18 2.5.1.

 Phosphorus: ........................................................................................................... 20 2.5.2.

2.6. Effects of diffuse pollution. .......................................................................................... 21 

 High sediment load. ............................................................................................... 21 2.6.1.

 Eutrophication ....................................................................................................... 22 2.6.2.

 Microbial/ algal interactions. ................................................................................ 24 2.6.3.

 Microbial /macro-heterotroph interactions. ........................................................ 25 2.6.4.

2.7. The ecosystem service / function/ process model ....................................................... 27 

 Leaf Litter degradation. ......................................................................................... 29 2.7.1.

2.8. The Demonstration Test Catchment Programme: ....................................................... 30 

 Site Description: ..................................................................................................... 32 Chapter 3.

3.1. The Hampshire Avon: ................................................................................................... 32 

 DTC sub-catchments, site selection and meteorology .......................................... 35 3.1.1.

3.2. The Cool’s Cottage sub-catchment .............................................................................. 37 

 Bedrock geology and hydrology. ........................................................................... 41 3.2.1.

 Soils, land use and management. .......................................................................... 46 3.2.2.

 River habitat and sediment characteristics ........................................................... 47 3.2.3.

 Biological indicators of ecological status ............................................................... 49 3.2.4.

3.3. Priors Farm sub-catchment .......................................................................................... 51 

 Bedrock geology and hydrology. ........................................................................... 53 3.3.1.



Page vii 
 

 Soils, land use and management. .......................................................................... 58 3.3.1.

 River habitat and sediment characteristics ........................................................... 60 3.3.2.

 Biological indicators of ecological status ............................................................... 61 3.3.3.

3.4. Overview of key similarities and differences in the study sites ................................... 62 

 Intrinsic sub-catchment characteristics ................................................................ 62 3.4.1.

 Management driven characteristics ...................................................................... 63 3.4.2.

3.5. Conclusions ................................................................................................................... 64 

 Sampling strategy and methods ............................................................................ 66 Chapter 4.

4.1. Programme design ....................................................................................................... 66 

4.2. Hydrochemistry ............................................................................................................ 66 

 Sampling programme: ........................................................................................... 66 4.2.1.

 Nutrient chemistry ................................................................................................ 69 4.2.2.

 Sample processing and analysis ............................................................................ 72 4.2.3.

4.2.4. Nutrient load ......................................................................................................... 75 

4.3. Bed sediment characteristics ....................................................................................... 75 

4.3.1. Grain size ............................................................................................................... 76 

4.3.2. Organic matter content. ........................................................................................ 76 

4.4. Calcium and Magnesium .............................................................................................. 76 

4.5. Short term metabolic processes................................................................................... 77 

4.5.1. Approach ............................................................................................................... 77 



Page viii 
 

4.6. Time integrated ecosystem processes ......................................................................... 91 

4.6.1. Leaf litter degradation ........................................................................................... 91 

4.6.2. Epilithic primary production and macro-invertebrate herbivory ......................... 92 

4.7. Statistical Analysis ........................................................................................................ 95 

 Characterising nutrient spatial and temporal variability in two headwater sub-Chapter 5.

catchments .............................................................................................................................. 96 

5.1. Overview ....................................................................................................................... 96 

5.2. Variation in nutrient chemistry in the source waters of the Cool’s Cottage sub-

catchment ............................................................................................................................ 96 

 Nitrogen ................................................................................................................. 96 5.2.1.

 Phosphorus ............................................................................................................ 97 5.2.2.

 Carbon ................................................................................................................... 98 5.2.3.

5.3. Longitudinal variation in nutrient chemistry in the Cool’s Cottage study reach ....... 102 

 Nitrogen ............................................................................................................... 102 5.3.1.

 Phosphorus .......................................................................................................... 102 5.3.2.

 Carbon ................................................................................................................. 104 5.3.3.

5.4. Speciation and fractionation of nitrogen and phosphorus in the Cool’s Cottage sub-

catchment .......................................................................................................................... 104 

 Nitrogen ............................................................................................................... 104 5.4.1.

 Patterns in nitrogen speciation in the Cool’s Cottage study reach ..................... 105 5.4.2.



Page ix 
 

 Phosphorus .......................................................................................................... 106 5.4.3.

 Patterns in phosphorus fractionation in the Cool’s Cottage study reach ........... 106 5.4.4.

5.5. Temporal variation in stoichiometry at Cool’s Cottage ............................................. 107 

5.6. Nutrient load at the outlet from the Cool’s Cottage sub-catchment. ....................... 109 

5.7. High resolution temporal variation in nutrient concentrations at the outlet from the 

Cool’s Cottage sub -catchment ......................................................................................... 112 

 Nitrogen dynamics............................................................................................... 112 5.7.1.

 Phosphorus dynamics .......................................................................................... 113 5.7.2.

 Dynamics of dissolved organic carbon ................................................................ 114 5.7.3.

5.8. Variation in the nutrient chemistry of the tributaries of the Priors Farm sub-

catchment .......................................................................................................................... 117 

 Nutrient speciation and fractionation in the tributaries of the Priors Farm sub-5.8.1.

catchment ...................................................................................................................... 117 

 Nitrogen ............................................................................................................... 118 5.8.2.

 Phosphorus .......................................................................................................... 121 5.8.3.

 Carbon ................................................................................................................. 121 5.8.4.

5.9. Transport and fate of high organic matter pulses...................................................... 122 

5.10. Longitudinal variation in nutrient chemistry in the Priors Farm study reach .......... 124 

 Nitrogen ............................................................................................................. 124 5.10.1.

 Phosphorus ........................................................................................................ 125 5.10.2.



Page x 
 

 Carbon ............................................................................................................... 127 5.10.3.

5.11. Patterns in nutrient speciation and fractionation at the Priors Farm sub-catchment 

outlet ................................................................................................................................. 127 

 Nitrogen ............................................................................................................. 127 5.11.1.

 Phosphorus ........................................................................................................ 129 5.11.2.

5.12. Temporal variation in stoichiometry at Priors farm ................................................. 129 

5.13. Nutrient load at the outlet from the Priors Farm sub-catchment. .......................... 132 

5.14. High resolution temporal variation in nutrient concentrations at the outlet from the 

Priors Farm sub -catchment .............................................................................................. 134 

 Nitrogen dynamics............................................................................................. 134 5.14.1.

 Phosphorus dynamics ........................................................................................ 135 5.14.2.

 Dynamics of dissolved organic carbon .............................................................. 138 5.14.3.

 Dissolved Oxygen............................................................................................... 138 5.14.4.

5.15. A comparison of the hydrochemistry in the Cool’s Cottage and Priors Farm sub-

catchments ........................................................................................................................ 139 

 Characterising short term ecosystem function in two headwater sub-catchments.Chapter 6.

 ............................................................................................................................................... 141 

6.1. Overview ..................................................................................................................... 141 

6.2. Aerobic respiration and nutrient transformations. .................................................... 142 

 Key characteristics of respiration and nutrient dynamics: ................................. 143 6.2.1.

 Aerobic respiration as an indicator of stream health. ........................................ 163 6.2.2.



Page xi 
 

6.3. Primary production..................................................................................................... 167 

 Comparing the drivers of primary production .................................................... 167 6.3.1.

 Primary production as an indicator of stream health. ........................................ 168 6.3.2.

6.4. Anaerobic respiration and the production of greenhouse gases. ............................. 171 

 Nitrous Oxide ....................................................................................................... 172 6.4.1.

 Methane .............................................................................................................. 175 6.4.2.

 Carbon dioxide..................................................................................................... 181 6.4.3.

6.5. Metabolic metrics as indicators of change................................................................. 184 

 Macro-invertebrate processes ............................................................................ 187 Chapter 7.

7.1. Leaf litter degradation ................................................................................................ 189 

 Key findings: ........................................................................................................ 189 7.1.1.

 Patterns in leaf litter degradation in the Cool’s Cottage reach .......................... 189 7.1.2.

 Patterns in leaf litter degradation in the Priors Farm reach ............................... 197 7.1.1.

 Contrasts in leaf litter processing in the two study reaches ............................... 201 7.1.2.

7.2. Epilithic primary production and macro-invertebrate herbivory .............................. 203 

 Key findings ......................................................................................................... 203 7.2.1.

 Patterns in periphyton accumulation .................................................................. 204 7.2.2.

 Macro-invertebrate herbivory ............................................................................ 211 7.2.3.

7.3. Macro-invertebrate communities .............................................................................. 214 

7.4. Interactions between macroinvertebrate community structure and function ......... 221 



Page xii 
 

 Detritivory ............................................................................................................ 222 7.4.1.

 Herbivory: ............................................................................................................ 225 7.4.2.

 Top-down predator-prey interactions ................................................................ 228 7.4.3.

7.5. Methodological bias: .................................................................................................. 228 

7.6. Conclusions ................................................................................................................. 231 

 In-stream ecosystem functional response to variations in the aquatic Chapter 8.

environment .......................................................................................................................... 233 

8.1. Key findings................................................................................................................. 233 

 Contrasts in water chemistry and in-stream environments ............................... 233 8.1.1.

 Short term metabolic functional metrics ............................................................ 237 8.1.2.

 Time integrated functional metrics ..................................................................... 239 8.1.3.

8.2. Evaluating ecosystem functional metrics in assessments of   stream health - and 

future directions ................................................................................................................ 240 

 Community aerobic respiration .......................................................................... 241 8.2.1.

 Anaerobic respiration .......................................................................................... 241 8.2.2.

 Time integrated functional metrics ..................................................................... 242 8.2.3.

8.3. Conclusions ................................................................................................................. 243 

Appendix A – Index to data files on accompanying CD. ........................................................ 260 

 

 



Page xiii 
 

Table of Figures 

Figure 2:1 Relationships among ecosystem services, functions and processes ..................... 28 

Figure 3:1 Map of the Hampshire Avon Catchment showing major waterbodies and urban 

areas. Reproduced from the Environment Agency Catchment Abstraction Management Plan, 

2005. ........................................................................................................................................ 33 

Figure 3:2 The Hampshire Avon catchment showing the DTC sub-catchments.. ................... 34 

Figure 3:3 Monthly rainfall totals (mm) at Tisbury weather station - Data provided by E.A. 

SW region ................................................................................................................................ 35 

Figure 3:4 Daily minimum and maximum river temperatures at Cools Cottage during the 

study period ............................................................................................................................. 36 

Figure 3:5 Soils of the Sem sub-catchments. .......................................................................... 38 

Figure 3:6 The Sem sub-catchments showing dominant land use. ......................................... 39 

Figure 3:7 The view from Cools Farm towards the DTC monitoring station ........................... 40 

Figure 3:8 The Cools Cottage sub-catchment ......................................................................... 40 

Figure 3:9 Schematic diagram showing the principal hydrogeological functioning of the Sem 

Cools Cottage sub-catchment.. ............................................................................................... 42 

Figure 3:10 Bedrock geology of the Cools Cottage sub-catchment. ....................................... 42 

Figure 3:11 Key characteristics of the Cools Cottage sub-catchment. .................................... 43 

Figure 3:12 The Cools Cottage sub-catchment showing main drainage channels, sampling 

sites and respective Mg:Ca ratios............................................................................................ 44 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265479
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265480
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265480
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265480
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265481
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265482
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265482
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265484
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265486
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265488
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265488
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265489
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265490


Page xiv 
 

Figure 3:13 (a) Dense vegetation along the cools cottage reach that restricts light reaching 

the stream bed and (b) bed sediments at Cools Cottage.................................................... ….48 

 Figure 3:14 The Priors Farm sub-catchment .......................................................................... 52 

Figure 3:15 Bedrock geology of the Priors farm sub-catchment. ........................................... 54 

Figure 3:16 Daily rainfall (mm) at Tisbury (Wilts) and discharge at the outlet from the Priors 

Farm sub-catchment ............................................................................................................... 54 

Figure 3:17 Daily rainfall (mm) at Tisbury (Wilts) and discharge  at the outlet from the Priors 

Farm sub-catchment ............................................................................................................... 55 

Figure 3:18 Key characteristics of the Priors farm sub-catchment: ........................................ 56 

Figure 3:19 The Priors farm sub-catchment showing main drainage channels, sampling sites 

and respective Mg:Ca ratios .................................................................................................... 57 

Figure 3:20 Visible signs of a 'slurry' event: spatial samples from the Priors Farm reach ...... 59 

Figure 3:21 Filamentous algae smothering macrophytes and benthic sediments at Priors 

Farm ......................................................................................................................................... 61 

Figure 3:22 (A) Daily rainfall (mm) at Tisbury (Wilts) and discharge  at the outlets from the 

(B) Cools Cottage and (C) Priors Farm sub-catchments .......................................................... 63 

Figure 4:1 The locations and frequecy of the water chemistry sampling programme   ......... 68 

Figure 4:2 One of the weekly sample collections from the Priors Farm monitoring station70 

Figure 4:3 The relationship between pH and temperature and the proportion of NH4-N as 

un-ionised ammonia, NH3. ...................................................................................................... 71 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265492
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265492
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265495
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265495
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265496
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265496
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265497
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265498
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265498
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265499
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265501
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265501
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265502
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265503
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265504
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265504


Page xv 
 

Figure 4:4 Determination of nitrogen species and phosphorus fractions by persulphate 

digestion after Johnes and Heathwaite 1992.......................................................................... 74 

Figure 4:5 The location of the incubations measuring short term metabolic processes ....... 78 

Figure 4:6 The bottles used to measure water column aerobic metabolic processes in the 

light and dark. .......................................................................................................................... 82 

Figure 4:7 The benthic incubation chambers used to measure community aerobic metabolic 

processes in the light and dark. ............................................................................................... 82 

Figure 4:8 Benthic incubations installed on site: A and B, PFDS; C CCDS. .............................. 84 

Figure 4:9 Benthic incubation chambers and water bottles installed at the Priors Farm 

upstream site ........................................................................................................................... 85 

Figure 4:10 Duran bottles modified for headspace analysis and fitted with housings for the 

silicon septa. ............................................................................................................................ 87 

Figure 4:11 The method used to extract the headspace gasses after equilibration using 

positive pressure displacement. .............................................................................................. 88 

Figure 4:12 Coarse and fine leaf litter bags, used to measure leaf litter degradation and the 

ceramic tiles, used to measure epilithic primary production and macro-invertebrate 

herbivory, prior to installation. ............................................................................................... 93 

Figure 4:13 The ceramic tiles installed on the stream bed.. ................................................... 93 

Figure 5:1 Longitudinal variation in nutrient chemistry along the Cool's Cottage study reach

 ............................................................................................................................................... 103 

Figure 5:2 Differential variation in TON concentrations in the Cool's Cottage sub-catchment, 

above and below the lake in Clay Hill Wood. ........................................................................ 105 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265506
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265507
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265507
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265508
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265508
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265509
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265510
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265510
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265511
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265511
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265512
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265512
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265513
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265513
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265513
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265514
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265515
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265515
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265516
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265516


Page xvi 
 

Figure 5:3 Temporal variation in the proportion of nitrogen species at the outlet from the 

Cool's Cottage sub-catchment .............................................................................................. 106 

Figure 5:4 Variation in SRP concentrations in the Cool's Cottage sub-catchment below the 

lake in Clay Hill Wood. ........................................................................................................... 107 

Figure 5:5 Temporal variation in the proportions of phosphorus fractions at the outlet from 

the Cool's Cottage sub-catchment ........................................................................................ 107 

Figure 5:6 Temporal variation in the N:P ratio (by mass) at the Cool's Cottage sub-catchment 

outlet;. ................................................................................................................................... 108 

Figure 5:7 A comparison of the contribution to total nitrogen load by nitrogen species over 

two water years at the outlet to the Cool's Cottage sub-catchment. .................................. 110 

Figure 5:8 A comparison of the contribution to total phosphorus load by phosphorus 

fractions over two water years at the outlet to the Cool's Cottage sub-catchment.. .......... 111 

Figure 5:9 Temporal variation in nitrogen species and dissolved oxygen at the outlet to the 

Cool's Cottage sub-catchment. ............................................................................................. 115 

Figure 5:10 Temporal variation in phosphorus fractions and dissolved organic carbon  at the 

outlet to the Cool's Cottage sub-catchment. ........................................................................ 116 

Figure 5:11 Spatial variation in nutrient chemistry in the Priors Farm sub-catchment. ....... 126 

Figure 5:12 Temporal variation in TON concentrations at Priors Farm. ............................... 128 

Figure 5:13 Temporal variation in the proportion of nitrogen species at Priors Farm ......... 128 

Figure 5:14 Temporal variation in SRP concentrations at Priors Farm. ................................ 130 

Figure 5:15 Temporal variation in the proportion of phosphorus fractions at Priors Farm . 130 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265517
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265517
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265518
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265518
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265519
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265519
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265520
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265520
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265521
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265521
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265522
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265522
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265523
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265523
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265524
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265524
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265525
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265526
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265527
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265528
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265529


Page xvii 
 

Figure 5:16 Temporal variation in the N:P ratio (by mass) at the Priors Farm sub-catchment 

outlet; .................................................................................................................................... 131 

Figure 5:17 A comparison of the contribution to total nitrogen load by nitrogen species over 

two water years at the outlet to the Priors farm sub-catchment. ........................................ 133 

Figure 5:18 A comparison of the contribution to total phosphorus load by phosphorus 

fractions over two water years at the outlet to the Priors Farm sub-catchment. ................ 133 

Figure 5:19 Temporal variation in nitrogen species and dissolved oxygen at the outlet to the 

Priors Farm sub-catchment. .................................................................................................. 136 

Figure 5:20 Temporal variation in phosphorus fractions and dissolved organic carbon  at the 

outlet to the Priors Farm sub-catchment. ............................................................................. 137 

Figure 5:21 Expanded sections of the dissolved oxygen record at Priors Farm showing the 

response to organic matter pulses ........................................................................................ 139 

Figure 6:1 Location of experimental sites and tributaries. ................................................... 142 

Figure 6:2 Temporal variation in ecosystem respiration ...................................................... 143 

Figure 6:3 Relationship between temperature and benthic respiration before and after 

correction for systematic error. ............................................................................................ 144 

Figure 6:4 Calculation of activation energy for Ecosystem Respiration at A, Priors Farm 

downstream site, B Cool’s Cottage ....................................................................................... 147 

Figure 6:5 Relationships between ER and nutrient fractions at CCDS .................................. 152 

Figure 6:6 Significant relationships between ER and nutrient fractions at PFDS. ................ 153 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265530
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265530
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265531
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265531
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265532
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265532
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265533
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265533
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265534
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265534
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265535
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265535
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265536
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265537
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265538
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265538
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265539
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265539
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265540
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265541


Page xviii 
 

Figure 6:7 The influence of DOC on the contribution of the water column to whole stream 

respiration. ............................................................................................................................ 155 

Figure 6:8 The relationship between DOC and dissolved oxygen during a pollution incident:

 ............................................................................................................................................... 157 

Figure 6:9 A comparison of the relationship between respiration and DOC at Cool’s Cottage  

and Priors Farm. .................................................................................................................... 157 

Figure 6:10 Dissolved nutrient transformations during 24 hr dark benthic chamber 

incubations ............................................................................................................................ 161 

Figure 6:11 Temporal patterns in key aerobic metabolic processes: ................................... 170 

Figure 6:12 Temporal patterns in N2O accumulation  at the three study sites .................... 174 

Figure 6:13 Relationship between N2O accumulation and temperature at the three study 

sites ........................................................................................................................................ 174 

Figure 6:14 Figure 6:12 Temporal patterns in CH4 accumulation at the three study sites….178 

Figure 6:15 Relationship between rate of CH4 accumulation and temperature .................. 179 

Figure 6:16 Relationship between CO2 accumulation and temperature at the three study 

sites. ....................................................................................................................................... 180 

Figure 6:17 Temporal patterns in CO2 accumulation  at the three study sites ..................... 180 

Figure 6:18 Variation in CO2 'deficit' over time, calculated from O2 consumption - CO2 

accumulation in dark chambers ............................................................................................ 186 

Figure 7:1 Seasonal variation in absolute leaf litter loss at Cool's Cottage. ......................... 194 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265542
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265542
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265543
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265543
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265544
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265544
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265545
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265545
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265546
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265547
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265548
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265548
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265549
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265550
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265551
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265551
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265552
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265553
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265553
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265554


Page xix 
 

Figure 7:2 Seasonal variation in the relative contribution of microbial and macro-

invertebrate processes to leaf litter degradation in the Cool's Cottage reach.   .................. 195 

Figure 7:3 Seasonal variation in temperature compensated rate coefficients of leaf litter 

degradation in the Cool's Cottage reach: .............................................................................. 196 

Figure 7:4 Seasonal variation in leaf litter loss at Priors Farm. ............................................. 199 

Figure 7:5 Seasonal variation in the relative contribution of microbial and macro-

invertebrate processes to leaf litter degradation in the Priors Farm reach ......................... 199 

Figure 7:6 Seasonal variation in temperature compensated rate coefficients of leaf litter 

degradation in the Priors Farm reach. .................................................................................. 200 

Figure 7:7 Comparison of leaf litter degradation rates in the two study sub-catchments;.. 202 

Figure 7:8 Graphical output from 'Minitab', illustrating contrasting seasonal variation in 

macro-invertebrate leaf processing the two study reaches ................................................. 203 

Figure 7:9 Seasonal variation in absolute accumulation of periphyton on un-grazed tiles over 

the 30 day incubations .......................................................................................................... 205 

Figure 7:10  Mean rate coefficients of periphyton accrual over the full study period ......... 208 

Figure 7:11 Seasonal variation in rate coefficients of periphyton accrual on grazed and un-

grazed tiles ............................................................................................................................. 209 

Figure 7:12 Graphical output from 'Minitab', illustrating seasonal variation in periphyton 

accrual on grazed and un-grazed tiles ................................................................................... 210 

Figure 7:13 Mean grazing rate coefficients over the full study period ................................. 212 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265555
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265555
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265556
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265556
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265558
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265558
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265559
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265559
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265560
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265561
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265561
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265562
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265562
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265563
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265564
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265564
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265565
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265565
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265566


Page xx 
 

Figure 7:14 Graphical output from 'Minitab', illustrating contrasting seasonal variation in 

grazing rate coefficients in the two study reaches ............................................................... 212 

Figure 7:15 Seasonal variation in grazing rate coefficients. .................................................. 213 

Figure 7:16 Comparison of herbivory in the two study reaches ........................................... 214 

Figure 7:17 Seasonal variation in macro-invertebrate abundance at Cool's Cottage and Priors 

Farm. ...................................................................................................................................... 216 

Figure 7:18 Distribution of functional feeding groups at Cool's Cottage and Priors Farm ... 217 

Figure 7:19 Proportion of taxa assigned to multiple functional feeding groups at Cool's 

Cottage and Priors Farm ........................................................................................................ 220 

Figure 7:20 Flow regime preferences for those taxa with more than 100 individuals from all 

samples .................................................................................................................................. 220 

Figure 7:21 Relationship between Gammarus pulex and macro-invertebrate leaf litter 

processing at Priors Farm ...................................................................................................... 224 

Figure 7:22 Stream velocity between December 2011 and April 2014 in the two study 

reaches. ................................................................................................................................. 226 

Figure 7:23 High resolution velocity at the Priors Farm downstream site showing periphyton 

accumulation during 30 day ceramic tile incubations. ......................................................... 227 

Figure 8:1 Illustration of the contrasting nutrient chemistries at Cool's Cottage and Priors 

Farm ....................................................................................................................................... 234 

 

  

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265567
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265567
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265568
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265569
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265570
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265570
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265571
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265572
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265572
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265573
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265573
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265574
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265574
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265575
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265575
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265576
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265576
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265577
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265577


Page xxi 
 

Table of Tables 

Table 4:1 Timetable of short term community metabolism measurements .......................... 80 

Table 5:1 A comparison of nitrogen species in the groundwater sources of the Cool's Cottage 

reach ........................................................................................................................................ 99 

Table 5:2 A comparison of phosphorus species in the groundwater sources of the Cool's 

Cottage reach ........................................................................................................................ 100 

Table 5:3 Longitudinal variation in nutrient chemistry along the Cool's Cottage study reach 

throughout the study period.. ............................................................................................... 101 

Table 5:4 A comparison of the mean concentrations of nitrogen species over two years at 

the outlet to the Cool's Cottage sub-catchment, contributing to the difference in load (figure 

5.7) ......................................................................................................................................... 110 

Table 5:5 A comparison of the mean concentrations of phosphorus fractions and DOC over 

two years at the outlet to the Cool's Cottage sub-catchment, contributing to the difference 

in load .................................................................................................................................... 111 

Table 5:6 A comparison of nitrogen species in the tributaries of the Priors farm reach, 

throughout the study period ................................................................................................. 119 

Table 5:7 A comparison of phosphorus fractions and dissolved organic carbon in the 

tributaries of the Priors farm reach, throughout the study period; For PF2 ........................ 120 

Table 5:8 Longitudinal variation in nutrient chemistry between the Priors Farm upstream 

and downstream sites throughout the study period. ........................................................... 120 



Page xxii 
 

Table 5:9 Concentrations of organic pollutants following a breached slurry store and their 

dispersal downstream. .......................................................................................................... 123 

Table 5:10 A comparison of the mean concentrations of nitrogen species over two years at 

the outlet to the Priors Farm sub-catchment, contributing to the difference in load ......... 132 

Table 5:11 A comparison of the mean concentrations of phosphorus fractions and DOC over 

two years at the outlet to the Priors farm sub-catchment, contributing to the difference in 

load ........................................................................................................................................ 133 

Table 6:1 Rates of aerobic respiration in dark benthic chambers and water bottle 

incubations at Cool’s Cottage and the Priors Farm downstream site. .................................. 145 

Table 6:2 Pearson correlation matrix describing the relationship between observed rates of 

aerobic respiration and in-stream water chemistry at Cool’s Cottage and the Priors Farm 

downstream site. ................................................................................................................... 150 

Table 6:3  Pearson correlation matrix describing the relationship between temperature-

corrected aerobic respiration and in-stream water chemistry at Cool’s Cottage and the 

Priors Farm downstream site.   ............................................................................................. 151 

Table 6:4 In-stream nutrient concentrations at the start of incubations used to study 

nutrient dynamics. ................................................................................................................. 160 

Table 6:5 Comparison of summary data for the indicators of ecosystem function, GPP and 

P/R, between July 2013 and June 2014  in the two study reaches. ...................................... 169 

Table 6:6 Summary data for rates of N2O accumulation  in benthic chambers between July 

2013 and June 2014 in the two study sub-catchments. ....................................................... 174 



Page xxiii 
 

Table 6:7 Summary data for rates of CH4 accumulation in benthic chambers between July 

2013 and June 2014 in the  two study sub-catchments........................................................ 178 

Table 6:8 Summary data for rates of CO2 accumulation  in benthic chambers between July 

2013 and June 2014 in the two study sub-catchments ........................................................ 180 

Table 7:1 Schedule of incubations undertaken to determine leaf litter degradation and 

herbivory ............................................................................................................................... 191 

Table 7:2 Absolute leaf loss, as a percentage of original mass, in coarse and fine mesh bags.

 ............................................................................................................................................... 192 

Table 7:3 Rate coefficients of leaf litter degradation in the Cool's Cottage and Priors Farm 

study reaches. ........................................................................................................................ 193 

Table 7:4 The relative contribution from microbial and macro-invertebrate processes to 

total leaf litter degradation in the Cool's Cottage and Priors Farm study reaches............... 195 

Table 7:5 Absolute accumulation of periphyton on grazed and un-grazed tiles over the 30 

day incubations, measured as mg chlorophyll-a m-2 30 days-1 ............................................. 206 

Table 7:6 Rate coefficients of periphyton accrual in the Cool's Cottage and Priors Farm study 

reaches. ................................................................................................................................. 207 

Table 7:7 Rate coefficients for herbivory in the Cool's Cottage and Priors Farm study reaches

 ............................................................................................................................................... 211 

Table 7:8 Macro-invertebrate abundance and taxon richness at Cool’s Cottage and Priors 

Farm. ...................................................................................................................................... 215 

Table 7:9 Contribution of functional feeding groups as a proportion of macro-invertebrate 

populations at Cools Cottage and Priors Farm. ..................................................................... 217 

file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265596
file:///C:/Users/dp022796/Documents/word%20ones/Blank%20formatted11_1fashmum%20redo%207Rdg_3.docx%23_Toc444265596


Page xxiv 
 

Table 7:10 Macro-invertebrate taxa with a combined total of more than 100 individuals  

from all samples within each site .......................................................................................... 219 

Table 7:11 Macro-invertebrate detritivory at Priors Farm;  expressed as a percentage of that 

at Cool's Cottage .................................................................................................................... 222 

Table 7:12 The proportions of Gammarus in the Crustaceaea and macro-invertebrate 

mediated  leaf litter degradation at Priors Farm. ................................................................. 224 



Page 1 
 

 Introduction.  Chapter 1.

Surface and groundwater sources represent an essential natural resource to humans and 

deliver a range of benefits. These include: the provision of clean water for drinking, and 

irrigation; creation of habitats that support food production and biodiversity; processing 

organic matter and other nutrients such as nitrogen (N) and phosphorus (P); climate 

regulation by acting as both a source and sink for greenhouse gases; facilitating the 

development of large communities, through the transport of materials and the removal of 

waste products; and promoting wellbeing and good health through recreation (The Ramsar 

Convention, 1971). These benefits have been formally recognised in modern welfare 

economics and are termed ‘ecosystem services’. Ecosystem services are driven by 

underlying biogeochemical processes and are dependent on a healthy, functioning ecology.  

Globally, pressures from population growth and increasing economic development have led 

to the degradation and loss of inland waters and it is predicted that the need for the 

ecosystem services provided by them, such as freshwater, denitrification and protection 

against floods and storms, will increase, while their capacity to provide them declines (The 

Millennium Ecosystem Assessment, 2005). In the second half of the 20th century, many 

surface waters in the UK were polluted resulting in habitat degradation and a decline in the 

provision of ecosystem services (Durand et al., 2011). Considerable resources were spent on 

licencing, monitoring and controlling point sources of pollution such as industrial effluents 

and sewage treatment work outfalls. Despite a noticeable reduction in the concentrations of 

some chemical pollutants, river ecosystems are still impacted with higher than expected 

concentrations of nutrients and sediments (Walling et al., 2003; 2008; Ballantine et al., 

2009; Collins et al., 2009). With increasing controls on point source pollution from 
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wastewater treatment works and industrial effluents, attention has turned to sources of 

diffuse pollution. Key sources include domestic sewage systems that are unconnected to the 

mains network (Bowes et al., 2005; Neal et al., 2000; May et al., 2011), runoff from roads or 

track ways (Collins et al., 2007; Collins et al., 2010b), and agriculture (Heathwaite and 

Johnes, 1996; Walling et al., 2003; Walling et al., 2008; Johnes et al., 2007; Stromqvist et al., 

2008). Increasing demand for new housing, the rise in alternative land use such as solar 

farms and the drive towards ever cheaper food that financially impacts producers, result in 

mounting pressure to increase the intensity of production on the remaining agricultural 

land.  Increases in the delivery of fine sediments, as well as increases in the flux of N, P and 

organic matter to watercourses, are some of the consequences arising from this increased 

intensification (Neal et al., 2002; Prior and Johnes, 2002; Evans et al., 2004; Worrall and 

Burt, 2007a; Worrall and Burt, 2007b; Jarvie et al., 2008; Collins et al., 2009) While it is 

straightforward to measure the concentrations of pollutants being discharged from a point 

source, it is more difficult to quantify inputs from diffuse sources. A variety of modelling 

approaches can be used to estimate inputs from a range of land use types. For example, The 

National Export Coefficient uses a range of data including land use, population density, 

livestock numbers, fertiliser application, and atmospheric inputs to predict N and P delivery 

to watercourses, on a sub-catchment to regional and national scale (Johnes and 

Hodgkinson, 1998; Johnes et al., 2007). However, the most frequently used measure of 

diffuse pollution remains its effects on the environment. The consequences of increased 

fertiliser application following the Second World War are now well recognised, and nutrient 

enrichment is a key metric of impacted streams. For many years, P was seen as the limiting 

nutrient in freshwater aquatic systems. A framework for classifying stream status, ranging 

from low nutrient (oligotrophic) to enriched (eutrophic or hyper eutrophic), was developed, 
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based on total phosphorus (TP) concentrations (Vollenweider and Kerekes, 1980)  and 

legislation was put in place to control phosphorus in water courses.  Limits on the 

concentration of nitrate in drinking water were introduced as a response to health concerns 

and led to controls on the use of N fertilisers in vulnerable zones. The Nitrate Directive in 

1991 (91/676/EEC) and Groundwater Directive in 2006 (2006/118/EC) limited nitrate 

concentrations in groundwaters to 50 mgl-1 – well above the suggested maximum 

concentration for TN of 2 mg l-1 proposed as the target for surface waters (Durand et al., 

2011). However, there is, as yet, no environmental legislation to control N in surface waters. 

An additional problem arises from the dependence of many legislative and managerial 

policies on the monitoring of dissolved inorganic nutrients, missing the importance of other, 

potentially biologically active forms such as dissolved organic N and P (DON, DOP), and 

those associated with particulate matter (PON, PP), either suspended in the water column 

or deposited on the stream bed. The impact of fine sediments is of increasing concern, not 

only due to the transport of associated nutrients, but the extensive smothering of benthic 

sediments reduces oxygen penetration into the stream bed and has severe consequences 

on stream ecology (Nogaro et al., 2010) (Jones et al., 2009). Cementation of gravels, for 

example, causes a lack of oxygen reaching fish spawning grounds (redds), including those of 

commercially important species such as salmon and trout (Collins et al., 2013; Pattison et 

al., 2014; Sear et al., 2014). Another, less explored consequence of fine sediment deposition 

may be an increasing dependence on anaerobic pathways to process organic matter in the 

stream bed, accompanied by an increase in the production of greenhouse gases (Pina-

Ochoa and Alvarez-Cobelas, 2006; Pretty et al., 2006; Sanders et al., 2007; Jones et al., 2008; 

Trimmer et al., 2010). 
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The European Union Water Framework Directive (WFD) (2000/60/EC) brought together 

many existing regulatory frameworks under one umbrella. Indicators of status adopted by 

the WFD are based on structural measures (Jones et al., 2010) These include chemical water 

quality; the community composition of macro-invertebrates, diatoms, macrophytes and fish; 

and hydrological impairment as a result of physical modifications. The extent to which the 

functional integrity of surface waters is impacted by multiple stressors is, so far, not 

included in standard assessments of ecological status. However, two key ecosystem 

processes, leaf litter degradation and aerobic respiration have been used to study the 

effects of broad land use change (e.g. deforestation, urbanisation, agricultural intensity) on 

ecosystem health (Lecerf et al., 2006; Baldy et al., 2007; McKie and Malmqvist, 2009; Young 

and Collier, 2009; Clapcott et al., 2010; Imberger et al., 2010) and frameworks for 

categorising impact based on these functional indicators have been proposed (Gessner and 

Chauvet, 2002; Young et al., 2008). The extent to which these measures of ecosystem 

function are sensitive to the effects of different land management practices within a land 

use category is less clear (Magbanua et al., 2010) but they represent a potentially powerful 

tool to monitor changes brought about by increased anthropogenic impact, or by targeted 

mitigation measures designed to counteract its effects.  

This research programme used a paired catchment approach to compare measures of 

ecosystem function in two headwater streams flowing through agricultural catchments with 

similar land use and surface geology, but different land management practices.  

The research was designed to address the following research questions: 
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1.1. Research questions 

RQ1.  Are there differences in water quality between two headwater streams flowing 

through agricultural catchments with similar land use and surface geology, but different 

land management practices? 

RQ2.  Can differences in water chemistry or sediment characteristics be linked to 

agricultural management practices? 

RQ3.  Are there differences in short term metabolic processes between two headwater 

streams flowing through agricultural catchments with similar land use and surface geology, 

but different land management practices? 

RQ4.  Are there differences in time integrated ecosystem processes between two 

headwater streams flowing through agricultural catchments with similar land use and 

surface geology, but different land management practices? 

RQ5.  Do the process measurements used to compare the study reaches represent 

potential methods to monitor changes to functional integrity, following modifications to 

land management practices? 

1.2. Thesis structure 

The research programme was embedded within the Demonstration Test Catchment (DTC) 

research platform funded by Defra, and focussed on the River Sem sub-catchment of the 

Hampshire Avon. The River Sem is a tributary of the River Nadder and is atypical of the 

Hampshire Avon being mainly underlain by low permeability Gault clay rather than the 

Chalk that is characteristic of the majority of the catchment. The two study areas, Priors 
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Farm and Cool’s Cottage, are small agricultural sub-catchments that are predominantly used 

for stock grazing. Their proximity (the outlets to the sub-catchments were within 1 km of 

each other) ensured a high degree of similarity in meteorological conditions throughout the 

study period, October 2011 to June 2014.   

Chapter 2 presents an overview of current understanding on the functioning of aquatic 

systems and the pressures on them resulting from human activities. Considerations of the 

importance of nutrient balance (stoichiometry) and the effects of disrupting natural cycles 

are linked to the research questions outlined in section 1.2.  

Chapter 3 provides a detailed comparison of the two study sub-catchments, providing 

evidence for both similarities and differences resulting from intrinsic characteristics and 

from differences in land management practices. These are discussed in relation to their 

impact on the hydrology, in-stream nutrient chemistry and sediment characteristics of the 

study reaches. Chapter 4 describes the approach used to address the research questions. It 

details the methodologies employed for sample collection, processing and chemical 

analyses, and the protocols employed during the incubations designed to measure 

ecosystem processes.  

The results are presented in the following three chapters. Chapter 5 provides a detailed, 

high resolution description of the in-stream nutrient chemistry of the two study reaches. A 

combination of spatial and temporal variation in nutrient chemistry defined differences in 

the sources of nutrients between the sub-catchments and, together with chapter 3, 

addresses the first research questions, RQ1 and 2.   
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Chapter 6 addresses RQ3. Short term metabolic processes were measured to determine 

whether the differences in in-stream environments, identified in chapters 3 and 5, impacted 

on rates of community aerobic respiration, or on the preferential utilisation of different 

nutrient fractions during incubations. Photosynthetic primary production and the 

relationship between it and aerobic respiration were also investigated as a possible 

indicator of contrasting trophic status. Finally, in chapter 6, considerations on the potential 

implications of land management for greenhouse gas production by anaerobic processes 

were explored, by measuring in situ accumulation of methane (CH4) nitrous oxide (N2O) and 

carbon dioxide (CO2) across the sediment-water interface during closed incubations. 

Chapter 7 addresses RQ4. In order to establish the ecosystem functional response to 

environmental conditions integrated over time, the rates of macro-invertebrate mediated 

processes, namely leaf litter degradation and herbivory, were measured and compared 

between the two study reaches.  The association between process rates and observed 

macro-invertebrate community structure was explored, and the relationship between 

macro-invertebrate structure and function and water quality integrated over a variety of 

time scales are discussed. The final chapter, Chapter 8, is a synopsis of the research project 

and presents an overview of the impact of different management practices on key 

ecosystem processes. The thesis concludes with an evaluation of the applicability of each of 

the functional measures adopted in the project to routine assessments of stream health. 
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 Pressures and controls on stream health.  Chapter 2.

2.1. Agricultural sources of diffuse pollution. 

Diffuse Water Pollution from Agriculture is considered to be a major contributor of non-

point source contaminants to surface waters in rural landscapes. Harmful anthropogenic 

inputs associated with agriculture include high levels of nutrients, organic carbon in the 

form of animal wastes, pesticide and herbicide applications and disproportionate sediment 

input. Recognition of the impact that changes in agricultural practice after the 2nd world war 

have had on groundwater stores has focussed attention on ‘fertiliser’ chemicals, nitrogen 

and phosphorus in particular. More recently, the impacts of high loads of fine sediments are 

being recognised as having serious ecological consequences through reducing available 

oxygen and cementing the loose gravel substrate required for successful fish egg survival.  

Runoff from fields and stock trackways that ends up on roads are a major source of 

sediments, as roads provide an efficient conduit between fields and watercourses, (Collins 

and Walling, 2007; Walling et al., 2008; Ballantine et al., 2009; Collins et al., 2010b).  

2.2. Legislative and economic drivers, Demonstration Test Catchments 

and some existing mitigation measures. 

The legislative framework behind water quality improvements in the 20th century have been 

well documented in many publications. Much of the early legislation was driven by concerns 

for human health eg. the EU Nitrates Directive (91/676/EEC) and EU Drinking Water 

Directive (98/83/EC). Environmental priorities were included in the EU Habitats Directive 

(92/43/EEC) and protected sites legislation. The cost to Water Companies of meeting EU 

drinking water standards and strict regulations on mitigation of environmental damage has 
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encouraged their participation in research and implementation of strategies designed to 

improve the quality and sustainability of water resources. 

Alongside the economic cost to water companies, the major driving force behind the 

continued clean-up of surface waters is the EU Water Framework Directive (WFD) that 

incorporates many of the previous directives and is both ambitious and proactive. One of its 

great strengths has been to provide not only clear targets for improvement but also a 

specific time frame for their implementation. The WFD has prompted a large scale re-

evaluation of the anthropogenic consequences to the ecosystem services provided by 

surface waters and increasingly, the necessarily less well documented influence of diffuse 

pollution is being recognised as a major factor in the changing character of rivers and 

groundwaters.  

Common Agricultural Policy (CAP) grants have changed their emphasis from supporting 

wholly food security driven measures, following the Second World War, to a balance 

between production and environmental priorities. In the UK, Environmental Stewardship 

Schemes (ESS) recognise the contribution the farming community makes to maintaining the 

countryside and aim to encourage environmentally sympathetic farming practices, 

particularly in environmentally sensitive areas. To this end, a team of Catchment Sensitive 

Farming officers provide advice on practical issues such as matching crop selection to soil 

and climate types and on the financial incentives available to implement these mitigation 

measures.  

In the light of recent pressure to reduce CAP grants to farmers and the resurgence of 

concerns over food security, the need to justify ESS grants has become increasingly urgent. 

The first step to assigning a cost benefit analysis to these payments is to define the specific 
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benefits expected from the interventions designed to reduce DWPA and to determine their 

efficacy. In the UK, the Department of Environment Food and Rural affairs (Defra) have 

commissioned a comprehensive research programme in three representative catchments to 

study the responses of the aquatic environment to the on farm mitigation measures 

supported by the ESS payments. The Demonstration Test Catchments (DTC) have been 

chosen to represent a highland catchment, the River Eden in Cumbria; a lowland catchment, 

the River Wensum in East Anglia and an intermediate, chalk catchment, the Hampshire Avon 

in Wiltshire and Hampshire. 

The majority of mitigation measures concentrate on reducing the delivery of DWPA to water 

bodies in a variety of ways: 

 In cultivated fields, the timing of agrochemical application to avoid excessive loss 

due to heavy rainfall immediately after application is a key and cost effective 

measure, benefitting both the farmer who avoids loss of expensive chemicals 

through leaching (particularly nitrogen) or association with soil particles, (particularly 

phosphorus and pesticides).  

 Careful choice of crops that optimise the farm soil type and reduce the time bare soil 

is exposed to erosive weather also benefits both farmer and the environment 

through a reduction in erosion of productive topsoil, although some compensation 

may be required to offset loss of production of high yield cash crops such as maize 

and rape.  

 Ploughing in a direction that increases downslope overland flow, or that leads 

directly onto a track or roadway can significantly increase soil inputs to water bodies, 

as roads often provide a direct and uninterrupted conduit for sediment transport 
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(Collins et al., 1997; Collins et al., 2007; Collins et al., 2010a). Changing the direction 

of cultivation can make a significant contribution to reducing the loss of soil to 

watercourses.  

 Minimal cultivation methods such as reduced surface tillage and timing the use of 

heavy machinery to avoid compaction are all mutually beneficial measures. 

For dairy and livestock farmers, measures that aim to reduce soil compaction through a 

reduction in stocking levels are examples of strategies that are unlikely to benefit the farmer 

and therefore  unlikely to have significant voluntary uptake, although work by Walling et al. 

(2003; 2008) has shown that soil losses caused by compaction through overstocking is a 

significant proportion of total soil loss within a catchment (Collins et al., 2009; Collins et al., 

2010a). 

The provision of riverbank fencing and in-field drinking troughs to reduce bankside erosion 

caused by stock drinking directly from the river are examples of currently funded mitigation 

schemes. These also reduce the direct input of organic carbon and nitrogen in the form of 

animal wastes. Interruption of the pathway for waste slurries from farmyards and track 

ways by drainage and treatment systems or by roofing open yards to reduce surface runoff 

are also examples of targeted ESS grants.  

The provision of ponds to collect runoff and ‘buffer strips’ alongside water courses are 

further examples of the concentration of effort dedicated to reducing the delivery of 

contaminants, particularly phosphate and pesticides that are associated with soil particles 

eroded from cultivated land. Methods aimed at enhancing the receptor ecosystem’s ability 

to process DWPA are less common. The development of wetland areas and wet meadows 

has primarily been seen as a flood defence mechanism. However, by increasing retention 
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time, these areas allow further local processing of allocthonous material, potentially 

reducing the input of organic matter and agrochemicals to downstream reaches. Recent 

work highlights the need for appropriate monitoring and management of these schemes to 

account for ‘saturation’ and subsequent leaching to watercourses. Resistance in take up of 

these options may be based on both cost of implementation and the loss of apparently 

productive riparian land. 

2.3. Physical controls on nutrients. 

In healthy aquatic systems, the ecosystem balance is maintained through a limited supply of 

the nutrients essential for growth, predominantly carbon, nitrogen and phosphorus. 

‘Natural’ concentrations are determined by catchment and aquifer geology and hydrology. 

Understanding the mechanisms that control the bioavailability of limiting nutrients 

underpins efforts to improve water quality in impacted systems (Ensign and Doyle, 2006)  

The uptake and processing of nutrients and their fate as recycled or stored are controlled by 

both biological and geophysical processes, (Battin et al., 2003; Alexander et al., 2007; Battin 

et al., 2008; Alexander et al., 2009) Physical processes include the photodegradation of 

organic matter (Amado et al., 2006; Alexander et al., 2009) and temperature. 

Geomorphology influences the flow regimes that in turn dictate physical states such as 

shear stress, retention time and substrate characteristics. Turbulence affects the availability 

of oxygen for chemical reactions. Redox potential, and the presence of chemicals such as 

iron and carbonate control the equilibrium point of available nutrients (Evans and Johnes, 

2004; Evans et al., 2004; Withers and Jarvie, 2008; Durand et al., 2011). A more detailed 

discussion of the nitrogen and phosphorus cycles is given below, section 1.1.8.    
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Biological processes exert strong control on the fate of nutrients and their delivery to 

downstream reaches. This biological ecosystem service is highly influenced by the 

community structure that develops in response to the physical and chemical conditions in 

the river, (Battin et al., 2008; Singer et al., 2010; Clapcott and Barmuta, 2010; Nogaro et al., 

2010).  

2.4. Biological controls on nutrients. 

The factors influencing community development track the dominant physical controls: light, 

temperature, nutrient status, oxygenation, flow and shear stress, retention time, substrate 

material, sediment quantity and particle size and the delivery of allocthonous organic 

matter. The link between biological efficiency and physicochemical conditions result in both 

positive and negative feedback controls on nutrient cycling and availability (Findlay and 

Sinsabaugh, 2006; Fukuda et al., 2006; Clapcott and Barmuta, 2010; Covino et al., 2010). 

Distinct ecosystems within the stream are the seston and the benthic communities. For 

nutrient transformations, one critical distinction is the proximity of individual components 

to each other. Biofilms, on substrate (epilithic), woody debris (epixylic) and on macrophytes 

(epiphytic), provide a level of commensalism unavailable to free living organisms. The three 

dimensional arrangement of organisms within the film optimises the availability of nutrients 

to community members (Fukuda et al., 2006; Besemer et al., 2009; Bouletreau et al., 2010). 

Benthic, interstitial and epixylic films are the most likely to provide medium to long term 

storage of macronutrients, being a captive food source for grazing macroinvertebrates and 

fish. Aggregates within the water column provide an additional framework for biofilm 

development. Their retention within the reach is dependent on filter feeders. Free living 

organisms have the advantage of immediate availability of labile nutrients, whereas the 
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biofilm communities may be limited by the rate of diffusion of key nutrients through the 

slime itself (Flemming and Wingender, 2010). 

 Stoichiometry. 2.4.1.

In 1934, a key observation was made when Redfield (1934), found that the balance of major 

nutrients in the oceans stayed remarkably constant. This ratio, named after Redfield, has 

strong implications for the regulation of biogeochemistry and prompted further research 

into the principles behind nutrient balance and its repercussions. While the Redfield ratio 

has been found to be less than universal, the principle of co-dependence stands. The 

processing of carbon, nitrogen and phosphorus are intimately linked, making it essential to 

consider their delivery, transport and fate together.  

In the majority of heterotrophs, the ratios of carbon (C), nitrogen (N), and phosphorus (P) 

are strictly maintained as a consequence of their body structure (Schade et al., 2011). The 

requirement for both energy and materials must be met from their food source and are, 

therefore, coupled. Excess nutrients within a food source, which cannot be organically 

bound with carbon, are excreted and recycled into the environment, potentially driving 

alternative pathways of resource utilisation.   

In contrast, the ratios of C, N and P in autotrophs are highly variable.  Because they fix their 

own organic carbon from inorganic sources through photosynthesis, their mechanisms for 

energy and nutrient capture are decoupled. Excess, non-limiting nutrients in their growth 

medium can be stored within the cell vacuole to be used when concentrations of a limiting 

nutrient increase. This ‘luxury consumption’ is a strong survival strategy where the 

concentration of nutrients fluctuates (Sterner and Elser, 2002). A good example of such 
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variation is in rivers and streams that are subject to pulses of high nutrient runoff from 

agricultural land, particularly after inappropriate fertiliser application or soil erosion.  

A consequence of these differences is that the carbon:nutrient (C:nut) ratio of a food 

source, limits heterotrophic ability to assimilate nutrients; while in autotrophs, not limited 

by light, it is the N:P ratio in the medium that controls assimilation and growth. Studies by 

(Elser et al., 1990; Downing and McCauley, 1992), cited in Sterner and Elser (2002), found a 

N:P ratio of around 31 (14 by mass) to be the threshold that determines whether N or P 

concentrations limit the growth of algae in freshwater lakes. This ratio was remarkably 

similar to the thresholds described for terrestrial systems (Verhoeven et al., 1996) and has 

been proposed as a significant threshold for the switch between N or P limitation. The N:P 

ratio of the environment is likely to vary over an annual cycle resulting in communities that 

experience alternating N and P limitation at different times. 

Some communities, notably bacteria and fungi, are able to utilise dissolved N and P, in both 

organic and inorganic forms. These ‘saprophytes’ select a required nutrient by controlling 

the production of extracellular enzymes. This allows them to utilise energy sources with a 

high C:N ratio such as leaf litter. However, bacteria in particular are nutrient rich and 

provide a high quality diet to consumers such as protists and ciliates.   

The transfer of microbial carbon into the higher trophic levels is increased through the 

production of biofilm.  Production of biofilms allow the development of communities with 

complementary metabolic ‘skills’, facilitating the breakdown of refractory compounds.  

Benthic, epilithic, epixylic (on woody debris) and epiphytic films provide a food source for 

grazing protists and macro-invertebrates. ‘Sticky’ biofilm increases the effective particle size 
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of free living microbial communities through aggregation. This makes them easier prey for 

filter feeding organisms such as foraminifera and macroinvertebrates. 

Analyses by (Dodds et al., 2004; Dodds, 2006) strengthen the premise that variation in the 

relationship between community metabolism and nutrient uptake is controlled by the C:N 

and C:P  ratio of the food source, particularly in heterotrophic streams where a substantial 

input of allocthonous C fuels heterotrophic production. The speciation of inorganic N and P 

may affect the ease of their uptake. However, as the exchange between forms is dynamic, 

their ratio may be less important than the quality of the carbon source. Since both 

autotrophs and microbial heterotrophs can utilise both organic and inorganic N and P, light 

limitation of autotrophy in streams may be less important for the microbial community, 

particularly in detritus based headwaters where carbon is not limiting.  Investigations 

examining the relationship between community metabolism and nutrients showed that the 

higher C:N ratio of allocthonous vs autochthonous material stimulates heterotrophic nitrate 

uptake in detritus based streams (Fellows et al., 2006b; Chung and Suberkropp, 2008). This 

study demonstrates the adaptability of microbial heterotrophs to variable quality in food 

sources.   

  Organic carbon. 2.4.2.

Input of fixed carbon to surface waters is traditionally partitioned into primary production, 

transfer from upstream reaches and allocthonous material from the catchment such as leaf 

detritus, particulate organic matter carried on soil particles, dead insects and other 

terrestrial fauna and dissolved organic matter.  New research has demonstrated the 

occurrence of significant methane fixation by chemoautotrophs in chalk streams with strong 

connections to groundwater sources (Trimmer et al., 2010), although it is not yet clear 
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whether this previously unrecognised source makes a significant contribution to carbon 

budgets.  

In much of the literature, a distinction exists between the transient storage of 

macronutrients in biomass and their more permanent storage or removal through burial 

and outgassing, (Billett et al., 2006). Recent improvements in understanding the complex 

mechanisms of nutrient cycling through biogeochemical processes blur this line. The 

metabolic processes of the microbial community are central to these transformations. 

Coupled cycles of aerobic and anaerobic metabolism alter the redox potential in sediments, 

the hyporheic zone, and in aggregates within the water column. Redox state strongly 

influences the soluble phase of nutrient stores within streams. 

Examples of transient storage are incorporation into benthic or epixylic and epiphytic 

biofilms, uptake by macrophytes and meiofauna, such as macro-invertebrates and juvenile 

fish, and burial in shallow sediments subject to seasonal flushing. Community respiration 

and the production of soluble exudates that are utilised within the reach are examples of 

recycling. 

2.5. Nitrogen and phosphorus. 

Understanding the transformation and cycling of N and P is key to understanding their 

bioavailability and the consequences of increasing concentrations in freshwater ecosystems. 

The concentrations and cycling of inorganic N and P dominate early discussions, chemical 

availability being thought to mirror bioavailability.  More recently, comparisons of the upper 

limits of phytoplankton biomass, as measured by chlorophyll a (Chl-a), with total N (TN) and 

total P (TP) showed strong correlation in lakes. An intercept of the upper limit of biomass 
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with the measured nutrient, 0 mg/l for P and 0.7mg/l for N suggests all P is available for 

plant growth in these ecosystems but that some N remains unavailable to metabolic 

processes (Scheffer, 1998). 

Further insights were made possible by the development of techniques capable of 

distinguishing the dominant fractions or speciation of N and P (Johnes and Heathwaite, 

1992). This allowed the differentiation of inorganic, soluble organic and particulate fractions 

of the total nutrient concentrations to be assayed. A further step change was the semi- 

automation of these analyses making higher time resolution of their interactions achievable. 

This is particularly important when dealing with biological transformations. The diurnal 

patterns associated with primary production are long established and their effects on the 

nutrient chemistry in freshwaters are known to have significant effects.  

The different forms and availability of nutrients make their timing and delivery to a 

watercourse a major factor determining their processing. These differences often result in 

nitrogen and phosphorus cycling being discussed separately, although their biological 

processing is intimately linked through stoichiometric controls, see section 2.4.1. 

 Nitrogen: 2.5.1.

Nitrogen is the major constituent of the atmosphere. In its molecular form as N2 gas, it has 

limited bioavailability. Transformation of nitrogen is predominantly mediated by biological 

systems. Fixation by microbes, either free living, or in association with some plants, the 

legumes, converts molecular nitrogen, first into ammonia  (NH3), then nitrite ions, (NO2
-), 

and ultimately nitrate ions, (NO3
-), in a process known as nitrification. Plants and some 

microbes can incorporate nitrate directly into their biomass to forms such as amino acids 

and proteins, yielding organic nitrogen. The cycle is completed when metabolic processes 
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reduce the organic matter to ammonia and then re-oxidise it to nitrate, known as 

nitrification. Depending on oxygen availability, nitrate can either be re assimilated into 

organic matter or reduced to nitrite and denitrified back to molecular nitrogen releasing 

N2O, a powerful greenhouse gas, as a by-product.  

Due to its small size and low negative charge, nitrate is rarely bound to soil constituents and 

leaches freely through soils when in excess of growth requirements. 

Many organic nitrogen compounds such as urea, are highly soluble and nitrogen is often 

delivered to rivers in dissolved organic forms, readily available to photosynthetic organisms 

where its uptake will be strongly influenced by light availability. The processes involved in 

nitrogen cycling and its control in freshwater systems has been comprehensively reviewed 

by Durand et al. (2011) but some key factors are presented here. In low nutrient, open 

canopy streams in the summer, NO3
-  demand by photoautotrophs alone can exceed 

measured uptake of NO3
-  as measured by solute injection studies (Fellows et al., 2006b). 

These findings demonstrate that primary production is highly dependent on the recycling 

role of primary heterotrophs, and provide a plausible mechanism for the strong coupling 

between heterotrophic activity and primary production reported by (Scott et al., 2008) and 

others, that is lost in high nutrient streams.  In the same study, Fellows et al. found higher 

than expected rates of night time NO3
- uptake into autotrophs, suggesting it can be a 

subsidy for their growth, using excess carbon fixed during daylight hours.   

In-stream processing of this N in headwater streams is an important ecosystem service that 

reduces its transport to downstream reaches, where high N availability is linked to an 

enhancement of primary production and resultant eutrophication (Johnson et al., 2009; 

Hilton et al., 2006). In these low order streams, the high ratio of bed substrate to water 
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volume provides excellent habitat, both for benthic autotrophs and for the microbial 

communities responsible for denitrification that can exceed 40% of total nitrate uptake 

(Mulholland et al., 2008)  

 Phosphorus: 2.5.2.

In contrast to the delivery of predominantly soluble nitrogen, large pulses of particulate P 

are often associated with storm events, where increased flow rates reduce the retention 

time within the reach and, therefore, the potential to process it locally. On the other hand, 

hydromorphological elements, such as sinuosity and impoundment by natural woody debris 

dams or man-made structures, increase retention time and may aid its incorporation into 

benthic biomass and up the food chain. In a positive feedback loop, decreasing redox levels, 

resulting from bacterial respiration, favour the dissolution of P by switching the equilibrium 

of metal bound forms to soluble phosphate, fuelling benthic processes and further reducing 

redox. Transformation between the forms of inorganic phosphorus is strongly influenced by 

the prevailing physicochemical conditions. Phosphate is bound or adsorbed to soil particles, 

where its strong negative charge is attracted to metallic ions such as iron and aluminium, 

constituents of clays. Changes in ambient redox and pH result in a change in the strength of 

this adsorption and can trigger its retention or release as orthophosphate (soluble reactive 

phosphate, SRP). In areas high in calcium such as chalk catchments, low pH can result in the 

stable formation of an insoluble mineral. This can result in export of phosphorus from the 

aquatic system through burial.  
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2.6. Effects of diffuse pollution. 

 High sediment load. 2.6.1.

Sediment has multiple effects on river ecosystems. Chemically, agricultural soils are 

associated with bound phosphorus which can be transformed to available phosphorus once 

it reaches the microbial communities of the river. In low flow conditions and in fine 

sediments, a ‘cap’ can inhibit transformations across the interface and can have a strong 

influence on the retention / release of sediment stored P (Jarvie et al., 2008).  Physical 

effects of fine sediments are equally harmful to the aquatic ecosystem. Compaction and the 

smothering of gravel beds damages fish spawning grounds. Increased turbidity reduces the 

available light available to the algal and macrophyte communities and changes its spectrum. 

This alters the community structure, favouring faster growing (and dying) algal forms that 

decompose on senescence, leading to oxygen depletion.  Epiphytic algae increase, further 

shading macrophytes and reducing their ability to fix and process nutrient inputs (Jarvie et 

al., 2008; Hilton et al., 2006). These epiphytic communities process a smaller proportion of 

the available nutrients and are prone to removal by high flows and sediment ‘poisoning’ 

making them a more transient store of received nutrients. 

Microbial communities respond to habitat changes including sediment quantity and 

dimension. Bacterial growth rates and whole community metabolism are highest in fine 

sediments when compared to rates in gravel or cobble substrates, (Clapcott et al., 2010; 

Clapcott and Barmuta, 2010). Fine sediments, however, cause problems for many 

invertebrates, so transfer of biomass from bacteria to higher trophic groups may be limited 

and their increased activity can lead to increased mineralisation of nutrients that are then 

exported downstream.  Problems associated with excessive sediment also include significant 

losses of macroinvertebrate functional groups. Filter feeders are unable colonise the 
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unstable substrate, reducing the ability to retain the increased levels of fine particulate 

organic matter (FPOM) within the reach (Benstead et al., 2009).  For these reasons the 

deposition of fine sediment associated with runoff from agricultural catchments is a 

significant problem that attracts funding for mitigation measures aimed at attaining good 

ecological status under the EU Water Framework Directive.  

 Eutrophication 2.6.2.

Eutrophication is most apparent in slow moving or still water bodies where high 

phytoplankton numbers, driven by high nutrient concentrations, cause visible changes to 

water colour and clarity, and through senescence and dieback at the end of the growing 

season, alter the nature of the substrate, lead to reduction of available oxygen in the water 

column though microbial decomposition and result in loss of biodiversity and increased 

purification costs in water supply.  In faster flowing water, flushing prevents the 

development of high phytoplankton biomass and new definitions of eutrophy have been 

developed (Hilton et al., 2006; Dodds, 2006). In particular, the development of excessive, 

short lived epiphytic and benthic algae that restrict macrophyte metabolism through 

competition and shading, is cited as an indicator of poor water quality. 

As a result of these easily recognised and harmful effects of eutrophication, the story of 

inorganic nutrients and their transport has dominated investigations. High nitrate 

concentrations in streams have been shown to inhibit both nitrification and total nitrate 

uptake (Alexander et al., 2009; Fellows et al., 2006b). In their model of nitrate uptake, 

biogeochemical factors such as nutrient concentrations, temperature and residence time 

were all shown to be important predictors of nitrate uptake rate.  In streams with high 

ambient NO3
-, even in summer with an open canopy, photoautotrophic demand could not 
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keep up with NO3
- supply. In streams with a closed canopy and light restricted primary 

production, nitrification in sediments released NO3
- that exceeded demand by 

photoautotrophs resulting in net export to downstream reaches, (Mulholland et al., 2006).  

Much of this work concentrates on inorganic fractions of N and P, missing the pool of 

nutrients in dissolved organic and particulate form.  The relative proportions of nitrogen 

species and phosphorus fractions do not remain constant, either between or within water 

bodies throughout the year, making it impossible to describe ecologically significant 

chemical water quality by studying the inorganic fractions alone (Durand et al., 2011; 

Heathwaite and Johnes, 1996; Johnes and Burt, 1993; Heathwaite et al., 1996).  While 

nitrate, ammonium and phosphates are known to be readily available for biological uptake, 

many organic forms can also be used directly and, as communities adapt to utilise any 

available resource, almost all nutrient delivered to a watercourse will be processed, albeit at 

different time scales (Maberly et al., 2002). For example, exo-enzymes produced by 

microbial populations can release readily available nutrients from complex organic matter 

and seasonal increases in macrophyte biomass will die off in the winter and decompose or 

be transported to downstream reaches.  Recalcitrant particulate matter may settle as 

sediment but will be vulnerable to re-suspension and transport during high flow events, or 

may be transformed as a result of changing temperature and redox conditions throughout 

the year.  It is likely that only a small proportion of nutrient is truly removed from the 

watercourse through natural in stream processing such as terrestrial insect development 

from their macroinvertebrate juvenile stages.  
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 Microbial/ algal interactions. 2.6.3.

A recent review stresses the importance of the microbial community for both storage and 

transfer of nutrients and for their release and recycling (Findlay, 2010). Sterner and Elser 

consider saprophytes to be responsible for the 2nd largest flux of macronutrients in the 

biosphere, second only to photosynthesis (Sterner and Elser, 2002). Large scale comparisons 

between land use and functional metrics showed measures of gross primary production and 

the activity of primary heterotrophs were the most responsive indicators of broad land use 

categories, (Clapcott et al., 2010). Understanding how microbial populations and processes 

respond to DWPA is, therefore, a crucial component in linking ecosystem structure and 

function.    

One of the most consistent observations from recent research is the decoupling of bacterial 

and algal production in streams with high nutrient concentrations. In high light and low 

nutrient conditions, bacterial production correlates closely with primary production 

(Rusanov et al., 2009; Scott et al., 2008). This relationship breaks down with increasing 

nutrient concentrations, supporting the theory that heterotrophic bacteria can use high C:N 

food sources in nutrient rich streams. Scott et al. suggest their data support the premise 

that algae rely on bacterial remineralisation and recycling of nutrients in oligotrophic 

streams, while Rusanov et al. focus on the competition for high quality (low C:N) food that 

exists between bacterial and algal populations in low nutrient conditions.  In biofilms, a 

similar relationship has been linked with the release of DOC from the film into the 

surrounding water that can range from 2 – 45% of net primary production (NPP), (Ziegler 

and Lyon, 2010).  In experimental incubations at a range of nutrient concentrations, the 

source of released (excess) DOC in low nutrient conditions, is mainly as carbon from older 

biofilm constituents, while that released from biofilms in nutrient rich conditions is 
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dominated by carbon fixed during the incubation period. Bacterial incorporation of this 

newly fixed carbon does not mimic the increase in new carbon fixed by algae in nutrient rich 

conditions, allowing the release of labile carbon to downstream reaches (Lyon and Ziegler, 

2009; Ziegler et al., 2009; Ziegler and Lyon, 2010). These observations are linked with land 

use in a study by Williams et al. (2010)  who found that riparian land use altered both the 

quantity and quality of exported DOM. Streams in agricultural catchments exported more 

labile DOM than wetland or forest streams.  The source of DOM has been shown to have a 

strong effect on bacterial activity and community composition (Judd et al., 2006; Judd et al., 

2007). The addition of DOM from soil water had a greater effect on stream bacteria, with 

production increasing by 3 to 7 fold, much more than the increase stimulated by the 

addition of DOM from a stream source. This strong microbial response to inputs of C, N and 

P is further demonstrated by the work of Benstead et al. (2009) in field investigations that 

show a 15 fold increase in the export of FDOM in enriched streams compared with a control 

reach. In addition, the export of acclimatised microbial populations to downstream reaches 

may increase the ability of higher order streams to process nutrients (Battin et al., 2008).  

 Microbial /macro-heterotroph interactions. 2.6.4.

The previous section deals with the interactions between microbial communities and 

primary producers. Fixation of macronutrients within a reach will be dependent on burial 

within sediments or their transfer to higher trophic levels. Few studies quantify 

bacteriophagy in freshwater streams but see (Konigs and Cleven, 2007), who found no 

evidence for a significant pathway through ciliate grazing of bacteria in a hyporheic zone. 

Determining the contribution heterotrophic microbiota make to the nutritive value of 

biofilm to grazers is difficult (Withers and Jarvie, 2008). Fungi, on the other hand, have been 

shown to contribute to the nutrition of macroinvertebrate shredders, although their 
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contribution to dietary intake, which can be up to 100% of growth requirements, depends 

on the growth stage (instar) of the macroinvertebrate (Chung and Suberkropp, 2009). 

Predominantly, the impact of microbial transformations is thought to be as remineralisers 

and a synergistic relationship exists both up and down trophic levels. We have seen how the 

remineralisation of limiting nutrients is crucial to primary producers. This in turn affects the 

herbivorous macroinvertebrates.  Detritivores, too, are reliant on the release of 

macronutrients to subsidise high C:N ratio carbon sources such as terrestrial leaf litter. In 

high nutrient streams, microbial degradation of leaf litter can equal that of combined 

microbial and macroinvertebrate grazing in low nutrient streams, (Chung and Suberkropp, 

2008). The metabolic response of the microbial community to changes in nutrient status 

was greater in their study than that of the macroinvertebrates. In another study, macro-

invertebrate community structure was significantly affected by nutrient status (Baldy et al., 

2007). Bacterial biomass increased throughout a wide range of enrichment (defined by 

phosphate concentrations) while shredder taxa of macroinvertebrates were intolerant of 

high P and high ammonia (NH3 concentrations. Fungal requirements for N and P are thought 

to be lower (Duarte et al., 2009). In 2007, Baldy et al. also found that increasing P 

concentrations had a positive effect on fungal biomass but for a limited range. At their 

defined range of eutrophic and hypereutrophic P concentrations, fungal biomass levelled off 

and ultimately decreased. The strong feedback links and high speed responses available to 

microbial communities through physiological changes of their exo-enzyme production, 

(Sinsabaugh and Shah, 2010) and short generation times allowing rapid colonisation 

following introduction, leading to changes in community structure (Judd et al., 2007), 

facilitate whole community response to variations in nutrient status. 
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Extrapolating short term, experimental responses into longer term management strategies 

is a challenge.  For example, in a five year nutrient enrichment study, responses to nutrient 

enrichment were shown to vary between mass specific, physiological responses and area 

specific, whole system, responses (Suberkropp et al., 2010). In the short term, nutrient 

subsidies increased primary production, microbial and macroinvertebrate biomass and 

production. Over the five year period, however, the reduction in leaf litter substrate 

resulted in reduced areal microbial biomass and, therefore, nutrient uptake potential.  

2.7. The ecosystem service / function/ process model 

The ecosystem service, function and process model has evolved from a recognition of the 

vital contribution a functioning ecosystem makes to human survival, health and wellbeing 

(The Ramsar Convention, 1971; The Millennium Ecosystem Assessment, 2005). In this 

model, each ecosystem service, for example ‘provisioning’, ‘regulating’ or ‘cultural’,  is  

represented by a suite of ecosystem functions, each of which are reliant on  a complex 

group of processes. One illustration of the nested nature of this model is demonstrated in 

Figure 2:1 (McInnes, 2008; McInnes et al., 2008). 

In their seminal paper Gessner and Chauvet (2002) advanced the case for measurements of 

ecosystem function to complement structural indices.  The ability of low order streams to 

process  the key nutrients, N, P, and organic carbon, is of considerable interest and the 

extent to which anthropogenic inputs disrupt this ecosystem service has stimulated 

research into the mechanisms that control nutrient cycling and to quantify their 

assimilation, retention, sequestration and release.  
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Studies by Nelson (2000)and Bunn and Davies (2000) cited in Gessner and Chauvet (2002), 

describe observations of the decoupling of functional and structural changes in response to 

environmental stress. In a further example, the reduction of phosphate in a lowland river, 

where sewage treatment works had improved phosphate stripping techniques, resulted in a 

significant reduction the concentration of SRP. Photosynthetic production (a functional 

metric), however, did not decline (Neal et al., 2010), confirming the complex nature of cause 

and effect in aquatic ecosystem functional response to a single parameter change.   

Figure 2:1 Relationships among ecosystem services, functions and processes: example for removal and retention of 
nitrogen as a component of the regulating ecosystem service (McInness et al., 2008).  
Reproduced with permission from Joint Nature Conservation Committee report No. 397 
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Linking biodiversity and ecosystem functioning with reference to food webs, Woodward 

(2010) described the critical control that vertical interactions (consumer: resource) in a food 

web can exert - termed trophic cascades - in contrast to horizontal interactions that often 

exhibit less sensitivity to the loss of taxa (functional redundancy).  

 Leaf Litter degradation. 2.7.1.

Gessner and Chauvet (2002) champion leaf litter breakdown rates as a good candidate for a 

standard assay for ecosystem function. It has the advantage of being fairly straightforward 

while providing a measurement, integrated over time that examines ecosystem response to 

a variety of stressors at different trophic and organisational levels.  (McKie and Malmqvist, 

2009) used the technique to compare in-stream responses to light availability in forested 

and clear felled streams of different trophic status. Short term ‘physiological’ responses and 

longer term ‘system’ change can be distinguished using leaf degradation studies as a model. 

In their five year study, Suberkropp et al. (2010), describe the short term physiological 

subsidy provided by enhanced nutrient concentrations, driving increased detrital 

degradation rates and contrast that with the resultant, long term reduction in detrital 

organic carbon, driving a reduction in nutrient uptake (through stoichiometric controls)  and 

their increased availability for downstream export. 

Leaf litter breakdown dynamics are also used in the carbon budget studies of Benstead et al. 

(2009) and in determining the relative contributions of microbial and invertebrate activity to 

bioavailability.  In 2008, Chung and Suberkropp examined fungal / invertebrate interactions 

and established the key role played by microbial transformations in bioavailability of key 

nutrients. Disadvantages in the use of leaf litter degradation as a standard assay include the 

variability of leaf litter from different tree species and differing reactions of communities 
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pre-adapted to ambient leaf species (Kominoski et al., 2007). Discussions on the applicability 

of single or mixed LL packs can depend on logistics (frequency of sampling vs sufficient 

degradation) and the aim of the study – carbon budgets or comparison between stream 

reaches or nutrient status. The use of cellulose strips has been suggested as an artificial 

substrate to eliminate some of the variability inherent in the leaf litter methodology 

(Imberger et al., 2010), although these may have limited relevance to calculations of 

nutrient dynamics and budgets in natural systems.   

2.8. The Demonstration Test Catchment Programme: 

The DTC consortium uses a suite of measures to assess ecological response in small sub-

catchments. Defining environmental responses, following changes in land management 

practice can be a long term process. The criteria for evaluating status take into account the 

physical, chemical and biological descriptions of a water body. These can be defined as 

‘structural’ measures and each has associated difficulties and limitations, for example:  

 Without high resolution, long term monitoring (which is both expensive and / or 

labour intensive), chemical measures provide a snapshot of chemical water quality.  

 Sediment stress is difficult to measure and highly subject to short term weather 

conditions, again lending itself to a snapshot measure.   

 Assessing changes in traditional ‘short term’, time-integrated biological indicators, 

such as macro-invertebrate and diatom assemblages, is labour intensive and requires 

a high degree of expert knowledge.  Populations are highly seasonally variable giving 

a time lag in identifying real change. 

 Other structural changes, for example fish populations, may take years or decades to 

confirm a stable change.  
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The processes that underlie how these elements interact with each other and with the 

wider environment both respond to and drive changes in the characteristics that define 

ecological status. These processes are described here as ‘functional’ measures. One of the 

central research questions of this studentship is to assess whether integrated ecosystem 

functional response may prove to be a faster, more sensitive indicator of changes to a 

combination of sediment and nutrient stressors within a reach. Many of these processes are 

mediated by microbial populations that are able to respond rapidly to changes in available 

resources; either through changing community structure as a result of short generation 

times, or by manipulating intra or extracellular enzyme activity. In low nutrient, open 

canopy streams, primary production and community respiration are tightly coupled. Carbon 

fixed by photosynthesis becomes available for heterotrophs and in a feedback loop, 

microbial recycling makes essential nutrients available for primary producers. This coupling 

is disrupted by the high nutrient input associated with diffuse pollution from agriculture. In 

the heavily shaded headwater streams of the Prior’s Farm and Cool’s Cottage sub-

catchments, primary production may be less of a control for bacterial populations than 

available allocthonous carbon sources. The High DOC concentrations in the Prior’s Farm 

reach may be reflected in bacterial numbers and activity. Extracellular phosphatase activity 

from bacterial or fungal sources may correlate negatively with SRP concentrations but 

positively with less immediately reactive fractions. Other ecosystem processes that have 

been linked to ecological stressors include macroinvertebrate herbivory and processing of 

leaf litter detritus (detritivory). 
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 Site Description: Chapter 3.

 

3.1. The Hampshire Avon: 

The Hampshire Avon is situated in the South of England and flows from Upavon, Wiltshire, 

in the North to Christchurch, Dorset on the South coast (Figure 3.1). It has a predominantly 

chalk catchment with an area of ~1700km2. The Upper Avon is well connected to its 

underlying chalk aquifer while the Nadder valley, a western tributary lying south of the 

Mere Fault, is formed from a deep incision through the dominant chalk geology. Here the 

up-warped Kimmeridge Clay, that constitutes its bedrock geology, restricts permeability 

(Allen et al., 2014).  

Throughout the catchment, land use is largely agricultural, although with large conurbations 

including the outskirts of Shaftesbury, that together with Warminster, Salisbury, Ringwood 

and Christchurch, comprise the majority of the population in the catchment. It hosts both 

SAC and SSSI conservation sites, largely due to its chalk streams that support fisheries, 

tourism and watercress production, which are economically important for the region. The 

upper reaches of the Rivers Wylye and Nadder have been important for both salmon and 

brown trout spawning grounds. However, increasing sedimentation of their spawning 

gravels (redds) has been blamed for decreasing populations throughout the catchment (The 

Environment Agency, 2009; The Environment Agency, 2005).  
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Figure 3:1 Map of the Hampshire Avon Catchment showing major waterbodies and urban areas. 
Reproduced from the Environment Agency Catchment Abstraction Management Plan, 2005. 
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Figure 3:2 The Hampshire Avon catchment showing the DTC sub-catchments. The Study area for this project concentrates on the River Sem sub-catchments: Priors Farm 
and Cools Cottage. 
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 DTC sub-catchments, site selection and meteorology 3.1.1.

Four sub-catchments in the Hampshire Avon were chosen for intensive study as part of the 

Hampshire Avon DTC research platform (Figure 3:2). The Wylye and the Ebble are chalk sub-

catchments and represent predominantly arable (River Wylye) and pasture (Ebble) 

agricultural types. The River Sem is a tributary of the River Nadder and rises in the West of 

the Hampshire Avon catchment near Shaftesbury. The River Sem sub-catchment was chosen 

for this project. The low permeability of the soils and underlying geology in the sub-

catchments were considered likely to exhibit a more rapid response to changes in land 

management practice (within the time frame of the research project), than would a 

permeable, chalk catchment. In addition, the impermeable nature of the underlying geology 

makes the River Nadder and its tributaries particularly vulnerable to the delivery of inputs 

from the catchment via surface flow. The findings reported here are based on data collected 

during a 32 month period from October 2011 to June 2014, a time frame that experienced 

some weather extremes (Figure 3:3).  
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Figure 3:3 Monthly rainfall totals (mm) at Tisbury weather station - Data provided by E.A. SW region 
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Year 1 (WY 2011) followed the drought conditions of summer 2011. Persistent rain during 

the winter of 2011/2012 was followed by heavier rain through the summer of 2012 (April – 

Sept). In year 2 (WY 2012) the high rainfall persisted until April 2013, but the summer was 

dry. These conditions were followed by the extreme wet winter of 2013/2014 that caused 

extensive flooding in the UK and, most noticeably, in neighbouring Somerset, over the 

Christmas period and early spring.  For both sub-catchments, the persistent rain during 2012 

resulted in saturated soils, leading to stock being housed throughout the summer. 

Combined with periods of drought, these conditions resulted in secondary pressures being 

exerted on the in-stream communities (Section 3.3.2.).  

In addition to the importance of the local hydrology, biological activity - and therefore 

ecosystem function, responds to temperature. Year 2 was characterised by a late spring, 

with water temperatures not rising above 10oC until mid-April, in comparison to years 1 and 

3 where temperatures reached 10oC by early March (Figure 3:4). In Year 3 however, signs of 

spring were also late to develop, evidenced by the late emergence of leaf cover and low in-

stream primary production (chapters 6 and 7).  

 

Figure 3:4 Daily minimum and maximum river temperatures at Cools Cottage during the study period: (  ) 
weekly spot samples. 
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3.1.1.1. Study sites 

Within the River Sem catchment, two neighbouring, headwater streams provided the basis 

for a paired catchment study. The monitoring stations at Priors Farm and Cool’s Cottage are 

sited at the outlets of small sub-catchments, approximately 5km2 and 2km2 respectively, 

with similar dominant soil types and land-use (Figure 3:5 and Figure 3:6). Their proximity to 

each other (1.6 km apart at the monitoring stations), means they experience the same 

meteorological conditions. The two sites experience differing levels of impact from 

agriculture, however, and provide a natural laboratory that has enabled observations of 

ecosystem functional responses to different stress levels, and allowed a distinction to be 

made between system responses to anthropogenic stressors, and to those arising from the 

effects of natural meteorological variability.  Initial assessment of the DTC sub-catchments 

suggested similar geology and hydrology would provide a strong basis for a paired 

catchment approach. The following, detailed sub-catchment descriptions identify key 

similarities and differences between the study sites.  

3.2. The Cool’s Cottage sub-catchment 

The Cool’s Cottage sub-catchment covers an area of 1.75 km2. It is sparsely populated with 

only a few dwellings: not currently serviced by mains drainage (Figure 3:7 and Figure 3:8).  

The study reach comprises a first and second order stream, flowing NE to SW with a 

combined total length of approximately 1.7 km (from two sources) to the outlet where the 

DTC monitoring cabinet is sited. The absolute length is seasonally affected by the recession 

of the ephemeral head of the secondary tributary during dry weather. It is a shallow, fairly 

fast flowing stream with a channel width of approximately 1m throughout the study reach.  
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Figure 3:5 Soils of the Sem sub-catchments. 
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             Figure 3:6 The Sem sub-catchments showing dominant land use. 
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                                                       Figure 3:8 The Cools Cottage sub-catchment 

 

Mean daily discharge over the two full water years (WY) 2011 and 2012 were 19 l s-1 (range 

2.3 – 148 l s-1) and 26 l s-1 (range 3 – 144 l s-1) respectively. The sub-catchment has an 

Figure 3:7 The view from Cools Farm towards the DTC monitoring station 
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elevation of 120 m from its highest point (240 m A.O.D.) to the outlet (120 m A.O.D); with 

an average slope of 100.5 m km-1. The Cool’s stream flows through a mixed, broadleaf 

woodland; a man-made lake; improved pasture with riparian fencing; a domestic pond (now 

silted up and forming a small wetland) and into another, smaller wet woodland area, before 

reaching the monitoring station at Cool’s Cottage. The secondary tributary also acts as a 

drainage ditch carrying surface runoff from a rural road into the main channel. The road is 

narrow, with steep banks that are prone to damage by large vehicles. Several springs drain 

into the road that, consequently, acts as an efficient conduit of water from land to stream. 

The ditch contributes a visible input of fine sediment just upstream of the pond that has 

silted up within the last 30 years. During WY 2011, construction work at Cool’s Farm, 

combined with the high rainfall, is likely to have increased this fine sediment load. 

 Bedrock geology and hydrology. 3.2.1.

For much of the lower sub-catchment the underlying geology is Kimmeridge Clay. This 

formation has very low permeability, restricting connectivity between surface and 

groundwater.  However, although the lower sub-catchment is underlain by clay, the 

headwaters rise in a compound series of geological profiles including Lower Greensand, 

Upper Wardour and Portland Limestone, Gault Mudstone and Chert Sandstone (Figure 3:10). 

The complex geology results in the upper catchment being punctuated with an abundance 

of springs, issues and sinkholes, (Figure 3:9 and Figure 3:11 (d)). In order to determine the 

likely geological source of the springs feeding the Cool’s Cottage study reach, a series of 

samples were analysed by ICP-OES (Chapter 4) and their Mg:Ca ratio was determined after 

Allen et al. 2014: (Figure 3:12). This analysis illustrates the contrasting nature of the 

groundwater sources in the Cool’s Cottage reach with two distinct signatures. 
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Figure 3:10 Bedrock geology of the Cools Cottage sub-catchment. Reproduced from Quarterly Journal of 
Engineering Geology and Hydrogeology 2014, v.47; p65-80. D. J. Allen, W. G. Darling, J. Davies, A. J. 
Newell, D. C. Gooddy and A. L. Collins : doi: 10.1144/qjegh2013-043: NORA. 
Geological features, BGS, ©NERC. NEXTMap Britain elevation data from Intermap Technologies.  

Figure 3:9 Schematic diagram showing the principal hydrogeological functioning of the Sem Cools 
Cottage sub-catchment. Reproduced from Quarterly Journal of Engineering Geology and 
Hydrogeology 2014, v.47; p65-80. D. J. Allen, W. G. Darling, J. Davies, A. J. Newell, D. C. Gooddy and 
A. L. Collins : doi: 10.1144/qjegh2013-043: NORA. 
Geological features, BGS, ©NERC. NEXTMap Britain elevation data from Intermap Technologies.  
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Figure 3:11 Key characteristics of the Cools Cottage sub-catchment. Clockwise from the top: a, all year strip grazing; b, parallel ploughing; c, accumulation of sediments above 
the Cools Cottage reach headwaters; d, sinkhole formed in the permeable upper catchment; e, forest flora diversity, away from the sediment accumulation; f, improved 
pasture adjacent to the Cools Cottage reach; g, the lake in Clay Hill Wood. 
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Figure 3:12 The Cools Cottage sub-catchment showing main drainage channels, sampling sites and 
respective Mg:Ca ratios. (inset: increasing Mg: Ca ratio with distance downstream). 
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Those with a very low Mg: Ca ratio are likely to originate from the Portland Limestone 

aquifer, while the higher Mg: Ca ratios, exhibited by the spring downstream of Ruddlemoor 

Farm (CCRU) and at the sinkhole, are indicative of a Greensand source. Despite the incursion 

of the north-eastern most corner of the sub-catchment into the West Melbury chalk 

formation, there is little evidence for this aquifer providing significant input to the Cool’s 

Cottage reach (Allen et al., 2014). As part of a system for stock watering, previous 

landowners at Cool’s Farm installed a network of pipes from the reservoir in the 

southernmost corner of the sub-catchment. They provide a constant supply that feeds the 

man-made lake in Clay Hill Wood, immediately downstream from the stream’s source. 

Discharge from the most substantial of these piped sources (CCSP) was measured on two 

occasions during the dry season in September 2013. Discharge from the pipe on 9.9.13 & 

16.9.13  was 0.17 and 0.22 l s-1 respectively, a contribution of approximately 5% of those 

days’ discharge (4.82 & 4.88 l s-1) and 10% of the lowest measured discharge (2.35 l s-1) at 

the sub-catchment outflow, from this single source alone. The reservoir is also situated in 

the Wardour Formation and Portland Limestone, and the high calcium carbonate content of 

limestone provides a likely explanation for the low Mg:Ca ratios of these samples. 

The lake in Clay Hill Wood (Figure 3:11(g)) provides a mixing pot for the uppermost water 

sources within the sub-catchment, and the heightened Mg:Ca ratio at CCHW (Figure 3:12), 

the first regular sampling point downstream of the lake,  indicates the result of this mixing.  

Some local ‘in-stream’ processing is likely to arise from the increased residence time the 

lake affords. It hosts a large population of Elodea canadensis that is subject to periodic 

clearance and removal by the landowner, providing a possible sink for some nutrients. 

Below this lake, the increasing Mg:Ca ratio with distance downstream (inset Figure 3:12), 

suggests a decreasing influence from groundwater sources in the lower part of the sub-
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catchment. This is consistent with the progression from permeable to impermeable geology 

and with the resulting increase in contribution from surface flow from the surrounding 

pasture. The Base Flow Index (BFI) for the sub-catchment is 0.49 (data supplied by BGS); 

midway between those of groundwater dominated chalk streams (BFI >0.7) and rivers with 

low permeability and a higher proportion of surface flow (BFI <0.35), reflecting this mixture 

of sources.  

 Soils, land use and management. 3.2.2.

The soils in the sub-catchment are classed as deep to intermediate by the UK Soil 

Observatory and are a mixture of predominantly sandy and clayey loams in the upper sub-

catchment and loam to clay in the lower reaches (Figure 3:5). The clay and clayey loams are 

subject to waterlogging in wet weather, exacerbated when underlain by low permeability 

Gault and Kimmeridge Clay. This makes them difficult to manage, being prone to poaching 

and panning and rendering them unsuitable for arable tillage or grazing in wet weather. 

Prior to this study, land was used for maize production but widespread problems of runoff 

and sediment loss resulted in local farmers reverting high risk maize fields to pasture 

(Collins, A.C., pers. comm.). Woodland covers an area of 70 ha, approximately 40% of the 

sub-catchment. The land immediately adjoining the DTC cabinet is used as pasture with 

some woodland, currently used for grazing a small beef cattle herd during the summer. 

Deteriorated fencing allows the cattle direct access to the stream, and field observations 

indicate that this was a common occurrence. The remaining land adjacent to the stream 

(~45 ha, approximately 27% of the sub-catchment) is predominantly organically managed, 

improved pasture that is used for beef cattle grazing, limited to the summer months 

(Figure 3:11(f)). It is also used periodically for sheep grazing at other times. Some fodder 

crops are harvested in the late summer. At the start of the study period, new fencing was 



Page 47 
 

installed between Cool’s Cottage and the stream’s emergence from Clay Hill Wood. 

Additional drinking troughs were also installed at some distance from the stream to reduce 

damage caused from overuse of the existing, streamside troughs. Waste management for 

this herd is as solid manure, stored at the farm complex and applied to the land in dry 

weather. Upstream of Clay Hill Wood and to the north of the sub-catchment there is a 

substantial risk of soil loss and the delivery of fine sediment to the reach from the steep 

slopes in the upper sub-catchment. During year 1 of this study, New Zealand style strip 

grazing (high impact- high stock density) in this part of the catchment caused extensive soil 

erosion, aggravated by the wet spring and early summer of 2012. This was followed by 

ploughing parallel to the slope (Figure 3:11 (a) & (b)), actions likely to have contributed to 

the build-up of fine sediment above the spring sources in Clay Hill Wood (Figure 3:11 (c)). 

The remainder of the habitat in Clay Hill Wood supports a diverse flora (Figure 3:11 (e)). The 

study reach is provided some protection by trapping of mobilised fine sediment in the wood 

itself, and by the lake that acts as a settling pond for suspended sediment. Further upslope 

still, the upper perimeter of the sub-catchment is dominated by broad-leafed woodland. 

The southernmost corner of the sub-catchment (the location of the covered reservoir that 

supplies the lake) is used for arable and horticultural crop production. Inorganic fertilisers 

are applied to approximately 25% of the sub-catchment on the land furthest from the 

stream, in the northwest and south of the sub-catchment. 

 River habitat and sediment characteristics 3.2.3.

Typical of many headwater streams in an agricultural setting, the stream drains the 

surrounding pasture and has been modified by dredging and straightening. It is broadly a 

trapezoidal channel with high banks and lined with hedges for much of its length. In the 

summer dense riparian growth, including brambles (Rubus fruticosus), dog roses (Rosa 
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canina), Hemlock Water-dropwort (Oenanthe crocata) and fool’s watercress (Apium 

nodiflorum) line the banks, some of which are also hedged with hawthorn (Cretaegus 

monogyna) and alder (Alnus glutinosa). These result in poor light penetration to the stream 

bed (Figure 3:13.a). For much of the reach the river bed is predominantly gravel and sand, 

with pebbles and some cobbles. (Figure 3:13.b). The interstices are clogged with finer material 

resulting in a cemented bed. Where flow is obstructed, either by artificial channel 

modification or fallen trees, finer materials (silt and clays) have been deposited and in 

places these have accumulated to depths of over 10 cm. Where these sediments are 

protected from flushing, the anoxic zone, indicated by black colouration and sulphurous 

odour, is present at a sediment depth of only a few mm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3:13 (a) dense vegetation along the cools cottage reach that restricts light reaching the stream 
bed and (b) bed sediments at Cools Cottage. 
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Determination of fine sediment load was carried out by another member of the Hampshire 

Avon DTC consortium, the Queen Mary University of London - Rivers Communities Group 

(QMUL.RCG), using the re-suspension cylinder technique (Collins and Walling, 2007; 

Duerdoth et al., 2015). This gives the fine sediment load in kg m-2 of ‘surface’ (easily re-

suspended sediment mobilised by stirring of the water column alone) and ‘total’ fine 

sediment (requiring significant disturbance of the overlying water column and the upper 5-

10 cm of the river bed to re-suspend).  During the first year of this study (October 2011 – 

October 2012) the reach average total mass of fine sediment was 2.6 kg m-2.  Of this, 12% 

(0.312 kg m-2) was organic matter, determined as ash free dry mass (AFDM: 500oC). On 

average, 30% of the total was ‘surface’ fine sediment, with the remainder being 

incorporated in the interstices to a depth of approximately 10 cm.  

The overall sediment size distribution in the stream bed was determined from cores 

collected from the experimental site at the DTC monitoring cabinet. Here, 81% of the 

sediment was made up of particles that passed through a 2 mm sieve and of those, 86% 

passed through the 0.06 mm sieve. Silt and clay fractions, therefore, constitute around 70% 

of the total bed sediment sampled from these cores. Analysis of organic matter content, by 

Loss On Ignition by mass (L.O.I. 550oC) returned an average of 0.677kg m-2. Organic matter 

constituted 5.1% of the < 2mm fraction and 4.35% of total sediment.  

 Biological indicators of ecological status 3.2.4.

Surveys of macrophytes, macro-invertebrate assemblages and diatoms were carried out by 

QMUL. RCG, and analysed to obtain scores for a series of biological indices that, collectively, 

contribute to the classification of WFD ecological status.  The River Invertebrate 

Classification Tool (RICT) comprises a group of scoring systems, designed to identify impacts 

from a variety of stressors. In the UK, two indices form the basis of the WFD classification 
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based on macro-invertebrate assemblages: NTAXA (Number of scoring TAXA) and ASPT 

(Average Score Per Taxon); both derived from a scoring system developed for the National 

River Quality Survey in 1980 and known as the BMWP (Biological Monitoring Working Party) 

and standardised in a WFD report the SNIFFER report, (Clarke et al., 2011; Davey-Bowker et 

al., 2008). These tests are used to gauge general degradation (NTAXA) and stress due to 

organic pollution (ASPT). The ratio of ‘observed’ to ‘expected’ scores are used to produce 

the Ecological Quality Index (EQI) of a test site and predetermined bands produce a 

classification of ‘High’, ‘Good’, ‘Moderate’, ‘Poor’ or ‘Bad’ status. Two further tests; PSI 

(Proportion of Sediment-sensitive Invertebrates) and LIFE (Lotic-invertebrate Index for Flow 

Evaluation), that indicate stress due to sediment load and impaired flow respectively, are 

presented. An additional assessment of the overall habitat is provided by indices calculated 

from the results of macrophyte (LEAFPACS) and diatom (DARES) surveys.  

Results from the ASPT (average EQI throughout the study period: 1.06) and NTAXA (average 

EQI throughout the study period: 1.41) indicate high status - derived from macro-

invertebrate assemblages. The LIFE index (average EQI throughout the study period: 1.025) 

shows no evidence of habitat degradation as a result of impaired flow. However, there is 

evidence of moderate stress as a result of sediment load from the PSIsp index (average score 

throughout the study period: 0.8). 

Results from the LEAFPACS index return moderate to poor status for the Cool’s Cottage 

study reach. This result is matched by the DARES index of diatom community assemblage. 

Together, these are likely to arise from the lack of light due to the pronounced riparian 

shading described above. 
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3.3. Priors Farm sub-catchment 

The Priors Farm sub-catchment covers an area of 5 km2. It is largely agricultural but has a 

greater population than the Cool’s Cottage sub-catchment, with communities at East 

Knoyle, Sedgehill and Kings Settle ( Figure 3:14). The majority of dwellings, including a 

residential Park that houses 60 residents and staff, are not connected to mains drainage and 

rely on septic tanks. There is a small industrial estate at Kings Settle which is served by a 

small sewage treatment works (STW) that discharges within the sub-catchment (at Semley 

Common). The STW serving East Knoyle discharges into another tributary of the River Sem 

that joins the Priors Farm reach, downstream of the Priors Farm sub-catchment, at Kinghay 

and does not, therefore, impact on the measurements made within this study. The western 

perimeter of the sub-catchment is fringed by farms and bounded by the A350, a major trunk 

road that is likely to contribute fine sediments and road runoff with associated pollutants. 

The study reach comprises a first to third order stream, flowing west to east with a 

combined length of approximately 4 km; the absolute length is seasonally affected.  It is a 

shallow, fairly fast flowing stream, although subject to drying out during long periods of dry 

weather. It demonstrates a riffle and pool configuration with a width of 1 – 2m (except at 

the DTC cabinet where the stream channel is approximately 3m width). Over the annual 

cycle, mean daily discharge for the two full WY 2011 and 2012 were 57.4 l s-1 (range 0 – 

1346 l s-1) and 71.8 l s-1 (range 0 – 945 l s-1) respectively. There is little topographic variation 

within the sub-catchment. Although its highest point is 200m A.O.D., the majority is below 

150m A.O.D.   
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 Figure 3:14 The Priors Farm sub-catchment 
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Three tributaries converge approximately 1 km upstream of the monitoring station 

(Figure 3:19). Two, PF1 and PF2, flow through improved pasture for dairy herds, where 

improvements to slurry containment and discharge practices form part of the mitigation 

works planned for the DTC project. The third, PF3, rises in Semley Common and flows 

through unimproved, marshy grassland and a small wood before reaching improved 

pasture, approximately 0.5km upstream of its confluence with PF1 and PF2. From the 

confluence to the outlet, the river mainly runs through improved pasture before reaching 

the monitoring station at Priors Farm (PFDS).  

 Bedrock geology and hydrology. 3.3.1.

The sub-catchment is almost entirely underlain by impermeable Kimmeridge Clay, with 

small outcroppings of Gault Clay and Upper Greensand in the south and a larger one in the 

north at East Knoyle (Figure 3:15)  
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Figure 3:15 Bedrock geology of the Priors farm sub-catchment. Reproduced from Quarterly Journal of 
Engineering Geology and Hydrogeology 2014, v.47; p65-80. D. J. Allen, W. G. Darling, J. Davies, A. J. Newell, 
D. C. Gooddy and A. L. Collins : doi: 10.1144/qjegh2013-043: ©NORA. Geological features, BGS, ©NERC. 
NEXTMap Britain elevation data from Intermap Technologies. 

 

 

As a consequence, the river is dominated by surface runoff (BFI 0.23; data supplied by BGS), 

and exhibits a characteristically flashy hydrograph (Figure 3:16). It experiences periods of no 

flow in dry weather, resulting in isolated pools that can become stagnant in the summer 

months. Conversely, during heavy rainfall the channel is overtopped. The resulting overbank 
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to the river (Figure 3:18(c)). There are limestone beds within the Kimmeridge Clay that could 
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possibly provide a source of groundwater to the stream (Allen et al., 2014). Analysis of the 

Mg:Ca ratio, however, demonstrates a uniformity of source, with little variation throughout 

the sub-catchment and suggests that, if present, these sources contribute little to the 

overall discharge (Figure 3:19) 
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Figure 3:18 Key characteristics of the Priors farm sub-catchment: a, dredged channel at PF 1; b, soil damage caused by grazing in wet weather; c, 
overland flow delivering fine sediment to the river channel; d, unfenced stream channel; e, 'u' shaped, shaded and dredged channel; 
 f, waterlogged pasture adjacent to the Priors Farm stream; g, footsteps in organically loaded fine sediment at Priors Farm headwater. 
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Figure 3:19 The Priors farm sub-catchment showing main drainage channels, sampling sites and 
respective Mg:Ca ratios (inset: Priors Farm tributaries) 
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 Soils, land use and management. 3.3.1.

The soils in the sub-catchment are classed as deep to intermediate by the UK Soil 

Observatory and are predominantly derived from claystone and mudstone, yielding a soil 

texture of loam to clay. Along the stream valleys, soils derived from riverine clay, sand and 

gravels result in textures ranging from clay to sandy loams (Figure 3:5). Combined with the 

underlying geology, these soils make the sub-catchment prone to waterlogging, and 

pastures deteriorate rapidly when grazed during wet weather (Figure 3:18 (b) & (f)). There is 

little established woodland, approximately 40 ha in total, constituting 8% of the sub-

catchment. There has, however, been recent planting along the lower reaches close to 

Priors Farm, both along the river banks and in the adjoining fields. The unimproved 

grassland of Semley Common occupies a further 40 ha and the settlements of East Knoyle 

and Kings Settle constitute approximately 35 ha. Elsewhere land use is dominated by 

improved grassland (~ 320 ha, 63% of the sub-catchment), some of which has recently 

reverted from maize and other arable crops, and is used for stock grazing, predominantly for 

dairy production, with some sheep grazing in the winter. Along the study reach a 

combination of fencing and channel topography prevents stock access to the river, with the 

exception of a short reach (approximately 200 m) where field observations indicated that 

cattle had been in the river on several occasions (Figure 3:18 (d)). Manure management 

throughout the sub-catchment is predominantly slurry storage with umbilical and spray 

plate surface application to the fields primarily, during dry weather. The high rainfall 

experienced during 2012 and 2013, and in the winter of 2013/2014, exerted extreme 

pressure on slurry storage capacity and there were periods when it proved essential to 

apply slurry to the field in suboptimal conditions in order to prevent storage lagoons from 

over-topping.  Despite this, slurry storage capacity was exceeded on a number of occasions 
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throughout the study period, resulting in several incidents where farmyard manure or slurry 

entered the watercourse. This was indicated by field observations of colour and odour; and 

confirmed by peaks in the concentrations of NH4-N and DOC- and steep troughs in DO 

concentration (Figure 3:20 & chapter 5). There was some export of slurry from the sub-

catchment to a third party in 2012 and 2013, relieving the storage crisis for a time. The 

extreme weather, however, meant the storage capacity of the recipient was also reached, 

precluding further export for a period.  As part of the DTC programme of mitigation works, 

some yard roofing was undertaken. Without the finance to effectively separate clean and 

dirty water, however, this provided little alleviation to the slurry and manure storage crisis. 

Clean and dirty water separation remains a target for future DTC mitigation works in this 

sub-catchment.  The poor weather caused additional problems on another farm, where a 

degraded track-way resulted in a mixture of sediment and manure being delivered to the 

stream during heavy rainfall (Figure 3:18(g)). During the second year of this study, the DTC 

programme funded improvements to the track-way, and the provision of a swale and series 

of settling ponds to trap sediment. These improvements are expected to alleviate pollutant 

delivery from this source in the future. In addition to slurry application, inorganic fertilisers 

are applied within the sub-catchment, including to some fields adjacent to the watercourse.  

 

 

 

 

 Figure 3:20 Visible signs of a 'slurry' event: spatial samples from the 
Priors Farm reach 
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 River habitat and sediment characteristics 3.3.2.

The gradient throughout the Priors Farm sub-catchment is low and much of the reach has 

been modified in the past to increase drainage of the adjacent fields. Towards the end of 

year 1 of the present study, where the tributaries (PF1 and 3) flow through improved 

grassland, they were dredged and fenced as part of the DTC project. These sections of the 

reach have trapezoidal, straight channels and the recent clearance of vegetation associated 

with the dredging works, allows good light penetration to the stream bed, but destabilises 

bankside soil until vegetation is re-established (Figure 3:18 (a)).  

Elsewhere, the river exhibits greater sinuosity. The channel morphology is U shaped, with 

steep, clay banks (Figure 3:18 (e)). These are mostly lined with hedges of blackthorn (Prunus 

spinosa), alder (Alnus glutinosa) and some oak (Quercus spp), mixed with brambles (Rubus 

fruticosa) and nettles (Urtica dioica); allowing little light to reach the stream bed, 

particularly in the summer. Where light reaches the stream, fool’s watercress (Apium 

nodiflorum) is common. However, riparian woodland is present along much of the reach, 

some established and some newly planted, further reducing light availability. The river bed 

is a mixture of gravel, sand and clay.  

At the confluence of the three tributaries, and where flow is obstructed (mainly by fallen 

trees), fine sediment accumulates to depths of up to 40 cm. The combination of fine 

sediment load and periodic pulses of high organic content slurry, resulted in low dissolved 

oxygen concentrations (Chapter 5) and the sediments become anoxic within 1 mm of the 

surface, exhibiting characteristic black colouration and sulphurous odour. In WY 2011 (Oct 

2011 – Oct 2012), the reach average total mass of fine sediment was 4.2 kg m-2.  Of this, 

16% (0.672 kg m-2) was organic matter determined as ash free dry mass (AFDM: 500oC). On 
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average, only 18% of the total was ‘surface’ fine sediment with the remainder being 

incorporated into the interstices to a depth of approximately 10 cm (QMUL.RCG,).  

The overall sediment size distribution in the stream was determined from cores at the 

upstream experimental site, PFUS. Here, 61.5% of the sediment was made up of particles 

that passed through a 2 mm sieve and of those, 80% passed through the 0.06 mm sieve. Silt 

and clay fractions, therefore, constitute around 49% of the total sediment sampled from 

these cores. Analysis of organic matter content, by L.O.I (550oC) returned an average of 

1.245 kg m-2. Organic matter constituted 8.5% of the < 2mm fraction and 5.95% of total 

sediment. 

 Biological indicators of ecological status 3.3.3.

One of the most obvious visual signs of nutrient enrichment to surface waters is the 

development of fast growing algal communities. In the Priors Farm study reach, wherever 

there is sufficient light, dense populations of filamentous algae develop, smothering 

macrophytes and stream bed sediments when they die and decay (Figure 3:21).  

 

 

 

 

 

Figure 3:21 Filamentous algae smothering macrophytes and benthic sediments at Priors Farm 
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The scores obtained from the macro-invertebrate assemblages collected from the Priors 

Farm study reach indicated moderate stress from organic pollution (ASPT 0.85) and from 

impaired flow (LIFE 0.88). Stress as a result of sediment load was severe, (PSIsp 0.35). 

Despite these low scores, NTAXA, the index of general degradation, returned a score that 

would denote high status if used in isolation (NTAXA 1.10), emphasising the need for using a 

wide range of classification tools to assess stream ecological status. Results from the 

LEAFPACS and DARES indices returned moderate to good status for the Priors Farm reach.  

3.4. Overview of key similarities and differences in the study sites  

The detailed study of the two sub-catchments revealed both similarities and differences. 

These can be briefly summarised as follows: 

 Intrinsic sub-catchment characteristics 3.4.1.

Both of the sub-catchments studied in this research programme are small (5km2 and 2km2 

for Priors Farm and Cool’s Cottage, respectively); with similar soil types; a mixture of clay, 

clayey loam and sandy loam. The underlying geology through which the streams flow is 

similar, predominantly low permeability, Kimmeridge clay, although the Cool’s Cottage 

headwaters are fed by springs arising from more permeable geology in the upper sub-

catchment.  Meteorological conditions were the same for both sub-catchments and both 

exhibited a lag in flow response to the onset of rain following the dry summer of 2011. 

Subsequently, both exhibited the flashy response to rainfall that is typical of clay soils. Peak 

flows at the two sites are closely aligned, both to each other and to rainfall (Figure 3:22), 

demonstrating that peak flow is largely dominated by surface runoff or interstitial through-

flow. In contrast, the baseflow response differs in the two sub-catchments. The flow at 
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Priors Farm rapidly declines to minimum discharge following intense rain events, while the 

return to baseflow at Cool’s Cottage shows some damping (Figure 3:22), reflecting the 

contribution of groundwater spring sources in the headwaters of the Cool’s Cottage reach 

and the buffering effect of the lake in Clay Hill Wood.  During the dry summer of 2013 for 

example, the river at Priors Farm dried up leaving isolated pools along the stream bed while 

at Cool’s Cottage, flow continued throughout the summer (Figure 3:22). 

 

 

 

 

 

 

 

 

 

 

 Management driven characteristics 3.4.2.

Both sub-catchments were predominantly used for stock grazing. However, the intensity of 

land use, and differences in management practices associated with dairy and beef 

production resulted in contrasts in the quantity and quality of inputs from the sub-
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catchments reaching the streams. In the Priors Farm sub-catchment, there was some 

cultivation of fields adjacent to the stream that contributed to the input of sediments and 

associated nutrients during wet weather (Figure 3:11 (c)). In addition, both slurry and 

inorganic fertilisers were applied to pasture immediately adjoining  the stream, whereas in 

the Cool’s Cottage sub-catchment, the pasture surrounding the stream was managed 

organically, and waste applied as solid manure during dry weather. This pasture appeared to 

act as a buffer between the Cool’s Cottage study reach and the areas in the sub-catchment 

that were managed more intensively. Frequent movements of dairy herds from pasture to 

farmyard (for milking for example) resulted in accelerated  damage to soil structure in the 

Priors Farm sub-catchment and, together with  run-off from degraded farm track-ways, 

contributed substantial inputs of organically rich, fine sediments to the  watercourse 

(Figure 3:11(g)). The storage capacity for slurry in the Priors Farm sub-catchment proved 

insufficient to deal with the weather conditions experienced during the study period, and 

the failure of stores to contain it resulted in periodic pulses of high organic content input 

being delivered to the watercourse on several occasions (see chapter 5).  

3.5. Conclusions 

The detailed site descriptions presented above identified differences in catchment geology 

that influenced the relative proportion of surface flow versus base-flow in the study 

reaches, and differences in the management and intensity of land use between the two sub-

catchments. Both study sub-catchments exhibited characteristics that could be linked to 

land management.  For example, a combination of management practices and wet weather 

resulted in high rates of sediment and organic-rich nutrient being delivered to the Priors 

Farm reach, that was not observed in the Cool’s Cottage reach.   
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A key question arising from chapter 3 is, therefore, whether these differences in catchment 

characteristics will have a measureable impact on water quality, thus providing an 

opportunity to study the impact of these fluxes on stream ecosystem function? 

This question will be addressed in chapter 5 where a detailed description of nutrient 

chemistry in the two study reaches is presented. The approach and methods employed to 

address this question are presented in chapter 4.  

  



Page 66 
 

 Sampling strategy and methods Chapter 4.

4.1. Programme design  

Chapter 2 detailed a variety of process measurements that have been proposed as suitable 

for describing in-stream ecosystem function and for use as indicators of stream health  

(Rosenfeld and Mackay, 1987; Meyer, 1989; Gessner and Chauvet, 2002; McTammany et al., 

2003; Young et al., 2008; Young and Collier, 2009; Clapcott et al., 2010; Imberger et al., 

2010). In this chapter, the sampling strategy and programme of process measurements 

designed to investigate their sensitivity to variations in in-stream water chemistry and 

sediment characteristics at differing temporal scales is described. To this end, short term 

measurements (24 hrs) of key metabolic processes (photosynthetic gross primary 

production (GPP), aerobic community respiration (ER) and the transfer of greenhouse gasses 

across the sediment-water interface) were conducted in conjunction with longer term (30 

days) studies of leaf litter degradation and macro-invertebrate grazing. These were set in 

the context of an intensive monitoring programme of in-stream nutrient chemistry, 

designed to establish whether it reflects the dissimilarities in the sub-catchments identified 

in chapter 3.  

4.2. Hydrochemistry  

 Sampling programme: 4.2.1.

In order to interpret the results of the measurements of in-stream processes, it was 

essential to have a strong understanding of the hydrochemical environment and the 

variability in water chemistry over the study period within the two sub-catchments. Because 

the process measurements employed in this study respond at different time scales 
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(Snell et al., 2014), it was important to characterise the hydrochemical environment at 

appropriate spatial and temporal resolution. Therefore, the sampling programme was 

conducted at a range of temporal frequencies (Figure 4:1). These can be categorised as: 

 ‘high resolution’ (daily and sub-daily storm) samples to describe the temporal 

variability in the ambient, in-stream nutrient concentrations experienced by the 

biota and to identify specific events. All samples were analysed to determine: 

o  dissolved organic carbon (DOC), 

o  nitrogen (N) species: total ammonium nitrogen (NH4-N) measured as the 

sum of ammonium (NH4
+-N) and ammonia (NH3-N); total oxidised nitrogen 

(TON) measured as the sum of nitrite (NO2-N) and nitrate (NO3
--N), dissolved 

organic nitrogen (DON) and particulate organic nitrogen (PON).   

o phosphorus (P) fractions: soluble reactive phosphorus (SRP) measured as 

orthophosphate (PO4-P), soluble unreactive phosphorus (SUP, primarily in the 

form of dissolved organic P (DOP)) and particulate phosphorus (PP).  

 ‘medium resolution’ (weekly) grab samples to characterise spatial variability in 

nutrient concentrations along each stream from the source to the high resolution 

sampling site at each sub-catchment outlet.  Samples were analysed to determine 

DOC, N species and P fraction concentrations.  

 ‘occasional’  grab samples.  The ratio of calcium (Ca) and magnesium (Mg) has been 

shown to be a good means of distinguishing between groundwater sources (Allen et 

al., 2014).  These occasional samples were analysed to determine a range of cations, 

notably Ca and Mg to distinguish between possible sources of water in the sub-

catchments (see chapter 3.) 
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Figure 4:1 The locations and frequecy of the water chemistry sampling programme 
 A, Cool's Cottage; B, Priors Farm. 
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In addition, continuous observations (15 minute intervals) were made of a range of physico-

chemical variables likely to influence or respond to the in-stream processing of nutrients 

within each study reach.  These included: dissolved oxygen concentrations (DO) and 

temperature (measured using an Aanderaa Oxygen–Optode -2), turbidity (measured using a 

YSI sonde series 6), water velocity and stage height (measured using a Mace FloPro XCi).  

Stream discharge (m3 s-1) was calculated from water velocity (m s-1), and the cross sectional 

area (m2) given by the stage height at a fixed point with a known channel width at the 

catchment outlet sampling station. Where necessary (at the Priors Farm downstream site), 

discharge was corrected for out-of-bank flow using stage height and a weir equation based 

on (Brater and King, 1976), Lloyd. C, pers comm). 

 Nutrient chemistry 4.2.2.

High resolution water samples were collected from the sub-catchment outlets by 

streamside auto-samplers (ISCO 3700) that were housed in the DTC monitoring cabinets and 

linked to the Mace Flo-Pro acoustic Doppler velocity meters that controlled the storm 

sampling programme at each site. The regular, daily samples were supplemented by 

additional, flow proportional sampling, triggered by cumulative discharge with regularly 

updated threshold values. These threshold values were determined by the ADAS field team 

supporting the instrumentation platform on the DTC programme. Samples were stored 

within the auto-sampler units and collected weekly by ADAS staff (Figure 4:2). On collection, 

one aliquot of each sample was filtered through 0.45µm pore size cellulose nitrate filter 

(Whatman). Filtered and unfiltered aliquots were transferred to Nalgene HDPE storage 

bottles and stored at 4°C in cool-boxes.  These were shipped by overnight courier to the 

University of Reading (UOR) laboratory. 



Page 70 
 

 

 

 

 

 

 

 

 

This sampling regime resulted in samples being stored in the streamside cabinets for periods 

of up to one week. Refrigerated storage in the dark is routinely used to preserve water 

samples for nutrient analysis over short periods (Kotlash and Chessman, 1998; Gardolinski 

et al., 2001). Lack of mains power in the monitoring cabinets, however, gave rise to the 

samples being stored at ambient temperature, albeit in the dark.  Some degradation of 

samples as a result of both biological and physicochemical processes was, therefore, an 

inevitable consequence of the sampling programme. Both NH4-N and SRP are particularly 

sensitive to degradation during storage. The partitioning of NH4-N into NH4
+ and NH3 is 

determined by pH and temperature, with the proportion of NH3 increasing with increasing 

temperature and pH (Figure 4:3).  NH3 is volatile, so higher temperatures can lead to the loss 

of N from stored samples (samples stored in the cabinets remained open to the atmosphere 

until collected). Higher temperatures will also increase any degradation of samples due to 

biological activity, and changes to both N speciation and P fractionation are likely to occur. 

Figure 4:2 One of the weekly sample collections from the Priors Farm 
monitoring station 
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In addition, fluctuations in temperature and pH are likely to result in changes to the 

adsorption or desorption of SRP on particulate matter within the samples (Kotlash and 

Chessman, 1998; Jarvie et al., 2002; Evans and Johnes, 2004). With these limitations in 

mind, uncertainties in the extent to which the analyses of stored samples are a true 

representation of the original sample must be considered.  

 

 

 

 

 

 

 

 

A grab sample was collected at the same time as the auto-samplers were emptied and 

processed using the same procedures. Where the weekly grab samples were taken before 

that day’s triggered samples, comparisons between fresh samples and those stored for a 

week, were possible. These identified differences in the effect of storage between sites. The 

most substantial changes in water chemistry related to storage identified by this method 

were the loss of NH4-N at concentrations higher than 0.3 mg l-1 at the Priors Farm 

downstream site, loss of SRP at the Cool’s Cottage downstream site, increases in both 

particulate N and P at both sites with a small, concomitant loss of DON and SUP at the Priors 

Figure 4:3 The relationship between pH and temperature and the proportion 
of NH4-N as un-ionised ammonia, NH3. 
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Farm downstream site. A trend analysis conducted over multiple sampling sites and using 

storage time as the variable, indicated a systematic loss of NH4-N alone, with other 

determinands seemingly unaffected (Lloyd C., pers comm). 

To increase the spatial coverage of data collection within the sub-catchments, and to 

identify possible origins of water pollution, additional weekly samples were collected in 

HPDE bottles, at sites along the study reaches, upstream of the sub-catchment outlet 

 (Figure 4:1). Water samples were also collected from incubation chambers as part of the 

study of metabolic processes (see section 4.5.1 and Chapter 6). These samples were stored 

overnight, in the dark at 4°C. On arrival at the laboratory, one aliquot of each sample was 

filtered through 0.45 µm pore size cellulose nitrate (Whatman) filters. Filtered and 

unfiltered aliquots were processed and analysed with the routine daily samples using the 

protocols detailed below.  

 Sample processing and analysis 4.2.3.

4.2.3.1. Dissolved Organic Carbon 

As the Hampshire Avon flows through a predominantly chalk catchment, the standard 

procedure used for determining DOC was the ‘non purgeable organic carbon’ (NPOC) 

method, chosen to minimise interference from the high concentration of inorganic carbon 

that is characteristic of chalk streams. This procedure was adopted throughout the 

Hampshire Avon DTC to facilitate the processing of the regular samples and maintain 

consistency between them. On arrival at the laboratory, 10 ml of the filtered samples were 

acidified with 100 µL of 15% hydrochloric acid (HCl) to a pH of between 2 and 3, to convert 

inorganic carbon to CO2 which was then driven off (sparged) using CO2 free air. Remaining 

(non-purgeable) carbon was measured using a Shimadzu TOC analyser, T5000 in which, 100 
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µL of sparged sample was injected into the combustion column, where high temperature 

(680°C) catalytic oxidation of the sample resulted in the production of CO2. The 

concentration of CO2 was calculated from peak areas generated by a non-dispursive infrared 

gas detector, calibrated against 0, 10 and 20mg L-1 standard solutions. 

4.2.3.2. Nitrogen and Phosphorus 

Dissolved inorganic nitrogen and phosphorus were analysed using a Skalar San ++ multi-

channel, continuous flow auto-analyser. The auto-analyser was configured for the 

simultaneous measurement of total NH4-N, TON and SRP. These soluble inorganic reactive 

forms were analysed using standard colourimetric techniques adapted for use on the auto-

analyser: 

 NH4-N was measured using a modified Berthelot reaction (Crooke and Simpson, 

1971). In an acid solution (pH 5.2) NH4-N is chlorinated to monochloramine. This 

reacts with salicylate to form 5-aminosalicylate that forms a green complex on 

oxidation . It was measured at 660 nm. 

 NO3
- is reduced to NO2

- by hydrazinium sulphate.  NO2
-
 produces an azo dye when 

reacted with sulphanilamide and N-(1-naphthyl) ethylenediamine dihydrochloride. 

This complex was measured at 540 nm (Henriksen and Selmer-Olsen, 1970). 

 Phosphate reacts with ammonium heptamolybdate and potassium antimony (III) 

oxide tartrate to form a complex that turns blue when reduced by ascorbic acid. It 

was measured at 880 nm (Murphy and Riley, 1962). 

Concentrations were calculated from peak heights, calibrated against freshly prepared 

standard solutions and corrected for drift by the addition of a further standard, repeatedly 

checked at an interval of 10 samples. 
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For the determination of the unreactive soluble and insoluble or particulate nutrients, 10 mL 

of filtered and unfiltered aliquots were subject to alkaline persulphate digestion, catalysed 

by high temperature and pressure in a microwave unit (CEM Mars Xpress) after Johnes and 

Heathwaite (1992) to produce soluble reactive forms. These were then analysed using the 

same procedures as above. Dissolved organic nitrogen (DON), particulate nitrogen (PON), 

soluble unreactive phosphorus (SUP) and particulate phosphorus (PP) were determined by 

difference (Figure 4:4). 

 

 

 

 

 

 

 

 

 

 

Figure 4:4 Determination of nitrogen species and phosphorus fractions by persulphate digestion after Johnes 
and Heathwaite 1992 

 

 



Page 75 
 

4.2.4. Nutrient load 

While instantaneous measures of nutrient concentrations are likely to be most relevant to 

microbial and algal processes in the water column, much of the biological activity in streams 

is concentrated at the sediment-water interface or in the benthos itself. Knowledge of the 

input of nutrients, integrated over time, may be a more effective descriptor of impact on 

the whole community than instantaneous concentrations in the water column. Nutrient 

load, defined as the mass of that nutrient passing a given cross section of the stream per 

unit time may, therefore, be a more appropriate measure. Nutrient load at the sub-

catchment outlets was compared over the two full water years covered by the period of 

study, and was calculated from the instantaneous concentration at the time of sampling and 

daily mean discharge data, as discussed in Johnes,  (2007) using equation 4.1 

Load = K ∑ (𝑪𝒊 𝑸𝒑𝒊)𝒏
𝒊=𝟏  

Equation 4.1 

Where: 

 K = conversion factor to take account of period of record  

 Ci = instantaneous concentration associated with individual samples (mg L-1)  

 Qpi  mean discharge for interval between samples (L3 s -1)  

 n = number of samples  

 

4.3. Bed sediment characteristics 

On completion of the benthic incubations, the channel bed sediment cores within the 

chambers were recovered and frozen for analysis of grain size distribution and organic 

matter content.  
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4.3.1. Grain size 

Once thawed, a subsample of each sediment core was washed through a stacked series of 

sieves with mesh sizes 2 mm, 500 µm, 250 µm, and 63 µm to separate the gravel (>2 mm), 

coarse and fine sand (2 mm – 500 µm ; 500 µm- 63 µm) and silt and clay (<63 µm) fractions. 

Sediment particles that passed through the 63 µm sieve were collected in large foil trays to 

facilitate rapid evaporation of the large volume of water generated. The contents of the 

sieves were transferred to foil trays, dried to a constant weight at 60 °C and weighed to give 

the proportion of each grain size in the subsample.  

4.3.2. Organic matter content. 

Oven dried samples were transferred to ceramic crucibles, weighed and combusted 

overnight in a muffle furnace at 550 °C (Rowell, 1994). At this temperature, organic carbon 

is driven off as CO2 so weight loss is attributed to organic carbon.  A second subsample was 

dried and weighed without fractioning to give total organic content. Organic matter is 

reported as loss on ignition (LOI.). 

4.4. Calcium and Magnesium 

Concentrated nitric acid was added to filtered samples to a final concentration of 5%. The 

samples were analysed by inductively coupled plasma atomic emission spectroscopy on a 

Perkin Elmer 7300 Dual View ICP-OES.  
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4.5. Short term metabolic processes 

4.5.1. Approach 

A series of incubations were performed during a twelve month period from June 20th, 2013 

to June 3rd, 2014, to explore variations in key metabolic processes between the two sub-

catchments. Four measures of ecosystem metabolism were made, namely: 

Aerobic respiration; 

 Whole stream and water column aerobic respiration were calculated from the 

change in oxygen concentration ( O2) in dark benthic chambers and water bottles 

over 24 or 48 hours, respectively. 

Primary production: 

 Short term (24 or 48 hr) photosynthetic primary production was measured by 

comparing the change in dissolved oxygen concentration ( O2)  in light and dark 

chambers.  

Nutrient processing: 

 Changes in the concentration of N species, P fractions and DOC were measured in 

benthic chambers during 24 hour incubations. 

Greenhouse gas flux 

 The transfer of methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) across 

the sediment-water interface was measured during 24 hour incubations. 

Initial incubations (June – September 2013) were carried out at two sites in the study area; 

Cool’s Cottage and the Priors farm downstream site. In September 2013 a further site was 

added upstream in the Priors Farm reach (PFUS) to more closely mirror the ambient light 
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conditions prevalent throughout the Cool’s Cottage sub-catchment and representing 

approximately 60% of the Priors Farm study reach (Figure 4:5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:5 The location of the incubations measuring short term metabolic processes 
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The sites were chosen using the following criteria; depth, substrate and aspect:   

1. Depth: There needed to be sufficient water depth to fully accommodate the 

incubation chambers and to ensure an adequate volume of water in the chamber, 

both for the incubation and for subsequent water sampling. 

2. Substrate:  The sites were chosen to ensure that, as far as possible, the substrate 

was comparable between sites. The chambers had to be driven into the river bed on 

each occasion, and there were few sites where this was possible without significant 

physical disturbance of the sediment structure. 

3. Aspect: At closed canopy sites, incubation chambers were installed where 

watercourse direction and the height of the banks allowed maximum light 

penetration to the water surface. This provided conditions that were typical of the 

study reach and facilitated comparison of metabolic processes in both light and dark 

chambers. 

The timetable of short term, community metabolism measurements was determined by the 

meteorological and hydrological conditions at the study sites. Metabolic rates are strongly 

influenced by temperature, so it was important to conduct incubations over the range of 

ambient water temperatures occurring at each site.  Measurements were scheduled to 

include spring and summer, to capture seasonal variations that are potentially influenced by 

temperature, daylight hours and shading from riparian vegetation.  Both high and low water 

levels precluded installation of the incubation chambers used in the project, thereby 

restricting measurements to summer / autumn 2013 and spring /early summer 2014.  

The measures were grouped into ‘dedicated’ incubations: (20.6.13, 12.7.13, 12.9.13, 

24.9.13, 6.3.14 and 13.3.14), where only aerobic respiration and photosynthetic primary 
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production were calculated, and ‘combined’ incubations: (22.7.13, 1.4.14, 20.5.14 and 

3.6.14), where a subsample of water was removed from the chamber for headspace gas 

analysis at the end of the incubation, but prior to the final DO readings being taken 

(Table 4:1). 

 

Table 4:1 Timetable of short term community metabolism measurements 

 
Date 
 
 

Dedicated 
aerobic  
measures 
in benthic 
chambers 

Combined 
measures 

Gas 
transfer 
only 

Aerobic 
measures 
in water 
bottles 

20.6.13 
CCDS, 
PFDS 

  
CCDS, 
PFDS 

12.7.13 
CCDS, 
PFDS 

  
CCDS, 
PFDS 

22.7.13 
 

CCDS, 
PFDS 

  

12.9.13 
CCDS, 
PFDS, PFUS 

  
CCDS, 
PFDS, PFUS 

24.9.13 
CCDS, 
PFDS, PFUS 

  
CCDS, 
PFDS, PFUS 

6.3.14 
CCDS, 
PFDS, PFUS 

  
CCDS, 
PFDS, PFUS 

13.3.14 
CCDS, 
PFDS, PFUS 

  
CCDS, 
PFDS, PFUS 

1.4.14 
 

CCDS, 
PFDS, PFUS 

  

8.4.14 
 

 
CCDS, 
PFDS, PFUS 

 

20.5.14 
 

CCDS, 
PFDS, PFUS 

  

3.6.14 
 

CCDS, 
PFDS, PFUS 

 PFDS 
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A water sample was also taken from the combined incubation chambers, after the final DO 

reading, to assess changes in the concentrations of N species, P fractions and DOC. On one 

occasion, (8.4.14), low sample volumes precluded the measurement of O2 after removal of 

the subsample required for headspace analysis. Only greenhouse gas transfer across the 

sediment-water interface was recorded on this date. The contribution of the water column 

to community aerobic respiration (ER) and photosynthetic gross primary production (GPP) 

was calculated from changes in DO concentration in light and dark water bottles incubated 

alongside the benthic incubation chambers.  

4.5.1.1. Detailed methodology 

Short term metabolism was characterised at each site in incubation chambers, small enough 

to be pushed or driven into the bed sediments while minimising disturbance, and in bottles 

tethered alongside them. For both the benthic chambers and water bottle incubations, light 

and dark versions were installed. Materials used in the construction of the incubation 

vessels were chosen for their low permeability to water, O2 and CO2. The bottles used were 

made of polyethylene terephthalate (PET) from a proprietary supplier of carbonated water 

(Buxton). PET has a very low permeability constant for both oxygen (O2) and CO2 (Bhadha, 

1999). Pilot studies revealed that using black plastic or tape to produce the dark bottles 

resulted in water temperature increases, and aluminium foil was therefore used to exclude 

light (Figure 4:6). The light benthic chambers were constructed of 80 mm diameter, 

‘Perspex’ (poly methyl methacrylate) pipe and the dark chambers, 66 mm diameter PVC 

(poly vinyl chloride) soil pipe (FloPlast). The seal for both was a double sheet of 180 gauge 

polyethylene (Pro-Loc) fixed in place with triple elastic bands. The dark chambers were then 

topped with aluminium foil, held in place with elastic bands, to exclude light (Figure 4:7).  
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Figure 4:6 The bottles used to measure water column aerobic metabolic 
processes in the light and dark. 

Figure 4:7 The benthic incubation chambers used to measure community aerobic metabolic 
processes in the light and dark. 
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The benthic incubation chambers were pushed into the stream bed to a minimum depth of 

10 cm. At low water levels during low flow periods, this depth increased to ensure the 

chamber was completely submerged and no air was trapped in the chamber. Where the 

interstices were clogged by fine sediment resulting in a cemented stream bed, a metal 

former, with the same diameter as the chambers, was hammered into the sediment and 

removed, facilitating installation of the chambers. Care was taken to minimise disturbance 

to the bed sediment as much as possible during installation. The chambers were then 

allowed to equilibrate with the overlying water, following which, the chambers were sealed. 

Extreme care was taken to exclude any air bubbles from the chambers and bottles prior to 

sealing. Equilibration was assumed to have occurred when the DO concentration of the 

chamber water and stream water were the same. The time for equilibration varied with 

flow, generally within a few minutes, but up to 15 minutes during low flow periods at Priors 

Farm. Initial DO readings and water samples for the measurement of nutrient 

concentrations (t=0) were taken from the river, except during September 2013 when there 

was no flow in the Priors Farm study reach and the chambers did not reach equilibrium with 

the overlying water, even after 40 minutes. On these two dates, initial DO readings and 

water samples for the measurement of nutrient concentrations (t=0) were taken from 

individual chambers. 
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Figure 4:8 Benthic incubations installed on site: A and B, PFDS; C CCDS. 
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4.5.1.2. Aerobic respiration and primary production – dedicated incubations 

Benthic chambers were incubated in situ for 24 hours (Figure 4:8) and water bottles for 

either 24 or 48 hours (Figure 4:9), after which a final DO reading was taken. For the benthic 

chambers, a small incision was made in the polythene seal and the DO probe inserted 

immediately to take a final DO reading. This procedure was also followed for the readings in 

the PET bottles.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:9 Benthic incubation chambers and water bottles installed at the Priors Farm 
upstream site 
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Volumetric ecosystem aerobic respiration (ER) was calculated from  O2 in the dark 

incubation chambers using Equation 4.2 

ER(24) = O2D (24)  = -1x (O2D (t) – O2D (t=0) x (24/t)) 

Equation 4.2 

Where: 

 ER(24) = ecosystem aerobic respiration over 24 hrs 

 t= incubation time in hrs 

 O2D (t)  = DO concentration in dark chambers at time t  

 O2D (t=0) = DO concentration in dark chambers at the start of the incubation 

Volumetric net ecosystem production (NEP) was calculated from  O2 in the light incubation 

chambers using Equation 4.3 

NEP(24) = O2 L (24)  = O2 (t) – O2 (t=0) x (24/t)  

Equation 4.3 

Where: 

 O2L (t)  = DO concentration in light chambers at time t  

 O2L (t=0) = DO concentration in light chambers at the start of the incubation 

 

Volumetric GPP was calculated using Equation 4.4 

GPP(24) = NEP(24) - ER(24) 

Equation 4.4 

After the final DO reading was taken, the internal height of the chamber to bed sediment 

was measured in four places, giving the volume of the incubation chamber and allowing 

daily process rates to be quoted on an aerial basis as mgO2 cm-1d-1 (Equation 4.5). 

Aerial ER = ER(24)/1000 x H. 

Equation 4.5 

Where: H = chamber height (cm) 
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Results were reported as the mean of 3 ‘pseudo’ replicates (1 sample each from 6 

chambers, 3 light and 3 dark at each site). 

4.5.1.3. Greenhouse Gas transfer – combined incubations 

Benthic chambers for the combined incubations were installed following the procedure 

described above. For the combined experiments, at the end of the incubation, 60 ml of 

sample was removed from the chamber, using a luer lock syringe equipped with a 19G (1.1 

mm) hypodermic needle. The polythene seal on the chambers was allowed to deform to a 

concave shape to compensate for fluid loss. Nevertheless, removal of this subsample 

resulted in a systematic error that was compensated for (see chapter 6). The 60 mL sample 

was transferred using a 21G (0.8mm) hypodermic needle, to a pre-prepared, helium filled 

Duran bottle (Schott) whose lid was fitted with an air tight seal and equipped with a septum 

(Supelco), housed in a brass 8 mm straight coupling (B&Q plumbing supplies), or 8 mm gland 

(RS supplies; Figure 4:10). 

 

 

 

 

 

 

 

 Figure 4:10 Duran bottles modified for headspace analysis and fitted with 
housings for the silicon septa. 
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 The bottles were pre-dosed with 3 mL of 50%w/v zinc chloride (ZnCl) to stop further 

biological processes (Elkins, 1980; Pretty et al., 2006; Walker et al., 2010; Hinshaw and 

Dahlgren, 2013). Pressure equilibration was achieved by inserting a second hypodermic 

needle, free to vent to the atmosphere. Once equilibrated to atmospheric pressure, the 

septa were covered with insulation tape (as an extra precaution) and the bottles shaken 

vigorously for 60 seconds. Samples were stored overnight to optimise headspace 

equilibration, aided by two further sessions of vigorous mixing by shaking.  On the following 

day, after a final shaking, 60 mL of headspace gas was sampled using water displacement 

(Figure 4:11) into a second luer lock syringe and transferred to a pre-evacuated 22 mL, gas 

tight vial, fitted with a silicon septum. The 60 mL volume allowed for flushing of the gas tight 

vials with 2 x their volume of sample before being completely filled.  

 

 

 

 

 

 

 

 

 

Septum 

Positive 
pressure: 

Water in 
Passive 

pressure: 

Headspace 
gasses out 

Figure 4:11 The method used to extract the headspace gasses 
after equilibration using positive pressure displacement. 
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Pressure equilibration was achieved by the insertion of a second hypodermic needle, free to 

vent to the atmosphere. The gas vials were delivered to the Forestry Commission’s Research 

facility at Alice Holt, Surrey, UK, where they were stored in an atmospherically controlled 

store until analysis. 

4.5.1.4. Greenhouse gas analysis 

Headspace analysis was carried out by Forest Research.  Headspace gases were analysed 

simultaneously (Hall and Dowdell, 1981) on a Perkin Elmer Clarus 500 Gas Chromatograph, 

equipped with a TurboMatrix 110 automatic headspace sampler. The sample was split and 

component gases were separated at 50°C, using N2 as the carrier gas, by passing through 

parallel, 30 m megabore (0.53 mm I.D.) capillary ‘Elite-Plot Q’ columns (fused silica lined 

with ‘Chromosorb 101’, ‘Porapak Q’ and ‘Haysep Q’).  CO2 was reduced to CH4 by  a 

‘methanizing catalytic converter’ and the resulting two peaks of CH4 were measured using a 

Flame Ionisation Detector (FID) heated at 350°C and supplied with combustion gases, H2 and 

air, with flow rates of 45 and  

450 mL min-1 respectively. N2O was measured using an Electron Capture Detector (ECD) 

heated at 375°C. Headspace concentrations were calculated from peak areas, calibrated and 

corrected for drift using three calibrations standards (AirProducts UK Ltd): 

1. 0.2ppm N2O + 1.2 ppm CH4 + 300 ppm CO2 

2. 1.0 ppm N2O + 6 ppm CH4 + 1500 ppm CO2 

3. 5.0 ppm N2O + 30 ppm CH4 + 7500 ppm CO2 

Sample concentrations of CO2 were outside the range of the calibration standards and a 

second analysis was conducted on samples that had been diluted by a factor of 3, and 

corrected for dilution and loss of sample. 
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4.5.1.5. Calculation of greenhouse gas  concentrations 

Data supplied by Forest Research returned values for greenhouse gas headspace 

concentrations in ppm. GHG concentrations in the original water samples were calculated 

using the ideal gas law and the solubility coefficients (Ko) calculated by Weiss (1974) for CO2 

and Weiss and Price (1980) for N2O.  For CH4, Ko was derived from the Bunsen coefficient (β) 

calculated by Yamamoto et al. (1976) using Equation 4.6.  

Atmospheric pressure was not recorded and is given the value of 1hPa throughout. 

Ko = β/V(T).   

Equation 4.6 

where V(T) is the volume of the gas at  a measured temperature expressed in °K.  

The steps used in back calculating the original concentration in the water sample were as 

follows: 

C(ws)(nM) = (nmoles(hs) + nmoles(wp))/V(ws) 

Equation 4.7 

nmoles(hs) = (P(v)/RT) x V(hs) 

Equation 4.8 

nmoles(wp) = P(V) x Ko(T) x V(wp) 

Equation 4.9 

Where  

 C(ws) =  calculated Molar concentration of original sample 

 hs = headspace in Duran bottle 

 wp = water phase in Duran bottle 

 ws = original water sample 

 V = volume in litres (L) 

 P(V) = measured  concentration of headspace gas (ppb) 

 R = universal gas constant, 0.082058 

 T = equilibrium temperature (°K) 

 Ko(T) = solubility coefficient at equilibrium temperature T 
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To allow comparisons between sites, GHG transfer across the sediment-water interface was 

calculated on an aerial basis as above (4.5.1.2,). As found in other studies (Pretty et al., 

2006; Sanders et al., 2007; Trimmer et al., 2010), a high degree of spatial heterogeneity was 

observed. For this reason, data are reported both on an individual basis and as the mean of 

3 pseudo replicates, light and dark at 3 sites (1 sample each from 6 chambers, 3 light and 3 

dark at each site).  

4.6. Time integrated ecosystem processes 

4.6.1. Leaf litter degradation  

The in-stream processing of leaf litter was investigated using leaf packs (Petersen and 

Cummins, 1974; Gessner and Chauvet, 2002; Hladyz et al., 2011b). Oak leaves, collected 

immediately after abscission, were dried at 80°C. 5 g (+/- 0.05 g) of leaves were weighed and 

packed into mesh bags before being installed in the study sites. Leaf packs were tethered to 

0.6 m reinforced steel bars driven into the stream bed. Two mesh sizes (4 mm and 0.5 mm) 

were chosen to allow or exclude macro-invertebrates (Figure 4:12).  Temperature was 

recorded during the incubation on waterproof loggers (Hobo UA 002 64), tethered to the 

steel bars, but with sufficient clearance from the leaf packs to prevent interference from 

them.  

The leaf packs were incubated for 30 days. At the end of the incubation period, the bags 

were removed from the stream by lifting into a plankton net (1 mm mesh) to prevent loss of 

leaf fragments from the coarse mesh bags. The bags were sealed in individual plastic bags 

and stored in a freezer until analysis. Contents of the bags were washed through a 500 µm 

mesh sieve to remove fine sediment particles and emptied into a sorting tray. Sticks and 
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non-oak leaf fragments were removed from the coarse mesh bags. Macro-invertebrates 

were removed, dominant taxa noted and stored in 80% ethanol for later examination.  Leaf 

fragments were washed clean of sediment and transferred to a foil tray, dried at 80°C and 

weighed. The loss of leaf litter mass was calculated from the change in dry mass of leaf litter 

over the incubation period. Temperature compensated rate coefficients (-k dd-1) were 

derived from an exponential model of decay (Petersen and Cummins, 1974; Gessner and 

Chauvet, 2002; Barlocher, 2005b), using Equation 4.10. 

-k dd-1 = ln (Mf/Mi) / dd  

Equation 4.10 

Where:  

 k dd-1= rate of leaf loss per degree day 

 Mf = leaf mass (g) after incubation 

 Mi = leaf mass (g) at the start of the incubation 

 dd = degree days 
 

Leaf loss in the fine mesh bags (-k(mic).dd-1)  was attributed to microbial action and physical 

and chemical processes such as leaching and flow related damage (Barlocher, 2005a). Leaf 

loss in the coarse mesh bags (-k(tot).dd-1)  was attributed to the combination of these 

processes and macro-invertebrate grazing. The proportion of leaf loss due to macro-

invertebrate action (-k(invert).dd-1)  was calculated from the difference in leaf loss from the 

coarse and fine mesh bags. 

4.6.2. Epilithic primary production and macro-invertebrate herbivory 

Unglazed ceramic tiles were anchored to the stream bed by fixing to engineering bricks that 

were secured by the reinforced steel bars tethering the leaf packs (Figure 4:12). At each 

location two tiles were installed (Figure 4:13). One tile was unaltered (‘grazed’ tile) and the 
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other had its vertical edges covered in petroleum jelly (Figure 4:13) to exclude crawling 

macro-invertebrates (McAuliffe, 1984b). Epilithic primary production was calculated from 

the chlorophyll a (Chl-a) concentration extracted from the biofilm on the ‘un-grazed’ tile and 

herbivory was calculated from the difference in Chl-a between the ‘grazed’ and ‘un-grazed’ 

tiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:12 Coarse and fine leaf litter bags, used to measure leaf litter 
degradation and the ceramic tiles, used to measure epilithic primary 
production and macro-invertebrate herbivory, prior to installation. 

Figure 4:13 The ceramic tiles installed on the stream bed. The petroleum 
jelly coating the vertical sides of the right hand tile can just be seen. 
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4.6.2.1. Measurement of chlorophyll a:  

At the end of the 30 day incubations, each pair of tiles was gently lifted from the water, the 

accrued periphyton on the tile surface removed by vigorous scrubbing with a toothbrush, 

and the resultant suspension washed into Nalgene HDPE bottles which was frozen for later 

analysis.  Once thawed, the resultant slurry was made up to 300 mL and divided into 100 mL 

aliquots.  The concentration of Chl-a was measured in one 100 mL aliquot after filtering 

through a GFC filter (Whatman), using a 24 hour, 90% acetone extraction (Talling and Driver, 

1961). The filter was macerated for several minutes using a broken glass rod prior to 

extraction.  After 24 hours extraction in the dark at 4°C, the tubes were agitated and 

centrifuged at 3500 rpm for 20 minutes. The supernatant was transferred to a disposable 

cuvette and absorbance was measured on a Cecil 1012 UV/Vis Spectrophotometer at a 

wavelength of 665 nm (corrected for background at 750 nm) before and after acidification. 

The concentration of Chl-a was calculated after Lorenzen (1967), and is reported as mg Chl-a 

m-2. Macro-invertebrate herbivory was calculated from the difference in Chl a concentration 

on the grazed and un-grazed tiles and the temperature corrected grazing rate given by 

(Equation 4.11 and Equation 4.12) 

Herbivory (p (herb)dd-1) =  p (gross) dd-1 – p (net) dd-1 

Equation 4.11 

And 

Periphyton accrual (p dd-1) = ln periphyton accumulation /dd 

Equation 4.12 

Where: 

 Periphyton accumulation = Chl a(f) = chlorophyll a, mg m-2 after 30 days 

 dd = degree days 

 p (gross) dd-1 = rate of chlorophyll accrual on ungrazed tiles 

 p (net) dd-1 = rate of chlorophyll accrual on grazed tiles 
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4.7. Statistical Analysis 

Statistical tests such as Pearson’s correlation coefficients and ANOVA were carried out using 

MINITAB 16 statistical software.  For testing statistical differences, analysis of variance was 

followed by Tukey’s test for post hoc pair-wise comparisons. Differences were considered 

significant when P < 0.05. 

The following chapters present the findings from this suite of measures, designed to address 

the research questions posed in chapter 1.  Chapter 5 is the first of these results chapters 

and provides a detailed comparison of the in-stream chemistry between the two study 

reaches.    
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 Characterising nutrient spatial and temporal variability Chapter 5.

in two headwater sub-catchments 

5.1. Overview 

In this chapter, samples collected along the study reach upstream of the sub-catchment 

outlets were analysed to identify and compare spatial variability in nutrient concentration, 

speciation and fractionation in the two sub-catchments. Temporal changes in nutrient 

fraction concentrations at the sub-catchment outlets are linked to observations of rainfall 

and stream discharge within the study reaches. Collectively, these data help to identify 

sources of nutrient enrichment within each sub-catchment. This information helps with 

understanding the potential differences in their biological availability and subsequent 

effects on ecosystem function. Annual load estimates for the two full water years covered 

by the study (WY 2011 and 2012) are compared for the two sub-catchments. The 

monitoring period extended beyond WY2012, however, and provides detailed background 

characterisation of the chemical environment during the process rate measurements 

conducted throughout (October 2011 to June 2014).  

5.2. Variation in nutrient chemistry in the source waters of the Cool’s 

Cottage sub-catchment 

 Nitrogen 5.2.1.

Guided by the Mg:Ca ratios described in chapter 3, the occasional sampling points were 

designated as ‘limestone dominated sources’ [piped source (CCSP), spring source (CC3) and 

the woodland edge], predominantly from the south of the sub-catchment and exhibiting low 
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Mg:Ca ratios; and ‘greensand dominated sources’ [spring source (CC1), Ruddlemoor and the 

sinkhole], from the north and east of the sub-catchment and demonstrating high Mg:Ca 

ratios (figure 3.12). At least one of the limestone dominated sources (CCSP) continued to 

flow throughout the study period while observable surface flow from the greensand sources 

ceased in dry periods. The limestone dominated sources have relatively high concentrations 

of TN (range 4.7 – 11.9 mg l-1; (Table 5:1 a) and are characterised by high TON (mean 

concentrations of 7.03 – 9.13mgl-1) constituting 88 – 94% of TN.  This proportion is high, 

even when compared with chalk streams, generally considered to be nitrate rich. The 

greensand dominated sources have much lower concentrations of TN (range 0.9 – 2.5 mg l-1; 

(Table 5:1 b) and correspondingly low concentrations of TON (0.94 – 3.45 mg l-1), 

contributing 46 – 89% to TN. NH4-N concentrations are consistently low for the limestone 

sources (range, 0.01 – 0.2 mg l-1, 0.3 – 1% of TN). NH4-N concentrations are similar from the 

greensand sources but constitute a higher proportion of TN (range, 0.02 – 0.07 mg l-1, 2 – 

7% of TN, Table 5:1, b). A similar pattern is observed for DON (range 0.0 – 2.0 mg l-1, 4-11% 

of TN in the limestone sources and 0.0 – 0.76 mg l-1, 6 – 47% of TN in the greensand sources) 

and PON which only contributes 1% to TN (0.0 – 0.12 mg l-1) in the limestone sources and 3 

– 14% in the greensand sources (0.04 – 0.26 mg l-1). 

 Phosphorus 5.2.2.

The distinction between the limestone and greensand dominated sources is less clear for 

the phosphorus fractions. SRP ranges from 0.01 to 0.123 mg l-1 across all sites, with both the 

highest and lowest concentrations occurring in the greensand sources (Table 5:2 a and b). 

Overall, SRP contributes between 34 and 48% of total P. A similar pattern is observed for 

SUP with mean concentrations ranging between 0.04 and 0.091 mg l-1 across all sites (37 – 
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61% of TP), again with both the highest and lowest mean concentrations occurring in the 

greensand sources. Concentrations of PP range from 0.0 – 0.083 mg l-1.  The contribution of 

PP to TP varies from 5 – 17%  (0.0 – 0.039 mg l-1) for most sites with only the sinkhole 

exhibiting  a high proportion of PP at 54% (0.083 mg l-1). 

 Carbon 5.2.3.

Mean concentrations of DOC from all sampling points upstream of the lake in Clay Hill wood 

were low (1.58 – 2.06 mg l-1; Table 5:2b) with the exception of the sinkhole site which had a 

moderately high DOC concentration of 9.5 mg l-1, (Table 5:2) 

Together, these data demonstrated that the headwater springs, upstream of the lake in Clay 

Hill Wood, were free from the influence of surface sources of organic matter. Only the 

sinkhole exhibited higher concentrations of DOC. Land cover above the sinkhole was 

predominantly broad-leaf woodland and the low NH4-N concentration of this source 

indicated that the DOC is unlikely to have originated from manures or sewage effluent, but 

was more likely to be derived from plant material.  SRP concentrations were also low 

compared with the Priors farm reach and suggested there was little input from 

contemporary inorganic fertilisers. High TON concentration in the limestone dominated 

sources, on the other hand, may indicate the effects of ‘historic’ fertiliser application having 

infiltrated the Portland Limestone and Wardour aquifer. 
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Table 5:1 A comparison of nitrogen species in the groundwater sources of the Cool's Cottage reach; (a), limestone dominated sources; (b), greensand dominated sources 

  

Limestone 
Sources 

TN 

(mg N l-1) 
NH4-N 

(mg N l-1)  
TON 

(mg N l-1)  
DON 

(mg N l-1) 
PON 

(mg N l-1) 

           
Spring CC3 10.39 

 
0.030 (0.3%) 9.13 (88%) 1.12 (11%) 0.12 (1%) 

 
8.90 - 11.88 

 
0.012 - 0.05 

 
8.44 - 9.82 

 
0.22 - 2.01 

 
0.23 - 0.00 

            

Woodland Edge 7.83  0.047 (1%) 7.03 (90%) 0.67 (9%) 0.08 (1%) 
 4.70– 10.33  0.02 – 0.11  4.60 – 9.33  0.05 – 1.35  0.00 – 0.34  
           
Piped Source 8.13  0.058 (1%) 7.22 (89%) 0.77 (9%) 0.09 (1%) 
 5.35-12.24  0.018-0.196  4.71-10.55  0.00-2.64  0.00-0.51  
           

           
Greensand 
Sources 

TN 

(mg N l-1) 
NH4-N  

(mg N l-1) 
TON 

(mg N l-1) 
DON 

(mg N l-1) 
PON 

(mg N l-1) 

      

Sink Hole 1.59 
 

0.065 (4%) 0.734 (46%) 0.76 (47%) 0.04 (3%) 
           
Ruddlemore 1.05  0.047 (4%) 0.57 (54%) 0.16 (15%) 0.28 (26%) 
 0.94– 1.16  0.026 – 0.068  0.55 – 0.59  0.15 – 1.16  0.13 – 0.42  
           
Spring CC1 2.50  0.039 (2%) 2.23 (89%) 0.14 (6%) 0.09 (4%) 
 1.83-3.45  0.022-0.079  1.37-3.42  0.00-0.26  0.00-0.26  

(a) 

(b) 



Page 100 
 

Table 5:2 A comparison of phosphorus species in the groundwater sources of the Cool's Cottage reach; (a), limestone dominated sources; (b), greensand dominated 
sources 

  

Limestone 
(a)  Sources 

TP 

(mg P l-1) 
SRP  

(mg P l-1) 
SUP  

(mg P l-1) 
PP 

(mg P l-1) 
DOC 

(mg P l-1) 

         
Spring CC 3 0.171 0.059 (34%) 0.084 (49%) 0.029 (17%)  

 
0.162 – 0.180 0.059 - 0.058 

 
0.066 – 0.103 

 
0.020 – 0.038 

 
 

         
Woodland Edge 0.162 0.071 (44%) 0.079 (49%) 0.011 (7%) 1.784 

 0.127– 0.188 0.058 – 0.103  0.046 – 0.103  0.00 – 0.033  1.08 – 2.63 
         
Piped Source 0.131 0.045 (35%) 0.080 (61%) 0.006 (5%) 2.06 
 0.100-0.165 0.021-0.062  0.045-0.115  0.00-20.020  1.06-6.91 
         

         

Greensand 
(b) Sources 

TP 

(mg P l-1) 
SRP  

(mg P l-1) 
SUP 

(mg P l-1)  
PP 

(mg P l-1) 
DOC 

(mg C l-1) 

         

Sink Hole 0.151 0.010 (7%) 0.059 (39%) 0.083 (54%) 9.51 
         
Ruddlemore 0.208 0.123 (59%) 0.065 (31%) 0.019 (9%) 2.02 
 0.167– 0.249 0.119 – 0.127  0.040 – 0.091  0.00 – 0.039  1.89 – 2.15 
         
Spring CC1 0.131 0.048 (36%) 0.068 (52%) 0.015 (11%) 1.58 
 0.103-0.151 0.035-0.061  0.049-0.102  0.003-0.029  0.74-2.50 
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Table 5:3 Longitudinal variation in nutrient chemistry along the Cool's Cottage study reach throughout the study period. The piped source is included for comparison. 

 

 

 

Cool’s Cottage 
NH4-N 
(mg N l-1) 

TON 
(mg N l-1) 

DON 
(mg N l-1) 

PON 
(mg N l-1) 

SRP 
(mg P l-1) 

SUP 
(mg N l-1) 

PP 
(mg N l-1) 

DOC 
(mg C l-1) 

         

Piped Source 0.058 7.18 0.52 0.13 0.045 0.080 0.006 1.48 
 0.018 – 0.196 4.71 – 10.55 0.00 – 1.79 0.00 – 0.51 0.021 – 0.062 0.045 – 0.116 0.00 – 0.017 1.06 – 2.22 
         
Headwater 0.062 3.90 0.74 0.25 0.026 0.079 0.030 3.25 
 0.011 – 0.337 1.59 – 7.96 0.00 – 3.28 0.00 – 0.89 0.00 – 0.087 0.00 – 0.359 0.00 – 0.165 1.41 – 7.42 

         
Upstream site 0.063 3.36 0.70 0.38 0.051 0.072 0.071 4.08 
 0.009 - 0.311 1.34 - 7.63 0.00 - 2.71 0.00 -1.69 0.002 - 0.200 0.00 - 0.388 0.00 - 0.363 1.70 - 9.23 
         
Downstream site 0.063 3.20 0.75 0.38 0.049 0.072 0.083 4.46 
 0.003 - 0.172 1.18 -7.80 0.00 - 2.6 0.00 -1.90 0.00 - 0.110 0.008 - 0.421 0.00 - 0.611 1.81 - 11.38 
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5.3. Longitudinal variation in nutrient chemistry in the Cool’s Cottage 

study reach 

For the purposes of this investigation, the headwater of the study reach was taken to be the 

point at which the stream emerges from Clay Hill Wood, where the various sources 

described in section 5.2 have been mixed to a more uniform condition in the lake. This is a 

short reach of 450m from the headwater to the sub-catchment outlet at the downstream 

site. Between the headwater site and the intermediate sampling point at the upstream site, 

200m from the sub-catchment outlet, there is an input from a tributary that carries runoff 

from the road into the stream (figure 3.12).  

 Nitrogen   5.3.1.

Mean concentrations of TON decreased with distance downstream from 3.90 to 3.20 mg l-1 

(Table 5:3 and Figure 5:1) and supported the idea that high TON concentrations in the 

limestone dominated source waters were a result of historic, rather than contemporary land 

use. NH4-N and DON concentrations showed little change along the study reach. The most 

noticeable change was in PON concentrations that increased from 0.25 to 0.38 mg l-1 

between the headwater and the upstream site but remained constant between the 

upstream and downstream sites, suggesting the major input was from the road drain.  

 Phosphorus 5.3.2.

The influence of the road drain is more marked in the P fractions, with substantial increases 

in both SRP and PP concentrations between the headwater and upstream sites (Table 5:3, 

Figure 5:1).  There was little change in SUP concentrations; a small decrease between the 

headwater and upstream sites suggested that lower concentrations of SUP in the road drain 
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may have diluted the source water. Mean SUP concentrations remained constant between 

the upstream and downstream sites.  
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Figure 5:1 Longitudinal variation in nutrient chemistry along the Cool's Cottage study reach. Locations are 
abbreviated: CCSP, piped source; CCHW, headwater; CCUS, upstream site and CCDS, downstream site at the 
sub-catchment outlet 



Page 104 
 

 Carbon 5.3.3.

DOC concentrations increased with distance downstream indicating a contribution from 

surface sources (Figure 5:1). The increase in concentration per metre was more marked 

between the headwater and upstream sites than between the upstream and downstream 

sites reflecting the contribution from the road drain and the efficiency of the road as a 

conduit for delivering surface pollution to the watercourse. 

5.4. Speciation and fractionation of nitrogen and phosphorus in the Cool’s 

Cottage sub-catchment 

Daily and sub-daily samples were analysed for all nutrient species and fractions at the sub-

catchment outlet. Because of the influence of sample storage on NH4 –N and SRP it is the 

convention to report full speciation and fractionation for samples analysed within 24 hours 

of collection only (chapter 4). The following analyses relate to grab samples collected weekly 

and analysed within 24 hours of collection. Higher resolution temporal dynamics are 

discussed in section 5.7 in order to capture key transport events that may have been missed 

by the weekly sampling regime.  

 Nitrogen 5.4.1.

Over the full study period, TON dominated nitrogen concentrations at Cool’s Cottage, 

constituting 73.6% of TN at the sub-catchment outlet. DON was the next highest 

constituent, contributing 16.7% to TN with PON contributing 8.5%. NH4-N was present in 

low concentration and contributes only 1.4% to TN. 
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 Patterns in nitrogen speciation in the Cool’s Cottage study reach 5.4.2.

There was a pronounced annual pattern in concentrations of TON downstream of the lake in 

Clay Hill Wood that was not apparent in the piped source from the reservoir in the south of 

the sub-catchment (Figure 5:2).This indicated either substantial TON uptake within the lake 

during the summer, when there was a large population of Elodea canadensis, or a 

considerable shift in the dominance of different sources during the annual cycle. If variation 

in source dominance was the sole driver of the annual cycle, however, observations on site, 

that showed a higher contribution of flow from the piped source to total flow during dry 

weather (chapter 3), would predict higher TON concentrations during the summer, rather 

than the observed decline.  

 

 

 

 

 

 

 

This strong annual cycle was not so marked in the other nitrogen species and resulted in a 

change in the relative importance of each species over the annual cycle. However TON 

remained dominant throughout the study period (Figure 5:3). 

Figure 5:2 Differential variation in TON concentrations in the Cool's Cottage sub-
catchment, above and below the lake in Clay Hill Wood. 
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 Phosphorus 5.4.3.

The balance between phosphorus fractions was more equal. PP contributed the highest 

proportion at 40.4%, with SUP constituting 34.7%. Over the full study period, SRP 

contributed 24.8% to TP. 

 Patterns in phosphorus fractionation in the Cool’s Cottage study reach  5.4.4.

There was a marked annual pattern in SRP concentrations in the Cool’s Cottage study reach 

with annual minima occurring during the spring (Figure 5:4). This pattern is most 

pronounced at the headwater site, immediately downstream of Clay Hill wood, but was also 

observed at the sub-catchment outlet. This observation reinforced the idea that 

photosynthetic primary production in the lake, which was not shaded, resulted in 

substantial uptake of inorganic nutrients during the spring and summer. As with the 

comparison among the nitrogen species, the strong annual pattern in SRP was not observed 

in the SUP and PP fractions, and resulted in different fractions dominating the phosphorus 

pool throughout the study period (Figure 5:5).   

Figure 5:3 Temporal variation in the proportion of nitrogen species at the outlet from 
the Cool's Cottage sub-catchment

 

0%

20%

40%

60%

80%

100%

14.9.11 1.4.12 18.10.12 6.5.13 22.11.13 10.6.14

NH4-N% NO3 % CDON % PON %

P
ro

p
o

rt
io

n
s 

o
f 

N
 s

p
ec

ie
s 

%
 



Page 107 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5. Temporal variation in stoichiometry at Cool’s Cottage  

The seasonal patterns observed in the speciation and fractionation of nitrogen and 

phosphorus result in changing N:P ratios throughout the annual cycle. This ratio exerts an 

important control on photosynthetic primary production. Although the threshold that 

determines which nutrient limits growth is likely to vary between biotic groups, a molar 

ratio of 31 (14 by mass) was proposed by Sterner and Elser (2002) based on earlier work in 
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Figure 5:4 Variation in SRP concentrations in the Cool's Cottage sub-catchment below the 
lake in Clay Hill Wood. 
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Figure 5:5 Temporal variation in the proportions of phosphorus fractions at the 
outlet from the Cool's Cottage sub-catchment 
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both terrestrial and freshwater ecosystems e.g. Elser et al., (1990); Downing and McCauley, 

(1992); Verhoeven et al., (1996), and is included here as a guide. This ratio was exceeded at 

the sub-catchment outlet throughout the study period for both dissolved inorganic species 

(NH4-N+TON:SRP) and total dissolved species (TDN:TDP, Figure 5:6a – c) suggesting available 

phosphorus may limit metabolic processes in this reach. The higher proportion of 

phosphorus existing as PP than nitrogen as PON results in lower TN:TP ratios providing a 

store of phosphorus that may be re-mineralised as an additional resource (see chapter 6)  
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Figure 5:6 Temporal variation in the N:P ratio (by mass) at the Cool's 
Cottage sub-catchment outlet; (a) inorganic species, (SRP + TON):SRP, (b) 
dissolved species (TDN:TDP) and (c) TN:TP. The red line represents a N:P 
ratio (by mass) of 14, one estimate of the point at which limitation of 
photosynthesis in lakes switches from N to P (see text). 



Page 109 
 

5.6. Nutrient load at the outlet from the Cool’s Cottage sub-catchment. 

The two study years exhibited very different meteorological conditions, although the total 

rainfall for both years was similar (rainfall totals were  861 mm in year 1 compared with 

820mm in year 2; source EA Tisbury weather station). Year 1, however, had a dry winter 

(285mm October to March) that followed a dry year (676 mm total rainfall in year 0, WY 

2010 with only 284 mm between April and September). Heavy rain fell in the summer of 

year 1 (576 mm between April and September ) and in year 2, heavy winter rain (582 mm 

between October 2012 and March 2013) fell on already saturated soils. The summer of 2013 

was dry (238 mm between April and September) and continued dry until late summer. 

Further heavy rain fell in the winter of year 3 (762 mm between October 2013 and March 

2014;(figure 3.3). Total discharge was higher in year 2 (714 ML a-1 compared with 521 ML a-1 

in year 1) and while some of this difference will be due to seasonal vegetative growth and 

transpiration in the wet summer of 2012, accounting for a greater proportion of water 

uptake than the heavy winter rain in year 2, these patterns also reflect the effects of soil 

saturation on flow and illustrate the importance of considering antecedent conditions when 

interpreting nutrient fluxes.  

Partly as a result of the increased discharge, the annual load of TN in year 2 was 

substantially higher than in year 1 (3.7 t a-1 compared to 1.7 t a-1). However, higher 

concentrations of TON also contributed to the increase mean concentration 3.37 mg l-1 

compared with 1.84 mg l-1 in year 1 (Table 5:4). Mean concentrations of DON were also 

slightly higher in year2 (0.86 mg l-1 and 1.06 mg l-1 in year 1 and year 2, respectively) while 

other nitrogen species remained constant (NH4-N, 0.060 mg l-1 and 0.059 mg l-1 year 1 and 

year 2 respectively and PON, 0.678 mg l-1 and 0.662 mg l-1 year 1 and year 2 respectively). 
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Table 5:4 A comparison of the mean concentrations of nitrogen species over two years at the outlet to the 
Cool's Cottage sub-catchment, contributing to the difference in load (figure 5.7) 

 

 

 

 

 

 

 

 

 

 A similar trend was observed for the annual load of TP (0.162 t a-1 in year 1 compared to 

0.220 t a-1 in year 2, ). As with DON, the mean concentration of SUP was slightly higher in 

year 2 (0.065 mg l-1 in year 1 compared with 0.072 mg l-1 in year 2, (Table 5:4, Table 5:7), 

while PP was slightly lower in year 2; 0.194 mg l-1 compared with 0.210 mg l-1 in year 1. The 

mean concentration of SRP was similar in both years, 0.039 mg l-1 and 0.040 mg l-1 for year 1 

and year 2, respectively. The annual load of DOC was constant over the two years (4.74 t a-1 

Year 

 NH4  

(mg N l-1) 

 TON 

(mg N l-1) 

 DON 

(mg N l-1) 

 PON 

(mg P N-1) 

 

1  0.060 ±0.039  1.841  ±0.436  0.860  ±0.412  0.678  ±0.708  

2  0.059  ±0.034  3.375  ±1.320  1.058  ±0.416  0.662  ±0.541  
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Figure 5:7 A comparison of the contribution to total nitrogen load by nitrogen species 
over two water years at the outlet to the Cool's Cottage sub-catchment. Total nitrogen 
load was 1.7 tonnes per annum (t a

-1
) in year 1 and 3.7 (t a

-1
) in year 2. 
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in year 1 and 4.72 t a-1 in year 2), although the mean concentration was lower in year 2 (5.19 

mg l-1) than in year 1, (7.07 mg l-1). 

 

Table 5:5 A comparison of the mean concentrations of phosphorus fractions and DOC over two years at the 

outlet to the Cool's Cottage sub-catchment, contributing to the difference in load (figure 5.8). DOC load was 

4.7 t a
-1

 in both years. 

 

 

 

 

 

 

 

 

 

 

Year 

SRP 

(mg P l-1) 

 SUP 

(mg P l-1) 

 PP 

(mg P l-1) 

 DOC 

(mg C l-1) 

 

1  0.042  ±0.026  0.060  ±0.026  0.210  ±0.196  7.07  ±3.578  

2  0.040  ±0.019  0.072  ±0.023  0.194  ±0.139  5.19  ±2.238  
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Figure 5:8 A comparison of the contribution to total phosphorus load by phosphorus 
fractions over two water years at the outlet to the Cool's Cottage sub-catchment. Total 
phosphorus load was 0.16 tonnes per annum (t a-1) in year 1 and 0.22(t a-1) in year 2. 
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5.7. High resolution temporal variation in nutrient concentrations at the 

outlet from the Cool’s Cottage sub -catchment 

While recognising the influence of sample storage on the speciation and fractionation of 

nitrogen and phosphorus, important additional information on in-stream nutrient chemistry 

and its response to hydrological conditions can be obtained from the higher resolution that 

the daily samples provide. Short term changes are likely to be common in such flashy 

streams and may well be missed by limiting the sampling frequency to weekly collections.  

 Nitrogen dynamics 5.7.1.

Peak TON concentrations lag behind the peak flows in the winters of 2012 and 2013 by two 

months (Figure 5:9).Together with the lack of a corresponding peak following the onset of 

flow following the dry summer of 2011, and after the higher flows of the spring and summer 

of 2012,this supports the contention that the control of TON is not dominated by surface 

sources but, more likely, influenced by contributions from groundwater sources and the 

reservoir, that take longer to respond to rainfall. This pattern of low concentrations of TON 

in the spring and early summer reflects the pattern seen in section 5.4.2 and reinforces the 

interpretation that biological processing in the lake in Clay Hill wood exerts significant 

control on in-stream nutrient chemistry for some distance downstream within this sub-

catchment. Biological processing through photosynthetic primary production in the lake was 

likely to exert a stronger influence than local in-stream processing at the sub-catchment 

outlet, bearing in mind the heavy shading at the sampling station at Cool’s Cottage. Low 

photosynthetic primary production at the sub-catchment outlet was reflected in the 

patterns in dissolved oxygen concentrations that did not exhibit the peaks in summer 
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daytime concentrations that would be expected if there was a high degree of 

photosynthetic primary production at the site.  

Concentrations of PON were highly variable but showed weak minima following high flows 

in the summer of 2012, winter 2012 / 2013 and winter 2013 / 2014 suggesting there may 

have been some flushing of the stream bed during these events, although there was little 

evidence of peaks in concentration associated with high flow events (peaks in load, 

however, would have resulted from the combination of higher discharge and consistent 

concentrations).  Both PON and NH4-N showed small peaks in concentration during the dry 

weather and low flows of summer 2013. DON showed little variation throughout the study 

period, again suggesting little input from surface sources. 

 Phosphorus dynamics 5.7.2.

As seen in section 5.2.2., the source waters had a lesser effect on phosphorus fractions than 

on nitrogen species. SRP concentrations rose with the onset of winter rains after the dry 

summer of 2011). The wet year of 2012 resulted in higher concentrations throughout the 

year, and the high rainfall in winter 2013/2014 was also accompanied by an increase in SRP 

concentrations. This suggested a link with surface sources, exacerbated by low phosphorus 

uptake in the sub-catchment, due to limited growth during the winter. SRP concentrations 

reached minima in the spring of all three years suggesting that uptake in the lake during 

photosynthetic primary production influenced nutrient chemistry for some distance 

downstream. As with DON, SUP concentrations did not exhibit clear seasonal or annual 

patterns. PP concentrations, however, mimicked those of PON and SRP. This may reflect 

increased delivery from the sub-catchment during periods of wet weather – or perhaps 
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reinforces the proposal that PP provided a ‘backup’ resource for metabolic processes when 

more readily biologically available sources of P were depleted (Chapter 6). 

 Dynamics of dissolved organic carbon  5.7.3.

DOC concentrations responded to peaks in flow. This observation tallies with patterns in 

longitudinal concentrations that suggested delivery of DOC from surface sources in the sub-

catchment. (Figure 5:10). Concentrations of DOC increased with the onset of the winter rain 

after the dry summer in 2011, remained high (for this catchment) through the wet season, 

but decreased during the winter of 2012, despite continuing rain and increased discharge. 

This was likely to be influenced by the removal of grazing stock from the surrounding fields 

to protect waterlogged pasture from erosion and compaction. DOC concentrations 

increased with the onset of autumn rain in 2013 suggesting some input from the 

surrounding pasture following the summer grazing of stock. 
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Figure 5:9 Temporal variation in nitrogen species and dissolved oxygen at the outlet to the 
Cool's Cottage sub-catchment. Weekly grab samples of NH4-N are represented as points, 
while daily samples that may have degraded during storage are represented as a line plot. 
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Figure 5:10 Temporal variation in phosphorus fractions and dissolved organic carbon  at the outlet 
to the Cool's Cottage sub-catchment. Weekly grab samples of phosphorus fractions are represented 
as points, while daily samples that may have degraded during storage are represented as a line plot. 
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5.8. Variation in the nutrient chemistry of the tributaries of the Priors 

Farm sub-catchment 

As discussed in chapter 3, the Mg:Ca ratios throughout the Priors Farm sub-catchment show 

little variation, suggesting a greater uniformity of source than experienced in the Cool’s 

Cottage sub-catchment. Nevertheless, the nutrient chemistry of the three tributaries PF1, 

PF2 and PF3 does vary. PF1 and PF2 rise close to the steadings of Hays Farm and Coleman’s 

Farm in the West of the sub-catchment, while PF3 rises in the South, in Semley common, 

through which it flows before reaching grazing pasture shortly before it joins PF1 and PF2 

(figure 3.18.). This contrast in provenance is reflected in the tributaries’ nutrient 

concentrations, speciation and fractionation, and is discussed in the following section. 

Furthermore, within the study period, two occasions on which pulses of exceptionally high 

organic matter input coincided with field sampling days are discussed in greater detail in 

section 5.9.  This provides additional background information on the conditions experienced 

by the in-stream community in this study reach and their possible implications to ecosystem 

function. Data from these extreme events are omitted from this overview to aid the 

interpretation of underlying trends in nutrient concentration, speciation and fractionation.  

 Nutrient speciation and fractionation in the tributaries of the Priors 5.8.1.

Farm sub-catchment 

The following analyses relate to grab samples collected weekly and analysed within 24 hours 

of collection. Higher resolution temporal dynamics are discussed in section 5.14 in order to 

capture key transport events that may have been missed by the weekly sampling regime.   
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The nutrient chemistries of PF1 and PF2 exhibited a strong influence from organic fractions 

that was absent from the tributary PF3. Both PF1 and PF3 dried out in dry weather and the 

peak concentrations of TON and SRP in PF3 occurred in the summer of 2013, coinciding with 

lowest flow (based on field observations and recorded flow at the sub-catchment outlet; no 

flow was recorded for the tributaries). In contrast, the highest concentrations of TON and 

SRP in PF1 and PF2 occurred during periods of increased discharge, and suggested that the 

transport of surface nutrients was a key mechanism for nutrient enrichment in these 

tributaries. 

 Nitrogen 5.8.2.

All three tributaries had similar mean concentrations of TN (range, 4.4 – 5.6 mg l-1, 

Table 5:6). PF3 is characterised by high TON during the dry season, with concentrations 

reaching 12 - 14 mgl-1 in the summer of 2013, and a mean concentration of 3.23 mgl-1 over 

the study period, constituting 59.7% of TN.  Both PF1 and PF2 had lower mean 

concentrations of TON, 1.38 and 2.81 mgl-1, constituting 31.1 and 50.0% of TN respectively. 

NH4-N concentrations were consistently low at PF3 (mean 0.05 mg l-1, 1.1% of TN), as is DON 

(mean 1.82 mg l-1, 34.9% of TN) while at PF1 and PF2, mean NH4-N concentrations are 

higher (0.317 and 0.257 mg l-1, contributing 7.1 and 4.6% of TN, for PF1 and PF2, 

respectively). A similar pattern is observed for DON (2.29 and 2.11 mg l-1, 51.8% and 37.5% 

of TN, for PF1 and PF2, respectively) and PON (0.44 mg l-1 at both sites; 10.0% and 7.9% of 

TN, for PF1 and PF2, respectively) with PF3 exhibiting the lowest mean concentration of 

PON (0.23 mg l-1, 4.3% of TN).  
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Table 5:6 A comparison of nitrogen species in the tributaries of the Priors farm reach, throughout the study period; For PF2, summary data in black exclude the extreme 
event of 4.3.13, to aid understanding the underlying trends. Figures in red (PF2E) include this extreme event and illustrate its influence on the overall contributions (see 
text). 

 

 

 

  

Priors farm 

TN 

(mg N l-1) 
NH4-N 

(mg N l-1)  
TON 

(mg N l-1)  
DON 

(mg N l-1) 
PON 

(mg N l-1) 

           
PF1 4.44 

 
0.317 (7%) 1.38 (31%) 2.30 (52%) 0.44 (10%) 

 
1.97 – 12.23 

 
0.016 – 4.231 

 
0.06 – 6.22 

 
0.94 – 5.9 

 
0.00 – 1.89 

            
PF2 5.62  0.257 (5%) 2.81 (50%) 2.11 (37%) 0.44 (8%) 
 3.02 – 12.96  0.043 – 0.864  0.62 – 10.14  0.30 – 3.36  0.00 – 2.26  
           
PF2 E 6.57  0.956 (15%) 2.79 (40%) 2.12 (32%) 0.712 (11) 
 3.02 – 68.68  0.043 – 46.40  0.62 – 10.14  0.30 – 3.36  0.00 – 18.29  

           
PF3 5.42  0.058 (1%) 3.23 (48%) 1.89 (35%) 0.23 (4%) 
 2.48 – 17.99  0.017 – 0.182  0.34 – 14.88  0.53 – 3.23  0.00 – 0.85  
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Table 5:7 A comparison of phosphorus fractions and dissolved organic carbon in the tributaries of the Priors farm reach, throughout the study period; For PF2, summary 
data in black exclude the extreme event of 4.3.13, to aid understanding the underlying trends. Figures in red (PF2E) include this extreme event and illustrate its 
influence on the overall contributions (see text). 

 

Table 5:8 Longitudinal variation in nutrient chemistry between the Priors Farm upstream and downstream sites throughout the study period. 

Priors farm 

TP 

(mg P l-1) 
SRP  

(mg P l-1) 
SUP  

(mg P l-1) 
PP 

(mg P l-1) 
DOC 

(mg P l-1) 
         
PF1 0.45 0.155 (34%) 0.116 (26%) 0.190 (42%) 15.75 

 
0.064 – 2.013 0.035 - 0.797 

 
0.029 – 0.679 

 
0.00 – 1.154 

 
9.68 -  27.56 

         

PF2 0.504 0.203 (40%) 0.084 (17%) 0.226 (45%) 13.78 
 0.121– 1.007 0.041 – 0.541  0.00 – 0.195  0.080 – 0.707  9.16 – 22.83 
         
PF2 0.580 0.230 (40%) 0.094 (16%) 0.265 (46%) 14.77 
 0.121– 5.592 0.041 – 2.00  0.00 – 0.753  0.080 – 2.840  9.16 – 67.46 
         
PF3 0.338 0.162 (48%) 0.088 (26%) 0.088 (26%) 13.73 
 0.180 – 1.347 0.025 – 1.196  0.019 – 0.207  0.00 – 0.456  9.48 – 19.45 

Priors Farm 
NH4-N 
(mg N l-1) 

TON 
(mg N l-1) 

DON 
(mg N l-1) 

PON 
(mg N l-1) 

SRP 
(mg P l-1) 

SUP 
(mg N l-1) 

PP 
(mg N l-1) 

DOC 
(mg C l-1) 

         

Upstream site 0.437 2.25 1.62 0.59 0.171 0.095 0.215 15.28 
 0.00 – 10.468 0.08 – 7.49 0.35 – 5.67 0.00 – 6.20 0.029 – 0.943 0.00 – 0.664 0.00 – 1.832 9.15 – 53.30 

         
Downstream site 0.321 2.20 1.59 0.50 0.161 0.090 0.174 15.02 
 0.00 - 4.998 0.07 - 7.55 0.49 - 4.43 0.00 - 4.09 0.034 - 0.595 0.003 - 0.356 0.00 - 1.641 9.45 – 39.11 
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 Phosphorus 5.8.3.

In contrast to TN, TP was lower at PF3 than at the other two sites (Table 5:7), 0.388 mg l-1 at 

PF3 compared with 0.454 and 0.504 mg l-1 at PF 2 and PF3, respectively. The mean 

concentration of SRP was highest at PF2 (0.203 mg l-1 (40.2% of TP), compared with 0.155 

mg l-1 (34.1% of TP) and 0.162 mg l-1 (47.9% of TP) at PF1 and PF3, respectively. SUP was 

highest at PF1 (0.116 mg l-1, 25.5% of TP) while PF2 and PF3 exhibited similar mean 

concentrations 0.084 mg l-1 and 0.088 mg l-1 (16.6 and 26.1% of TP), respectively. Mean 

concentration of PP was highest at PF2 (0.226 mg l-1, 44.7% of TP) and lowest at PF3 (0.088 

mg l-1, 26% of TP). The mean concentration of PP at PF1 was 0.190 mg l-1, 41.9% of TP. 

 Carbon 5.8.4.

Concentrations of DOC from the three tributaries were similar at all sites, 15.7 mg l-1 at PF1, 

13.8mg l-1 at PF2 and 13.7 mg l-1 at PF3 (Table 5:7).  The contrast in the balance of nitrogen 

species and phosphorus fractions at PF1 and 2 with those at PF3 is consistent with their 

proximity to dairy farms that manage their waste as slurry. Several incidents were witnessed 

when high concentrations of nutrients, notably NH4-N and DOC, were accompanied by a 

green colouration to the water and the characteristic odour of farmyard manure. These are 

discussed further in sections 5.5 and 5.10. The combination of high DOC and high NH4-N is 

characteristic of animal or human waste. On at least two of these occasions, after high 

rainfall, the containment of slurry is known to have failed suggesting a probable source for 

these observations.   
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5.9. Transport and fate of high organic matter pulses. 

One of the events described in section 5.5 occurred on 7th January 2013. Following intense 

rainfall, the tributary at PF1 was observed to be dark green and odorous. An additional 

sample was collected further upstream, at the ditch leading from the breached slurry store, 

to supplement the weekly sampling points in the study reach. Changes in the concentrations 

of different species and fractions varied with distance downstream suggesting that abiotic 

processes, such as dilution, were not solely responsible for the processing of this organic 

matter pulse (Table 5:9). 

Between PF1 and the Priors farm upstream site, there are inputs from PF2 and PF3; 

therefore, the contributions from these streams will affect the changes to in-stream 

nutrient chemistry. Between the upstream site and the sub-catchment outlet at the 

downstream site, however, there were no observed additional surface water inputs. At both 

stages, the highest loss (expressed as percent) was in the NH4-N concentration. Between the 

upstream and downstream sites, NH4-N reduced by 17% compared with 14% for DON and 

10% for SUP. Other fractions showed an increase, with DOC increasing by 3%, TON by 8% 

and SRP by 13%. While this disproportionate loss of NH4-N may result from preferential 

biological processing, it may also indicate that the NH4
+ ⇄  NH3 pair may not have reached 

equilibrium at sampling points close to the source, resulting in a higher proportion of NH4-N 

being present as NH3, and leading to increased loss due to volatilisation.  This has 

implications on the effect of these high organic matter pulses to ecosystem function as NH3 

is harmful to many organisms, including some macro-invertebrates. This is further discussed 

in chapter 7. 
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Table 5:9 Concentrations of organic pollutants following a breached slurry store and their dispersal downstream. 

Location date 
NH4-N 
(mg N l-1) 

TON 
(mg N l-1) 

SRP 
(mg N l-1) 

DON 
(mg N l-1) 

SUP 
(mg P l-1) 

PON 
(mg P l-1) 

PP 
(mg P l-1) 

DOC 
(mg C l-1) 

Coleman’s
Farm outlet 

7.1.13 216 6.6 28.8 154 5.25 81.75 14.62 864 

PF1 
 

2.52 1.172 0.246 3.94 0.131 1.54 0.56 27.5 

PFUS  0.24 1.192 0.090 2.93 0.066 0.09 0.13 14.2 

PFDS  0.21 1.288 0.102 2.51 0.060 0.09 0.12 14.7 

          
PF2 4.3.13 46.4 1.30 2.00 2.39 0.399 18.1 4.20 134 

PFUS  10.4 1.69 0.32 1.38 0.074 6.20 1.83 53.3 

PFDS  1.35 2.05 0.06 2.66 0.184 0.89 0.27 16.2 
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A second incidence of high organic matter input coincided with a field sampling day on the 

4th of March 2013 and facilitated a further investigation into the transport of matter 

downstream. Analysis of the samples downstream from PF2, where the characteristic colour 

and odour were again observed, revealed a different pattern of loss among the different 

fractions. On this occasion there was a much larger reduction in the concentrations of NH4-

N, SRP and DOC between the upstream and downstream sites, but the concentrations of 

TON, DON and SUP were higher at the downstream site. It is possible that the timing of this 

pulse of organic matter meant that it had not reached the downstream site at the time of 

sampling. These observations emphasise the value of high resolution (real-time or sub daily) 

sampling in interpreting such discrete events and their implications to biological function.  

5.10. Longitudinal variation in nutrient chemistry in the Priors Farm study 

reach 

The distance between the confluence of the three tributaries (PF1, PF2 and PF3) and the  

regular sampling and incubation sites at the upstream site and sub-catchment outlet, acts in 

a similar fashion to the lake in Clay Hill Wood in the Cool’s Cottage sub-catchment, and 

ensures the disparate contributions from the three tributaries are well mixed. The study 

reach stretches for 1000m from the upstream sampling site to the sub-catchment outlet 

and, although there is a surface hedge-line ditch midway between the two sites, surface 

water flow was only observed here in the extreme weather of winter 2013 / 2014. 

  Nitrogen 5.10.1.

Over the full study period, there was a small reduction in the mean concentrations of all 

nitrogen species from upstream to downstream suggesting greater contributions from point 
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sources in the headwaters than from diffuse sources, despite the application of both 

inorganic fertiliser and organic slurry within the sub-catchment. This reduction was 

proportionately greater in the NH4-N and PON concentrations than the other nitrogen 

species (Error! Reference source not found. and Figure 5:11(a). While these changes in 

mean concentration are small, maximum concentrations were highly variable and always 

greater at the upstream site. For those days when measurements were taken at all sites, the 

maximum recorded value of NH4-N at the upstream site was 10.5 mg l-1 and 5.0 mg l-1 at the 

downstream site. (The maximum concentration of NH4-N, recorded over the full study 

period at the downstream site was higher at 15 mg l-1 (Figure 5:19); but there was no 

corresponding value for the upstream site on that occasion). The contrast between the two 

sites is much less extreme for DON (maximum concentrations of 5.87 mg l-1 and 4.63 mg l-1 

for the upstream and downstream sites, respectively) and PON (maximum concentrations of 

6.20 mg l-1 and 4.09 mg l-1 for the upstream and downstream sites, respectively), while TON 

maxima are comparable for the two sites (7.49 mg l-1 and 7.55 mg l-1 for the upstream and 

downstream sites, respectively).  

 Phosphorus 5.10.2.

The mean concentrations of phosphorus fractions also decrease with distance downstream 

(Table 5:8 and Figure 5:11); SRP from 0.171 mg l-1 to 0.161 mg l-1, SUP from 0.095 mg l-1 to 

0.09 mg l-1 and PP from 0.215 mg l-1 to 0.174 mg l-1. As with the nitrogen species, maximum 

concentrations are also lower at the downstream site. The maximum recorded 

concentration of SRP at the upstream site was 0.94 mg l-1 compared with 0.59 mg l-1 at the 

downstream site.  Maximum concentrations of SUP show a greater difference between sites 

than their corresponding mean concentrations: 0.66mg l-1 at the upstream site compared 



Page 126 
 

with 0.35 mg l-1 at the downstream site. The maximum PP concentration at the upstream 

site was 1.83 mg l-1 compared with 1.64 mg l-1 at the downstream site.   
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Figure 5:11 Spatial variation in nutrient chemistry in the Priors Farm sub-catchment. Locations are abbreviated: 
PFUS, upstream site and PFDS, downstream site at the sub-catchment outlet. The influence of extreme events 
is illustrated by the high variability and disparity between median and mean concentrations at all sites except 
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 Carbon 5.10.3.

A high degree of variability is also seen in the DOC concentrations (Table 5:8 and 

Figure 5:11). Taken over the full study period, mean concentrations are similar at the two 

sites (15.3 mg l-1 and 15.0 mg l-1 for the upstream and downstream sites, respectively). 

Maximum concentrations, however, are highly variable with a maximum recorded 

concentration of 53.3 mg l-1 at the upstream site compared to 39.1 mg l-1 at the downstream 

site. As reported for NH4-N, higher DOC concentrations (maximum concentration of 94.9 mg 

l-1) were recorded at the sub-catchment outlet but without upstream data available for 

comparison.  

5.11. Patterns in nutrient speciation and fractionation at the Priors Farm 

sub-catchment outlet 

The following analyses relate to grab samples collected weekly and analysed within 24 hours 

of collection. Higher resolution temporal dynamics are discussed in section 5.14. 

 Nitrogen 5.11.1.

Unlike the Cool’s Cottage sub-catchment, over the full study period, there is no overriding 

dominant species at Priors Farm. On average, TON constitutes 48.6% of TN at the sub-

catchment outlet (2.20 mg l-1,Table 5:8); however, the concentration and its proportion of 

TN is affected seasonally (Figure 5:12),  and drops to as low as 11% in the summer and as 

high as 86% during the winter. The dominance of different nitrogen species alternates 

between TON and DON (Figure 5:13). DON contributes 39.9% to TN overall (1.55 mg l-1), with 

a maximum contribution of 65.7% during the summer and a minimum contribution of 10.1% 

in the winter. The contribution of NH4-N throughout the period is 6.7% (0.31 mg l-1), but can 
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rise to 30.8% during discrete events as discussed in section 5.9. PON contributes 10.7% (0.48 

mg l-1), with a contribution that ranges from 0 – 36.4%.  
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Figure 5:12 Temporal variation in TON concentrations at Priors Farm. 
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 Phosphorus 5.11.2.

As at Cool’s Cottage, the balance between phosphorus fractions is more equal. Over the  

full study period SRP and PP contribute 39.9% and 38.4% respectively (0.17 mg l-1 and  

0.16 mg l-1, Table 5:11), while SUP constitutes the lowest proportion of TP at 21.7% (0.091 

mg l-1). There is a clear seasonal pattern in SRP concentrations (Figure 5:14), and a marked 

dominance of SRP in the summer of 2013 when TON concentrations are very low 

(Figure 5:15) suggesting a possible limitation caused by low available nitrogen at this time. 

5.12. Temporal variation in stoichiometry at Priors farm  

The lack of riparian shading at the monitoring station at Priors Farm promotes high light 

levels in the summer giving the potential for high primary production (further discussed in 

chapter 6). Therefore, seasonal variation in the N:P ratio can provide information on 

possible limiting factors for photosynthesis at this site. For both dissolved inorganic species 

(NH4-N+TON : SRP) and total dissolved species (TDN : TDP), this ratio fluctuates around the 

threshold of 14 (by mass), being substantially lower during the summer and early autumn 

for all three study years (Figure 5:16). During the winter, spring and early summer, however, 

the ratio exceeds the threshold value and may drive remineralisation of less biologically 

available phosphorus fractions, by the activation of phosphatase, an exo-enzyme to 

maintain productivity in the spring (Chapter 6).   
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5.13. Nutrient load at the outlet from the Priors Farm sub-catchment. 

As at Cool’s Cottage, total discharge at the Priors Farm sub-catchment outlet was higher in 

year 2 (2259 ML a-1 compared with 1812 ML a-1 in year 1). Mainly as a result of the 

increased discharge, the annual load of TN in year 2 was higher than in year 1 (10.3 t a-1 

compared to 9.3 t a-1, a rise of 11%; Figure 5:17). The mean concentration of TON was 

slightly lower in year 2, with a mean concentration of 1.57 mg l-1 compared with 2.69 mg l-1. 

However, mean concentrations of DON and NH4-N remained the same at ~ 1.9 mg l-1 and 

0.21 mg l-1 respectively (Table 5:9). PON was substantially lower in year 2 than in year 1, 

with a mean concentration of 0.29 mg l-1 in year 2 compared with 0.86 mg l-1 in year 1.  A 

smaller rise was observed for the annual load of TP (1.2 t a-1 in year 1 compared to 1.3 t a-1 

in year 2, a rise of 8%; (Figure 5:18). The mean concentration of SUP was lower in year 2: 

0.102 mg l-1 in year 1 compared with 0.089 mg l-1 in year 2 (Table 5:11). PP was also 

substantially lower in year 2; 0.21 mg l-1 compared with 0.43 mg l-1 in year 1. The mean 

concentration of SRP was higher in year 1: 0.17 mg l-1 compared with 0.15 mg l-1 for year 2. 

Although the mean concentration of DOC was slightly higher in year 1 (16.97 mg l-1in year 1 

and 15.62 mg l-1 in year 2; (Figure 5:10), the lower discharge in year 1 resulted in an annual 

load of 28.9 t a-1 compared to 40.9 t a-1 in year 2, a rise of 41%. 

Table 5:10 A comparison of the mean concentrations of nitrogen species over two years at the outlet to the Priors Farm 
sub-catchment, contributing to the difference in load (figure 1.17) 

Year 
NH4 – N 
(mg N l-1) 

 TON 
(mg N l-1) 

 DON 
(mg N l-1) 

 PON 
(mg P N-1) 

 

1 0.217 ±1.047  2.69  ±1.68  1.88 ±1.39  0.86  ±1.23  

2 0.212  ±0.478  1.57  ±1.08  1.96  ±0.65  0.29  ±0.43  
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Table 5:11 A comparison of the mean concentrations of phosphorus fractions and DOC over two years at the outlet to 
the Priors farm sub-catchment, contributing to the difference in load (figure 1.18). DOC load was 28.9 t a-1 in year 1 and 
40.9 t a

-1
 in year 2. 

 

 

 

 

 

 

 

Year 

SRP 

(mg P l-1) 

 SUP 

(mg P l-1) 

 PP 

(mg P l-1) 

 DOC 

(mg C l-1) 

 

1  0.169  ±0.114  0.102  ±0.148  0.429  ±0.391  16.97  ±7.33  

2  0.151  ±0.094  0.089  ±0.036  0.212  ±0.160  15.62  ±3.86  
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Figure 5:17 A comparison of the contribution to total nitrogen load by nitrogen species over two 
water years at the outlet to the Priors farm sub-catchment. Total nitrogen load was 9.3 tonnes per 
annum (t a-1) in year 1 and 10.3 (t a-1) in year 2. 
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5.14. High resolution temporal variation in nutrient concentrations at the 

outlet from the Priors Farm sub -catchment 

The extreme variability in nutrient inputs in the Priors Farm sub-catchment, as described in 

the previous sections, emphasises the importance of high resolution analyses of in-stream 

chemistry for interpreting both nutrient fluxes and their implications for ecosystem 

function. While the weekly observations were able to capture a few of the extreme events 

that are likely to influence in-stream community structure and function, the high resolution 

sampling, albeit with intrinsic limitations on absolute accuracy with regard to in-stream 

speciation and fractionation, provide a better overview of the frequency and severity of 

these events. The consequences of high and intense rainfall, leading to problems of slurry 

containment, are illustrated by the timing of these events.  

 Nitrogen dynamics 5.14.1.

Unlike at Cool’s Cottage, the concentration of TON responded rapidly to the onset of rain 

following the dry summer of 2011, but fell in the spring of 2012 despite continuing rains.  

This may have been due to the reservoir of TON in the soils of the sub-catchment becoming 

depleted following the wet weather and biological uptake from the soil, as spring 

productivity began (Figure 5:19). The two minima in TON concentrations during this phase, 

19.1.12 and 3.2.12 (0.41 and 0.34 mg l-1 NO3-N), coincide with two pulses of high NH4-N and 

DOC (6.0 and 14.4 mg l-1 NH4-N and 48.2 and 94.9 mg l-1 DOC, respectively), with a similar, 

but less severe incident occurring on 25.2.12 (1.83 mg l-1 NO3-N, 8.06 mg l-1 NH4-N and 43.1 

mg l-1 DOC). These incidents are also indicated by intense peaks in DON and PON and sharp 

troughs in dissolved oxygen (section5.14.4, Figure 5:21). Further intense rain in the spring of 
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2012 result in a smaller rise in TON concentration in the early summer, but despite 

continuing rain in the summer and winter, the concentration of TON remains relatively low 

(~1.2 mg l-1) for the rest of 2012 and through to the spring of 2013. During this period, slurry 

from both Coleman’s Farm and Hays Farm was being exported from the sub-catchment until 

the capacity of the receiver was reached in the spring of 2013 and the export stopped (see 

chapter 3). Concentrations of TON rose in the spring of 2013 but declined during the dry 

summer and remained low until the onset of rain in late October 2013, when they rose in 

response to increased surface and interstitial flow. This peak in TON concentration declined 

rapidly, despite continuing rain, again suggesting depleted TON stores in the soils of the sub-

catchment, following the removal of grazing stock from the sub-catchment to winter 

housing.  NH4-N, DON and PON all exhibit discrete spikes in concentrations following the 

onset of intense rain in the winter of 2012, and periodically thereafter. These indicators of 

animal waste were absent for the period during which slurry was being exported from the 

sub-catchment. 

 Phosphorus dynamics 5.14.2.

SRP concentrations rise with the onset of winter rain after the dry summer of 2011 following 

which, they exhibit a strong annual cycle with lows in the spring of each of the study years 

(Figure 5:20). Maximum concentrations of SRP occur during the late summers of 2012 and 

2013. This reversal of the pattern observed for TON supports the proposal of a switch in the 

factors limiting primary production at this site. Concentrations of SUP exhibit a weaker 

annual cycle than SRP. Concentrations of PP are highly variable with sharp peaks coinciding 

with intense rainfall events. This is consistent with sediment inputs being driven by overland 

flow.  
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Figure 5:19 Temporal variation in nitrogen species and dissolved oxygen at the outlet to the Priors 
Farm sub-catchment. Weekly grab samples of NH4-N are represented as points, while daily 
samples that may have degraded during storage are represented as a line plot. 
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Figure 5:20 Temporal variation in phosphorus fractions and dissolved organic carbon  at the outlet 
to the Priors Farm sub-catchment. Weekly grab samples of phosphorus fractions are represented 
as points, while daily samples that may have degraded during storage are represented as a line 
plot. 
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 Dynamics of dissolved organic carbon 5.14.3.

As at the outlet from Cool’s Cottage, DOC concentrations respond to peaks in flow, rising 

after the onset of rain in October 2011 and again following the summer rain in 2012. There 

is a further increase in DOC concentration after the dry summer of 2013, with the onset of 

rain in October. In this sub-catchment, however, DOC concentration is also a powerful 

indicator of pollution events as discussed in the following section (and see Figure 5:20).   

 Dissolved Oxygen 5.14.4.

The conditions at the Priors Farm monitoring station caused some problems for the 

dissolved oxygen sensor. The combination of high nutrient concentrations and light 

availability resulted in substantial biofouling of the sensor that significantly reduced its 

sensitivity (Figure 5:21), particularly during the spring and summer when extensive algal 

growth occurred at this site (see chapter3). There are, however, periods when the sensor 

performed well and illustrate the consequences of the pulses of organic matter, for example 

those that occurred in early 2012 (e.g. 19.1.12, 30.1.12, 25.2.12 and 2.3.12) and on the 

occasions described in section 1.9 (7.1.13, and 3.3.13).  The magnitude of the diurnal 

variation in dissolved oxygen is also apparent with extremes of both supersaturation and 

hypoxic conditions being experienced by the in-stream communities during the summer 

months- especially during the period of no flow in summer 2013.  
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5.15. A comparison of the hydrochemistry in the Cool’s Cottage and Priors 

Farm sub-catchments 

The data presented here demonstrate clear differences between the study sub-catchments 

in relation to water chemistry.  Annual loads for all nutrient species and fractions are higher 

at Priors Farm than at Cool’s Cottage. Only TON has higher mean concentrations at Cool’s 

Cottage than at Priors Farm and the reduction in concentration with distance downstream 

suggested that TON was not delivered to the reach from surface sources. Rather, it 
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Figure 5:21 Expanded sections of the dissolved oxygen record at Priors Farm showing the response to organic matter pulses 
(indicated by NH4-N concentrations) and reduced sensitivity during algal blooms (Note rise in DO of 10 mgl-1 in 15 minutes at 
0630 for several days in June 2013. 
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appeared to be a legacy of historic farming practice, or of activities outside the sub-

catchment affecting the groundwater source feeding the headwater springs. Concentrations 

of SRP, DOC and NH4-N were all substantially lower than in the Priors Farm reach. However, 

there was some evidence to support delivery of these nutrients from surface sources, with a 

marked contribution from the road drain. Cool’s Cottage nutrient chemistry was strongly 

influenced by annual cycles driven by biological processes in the lake in Clay Hill Wood. 

  

In contrast the Priors Farm reach exhibited high concentrations of SRP, NH4-N and DOC. 

Concentration of other fractions were also higher than in the Cool’s Cottage reach, but the 

disparity was smaller. With no apparent groundwater sources, these nutrients must have 

been delivered to the watercourse from surface sources. In addition to high background 

concentrations, Priors Farm experienced pulses of very high DOC and NH4-N, linked with 

episodes of low DO. These appeared to originate from insufficient slurry containment during 

prolonged periods of wet weather. The consequences of high nutrient concentrations were 

exacerbated by periods of very low or no flow in the Priors Farm reach while at Cool’s 

Cottage, flow was maintained throughout the study period. 

These contrasts in nutrient concentrations and in their speciation and fractionation between 

the two sub-catchments resulted from both the intrinsic differences in the sub-catchments, 

and the differences in land management described in chapter 3. The paired catchment 

approach adopted for this study provided an opportunity to assess their effects on in-

stream ecosystem function. The consequences to both short term metabolic function and 

the longer term functional measures of macro-invertebrate herbivory and detritivory are 

explored in chapters 6 and 7.  
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 Characterising short term ecosystem function in two Chapter 6.

headwater sub-catchments.  

At its most fundamental, ecosystem function is itself a function of metabolism: the 

acquisition of energy through respiration (aerobic and anaerobic); the assimilation of 

materials into organic matter, and the transformation of organic and inorganic compounds 

resulting from these processes that both respond to, and influence the environment around 

them. 

In this chapter, community aerobic respiration, primary production and the relationship 

between them are compared in the two study reaches. To a lesser extent, anaerobic 

respiration using NO3
- and CO2 as electron acceptors is compared by estimating the flux of 

the greenhouse gases, CO2, CH4 and N2O across the sediment-water interface. 

6.1. Overview 

A series of incubations were performed during a twelve month period from June 20th, 2013 

to June 3rd, 2014, to explore variations in key metabolic processes between the two sub-

catchments namely: community aerobic respiration, community photosynthetic primary 

production and the accumulation of greenhouse gases across the sediment-water interface. 

Incubations at the Priors Farm downstream site and at Cool’s Cottage were conducted 

within 3 m of the DTC cabinets. The Priors Farm downstream site was unshaded and from 

12th September 2013 a second, shaded site was adopted in the Priors Farm reach to  more 

closely mirror the ambient light conditions prevalent throughout the Cool’s Cottage sub-

catchment and to represent the shaded reaches (approximately 70%) of the Priors Farm 

study reach (Figure 6.1). For full details of methods and incubation timetable see chapter 4. 
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6.2. Aerobic respiration and nutrient transformations. 

The renewed search for reliable and transferable indicators of stream health has led to 

recent work revisiting measurements of aerobic respiration as a useful measure of 

ecosystem function (McTammany et al., 2003; Uehlinger, 2006; Young et al., 2008). Another 

approach is to explore the consistent relationships between aerobic respiration and 

temperature, and between carbon respired and nitrogen produced, to help make 

predictions on a global scale (AcuÑA et al., 2008; Demars et al., 2011; Yvon-Durocher et al., 

2010; Yvon-Durocher et al., 2011; Trimmer et al., 2012).  

Figure 6:1 Location of experimental sites and tributaries. 
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Priors Farm 
Upstream site 

PF 1 

PF3  

PF 2 



Page 143 
 

 Key characteristics of respiration and nutrient dynamics: 6.2.1.

There was a strong relationship between temperature and aerobic respiration measured in 

benthic chambers at the Cool’s Cottage and Priors Farm downstream sites (Figure 6:2).  

However, a systematic error was introduced in the combined incubations, where a 

subsample was removed for headspace analysis of greenhouse gases (Chapter 4).  Using the 

dedicated respiration incubations, the relationship between aerobic respiration and 

temperature was used to correct for this systematic error in the combined incubations. 

(Figure 6:3).  The corrected values are used in all future discussions. 

There was a significant difference (F = 26, P < 0.0001) between aerobic respiration at Cool’s 

Cottage and in the Priors Farm reach. There was no significant difference between aerobic 

respiration at the Priors Farm upstream and downstream sites (F=1.4, P > 0.2). Ecosystem 

respiration at Cool’s Cottage and at the Priors Farm sites ranged from 0.010-0.043 and 0.027 

-0.071 mg O2 cm-2 day-1 respectively, equating to 0.1 – 0.7 g O2 m-2 day-1,  with a mean value 

of 90% of community aerobic respiration being attributable to benthic respiration (88% and 
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Figure 6:2 Temporal variation in ecosystem respiration (ER) - A, Priors Farm Downstream. B, Cool’s Cottage. 
Closed symbols, dedicated measures of aerobic respiration: Open symbols, combined measures of 
greenhouse gas release and aerobic respiration. Dotted line, temperature 
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91% in the Priors Farm and Cool’s Cottage reaches, respectively;(Table 6:1).  There was 

significant seasonal variation at all three sites (F=6.3 P < 0.0001). 

 

 

 

 

 

 

 

 

 

 

 

Recent work by Trimmer et al. (2012) and Yvon-Durocher et al. (2010 & 2011) have reported 

the predictive power of temperature in modelling changing respiration in aquatic 

environments on a global scale.  The following section explores the value of this approach to 

understanding the drivers of key metabolic processes at a local level.  
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Figure 6:3 Relationship between temperature and benthic respiration before and after correction for 
systematic error. A and C Priors Farm downstream site; B and D Cool’s Cottage: Closed symbols, 
dedicated measures of aerobic respiration; open circles, combined measures. 
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Table 6:1 Rates of aerobic respiration in dark benthic chambers and water bottle incubations at Cool’s Cottage and the Priors Farm downstream site. 

 

  
Cools Cottage 

  
Priors Farm 

 

date 
 

areal benthic volumetric benthic water column 

wc % 
 

areal benthic volumetric benthic water column 

wc %  
respiration respiration respiration 

 
respiration respiration respiration 

 
(mg O2 cm-1 d-1) 

(mg O2 cm-1 d-1) 
(mg O2 l-1 d-1) 

 
(mg O2 cm-1 d-1) (mg O2 l-1 d-1) (mg O2 l-1 d-1) 

           
19.6.13 

 
0.0330 4.13 0.56 13% 

 
0.0557 5.07 0.71 14% 

11.7.13 
 

0.0432 5.50 0.12 2% 
 

0.0624 7.68 1.24 16% 
21.7.13 

 
0.0223 5.44 

   
0.0702 9.62 

  
11.9.13 

 
0.0201 2.80 0.28 10% 

 
0.0479 6.48 0.25 4% 

23.9.13 
 

0.0306 5.64 0.33 6% 
 

0.0489 7.78 0.37 5% 
5.3.14 

 
0.0103 1.44 

   
0.0274 4.09 1.00 24% 

12.3.14 
 

0.0189 3.59 0.42 12% 
 

0.0379 6.34 0.60 9% 
31.3.14 

 
0.0205 3.78 

   
0.0517 10.18 

  
19.5.14 

 
0.0278 4.44 

   
0.0420 9.76 

  
2.6.14 

 
0.0286 4.54 

   
0.0483 8.51 

  
           
mean 

    
9% 

    
12% 
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6.2.1.1. Kinetics of aerobic respiration 

The activation energy of a system is defined by the key transformations required to support 

community metabolism. It stems from the energy required to prime essential enzymatic 

processes and can be determined from further analysis of the relationship between 

respiration and temperature, in particular by expressing this relationship as a standardised 

rate (Equation 13).  

Equation 13:   ln RS(T)=ln [R(T)/R(TC)]=Ea(1/kT-1/kTC). 

Where: 

ln RS(T) = standardised respiration rate,  ln [R(T)/R(TC)]  

R(T) = respiration rate at a measured temperature, in °K 

R(TC) = respiration rate at a fixed, reference temperature TC, in °K 

k = the Boltzman constant (8.62x10-5 eV k-1) 

Ea = activation energy in eV (electron volts) 

 

For the current analysis, the reference temperature was chosen as 288 °K (15 °C) 

representing the median temperature recorded during the incubations. 

In a heterotrophic system, where respiration is not constrained by photosynthesis, the 

theoretical activation energy, Ea, approaches that of the respiration complex, 0.62 eV. This 

value is derived from the two molecules of ATP (Ea = 0.31eV mol-1) required to ‘prime’ 

glycolysis (Brown et al., 2004). A large scale modelling study using data from the literature 

(Trimmer et al. 2012) demonstrated widespread adherence to this prediction. At the local 

level, deviation from this theoretical value may indicate that another factor is limiting 

metabolism, and Ea is likely to approach that exhibited by the processes required to 

overcome that limitation (Sinsabaugh and Shah, 2010).  
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Using equation 1, Ea can be calculated from the relationship between the standardised 

respiration rate (ln RS) and standardised temperature (1/kTC-1/kT). To calculate Ea, only the 

dedicated respiration incubations from the downstream sites were used. Ea at the Priors 

Farm and Cool’s Cottage downstream sites were estimated as 0.43 and 0.92eV respectively 

(Figure 6:4). At Priors Farm, Ea was close to the theoretical value for the global scale Ea (i.e. 

0.5eV), demonstrated by Trimmer et al. (2012) and Yvon-Durocher (2010).  However, at 

Cool’s Cottage, despite a strong relationship with temperature, the estimate of activation 

energy was substantially higher, around 0.9eV.  

 

 

 

 

 

 

 

 

 

 

This value is closer to that demonstrated by Sinsabaugh and Shah (2006), 0.86eV, which 

occurred as a result of resource limitation. To explore the possible causes of these 
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Figure 6:4 Calculation of activation energy for Ecosystem Respiration at A, Priors 
Farm downstream site, B Cool’s Cottage 
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differences, the relationships between respiration and in-stream nutrient fractions were 

examined at these two sites. 

6.2.1.2. Aerobic respiration and nutrient chemistry 

The response of community aerobic respiration to in-stream water chemistry has been 

explored widely in the literature, most commonly evaluating the role of DOC and the 

inorganic species NO3 - and PO4 3-  (Young and Huryn, 1999; Mulholland et al., 2001; 

Mulholland et al., 2006; Fellows et al., 2006a; Fellows et al., 2006b; Uehlinger, 2006; 

Roberts et al., 2007; Valett et al., 2008). In this study, the correlation between aerobic 

respiration and DOC, and with all nitrogen species and phosphorus fractions, were explored. 

The contribution of the water column to community respiration was calculated from the 

relative values of volumetric respiration (mg O2 l-1) observed in the benthic chambers and in 

dark water bottles incubated alongside them (Table 6:1). The average contribution of the 

water column was 9% and 12% at Cool’s Cottage and Priors Farm, respectively. The 

uncharacteristically high contribution of the water column at Priors Farm in March 2014 

coincided with the start of one of the periodic ‘pollution events’ where slurry entered the 

watercourse upstream of this site (see chapter 5). Under ‘background’ conditions, the 

average contribution of the water column to ER at PFDS was 10%.  

Respiration in the dark water bottles was predicted to respond more sensitively to in-stream 

water chemistry than respiration in the benthic chambers: ~ 90% of the respiration in the 

chambers was attributable to benthic processes, which were expected to be more strongly 

influenced by sediment characteristics than water chemistry. Table 6:2 describes the 

relationships between water chemistry and the observed aerobic respiration in both the 

dark benthic chamber and water bottle incubations. However, as established above 
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(section 6.2.1.1), temperature exerts a significant control on respiration. Studies of another 

ecosystem functional metric, leaf litter degradation, confronted this issue by normalising 

rates to temperature and presenting data as rates per degree day, (ln RT dd-1). Including 

temperature in the analysis of the relationship between water chemistry and aerobic 

respiration distinguished between metabolic responses to nutrient concentrations and 

coincidental covariance with temperature (Table 6:3). Overall, the inclusion of temperature 

in this analysis had the effect of increasing the number of significant relationships between 

nutrients and respiration at Cool’s Cottage and reducing them at Priors Farm. However, at 

both sites, the statistical significance of the relationships identified between respiration and 

key nutrients increased (Table 6:3). 

In general, and contrary to expectations, respiration in the water column appeared to be 

less sensitive to variations in nutrient chemistry than did respiration in the whole stream 

incubations. This is likely to be a consequence of both fewer incubations being carried out 

(i.e. smaller n value, giving a weaker statistical significance), and much lower respiration 

being recorded in the water bottles than in the benthic chambers. The values for change in 

dissolved oxygen concentration over the incubation period ( O2) in the water bottles 

ranged from 0.11 to 1.2 mg O2 l-1, approaching the limit of detection given the experimental 

protocol. These factors resulted in a higher degree of uncertainty surrounding the measures 

of water column respiration. Hence, the exploration of the relationships between in-stream 

nutrients and respiration is concentrated on results from the benthic chamber incubations. 
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Table 6:2 Pearson correlation matrix describing the relationship between observed rates of aerobic respiration and in-stream water chemistry at Cool’s Cottage and the 
Priors Farm downstream site. Significance is indicated as P values. DOC*, correlation with ‘slurry’ point removed, (see text). 

 

 

 
Cools Cottage 

 
Priors Farm 

date 

areal benthic volumetric benthic 
 

 

 
areal benthic volumetric benthic 

respiration respiration Significance 
 

respiration respiration 

mg O2 cm-1 d-1 mg O2 l-1 d-1 
  

mg O2 cm-1 d-1 mg O2 l-1 d-1 

        
NH4-N 0.21 0.89 ** **** P < 0.001 

 
NH4-N -0.71 ** 0.39 

TON -0.71 ** 0.36 *** P < 0.005 
 

TON -0.52 ~ -0.11 

DON 0.61 ~ -0.19 ** P < 0.05 
 

DON 0.71 ** 0.69 ~ 

PON 0.82 ** -0.57 * P < 0.1 
 

PON -0.07 -0.79 ~ 

SRP -0.54 ~ 0.29 
  

SRP 0.48 ~ 0.14 

SUP -0.10 -0.66 
  

SUP 0.22 0.8 ~ 

PP 0.87 *** -0.41 ~ weak trend 
 

PP 0.31 -0.42 

DOC 0.77 ** 0.10 0.1 < ) < 0.2 
 

DOC 0.69 ** 0.72 ~ 

     
DOC* 0.85 ** 0.77 ~ 
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Table 6:3  Pearson correlation matrix describing the relationship between temperature-corrected aerobic respiration and in-stream water chemistry at Cool’s Cottage 
and the Priors Farm downstream site.  Significance is indicated as P values. . DOC*, correlation with ‘slurry’ point removed, (see text). 

 

 

 
Cools Cottage Priors Farm 

date 

areal benthic volumetric benthic 
  

areal benthic volumetric benthic 

respiration respiration Significance 
 

respiration respiration 

(ln RT dd-1) (ln R(wc) dd-1) 
  

(ln RT dd-1) (ln R(wc) dd-1) 

       
NH4-N 0.18 0.72 ~ **** P < 0.001 NH4-N -0.9 *** 0.43 

TON -0.83 *** 0.03 *** P < 0.005 TON -0.43 0.15 

DON 0.67 ** 0.12 ** P < 0.05 DON 0.67 ** 0.69 ~ 

PON 0.73 * -0.46 * P < 0.1 PON 0.04 -0.8 ~ 

SRP -0.73 ** -0.04 
 

SRP 0.35 0.08 

SUP -0.29 -0.69 ~ 
 

SUP -0.14 0.83 * 

PP 0.76 ** -0.28 ~ weak trend PP 0.32 -0.39 

DOC 0.7 ** 0.34 0.1 < ) < 0.2 DOC 0.45 ~ 0.60 

    
DOC * 0.72 ** 0.55 
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Aerobic respiration at Cool’s Cottage appeared to be more responsive to in-stream water 

chemistry than at Priors Farm (Figure 6:5 and Figure 6:6), with significant correlations being 

returned for most of the fractions. Aerobic respiration at Cool’s Cottage exhibited a strong 

negative relationship with both TON and SRP. Other fractions; DON, PON, PP and DOC 

returned positive trends (Figure 6:5). 
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Figure 6:5 Relationships between ER and nutrient fractions at CCDS (only those fractions where relationships 
were statistically significant are shown) 
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Figure 6:6 Significant relationships between ER and nutrient fractions at PFDS. Open circles denote ‘slurry day’ 
Left-hand panel shows the relationships during ‘background conditions’: Right hand panel shows the effect of 
including data from days where a pulse of high organic matter enters the reach. 
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At Priors Farm, the most dominant relationship was a strong and highly significant (P<0.001) 

negative correlation between aerobic respiration and NH4-N. Positive correlations with 

aerobic respiration were returned for both DON and DOC. In order to examine the 

relationships between nutrients and aerobic respiration at Priors Farm in the absence of a 

plug of slurry, relationships were established with and without the values returned during 

this event. With the exception of NH4-N, removal of this outlier did not change the nature of 

the relationships (given by the slope), but did increase their significance (Figure 6:6).  

The high significance attached to the influence of DOC to aerobic respiration was surprising 

as there were substantial reserves of organic matter (3 – 10% w/w) stored in the sediments 

at both sites (chapter 3). Although the sediment community was responsible for ~90% of 

aerobic respiration, the relationship with DOC suggested that,  most of this activity is at the 

sediment-water interface, fuelled by inputs of DOC. Organic carbon (OC) stored in the 

sediment may have been unavailable for aerobic respiration, with the oxidised zone 

restricted to a thin layer near the sediment-water interface. An increase in DOC may lead to 

increased activity in the water column if there is a community present that is able to exploit 

this resource.  An examination of the influence of DOC on the relative contribution of the 

water column to ER (Figure 6:7) showed that at Priors Farm, even without the slurry input, 

the percentage of respiration attributable to the water column was influenced by DOC. This 

suggested that a microbial population able to respond rapidly to inputs of DOC was present 

in the seston in the Priors Farm reach.  A much smaller range of DOC concentration was 

observed at Cool’s Cottage, and there was no relationship between DOC and the 

contribution of the water column to aerobic respiration (Figure 6:7b). Observations using 

fluorescence microscopy revealed the presence of colloidal matter in samples from the 



Page 155 
 

Priors Farm reach that was not seen in samples from the Cool’s Cottage reach (data not 

presented). This flocculated matter provides an ideal substrate for water column microbial 

communities.  The increase in the proportion of aerobic respiration contributed by the 

water column in the Priors Farm reach appears to have been exaggerated by inputs of 

slurry. 

 

 

 

 

 

 

A further illustration of the effect of high DOC on aerobic respiration could be seen from the 

changes in daytime water column DO concentrations at different sites along the study reach 

(Figure 6:8). The concentration of DOC in the Priors Farm reach was highly variable with 

several pulses of high organic matter being recorded throughout the study period (chapter 

5). A pulse of high DOC (98.89 mg l-1) was recorded in the tributary PF1 in October 2013 

(location shown in Figure 6:1). Dilution by the other tributaries, PF1 and PF2 reduced the 

concentration of DOC at PFUS (the next sampling point downstream) to 39.12 mgl-1. Despite 

this substantially lower concentration of organic carbon at PFUS, anoxic conditions were 

observed at both sites. Under these conditions, the system appeared to be saturated with 

DOC that cannot be fully processed. Aerobic respiration appeared unable to increase further 

Figure 6:7 The influence of DOC on the contribution of the water column to whole stream 
respiration.  
A: Priors Farm, B: Cool’s Cottage 
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in response to such an elevated DOC concentration due to the lack of oxygen, with the 

concentration of DOC further downstream at PFDS unchanged at 39.11 mg l-1. The delay in 

recovery at PF1 over the following week compared to that at PFUS (Figure 6:8) suggested 

significant ‘fallout’ of organic matter continued to swamp the microbial community at this 

site. A less severe incident occurred in February 2014 (DOC concentration at PF1 22.1 mg l-1) 

which resulted in much smaller reduction in DO concentration and a faster recovery 

(Figure 6:8). In this incident, the reduced drop in DO at PFUS, relative to that at PF1, 

suggested that the system was not saturated with DOC at this level and could respond with 

higher respiration rates in response to more moderate incidents. In the neighbouring 

tributary, PF3, no such extreme and discrete pulses were recorded and the DO 

concentration remained high throughout. These data support the hypothesis of a direct 

relationship between input of extreme DOC concentration and increased water column 

contribution to whole stream respiration.  

At Cool’s Cottage, the response of aerobic respiration to DOC was more sensitive than that 

at the Priors Farm downstream site (Figure 6:9) possibly indicating a higher reliance on DOC 

throughout the study period. The dependence of aerobic respiration on DOC may be linked 

to the quality, rather than quantity, of sediment organic matter. Observations made on site 

suggest that, at Cool’s Cottage, organic matter in the sediment was predominantly of 

vegetative origin (sticks, bark and leaves). Such organic matter tends to be more recalcitrant 

than the animal wastes that dominate the sediment organic matter in the Priors farm reach 

and it is likely that the particulate organic matter in the Cool’s Cottage reach would require 

additional, extracellular, enzymatic breakdown before being available for respiration.   
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 Figure 6:8 The relationship between DOC and dissolved oxygen during a pollution incident: 
(a) dissolved oxygen concentrations at three sites in the Priors Farm sub-catchment (See 
Figure 6.1. for locations);  
(b) corresponding DOC concentrations. 
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Figure 6:9 A comparison of the relationship between respiration and DOC at Cool’s Cottage 
(open symbols) and Priors Farm (closed symbols). 
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6.2.1.3. Nutrient Transformations in closed benthic incubation chambers 

Studying correlations between aerobic respiration and nutrient fractions can reveal 

significant relationships, but does not distinguish cause and effect. To investigate these 

further, transformations between nutrient fractions during incubations were observed in 

summer 2013 and spring and early summer 2014. These dates did not coincide with the 

slurry pulse and are, therefore, more representative of background conditions. 

Nitrogen: 

A striking observation was the similarity of the nitrogen transformations between the sites. 

At all sites TON was consumed during all the incubations (Figure 1.10). Similarly NH4-N 

increased at all sites and during all incubations. The magnitude of change was always 

greatest in the Priors Farm reach. (Figure 6:10).  At both downstream sites, DON was 

produced in early spring (April 2014), but was either consumed or showed no change during 

the late spring and early summer (May & June 2014). At the Priors Farm upstream site, DON 

increased in all incubations. Initial concentrations of both TON and DON were close to or 

above 1 mg l-1 (Table 6:4), suggesting that neither species was limiting. 

Phosphorus: 

In contrast to the behaviour of the nitrogen species, the sites exhibited differences in 

phosphorus fraction dynamics. The increase in SRP concentration in the spring and early 

summer at the Priors Farm upstream site and at Cool’s Cottage aligned with the increase in 

DOC concentrations, suggested that the remineralisation of organic matter was a key 

process.  Such mobilisation of stored phosphorus may limit, or delay, the success of any 

mitigation of phosphate inputs from the catchment. A similar effect may be the cause of the 
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limited success of phosphate reduction in achieving reduced primary production, or the 

resumption of ‘normal’ ecosystem function, following SRP stripping at waste water 

treatment works (WWTW) (Neal et al., 2000; Neal et al., 2010; Comber et al., 2012; Yates 

and Johnes, 2013). At the Priors Farm downstream site the opposite pattern was seen, with 

net SRP consumption occurring during all incubations. 

DOC: 

DOC concentrations rose consistently over the course of the incubations, with the single 

exception of the Priors Farm downstream site in June 2014. This finding supports the 

hypothesis that remineralisation of sediment organic matter contributed to community 

respiration. 

Overall, combining information on nutrient transformations with initial nutrient 

concentrations aided the interpretation of the relationships between aerobic respiration 

and nutrient concentrations reported in Table 6:3. Where the initial concentration was high 

(Table 6:4), any relationship was unlikely to be a response to limitation. Rather, increased 

aerobic respiration was revealed as a possible cause (not effect) of such changes in 

concentration (for example, the consumption of TON at all sites, Figure 6:10). At Cool’s 

Cottage, on the other hand, the increase in SRP and DOC suggested that remineralisation 

supported community metabolism at this site.  
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Table 6:4 In-stream nutrient concentrations at the start of incubations used to study nutrient dynamics. 

date respiration 
 

Cools Cottage respiration Priors Farm 

                
 

(mg O2 cm-1 d-1) NH4 - N TON DON PO4 - P SUP DOC (mg O2 cm-1 d-1) NH4 - N TON DON PO4 - P SUP DOC 

                21.7.13 0.0223  0.01 2.22 1.78 0.011 0.064 5.3 0.0702 0.047 0.12 2.57 0.242 0.081 22.9 
31.3.14 0.0203 

 
0.039 5.38 0.83 0.049 0.136 2.3 0.0517 0.106 1.30 1.14 0.075 0.143 10.6 

19.5.14 0.0276 
 

0.08 4.48 0.78 0.005 0.046 3.5 0.0420 0.077 1.02 1.45 0.106 0.056 11.4 

2.6.14 0.0283 
 

0.069 4.01 0.48 0.055 0.023 3.7 0.0483 0.061 1.02 1.12 0.137 0.021 14.7 
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Figure 6:10 Dissolved nutrient transformations during 24 hr dark benthic chamber incubations, A: July 2013, B: April 2014, C: May 2014, D: June 2014 
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6.2.1.4. Available phosphorus as the limiting factor in the Cool’s Cottage reach 

Temporal variation in SRP concentration in the Cool’s Cottage reach during the spring, 

before the development of a closed canopy (see chapter 5), suggested a demand for SRP 

that outstripped supply.  Nutrient transformations within the incubation chambers indicated 

that this may have stimulated the remineralisation of SRP from other phosphorus fractions. 

SRP concentrations in the light incubation chambers (data not shown) did not increase in 

line with those of the dark incubations, indicating the additional demand for this resource 

from autotrophs. The study of system kinetics provided further evidence of possible 

phosphorus limitation.  

A wide range of values for the Ea of phosphatases have been reported in the literature, but a 

recent review by (Hui et al., 2013) suggested an average value of around 0.34eV mol-1 for 

both acid and alkaline phosphatases. Unlike the respiration complex, however, 

phosphatases act outside the protective environment of the cell and may not, therefore, be 

acting at optimum pH (Antibus et al., 1986). The optimum pH for acid phosphatase is ~ 4 

and for the alkaline phosphatase, ~ 9 (Hui et al., 2013; Bae and Barton, 1989). The pH at 

Cool’s Cottage was consistently around 7.8, which is sub-optimal for both enzyme groups, 

and likely to cause an increase in apparent Ea. Nevertheless, the sum of the average Ea for 

phosphatases given by Hui (2013) and the Ea of the respiration complex approached that 

observed at the Cool’s Cottage downstream site.  

The evaluation of Ea, has been shown to be a useful tool in the study of ecosystem 

dynamics. Sinsabaugh and Shah (2010) used a similar approach in a more sophisticated and 

detailed set of experiments. They studied the Ea for a range of extracellular enzymes and 

were able to identify changes in dominant resources throughout the annual cycle. Their 
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results supported the findings of (Allen and Gillooly, 2009) that the balance of resources (i.e. 

stoichiometry) can be as important as temperature in determining rates of metabolic 

processes. 

 Aerobic respiration as an indicator of stream health. 6.2.2.

Values for in-stream community aerobic respiration reported in the literature range from 

0.0 to 37.4 g O2 m-2 day-1. This wide range reflects the variety of methodologies employed 

(in situ benthic chambers and disturbed sediment samples; one and two point, open 

channel diel modelling; laboratory assays), stream order (1 – 7), temperature (4 – 25oC), 

catchment area (2- 15000 ha) and land use (urban to forest).  

The majority of reported values for in-stream community aerobic respiration using open 

channel methods lie within the range 0.0 – 16 g O2 cm-2 day-1 (McTammany et al., 2003; 

Fellows et al., 2006a; Fellows et al., 2006b; Uehlinger, 2006; Roberts et al., 2007; Young and 

Collier, 2009; Young et al., 2008) and others) while values as low as 0.6 – 2.1 g O2 m-2 day-1 

(Bott et al., 1985) and 0.1 – 0.8 g O2 m-2 day-1 (Hedin, 1990b; Hedin, 1990a) have been 

reported by researchers using closed chamber incubation methods. Higher values of up to 

37 g O2 m-2 day-1 have been reported by Clapcott et al. (2010) although the methods of 

determining ER were not reported.   

For in situ measurements of in-stream metabolism, the chamber incubation method used in 

this study has been more recently superseded by variations of the open channel oxygen 

concentration method based on the techniques developed by Odum (1956) and Kosinski 

(1984). Direct comparisons of ecosystem respiration measured using these two techniques 

report discrepancies (Bott et al., 1978; Kosinski, 1984; Marzolf and Mulholland, 1994; 
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Marzolf et al., 1994; Webster et al., 1995; Chen et al., 1998a; Chen et al., 1998b; Hopkinson 

and Smith, 2005; Fellows et al., 2006b), with the chamber method consistently returning 

values of around 0.3 times the values derived from open channel methods. Both methods 

have their sources of uncertainty. The closed chamber method is likely to lead to an 

underestimate through a combination of potential resource limitation and the removal of 

laminar flow that tends to increase the width of the ‘boundary layer’ at the sediment-water 

interface and restricts the rate of diffusion of oxygen and nutrients across this layer.  

Marzolf et al. (1994) calculated that community respiration estimated using open channel 

methods can be up to 300% greater than that estimated using chamber incubations.  

The open channel method is also subject to considerable uncertainties. Small errors in the 

measurement of temperature, DO and atmospheric pressure can significantly alter the 

calculation of the oxygen deficit and re-aeration rate, which are key to determining 

respiration. A combination of low O2 (less than 5 mg l-1 d-1) and medium to high re-

aeration rates (determined by temperature, atmospheric pressure, flow velocity and 

turbulence), can result in overestimates of up to 300% (Chen et al., 1998a; Chen et al., 

1998b). Such conditions are typical of those found in the Cool’s Cottage reach, although O2 

in the Priors Farm reach was considerably higher. Discrepancies of a similar order of 

magnitude have also been reported in studies of estuarine community respiration where 

the use of open water diel changes in O2 to measure respiration has been established over a 

longer time period (Hopkinson and Smith, 2005). A further, significant source of error has 

been identified by Demars et al. (2011): one of the central assumptions of open channel 

methods (one and two point diel measurements) is in-stream homogeneity, a condition 
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unlikely to be true for many streams and demonstrably not so in the Priors Farm reach 

(chapter 5).  

Other measurements of ER have relied on ex situ measurements eg. (AcuÑA et al., 2008; Hill 

et al., 1998) that are more akin to measurements of potential ER. These techniques 

necessarily disrupt the sediment structure that is shown to be an important determinant for 

the depth of development of anoxic conditions.  In their comparison of methods, Wilson 

and Dodds (2009) demonstrated that measurements made using sediments where structure 

was artificially altered returned higher estimates of O2 than in situ, measurements on 

minimally disturbed sediment.  

The validity of these discrepancies between methods is called into question by the relatively 

few examples of direct comparison of community respiration using the contrasting 

methodologies (but see Bott, 1978; Fellows et al. 2006). Both Webster et al., (1995) and 

Hopkinson and Smith (2005) acknowledge that their comparisons represent composite data, 

collated from different sites using the differing methodologies. Indeed, Webster et al.  

(1995) stress that the higher estimates of community respiration recorded using the open 

channel method are concentrated on higher order streams. Nevertheless, overall, the 

weight of evidence indicates that closed chamber incubations return values of community 

respiration approximately 30% of those measured using the open channel methods.  

With this in mind, and in order to place the results from the present study in context with 

other research, ‘method corrected’ aerobic respiration in the Cool’s Cottage and Priors Farm 

sub-catchments was estimated (at three times the observed values) as 0.3 – 1.2 and 0.6 to 

2.1 g O2 m-2 d-1 respectively. These are at the low end of the range reported in the literature 

and. Using the framework for assessing stream health using aerobic respiration suggested 
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by Young et al. (2008), these values indicated mild to severe impacts on both sub-

catchments. In addition (as noted above), the incubation dates did not coincide with the 

periodic pulses of high organic matter that were a feature of the Priors Farm reach. Thus 

these estimates are likely to represent minimum rates for this river.  Crucially, the same 

methodology was used throughout the study and for all sites, giving confidence in the 

validity of comparisons between the two study sub-catchments, but see further discussions 

in Chapter 7.  

The results presented here provide evidence that studies of aerobic respiration can be a 

powerful tool for monitoring variability in stream health. When combined with 

measurements of temperature, in-stream chemistry and nutrient dynamics, this study 

shows that estimates of aerobic respiration can be sufficiently sensitive to distinguish 

differences between streams in paired sub-catchments.  

The measurement of aerobic respiration, analysis of the kinetics of respiration and 

observations of nutrient transformations during incubations provided strong evidence of a 

clear distinction between the ecosystem functioning of the two streams. The apparently low 

values of community aerobic respiration in both sub-catchments are likely to be influenced 

by the fine sediment load resulting in poor aeration of the stream bed. In the Priors Farm 

reach this is further compounded by high concentrations of organic carbon and low or 

restricted flows. Further processing of organic carbon in the sediment, therefore, is likely to 

be a function of anaerobic processes. The transfer of greenhouse gases across the sediment-

water-interface in the two study reaches was compared, to investigate if this additional 

metric provides a further key to assessing ecosystem function (section 6.4).  



Page 167 
 

6.3. Primary production. 

Excessive algal growth is one of the most visible consequences of nutrient enrichment. In 

many freshwater and coastal ecosystems, however, heterotrophic production is not limited  

by in situ primary production resulting from organic subsidies due to the inputs of organic 

matter from external (allochthonous) sources, both natural and anthropogenic. The extent 

of this decoupling of primary production and respiration has been proposed as an index of 

stream health, with the ratio of primary production to respiration used as a measure of 

functional integrity (Young et al., 2008). 

To characterise the study reaches in these terms, whole stream and water column net 

ecosystem production (NEP) were measured in clear incubation chambers and bottles 

installed alongside the respiration incubations. Gross primary production (GPP) was 

calculated from the difference between NEP and aerobic respiration measured in the dark 

incubations (Chapter 4).  

 Comparing the drivers of primary production 6.3.1.

6.3.1.1. Contribution of the water column 

Despite extending the water bottle incubations to 48 hrs, water column GPP was too low to 

measure on most dates at the Priors Farm upstream site and at Cool’s Cottage, returning 

small positive or negative values for the majority of incubations (Figure 6:11). At the Priors 

Farm downstream site the water column contributed only 4% to whole stream GPP. The 

following discussions focus on the measurement of whole stream GPP, measured in the 

benthic incubation chambers. 
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6.3.1.2. Whole Stream ecosystem and primary production 

Temporal changes in GPP followed a similar pattern to those of respiration (Figure 6:11). As 

predicted, GPP at the Priors Farm downstream site was consistently higher than at the other 

two sites, emphasising the effect of riparian shading on this core metabolic function. At the 

Priors Farm downstream site, NEP was positive and GPP/R > 1 during the late spring and 

summer seasons, indicating a system supported by autotrophy, dropping only in March. 

Incubations were not carried out during the winter. By contrast, at the two shaded sites, 

NEP was always negative and GPP/R always < 1.(Figure 6:11).  

 Primary production as an indicator of stream health. 6.3.2.

Observations of the rate of photosynthesis alone do not provide a useful measure of the 

influence of biogeochemical pressures on stream health as a consequence of its 

dependence on light availability. Variation in GPP within the Priors Farm reach was much 

greater than that between the two shaded sites in different sub-catchments (Cool’s Cottage 

and the Priors Farm upstream site). However, GPP/R did give an indication that the Priors 

farm upstream site had greater access to alternative resources, in that GPP/R at this site 

was lower than that at Cool’s Cottage (median 0.244 and 0.377 respectively; Table 6:5). In 

general, while some important information regarding the metabolism of the streams could 

be gathered from measuring GPP and studying its relationship to respiration, its usefulness 

as an index of ecosystem health was limited. The constraints of stream topography and 

riparian vegetation, and thus light availability, on GPP prevented a direct comparison 

between reaches and sub-catchments in the context of contrasting water quality. 
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Table 6:5 Comparison of summary data for the indicators of ecosystem function, GPP and P/R, between July 2013 and June 2014 
 in the two study reaches. GPP mg O2 m

-2
 d

-1
. 

 

 

  

Cool’s Cottage  Priors Farm upstream  Priors Farm downstream 

 med mean min max  med mean min max  med mean min max 

GPP 0.013 0.014 -0.002 0.030  0.006 0.009 0.000 0.026  0.064 0.057 0.002 0.125 

GPP/R 0.378 0.360 -0.075 0.761  0.244 0.292 0.015 0.753  1.153 1.066 0.066 2.009 
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6.4.  Anaerobic respiration and the production of greenhouse gases. 

The deposition of large amounts of fine sediment can restrict the availability of dissolved 

oxygen and nutrients from the water column to the benthic community, significantly 

reducing aerobic processes within the river bed (Collins et al., 2013) and leading to the 

development of a shallow anoxic zone. In anoxic zones, energy is acquired by the means of 

alternative metabolic pathways using a wide range of terminal electron acceptors. 

Anaerobic processes are notoriously difficult to unravel, as they consist of the intricate and 

intertwined cycling of components in differing redox states. The emission of greenhouse 

gases as a result of these processes is of increasing concern Both methane (CH4) and nitrous 

oxide (N2O) have high greenhouse warming potential (GWP) when compared to carbon 

dioxide (CH4 = 28 x CO2 and; N2O = 265 x CO2) and their production is highly sensitive to 

temperature (Yvon-Durocher et al., 2011), resulting in a detrimental positive feedback loop.  

Determination of the rates of true denitrification, methanogenesis, fermentation or indeed 

anaerobic respiration by alternative pathways, was outside the scope of this study and were 

not measured. Rather, the focus of this work was to measure the transfer of greenhouse 

gases across the sediment-water interface, and the potential to use this metric as a means 

of monitoring changes in ecosystem health.  To this end, three sites were chosen to 

investigate whether the sub-catchments exhibited differences in the production of 

greenhouse gases and whether in-stream chemistry or physical factors were the dominant 

drivers of any dissimilarities observed.  
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 Nitrous Oxide  6.4.1.

Of the alternative modes of respiration, the reduction of nitrate by denitrification is the next 

most efficient to the reduction of oxygen (although with a poorer energy yield than would 

be expected from the redox potential of the NO3
-/N2 redox pair (King, 2005). Denitrification 

is an important pathway in the processing and removal of nitrogen from aquatic systems. 

Global rates of denitrification are estimated to represent a significant proportion of 

respiration with a ratio of 0.07 – 0.09 moles of N2-N produced per mole of O2 consumed 

(Pina-Ochoa and Alvarez-Cobelas, 2006; Trimmer et al., 2012).  

In-stream denitrification is carried out by facultative anaerobic bacteria, accentuating the 

adaptability of the microbial community and its potential to utilise any available resource. 

Only in anoxic conditions and in the presence of NO3
- do the membrane bound sites of 

denitrification become active, reducing non-essential energy consumption and optimising 

growth efficiency. NO3
- is first reduced to NO2 followed by NO, N2O and finally, in some 

cases, N2.  

As a result, some attention has been paid to the potential for enhanced denitrification as a 

means of reducing the delivery of NO3
- to watercourses via runoff from agricultural land 

(Ernfors et al., 2012; Ledgard et al., 2012; Ruser et al., 2012). The denitrification process 

however, is sometimes ‘incomplete’ with an, as yet, unpredictable proportion of NO3
- being 

converted to N2O, a potent greenhouse gas with a warming potential of 265 times that of 

CO2 Thus the proposed use of accelerated denitrification as a mitigation strategy is an 

example of pollution swapping, with attendant potential negative consequences. 

Additionally, denitrification has been shown to be highly sensitive to temperature (Bonnett 
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et al., 2013), providing a strong positive feedback for the increase in warming potential from 

this source. 

6.4.1.1. Nitrous oxide accumulation in benthic chambers 

The atmospheric concentration of CH4, N2O and CO2  were obtained from the global data- 

set presented for 2014 on the NOAA and AGAGE websites accessed 19.1.15 (Blasing, 2014). 

Across all sites, the background in-stream concentration of N2O was between 100 and 

250nM, i.e. supersaturated by 700 to 1800% with respect to the atmosphere. The surface 

water concentrations were high in comparison to other published data, [e.g. ~40nM,   

(Pretty et al., 2006), 7 – 36 nM (Hinshaw and Dahlgren, 2013)], and suggested that 

significant denitrification and N2O transfer across the sediment water interface was 

occurring in both the Cool’s Cottage and Priors Farm reaches.  

There was no significant difference in N2O accumulation across the sediment-water 

interface between light and dark chambers (F = 7, P > 0.4). Therefore, data from dark and 

light chambers were combined for further statistical analyses. There was no significant 

difference between rates of N2O accumulation at the Priors Farm upstream and 

downstream sites ( F= 1.4, P > 0.2). Rates of N2O accumulation were significantly higher in 

the Cools Cottage reach than the Priors Farm reach, F = 10, P < 0.005) (Table 6:6). The 

interaction between site and date showed a significant temporal variation for both sites, P < 

0.001, but there was no relationship with the overlying water temperature 

 (Figure 6:12 and Figure 6:13). 
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Table 6:6 Summary data for rates of N2O accumulation (µmol N2O m
-2

 h
-1

) in benthic chambers between July 2013 and June 2014 in the two study sub-catchments.  

 

 
Cool’s Cottage 

 
Priors Farm upstream 

 
Priors Farm downstream 

 
µmol med mean min max 

 
med mean min max 

 
med mean min max 

m-2 h-1 
              

July 0.1292 0.1687 -0.0012 0.4175 
      

-0.0326 -0.0206 -0.0822 0.0649 

               
March -0.0133 0.0701 -0.0885 0.5598 

 
0.0431 0.0369 -0.0299 0.1046 

 
0.0104 0.0006 -0.0771 0.0593 

April 0.0995 0.1565 -0.0750 0.6156 
 

-0.0900 -0.0512 -0.1516 0.0680 
 

-0.0001 -0.0070 -0.0675 0.0459 
May 0.1988 0.2072 0.1487 0.2806 

 
0.0681 0.0570 -0.0323 0.1070 

 
0.0641 0.0628 -0.0365 0.1461 

June 0.0102 0.1055 -0.0394 0.6322 
 

0.0538 0.0539 -0.0203 0.1117 
 

0.0244 0.0261 -0.0303 0.1107 

               
annual 0.0552 0.1397 -0.0885 0.6322 

 
0.0507 0.0261 -0.1516 0.1117 

 
0.0197 0.0147 -0.0822 0.1461 
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 Figure 6:12 Temporal patterns in N2O accumulation (µmol m
-1

 h
-1

) at the three 
study sites 

Figure 6:13 Relationship between N2O accumulation and temperature at the 
three study sites; no significant relationship was observed 
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 Methane 6.4.2.

Methane production is one of the least efficient of the anaerobic pathways for respiration 

The electrode potential (a measure of the potential for energy production) of the CO2 / CH4 

redox pair is -0.24V, compared with +0.82V and +0.75V for the O2/H2O and NO3
-/N2 redox 

pairs respectively (King, 2005). Methanogens are obligate anaerobes resulting in their 

spatial separation from sites of aerobic CO2 production. Despite being the least 

thermodynamically favourable of the anaerobic respiratory pathways, methanogenesis 

benefits from a ready supply of raw materials (CO2 and H) produced in situ, from other 

metabolic processes such as denitrification, fermentation and sulphate reduction. As a 

result, methanogenesis is not as limited by the diffusion of substrates through the 

compacted sediment from the overlying water as are aerobic respiration and denitrification. 

Thus methanogens are able to exploit reserves of benthic organic matter that are 

unavailable to other anaerobes after the exhaustion of more efficient alternative electron 

acceptors.  

6.4.2.1. Methane accumulation in benthic chambers 

The atmospheric concentration of CH4, was obtained from the global data- set presented for 

2014 on the NOAA and AGAGE websites accessed 19.1.15 (Blasing, 2014). The background 

in-stream concentration of CH4 varied between the three sites. Concentrations ranged from 

85nM at Cool’s Cottage in March/April 2014 (approximately in equilibrium with the 

atmosphere) to 3µM at the Priors Farm downstream site in July 2013 (supersaturated in 

relation to the atmosphere) when there was low flow and the daytime temperature reached 

21.6oC. Concentrations were always lowest at Cool’s Cottage. 



Page 176 
 

There was no significant difference in CH4 accumulation across the sediment-water interface 

between light and dark chambers (F = 0.2, P > 0.6). Therefore, data from dark and light 

chambers were combined for further statistical analyses. Average rates of CH4 accumulation 

in the benthic chambers were significantly higher at the Priors Farm downstream site (F = 

33, P < 0.0001), outstripping the other two sites by between one and two orders of 

magnitude (Table 6:7). There was no significant difference between rates of CH4 

accumulation at the Priors Farm upstream site and at Cool’s Cottage (F= 0.98, P > 0.3). The 

interaction between site and date showed a significant temporal variation for the Priors 

farm downstream site, F=5.08, P < 0.001, but not at Cool’s Cottage or the Priors farm 

upstream site( F= 1.96, P > 0.1) (Figure 6:14). There was no relationship with the overlying 

water temperature (Figure 6:15). 

The maximum recorded rate  of accumulation in a single incubation chamber, 150 µg m-2 h-1, 

was recorded at the Priors Farm downstream site in June 2014 This figure approached that 

emitted from organically rich histosols (Bonnett et al., 2013) and far exceeds that found 

escaping from the sediments in a chalk stream (Trimmer et al., 2010).  At the other two sites 

CH4 emissions were closer to those observed from other river sediments and lower than 

observed from flooded intact soil cores.   

6.4.2.2. Key drivers of methane transfer. 

Anaerobic fermentation of organic material produces partially reduced, small organic 

compounds that are further reduced to methane by methanogens. The high photosynthetic 

activity and productivity at PFDS resulted in a ready supply of fresh organic substrate, in the 

form of decaying algal biomass, over and above that which was imported from the 

catchment. This ready source of carbon, along with high amounts of fine sediments reducing 
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oxygen penetration into the river bed, is likely to have resulted in the high rate of methane 

accumulation observed in the incubation chambers at this site. The lower in situ productivity 

at Cool’s Cottage and the Priors Farm upstream site, together with the lower DOC 

concentration at Cool’s Cottage, may have contributed to the lower rates of CH4 

accumulation at these sites. Nevertheless, there are other factors that may have influenced 

the transfer of CH4 across the sediment/water interface. Daytime water temperatures 

during the summer were approximately 2 °C warmer at the Priors Farm downstream site 

when compared to the upstream site. However, while CH4 production has been shown to be 

temperature dependent (Bonnett et al., 2013), the difference in temperature cannot fully 

explain the large differences in CH4 accumulation observed between these sites. Other likely 

contributory factors include sediment structure and substrate availability. Although, as far 

as possible, sites were chosen to maximise the similarity in sediment characteristics, size 

fractionation of the sediment samples collected from the incubation chambers following 

deployment revealed a lower proportion of fine sediments in the cores from the Priors Farm 

downstream site when compared to the upstream site (Chapter 3). The resultant difference 

in hydraulic conductivity may explain some of the difference between the two sites in the 

Priors farm reach. Additionally, the higher light levels at the downstream site may have 

promoted macrophyte growth, which was absent at the other two sites. Macrophytes have 

been demonstrated to increase CH4 emission by up to two orders of magnitude (Trimmer et 

al., 2010) by facilitating transport through their stems. While care was taken to avoid 

incorporating macrophytes in the incubation chambers, poor visibility (<2cm) and  

prolonged immersion in cold water reducing manual sensitivity made it possible that some 

subsurface roots were cut and incorporated within the incubation chambers at the Priors 

Farm downstream site. 
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Cool’s Cottage 

 
Priors Farm upstream 

 
Priors farm downstream 

 µmol median mean min max 

 
median mean min max 

 
median mean min max 

m-2 h-1 
              July 0.2142 0.6786 0.0068 2.2791 

      
43.5639 47.6127 35.2427 68.0803 

                              

March 0.1929 0.1754 0.0731 0.2550 

 
0.0708 0.0839 -0.1381 0.3695 

 
14.1086 22.2359 8.3798 57.6162 

April 0.0459 0.5518 0.0098 3.1321 

 
-0.0134 0.2480 -0.0733 1.0275 

 
19.9008 29.6114 3.5969 68.6633 

May 0.3409 1.4992 0.0506 7.0881 

 
-0.0806 -0.0270 -0.1855 0.1727 

 
27.9182 31.1110 9.2890 66.7544 

June 2.2397 1.9681 0.3108 3.5860 

 
0.0062 1.7183 -0.3956 9.6083 

 
66.2207 83.4641 13.0442 149.7691 

               annual 0.2208 0.9957 0.0068 7.0881 
 

-0.0120 0.5417 -0.3956 9.6083 
 

37.4590 43.7671 3.5969 149.7691 

Table 6:7 Summary data for rates of CH4 accumulation (µmol CH4 m
-2

 h
-1

)
 
in benthic chambers between July 2013 and June 2014 in the 

 two study sub-catchments. 

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

∆
C

H
4
 µ

m
o

l m
-2

 h
-1

 

Cool's Cottage Priors Farm upstream

A 

0

20

40

60

80

100

120

∆
C

H
4 

µ
m

o
l m

-2
 h

-1
 

Priors Farm downstream

B 

Figure 6:14 Figure 6:12 Temporal patterns in CH4 accumulation (µmol m-1 h-1) at the three study sites, A, Cool’s Cottage and Priors Farm upstream; 
 B, Priors farm downstream. 
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Figure 6:15 Relationship between rate of CH4 ( µmol m
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Table 6:8 Summary data for rates of CO2 accumulation (µmol CO2 m-2 h-1) in benthic chambers between July 2013 and June 2014 in the two study sub-catchments 

 

 

  

 
Cool’s Cottage 

 
Priors Farm upstream 

 
Priors Farm downstream 

 µmol  
m-2 h-1 med mean min max 

 
med mean min max 

 
med mean min max 

July 245.91 243.46 211.01 271.01 
      

-279.29 -286.53 -505.40 -82.14 
                              
March 299.75 330.93 142.79 734.54 

 
108.41 156.15 -34.99 444.13 

 
43.27 76.43 -8.17 205.28 

April 113.18 87.89 -75.03 214.89 
 

84.58 80.23 22.74 126.90 
 

33.14 40.90 -20.91 115.26 
May 32.54 -1.83 -339.18 245.38 

 
29.99 26.90 -97.84 191.40 

 
88.13 93.75 -137.87 368.50 

June 29.29 11.87 -104.40 126.11 
 

251.13 241.37 113.17 390.55 
 

359.11 385.57 236.37 552.80 

               annual 134.45 126.68 -339.18 734.54 
 

101.75 132.76 -97.84 444.13 
 

68.95 88.52 -505.40 552.80 

-500

-400

-300

-200

-100

0

100

200

300

400

500

∆
C

O
2
 µ

 m
o

l m
-2

 h
-1

 

Cool's Cottage Priors Farm upstream Priors Farm downstream

Figure 6:17 Temporal patterns in CO2 accumulation (µmol m-1 h-1) at the three study 
sites 
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 Carbon dioxide 6.4.3.

Carbon dioxide is the most ubiquitous of the greenhouse gases, in terms of its role in many 

of the anaerobic (and aerobic) respiratory pathways. It is produced by sulphate reducing 

bacteria, through fermentation, anaerobic and aerobic methane oxidation, 

photorespiration, and of course, by aerobic respiration. It is consumed during 

photosynthesis and by methanogens.  Of these processes, only aerobic respiration and 

primary production have been truly quantified in this study. However, measurement of the 

accumulation of CO2 in the incubation chambers may help in the interpretation of other 

processes. Additionally, the flux of CO2 across the sediment water interface has a 

consequence for the generation of greenhouse gas and, therefore, was studied here in its 

own right, in an approach comparable to that used for both N2O and CH4 flux. 

6.4.3.1. Carbon dioxide accumulation in benthic chambers 

The atmospheric concentration of CO2 was obtained from the global data- set presented for 

2014 on the NOAA and AGAGE websites accessed 19.1.15 (Blasing, 2014). The background 

in-stream concentration of CO2 varied little between the three sites the majority of 

measurements ranged from 300 to 900 µM (with the exception of the Priors Farm 

downstream site in July, 1300 µM).  In-stream concentrations at all sites were super-

saturated with respect to atmospheric concentrations by 1800% - 7500%.  

Contrary to expectations, there was no significant difference in CO2 accumulation across the 

sediment-water interface between light and dark chambers (F = 1.3, P > 0.2). Therefore, 

data from dark and light chambers were combined for further statistical analyses. There was 

no statistical difference in CO2 accumulation between sites (F = 0.4, P > 00.6 (Table 6:8), 
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echoing the results of Bonnet et al. (2013) who found no statistical difference in CO2 

accumulation between the soil types in their flooded cores.  

Significant net CO2 uptake was only observed in the benthic chambers at the Priors Farm 

downstream site in July (Figure 6:17). The maximum rate of transfer across the sediment 

water interface was 20 mg m-2 h-1, lower, but in the same order of magnitude as that 

emitted from undisturbed wetland soil cores 70 – 150 mg m-2 h-1 (Bonnet et al., 2013). As a 

comparison, heterotrophic respiration as measured by O2 uptake in the rivers, equated to 

the production of 11 – 45 mg m-2 h-1 CO2. Combined light and dark rates of CO2 

accumulation exhibited no relationship with the overlying water temperature (Figure 6:16). 

The respiratory quotient (RQ) is the ratio of moles CO2 produced per mole O2 consumed. It 

ranges from 1.3 for glycolic acid; through 1.0 for sugars, to 0.67 for fatty acids (Williams and 

del Giorgio, 2005). Using RQ values of 1.0 and 0.67 to cover a range of likely substrates, the 

accumulation of CO2 (measured using headspace gas analysis) was compared to the 

calculated CO2 produced from respiration (measured by O2 consumption in dark chambers 

(Figure 6:18). This analysis revealed a CO2 ‘deficit’ for all incubations (apart from at Cool’s 

Cottage in March) that could not be accounted for by the accumulation of CH4 in the 

chambers.  

6.4.3.2. The CO2 ‘deficit’: implications for ecosystem production. 

The CO2 ‘deficit’ described above suggests a drawdown of CO2 into the sediment that was 

not used for photosynthesis (oxygen uptake data for these calculations were from dark 

incubations only), and that may have been utilised for anaerobic reactions such as 

methanogenesis. As the data were corrected for the methane transferred across the 

sediment water interface, the deficit may represent transient storage of carbon as methane 
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in compacted sediments (see section 6.4.1), or possibly, as longer term carbon 

sequestration via chemosynthetic pathways (e.g. methanotrophy) as has been recently 

described in chalk streams (Jones et al., 2008; Jones and Grey, 2011; Trimmer et al., 2009).  

Oxidation of methane, both aerobic and anaerobic is known to be significant in estuaries, 

lakes and the ocean floor. In 2006, Kankaala et al.  demonstrated that, on an annual basis, 

around 80% of methane transported across the sediment-water interface of a stratified lake 

was removed by methane oxidation in the water column, with a maximum rate of 18mmol 

m-3 d-1 at the oxic/anoxic boundary. Further anaerobic oxidation of methane, either by 

sulphate reducing bacteria (at the expense of CO2) or by nitrifiers (at the expense of NO3
-) 

was likely to have been occurring in the anoxic zones of the sediments, with the potential 

for organic products being incorporated into biomass. Furthermore, methane derived 

carbon has been shown to make an important, albeit small, contribution to the food-chain, 

even in exposed, well lit, clear streams with high rates of primary productivity (Jones et al., 

2008; Trimmer et al., 2009; Jones and Grey, 2011). In the shaded sites at Cool’s Cottage and 

the Priors Farm upstream site, it is possible that this pathway was a more significant source 

of fixed carbon. The lower deficit at Cool’s Cottage may be simply have been due to a 

combination of limited methanogenesis and transient storage, as a result of lower organic 

carbon resources. On the other hand, low rates of photosynthetic productivity, coupled with 

low dissolved organic carbon input from the catchment, may have increased the likelihood 

of methanotrophy contributing to the productivity of the reach. Methane oxidation at the 

expense of NO3
- has the added benefit of removing excess NO3

- where N:P ratios are 

unbalanced (Sterner and Elser, 2002; Baker et al., 2000; King, 2005). The NO2 thus produced 

can be further reduced to N2 via a synotrophic relationship with anaerobic ammonia 

oxidising bacteria (Haroon et al., 2013). Since methane oxidation produces CO2, significant 
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methane oxidation may be one explanation for the lower deficit at Cool’s Cottage. This form 

of nitrate reduction does not contribute to the N2O pool, and indeed may compete with that 

process, providing a possible, additional explanation for the apparently low rates of N2O 

transfer across the sediment water interface at Cool’s Cottage.  

6.5. Metabolic metrics as indicators of change. 

Indices designed for using metabolic processes as functional indicators of stream health 

have so far concentrated on aerobic processes (Webster and Meyer, 1997; Young and 

Collier, 2009; Young et al., 2008; Clapcott et al., 2010; Fellows et al., 2006a; Magbanua et al., 

2010), despite an increasing awareness of the importance of the benthic and hyporheic 

zones for overall stream metabolism (Pina-Ochoa and Alvarez-Cobelas, 2006; Pretty et al., 

2006; Sanders et al., 2007). The interest in anaerobic processes in rivers is accelerating 

(Pina-Ochoa and Alvarez-Cobelas, 2006; Sanders et al., 2007; Jones et al., 2008; Trimmer et 

al., 2010) as it is realised that environments previously thought of as oxic are impacted by 

inputs of fine sediment and organic matter (Collins et al., 2013; Pattison et al., 2014) making 

them anoxic zones. 

The data presented here emphasise the importance of these alternative metabolic 

pathways and the contribution they make to the productivity of headwater streams. The 

results highlight the need to incorporate measures of these processes to fully describe 

ecological status. Given the long understood importance of benthic sediments for 

community respiration, and an increasing awareness of the widespread development of 

anoxic conditions, a greater knowledge of these anaerobic processes would represent a 

substantial step forward in our understanding of in-stream ecosystem function and the 

development of   functional indices of stream health.  The development of techniques to 
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measure anaerobic processes using stable isotopes and whole-stream determination of 

nitrogen metabolism (analogous to the diel oxygen curves for photosynthesis and aerobic 

respiration) is gaining pace (Trimmer et al., 2012). More widespread use of these methods 

could greatly enhance the assessment of the impairment of stream functional integrity in 

impacted streams.  
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Figure 6:18 Variation in CO2 'deficit' over time, calculated from O2 consumption - CO2 accumulation in dark chambers using RQ = 1 (red) and RQ = 0.67 (blue). The mean rate of CH4 accumulation in 
corresponding chambers is also shown (circles: secondary axis). 
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 Macro-invertebrate processes  Chapter 7.

The metabolic processes discussed in chapter 6 are characterised by their potential to react 

quickly to changes in environmental parameters. Ecosystem processes that respond over a 

longer time period can provide an indication of in-stream conditions, integrated over the 

medium term. Macro-invertebrate community composition is routinely used in assessments 

of ecological status (Jones et al., 2010). Ecosystem functional measures that rely on macro-

invertebrate processes represent a complementary tool that can provide additional 

information on in-stream functional integrity. In reference streams, leaf litter is an 

important food source for heterotrophic communities living in shaded headwater reaches. 

In un-shaded reaches, photosynthetic primary productivity, often in the form of epilithic 

algal (periphyton) accumulation, provides additional support for heterotrophic production. 

The degree to which these processes are de-coupled can provide a measure of impact in 

altered streams (Battin et al., 2008; Findlay, 2010). Leaf litter processing has been used in a 

variety of studies to determine the degree to which ecosystem function has been 

compromised by environmental stressors such as nutrient enrichment, pH, metal toxicity, 

broad land use change and food-web disruption e.g. (Petersen and Cummins, 1974; Gessner 

and Chauvet, 2002; Gulis and Suberkropp, 2003; Woodcock and Huryn, 2005; Ferreira et al., 

2006; Gulis et al., 2006; Lecerf et al., 2006; Baldy et al., 2007; McKie and Malmqvist, 2009; 

Magbanua et al., 2010; Hladyz et al., 2011a; Woodward et al., 2012).  In this chapter, the 

medium term ecosystem process rates associated with leaf litter degradation, periphyton 

accrual and macro-invertebrate herbivory measured at the study sites are compared in the 

light of the macro-invertebrate community assemblages present.  The degree to which 

these processes may have been influenced by the differences in sub-catchment 
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characteristics described in chapters 3 and 5 is discussed further in chapter 8.  

The rate of leaf litter degradation was determined on seven occasions throughout the study 

period between October  2011 and June 2014. Measurements of the rate of periphyton 

accumulation and macro-invertebrate herbivory were made on six of these occasions 

between May 2012 and June 2014 (Table 7:1). In order to determine the contribution made 

by macro-invertebrate detritivory to leaf litter loss, leaf litter bags with coarse and fine 

mesh were deployed to respectively allow or exclude access to macro-invertebrates. For full 

details of the method and calculations see Chapter 4. Briefly, the rate of leaf loss 

attributable to macro-invertebrate processes was calculated from the differences between 

the rates of loss in each coarse and fine mesh bag pair. Loss of leaf material from the fine 

mesh bags was attributed to a combination of microbial degradation and abiotic processes 

such as abrasion and leaching, hereafter termed microbial breakdown (see section 7.5). Five 

replicate pairs of bags (coarse and fine mesh) and tiles (grazed and un-grazed) were 

installed at two sites (upstream and downstream) in each of the two study reaches. In May 

2013, only the downstream sites were studied and problems with access meant that only 

four replicate pairs were installed at the upstream site in the Cool’s Cottage reach from 

August 2012 to April 2014. Nevertheless, a total of 250 litter bags and 210 ceramic tiles 

were installed on site and incubated for 30 days. Recovery of samples from both litter bags 

and ceramic tiles was good, 94% for the litter bags and 96% for the tiles. Samples were lost 

due to displacement and burial by gravel (caused by high flows during deployment), or by 

damage to containers during storage. Additional losses from the litterbags were caused by 

poor fine-mesh bag construction in the first deployment resulting in loss of integrity that 

allowed macro-invertebrate access. These bags were discarded and the problem was 

corrected in all subsequent deployments. Temperatures were recorded at fifteen minute 
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intervals during the incubations (chapter 4). Mean daily in-stream temperatures ranged 

from 4.3°C at the Priors Farm downstream site in February 2013 to 17°C at the Cool’s 

Cottage upstream site in August 2012. The maximum difference in mean daily temperatures 

between streams was 2°C in February 2013  (Table 7:2). Water temperatures were higher in 

the Cool’s Cottage reach for all deployments, with an average difference between streams 

of 0.8°C. 

7.1. Leaf litter degradation 

 Key findings: 7.1.1.

There were clear, substantial and significant differences in the rates  and patterns of leaf 

litter decomposition between the two study reaches.  

 Rates of leaf litter degradation were greater in the Cool’s cottage reach than in the 

Priors Farm reach. 

 Rates of leaf litter degradation in the Cool’s Cottage reach were dominated by 

macro-invertebrate processes, while those in the Priors Farm reach were more 

evenly distributed between macro-invertebrate and microbial processes.  

 Temporal patterns in the rates of leaf litter degradation were significantly different 

between the two study reaches 

 Patterns in leaf litter degradation in the Cool’s Cottage reach 7.1.2.

The following sections describe patterns in leaf litter processing. ‘Absolute’ loss refers to the 

mass in grams of litter lost over the course of a 30 day incubation. Temperature 

compensated rate coefficients (-k dd-1) were derived from an exponential model of decay 

(Petersen and Cummins, 1974; Gessner and Chauvet, 2002; Barlocher, 2005b), and used to 
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explore patterns of leaf litter degradation within sites and to compare leaf litter degradation 

dynamics between the two study reaches (Chapter 4).  

7.1.2.1. Patterns in absolute leaf litter degradation 

There was substantial leaf litter degradation in the Cool’s Cottage reach. The highest mean 

absolute loss from the coarse bags was at the upstream site, with 85% (by mass) of material 

lost over the 30 day incubation. In the fine bags, the maximum absolute loss was 41%, also 

at the upstream site. (Table 7:2). The maximum absolute loss for both fine and coarse bags 

occurred in August 2012, coinciding with the highest in-stream water temperature. There 

was a strong seasonal variation in absolute loss in both coarse and fine bags (Figure 7:1). 

7.1.2.2. Patterns in temperature compensated rates of leaf litter degradation 

Rates of leaf litter degradation were comparable to degradation rates for oak litter recorded 

by other studies (Petersen and Cummins, 1974; Mackie and Malmqvist, 2009; Hladyz et al., 

2011; Woodward et al., 2012).  There was a small but significant difference between the 

upstream and downstream sites in both the coarse and fine mesh bags P < 0.02. Macro-

invertebrate mediated degradation rates showed no significant difference between the 

upstream and downstream sites P = 0.7, indicating that the observed difference between 

sites in the coarse mesh bags was driven by microbial processes . Data from the two sites 

were combined to provide reach averaged rates for  further analyses. 
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Table 7:1 Schedule of incubations undertaken to determine leaf litter degradation and herbivory 

 

  Cool’s Cottage Priors Farm 

Season Date Upstream Downstream Upstream Downstream 

  Leaf Litter Herbivory Leaf Litter Herbivory Leaf Litter Herbivory Leaf Litter Herbivory 

Autumn ‘11 15.10.11 - 29.11.11 x  x  x  x  

Spring ‘12 14.05.12 - 14.06.12   x x   x x 

Summer ‘12 23.07.12 - 23.08.12 x x x x x x x x 

Winter ’12-‘13 02.02.13 - 25.02.13 x x x x x x x x 

Spring ‘13 20.05.13 - 20.06.13 x x x x x x x x 

Autumn ‘13 02.09.13 - 02.10.13 x x x x x x x x 

Spring ‘14 19.03.14 - 19.04.14 x x x x x x x x 
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Table 7:2 Absolute leaf loss, as a percentage of original mass, in coarse and fine mesh bags. 

 

Date 

Cool’s Cottage Priors Farm 

Season Upstream Downstream Upstream Downstream 

 Coarse Fine Temp Coarse Fine Temp Coarse Fine Temp Coarse Fine Temp 

Autumn ‘11 15.10.11 - 29.11.11 26% 11% 10.3 19% 6% 10.3 15% 14% 10.3 13% 8% 10.3 

Spring ‘12 14.05.12 - 14.06.12    74% 19% 14.1    39% 16% 13.8 

Summer ‘12 23.07.12 - 23.08.12 85% 41% 17.0 78% 30% 17.0 33% 27% 15.8 23% 20% 15.8 

Winter ’12-‘13 02.02.13 - 25.02.13 10% 6% 6.3 14% 5% 5.9 13% 0% 4.6 12% 0% 4.3 

Spring ‘13 20.05.13 - 20.06.13 82% 28% 14.1 75% 22% 13.5 35% 14% 12.5 31% 9% 12.6 

Autumn ‘13 02.09.13 - 02.10.13 45% 22% 14.0 46% 19% 13.6 17% 12% 13.0 14% 14% 13.0 

Spring ‘14 19.03.14 - 19.04.14 83% 15% 10.3 68% 13% 10.3 26% 8% 8.7 21% 8% 9.1 
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Table 7:3 Rate coefficients of leaf litter degradation in the Cool's Cottage and Priors Farm study reaches. Rate of total degradation in the coarse bags (-k (tot)dd
-1

); rate of 
microbial degradation in the fine bags (-k (mic)dd

-1
); and rate of macro-invertebrate mediated degradation (-k (invert)dd

-1
). 

 Cool’s Cottage  Priors Farm 

Season -k (tot) dd-1 s.d -k (mic) dd-1 s.d -k (invert) dd-1  -k (tot) dd-1 s.d. -k (mic) dd-1 s.d -k (invert) dd-1 

Autumn ‘11 0.0008 0.0004 0.0003 0.0001 0.0005  0.0005 0.0005 0.0004 0.0004 0.0002 

Spring ‘12 0.0029 0.0005 0.0005 0.0001 0.0024  0.0012 0.0012 0.0004 0.0003 0.0008 

Summer ‘12 0.0036 0.0014 0.0008 0.0002 0.0027  0.0007 0.0002 0.0006 0.0001 0.0001 

Winter ’12-‘13 0.0009 0.0004 0.0003 0.0002 0.0005  0.0012 0.0006 0.0001 0.0002 0.0010 

Spring ‘13 0.0038 0.0014 0.0007 0.0001 0.0032  0.0011 0.0003 0.0003 0.0001 0.0007 

Autumn ‘13 0.0015 0.0004 0.0006 0.0001 0.0009  0.0004 0.0001 0.0004 0.0001 0.0001 

Spring ‘14 0.0046 0.0016 0.0005 0.0001 0.0041  0.0010 0.0005 0.0003 0.0001 0.0007 
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Mean rates of total leaf litter degradation (coarse mesh bags: -k(tot).dd-1) ranged from 0.0008 

to a maximum rate of 0.0046 (Table 7:3) and exhibited pronounced seasonal variation; F = 

34, P <0.0001. Despite correction for temperature, leaf litter degradation rates were lowest 

in late autumn and winter and highest in late spring and summer (Table 7:3). The magnitude 

of the variation in total leaf litter degredation was dominated by the component 

attributable to macro-invertebrates: there was less variation between deployments in the 

fine mesh than coarse mesh bags (F = 33.8 and F= 9.6 for coarse and fine bags respectively).  

The proportion of leaf litter degradation attributable to macro-invertebrates  was always 

greater than that attributable to microbial processes: mean 74%, range 59% in February 

2013 to 90% in April 2014 (Table 7:4, Figure 7:2). Both processes exhibited significant 

seasonal variation, P  < 0.0001 (Figure 7:3, a and b). Mean macro-invertebrate degradation 

rates (-k ( invert) dd-1) varied from a minimum of  0.0005 in winter (October  2011 and 

February 2013) to a maximum of 0.0041 in April 2014, whereas mean microbially mediated 

degradation rates (-k ( mic) dd-1) ranged from 0.0003 in February 2013 to 0.0008 in August 

2013 (Table 7:3).  
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Figure 7:1 Seasonal variation in absolute leaf litter loss at Cool's Cottage. Hatched column, 
macroinvertebrate mediated loss; grey column, microbially mediated loss; bars are 
standard error. 
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Table 7:4 The relative contribution from microbial and macro-invertebrate processes to total leaf litter degradation in 
the Cool's Cottage and Priors Farm study reaches. 

Relative contribution to total leaf litter degradation 

 Cool’s Cottage Priors Farm 

 micro  invert  micro  invert  

Autumn ‘11 36%  64%  66%  34%  

Spring ‘12 17%  83%  34%  66%  

Summer ‘12 23%  77%  80%  20%  

Winter ’12-‘13 41%  59%  12%  88%  

Spring ‘13 18%  82%  32%  68%  

Autumn ‘13 37%  63%  84%  16%  

Spring ‘14 90%  90%  30%  70%  

mean 26%  74%  48%  52%  
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Figure 7:2 Seasonal variation in the relative contribution of microbial and macro-
invertebrate processes to leaf litter degradation in the Cool's Cottage reach. 
 Hatched column, macro-invertebrate rate coefficient (-k(invert)dd
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Figure 7:3 Seasonal variation in temperature compensated rate coefficients of leaf litter degradation in the Cool's Cottage reach: a, macro-
invertebrate mediated rate coefficient (-k(invert)dd

-1
); b microbial rate coefficient (-k(mic)dd

-1
). 
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 Patterns in leaf litter degradation in the Priors Farm reach 7.1.1.

7.1.1.1. Patterns in absolute leaf litter degradation 

Absolute leaf litter loss was lower in the Priors Farm reach than in the Cool’s Cottage reach, 

with maximum loss of 45% (by mass) in the coarse bags in the two spring deployments, May 

2012 and April 2014. In the fine bags, the maximum absolute loss was 32%, coinciding with 

the highest temperature in August 2012 (Table 7:2). Absolute loss in both coarse and fine 

bags exhibited strong seasonal variation (Figure 7:4), but the pattern was different to that in 

the Cool’s Cottage reach. These relationships were described further using temperature 

compensated degradation rates (k dd-1), as for the Cool’s Cottage reach.  

7.1.1.2. Patterns in temperature compensated rates of leaf litter degradation 

There was no significant difference between the upstream and downstream sites in either 

the coarse or fine bags (p > 0.1). To provide an estimate for the sub-catchment, data from 

the two sites were combined for further analyses.  Rates of leaf litter degradation were low 

when compared to values recorded for oak litter recorded by other studies (Petersen and 

Cummins, 1974; Mackie and Malmqvist, 2009; Hladyz et al., 2011; Woodward et al., 2012), 

and to those in the Cool’s Cottage reach. Mean rates of total leaf litter degradation (coarse 

mesh bags: -k(tot).dd-1) ranged from 0.0004 in September 2013 to a maximum of 0.0012  in 

February 2014. (Table 7:3). 
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Temporal variation in rates of total leaf litter degradation , although significant (P < 0.0001), 

was lower in the Priors Farm reach than in the Cool’s Cottage reach (F=13 compared with 

F=34 for the Cool’s Cottage reach) and followed a different temporal pattern: the maximum 

rate of total leaf litter degreadation occurred in winter.  Mean macro-invertebrate 

degradation rates (-k(invert) dd-1) varied from a minimum of  0.00007 in September 2013 to a 

maximum of 0.001 in February 2014, compared with -k(mic) dd-1 that ranged from 0.0001 in 

February 2013 to 0.0006 in August 2012(Table 7:3). In contrast to the Cool’s cottage reach, 

the rate of microbially mediated degradation exceeded that attributable to macro-

invertebrate detritivory on three out of the seven deployments, with the maximum 

microbial contribution occuring in late summer and autumn (August 2012 and September 

2013) coinciding with the highest temperatures (Figure 7:5). The proportion of degradation 

attributabe to macro-invertebrates in the Priors farm reach was consequently lower than in 

the Cool’s Cottage reach with a minimum contribution of 16% in September 2013 and a 

maximum of 88% in February 2013, an average of 52% overall (Table 7:4). Both -k(invert).dd-1 

and -k(mic).dd-1 exhibited significant seasonal variation, P < 0.0001, (Figure 7:6a and b). There 

was greater temporal variation in rates of total leaf litter degradation than in rates of 

microbial leaf litter degradation (F = 13.3 and F= 8, respectively) indicating that macro-

invertebrate processes were responsible for more of the temporal variation than microbial 

processes.  
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Figure 7:4 Seasonal variation in leaf litter loss at Priors Farm. Hatched column, macroinvertebrate mediated 
loss; grey column, microbially mediated loss; bars are standard error. 
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Figure 7:6 Seasonal variation in temperature compensated rate coefficients of leaf litter degradation in the Priors Farm reach:   
a, macro-invertebrate mediated rate coefficient (-k(invert)dd

-1
); b microbial rate coefficient (-k(mic)dd

-1
). 
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 Contrasts in leaf litter processing in the two study reaches 7.1.2.

Between stream differences in the rates of leaf litter degradation, were significant for both 

macro-invertebrate (F=112, p < 0.0001) and microbially mediated degradation (F= 36, p < 

0.0001). Although the difference between the reaches was most pronounced for the rate of 

macro-invertebrate mediated degradation, both processes were suppressed in the Priors 

Farm reach when compared to the Cool’s Cottage reach (Figure 7:7, a– c). Analysis of the 

patterns in leaf litter degradation revealed additional differences between the two study 

reaches, both in the proportion of degradation attributable to macro-invertebrate processes 

and in the patterns of seasonal variation: The interaction between reach and date was 

highly significant P < 0001.  In the Cool’s Cottage reach, minimum (-k(invert) dd-1) occurred in 

winter, whereas winter was the period of maximum macro-invertebrate contribution to (-

k(tot).dd-1) in the Priors Farm reach (Figure 7:8). These data suggest that factors other than 

background temperature and seasonal variation were influencing leaf litter dynamics, and 

are discussed in the context of macro-invertebrate community structure in section 7.4.  
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7.2.  Epilithic primary production and macro-invertebrate herbivory 

 Key findings 7.2.1.

There were significant differences in the rates of epilithic algal (periphyton) accrual between 

sites, and rates of herbivory between streams.  

 Periphyton accrual was highest at the Priors farm downstream site. 

 There was no significant difference in periphyton accrual on un-grazed tiles between 

the Cool’s Cottage reach and the Priors Farm upstream site. 

 Rates of herbivory were greater in the Cool’s Cottage reach than in the Priors Farm 

reach.  

 Temporal patterns were significantly different between the two study reaches.  
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Figure 7:8 Graphical output from 'Minitab', illustrating contrasting seasonal variation in 
macro-invertebrate leaf processing the two study reaches: stream 1, Cool's Cottage, stream 
2, Priors Farm 
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Both light and nutrients are likely to limit photosynthetic primary production at different 

times throughout the seasons and at different study sites. Only the downstream site in the 

Priors Farm reach remained unshaded throughout the year. The accumulation of periphyton 

on un-grazed tiles reflected these conditions and was highly variable, both within and 

between sites.  

 Patterns in periphyton accumulation  7.2.2.

 As for leaf litter processing, data are reported both as absolute, measured values of 

periphyton ‘accumulation’ over the full incubation period, expressed as mg Chlorophyll-a 

(Chl-a) m-2, and as temperature compensated rates of periphyton ‘accrual’ expressed as p 

dd-1  (McAuliffe, 1984a; McAuliffe, 1984b; Mitchell and Wass, 1996). 

7.2.2.1. Patterns in measured periphyton accumulation 

In the Cool’s Cottage reach there was no significant difference in periphyton accumulation 

between the upstream and downstream sites (P = 0.25). Over the full study period, mean 

accumulation was 1.9 mg Chl-a m-2 on the grazed tiles and 4.2 mg Chl m-2 on the un-grazed 

tiles (Table 7:6).  Growth of periphyton on the un-grazed tiles demonstrated significant 

seasonal variation (P < 0.0001). The highest mean value of 10.6 mg Chl m-2 was recorded in 

April 2014 at the downstream site and the lowest, 0.4 mg Chl m-2 at both sites, in 

September 2013 (Figure 7:9a).  

There was a significant difference between the Priors Farm upstream and downstream sites, 

P < 0.0001. As predicted because of the lack of shading, the accumulation of periphyton was 

highest at the Priors Farm downstream site. Over the full study period, mean accumulation 

on the un-grazed tiles was 57.3 mg Chl-a  m-2 and 58.7 mg Chl-a  on the grazed tiles 
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(Table 7:5). Growth of periphyton on the un-grazed tiles demonstrated significant seasonal 

variation (P < 0.0001). The highest mean value of 113 mg chl a m-2 was recorded in April 

2014.  This was the only site where minimum periphyton accumulation occurred in the 

winter, 6.1 mg Chl-a m-2 in February 2013 (Table 7:4 and Figure 7:9 b).  

The Priors farm upstream site had the lowest periphyton accumulation overall; site mean 

was 3.9 mg Chl-a m-2 on the un-grazed tiles and 4.3 mg Chl-a m-2 on the grazed tiles. The 

maximum, but highly variable mean accumulation was 17.1 (range 1.1 – 41.3 mg Chl-a m-2) 

occurred in April of 2014 before canopy development and minimum was 0.2 mg Chl-a m-2 in 

September 2013 (Table 7:4 and Figure 7:9 (a)).   

 

 

 

 

 

 

 

 

 

 Figure 7:9 Seasonal variation in absolute accumulation of periphyton on un-grazed tiles 
over the 30 day incubations, measured as mg chlorophyll-a m

-2
 30 days

-1
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a, shaded sites, blue columns, Cool’s Cottage, brown column,  Priors Farm upstream site; 
b, unshaded site, Priors Farm downstream 
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Table 7:5 Absolute accumulation of periphyton on grazed and un-grazed tiles over the 30 day incubations, measured as mg chlorophyll-a m
-2

 30 days
-1

 

 Cool’s Cottage Priors Farm 

 Upstream Downstream Upstream Downstream 

 grazed s.d 
un-

grazed 
s.d grazed s.d 

un-

grazed 
s.d grazed s.d 

un-

grazed 
s.d grazed s.d 

un-

grazed 
s.d 

Autumn ‘11                 

Spring ‘12     1.9 1.2 2.1 1.1     77.9 44.4 89.6 62.3 

Summer ‘12 1.6 1.2 2.4 1.4 0.8 0.7 1.3 1.0 0.6 0.3 0.5 0.3 47.0 37.5 47.2 44.3 

Winter ’12-

‘13 
1.8 1.2 3.4 1.7 1.2 0.7 4.5 4.0 0.9 0.4 0.6 0.4 5.9 4.9 6.1 2.8 

Spring ‘13 3.5 2.6 5.7 2.8 4.4 3.6 5.2 2.8 1.5 0.6 1.0 0.6 92.3 48.7 78.8 34.6 

Autumn ‘13 0.4 0.3 1.8 2.1 0.2 0.2 0.4 0.3 0.5 0.4 0.4 0.2 9.6 4.0 8.8 6.6 

Spring ‘14 2.0 0.6 8.4 3.8 2.9 1.5 10.6 4.5 18.0 17.3 17.1 17.1 119.8 61.8 113.2 45.4 

mean 1.9 1.2 4.3 2.4 1.9 1.3 4.0 2.3 4.3 3.8 3.9 3.7 58.7 33.6 57.3 32.7 
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Table 7:6 Rate coefficients of periphyton accrual in the Cool's Cottage and Priors Farm study reaches. Rate of accrual on grazed tiles (p (net) dd-1); rate of accrual on the 
un-grazed tiless (p (gross) dd-1);  

 Cool’s Cottage Priors Farm 

 Upstream Downstream Upstream Downstream 

 p(net)
  s.d p(gross) s.d p(net) s.d p(gross) p(net) s.d p(net)

  s.d p(gross) s.d p(net) s.d p(gross) 

Autumn ‘11                 

Spring ‘12     0.001 0.002 0.001 0.001     0.010 0.001 0.010 0.001 

Summer ‘12 0.001 0.001 0.001 0.001 -0.001 0.002 0.000 0.002 -0.001 0.001 -0.002 0.002 0.007 0.002 0.006 0.003 

Winter ’12-‘13 0.002 0.005 0.006 0.003 0.000 0.004 0.007 0.005 -0.002 0.003 -0.006 0.006 0.013 0.009 0.015 0.007 

Spring ‘13 0.002 0.002 0.004 0.001 0.003 0.002 0.004 0.001 0.001 0.001 0.000 0.002 0.012 0.002 0.011 0.001 

Autumn ‘13 -0.003 0.002 0.000 0.002 -0.004 0.002 -0.003 0.002 -0.002 0.001 -0.003 0.001 0.006 0.001 0.005 0.002 

Spring ‘14 0.002 0.001 0.006 0.001 0.003 0.002 0.007 0.002 0.008 0.006 0.008 0.006 0.017 0.002 0.017 0.002 

mean 0.001 0.002 0.004 0.002 0.000 0.002 0.003 0.002 0.001 0.003 -0.001 0.003 0.011 0.003 0.011 0.003 
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7.2.2.2. Patterns in temperature compensated rate of periphyton accrual 

 Rates of accrual on the grazed tiles (p(net) dd-1) at PFDS were significantly different to the 

other sites (P < 0.0001). For rates of accrual on the un-grazed tiles (p(gross) dd-1), in addition 

to a significant difference between PFDS and the other sites, there was a significant 

difference between PFUS and the two sites in the Cool’s Cottage reach (P < 0.0001). There 

was no significant difference in either measure between the upstream and downstream 

sites in the Cool’s Cottage reach (Table 7:6, Figure 7:10). 

 

 

 

 

 

 

 

 

Once corrected for temperature, seasonal patterns in periphyton accrual on both grazed 

and un-grazed tiles were similar for the Cool’s Cottage reach and at the Priors Farm 

downstream site, although different in magnitude.  On the un-grazed tiles, maximum rates 

of accrual occurred in winter ’12-’13 and spring 2014, and minimum rates occurred in  
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Figure 7:10  Mean rate coefficients of periphyton accrual over the full study 
period: hatched columns, un-grazed tiles (p(gross)dd
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), stippled columns, grazed 

tiles (p(net)dd
-1
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Figure 7:11 Seasonal variation in rate coefficients of periphyton accrual on grazed tiles (p (net) dd
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 autumn ‘13. On the grazed tiles, the magnitude of the seasonal variation was lower than 

that observed on un-grazed tiles at both sites in the Cool’s Cottage reach. No such 

difference was observed between the two measures at the sites in the Priors Farm reach 

(Table 7:6 and Figure 7:11, a-d). The interaction between site and date was significant for 

both the grazed tiles (P <0.05) and un-grazed tiles (P < 0.0001) confirming that temporal 

patterns of periphyton accrual were different between sites (Figure 7:12 a and b).  

 

 

 

 

 

 

 

 

 

 

 

 

76543

0.015

0.010

0.005

0.000

-0.005

date

M
e

a
n

ccds

ccus

pfds

pfus

site

Interaction Plot for UG k/dd
Fitted Means

76543

0.015

0.010

0.005

0.000

-0.005

date

M
e

a
n

ccds

ccus

pfds

pfus

site

Interaction Plot for G k/dd
Fitted Means

Figure 7:12 Graphical output from 'Minitab', illustrating seasonal variation in 
periphyton accrual on a, un-grazed tiles (p (gross) dd

-1
) and b, grazed tiles (p (net) 

dd
-1

); and demonstrating the reduction on the grazed tiles in the Cool’s Cottage 
reach. 
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 Macro-invertebrate herbivory 7.2.3.

The rates of herbivory (p(herb) dd-1), calculated from the difference in rates of accrual 

between each pair of grazed and un-grazed tiles (chapter 4), were significantly different 

 (F = 35, P < 0.0001) between streams .  

Table 7:7 Rate coefficients for herbivory in the Cool's Cottage and Priors Farm study reaches (p(herb)dd-
1
) 

 Cool’s Cottage Priors Farm 

 Upstream Downstream Upstream Downstream 

 grazing s.d. grazing s.d. grazing s.d. grazing s.d. 

Autumn ‘11         

Spring ‘12   0.0005 0.0017   0.0003 0.0011 

Summer ‘12 0.0009 0.0013 0.0010 0.0016 -0.0008 0.0024 -0.0006 0.0013 

Winter ’12-‘13 0.0044 0.0054 0.0077 0.0035 -0.0039 0.0035 0.0017 0.0056 

Spring ‘13 0.0014 0.0014 0.0010 0.0012 -0.0013 0.0023 -0.0002 0.0009 

Autumn ‘13 0.0029 0.0021 0.0016 0.0008 -0.0005 0.0004 -0.0006 0.0015 

Spring ‘14 0.0043 0.0013 0.0038 0.0030 -0.0004 0.0027 -0.0001 0.0009 

mean 0.0028 0.0023 0.0026 0.0020 -0.0014 0.0023 0.0001 0.0019 

 

There was no significant difference between the rates of herbivory at the upstream and 

downstream sites in the Cool’s Cottage reach P > 0.7. More surprisingly, given the difference 

in algal production, there was no significant difference in rates of herbivory between the 

two sites in the Priors Farm reach, P > 0.5: there was no detectable herbivory at either site 

in the Priors Farm reach (Table 7:7, Figure 7:13). 
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 Data from both sites in each reach were combined to provide a reach scale estimate for 

further analysis. Temporal patterns in herbivory, shown by the interaction between stream 

and date were significantly different between streams (P = 0.003,Figure 7:14).  
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Figure 7:13 Mean grazing rate coefficients over the full study period (p(herb)dd
-1

): 
blue columns Cool’s Cottage, brown columns, Priors Farm; bars are standard 
error. 
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Figure 7:14 Graphical output from 'Minitab', illustrating contrasting seasonal variation in grazing 
rate coefficients (p(herb) dd

-1
) in the two study reaches: stream 1, Cool's Cottage, stream 2, Priors 

Farm 
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The maximum rate of herbivory in the Cool’s Cottage reach was in winter ’12-’13 (Table 7:7, 

Figure 7:15) and coincided with the minimum rate of macro-invertebrate detritivory 

(section 7.1.2). Rates of herbivory in the Cool’s Cottage reach were also high in spring 2014, 

coinciding with maximum macro-invertebrate detritivory. Herbivory was undetectable 

throughout the year in the Priors Farm reach (Table 7:7, Figure 7:16). There are theoretical 

limitations to the methodology that can result in an underestimate of herbivory in highly 

productive sites (Mitchell and Wass, 1996), such as at the Priors Farm downstream site. 

However, further scrutiny of the data (see section 7.5) provided no evidence to reject the 

results. These findings show a significant reduction in the rate of another key ecosystem 

process in the Priors Farm reach compared with the Cool’s Cottage reach, and demonstrate 

a severe impact on the macro-invertebrate community in the Priors Farm reach.  
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Figure 7:15 Seasonal variation in grazing rate coefficients: blue columns, Cool’s 
Cottage; brown columns, Priors Farm; bars are standard error.  
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7.3. Macro-invertebrate communities 

Macro-invertebrate abundances, identification and trait data were provided by the QMUL 

River Communities Group: these data extended over most of the study period from October 

2011 to November 2013. Two sites were sampled in each stream using the RIVPACS 

standardised semi-quantitative three minute kick sample (Clarke et al., 2011). However, due 

to the time required for sample processing, full data sets were only available for both sites 

per stream for the first three sampling dates that functional measures were collected, and 

one site per stream thereafter. Where these data were available, temporal variation in total 

macro-invertebrate abundance and in taxon richness were reported as the mean. Macro-

invertebrate abundance was higher in the Cool’s Cottage reach than in the Priors Farm 

reach, although there was high within-stream variability (Table 7:8). Where both replicates 

were available, site A was consistently and substantially higher than site B, introducing 

possible bias for the later samples where only site A data were available (inset, Figure 7:17). 
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Figure 7:16 Comparison of herbivory in the two study reaches;: blue 
column, Cool’s Cottage, brown column, Priors Farm, error bars, standard 
error. 
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Table 7:8 Macro-invertebrate abundance and taxon richness at Cool’s Cottage and Priors Farm. 

 Cool’s Cottage  Priors Farm 

 Abundance Taxon count  Abundance Taxon count 

 A B mean +/- mean  A B mean +/- mean 

Spring ‘11 5174 4708 4941 233 62  3379 2151 2765 614 51 

Summer ‘11 4466 1710 3088 1378 28  3485 1770 2627 857 42 

Autumn ‘11 5473 2200 3836 1636 33  2527 3141 2834 307 57 

Spring ‘12 8671 2343 5507 3164 38  2543 4818 3680 1137 50 

Summer ‘12 9947 2289 6118 3829 37  6280 1908 4094 1608 46 

Autumn ’12 4562    40  788    37 

Spring ‘13 9630    49  894    29 

Summer ‘13 5031    36  3185    35 

Autumn ‘14 1408    42  2570    57 

Total no individuals  67612   39439  58%  

Excluding dredged samples  53420   37757  71%  
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The macro-invertebrate sampling site at Priors Farm was dredged in late summer 2012, 

following which there was a substantial drop in macro-invertebrate abundance (autumn 

2012 and spring 2013), with abundance recovering  by summer 2013. (Figure 7:17). The 

experimental sites, where the litter bags and tiles were deployed, were upstream of the 

dredged section and were not directly affected.  

 

 

 

 

 

 

 

 

When these sampling dates were removed from the calculation of relative abundance for 

the two reaches, the proportion of macro-invertebrate numbers at Priors Farm, relative to 

that at Cool’s Cottage was 71% (Table 7:8). Taxon richness in the Priors Farm reach was 

slightly higher than in the Cool’s Cottage reach (Table 7:8). This difference was largely made 

up of higher proportions of predators, absorbers and parasites in the Priors Farm reach, 

with the relative proportions of taxa assigned to scrapers, shredders, deposit feeders and 

filter feeders similar in both study reaches (Table 7:9, Figure 7:18).  
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Figure 7:17 Seasonal variation in macro-invertebrate abundance at Cool's Cottage and Priors Farm: 
blue columns, Cool's Cottage; brown columns, Priors Farm. Inset: Illustration of the consistently higher 
macro-invertebrate abundance in site A at Cool’s Cottage, thereby potentially conferring a bias in the 
samples for which there are no replicates. 
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Table 7:9 Contribution of functional feeding groups as a proportion of macro-invertebrate 
populations at Cools Cottage and Priors Farm. In this table and in figure 1.8, the assignation 
 of many taxa to multiple feeding groups results in the percentages adding up to more than 
100% of the number of individuals. In this context, ‘observations’ is the number of taxa,  
multiplied by the number of groups to which it was assigned. 

Functional feeding group Cools’ Cottage  Priors Farm 

Scrapers SCR 27646 41%  16055 41% 

Shredders SHR 27603 41%  17724 45% 

Deposit feeders DEP 23560 35%  14405 37% 

Filter feeders FF 17677 26%  11405 29% 

Predators PRE 2284 3%  7183 18% 

Absorbers ABS 1187 2%  4989 13% 

Parasites PAR 1073 2%  6883 17% 

Piercers PIE 90 0.1%  350 1% 

Unassigned UNA 747 1%  1151 3% 

Total number of  observations 101867  80145 

Total number of individuals 67612  39439 
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Figure 7:18 Distribution of functional feeding groups at Cool's Cottage and Priors Farm: 
blue columns, Cool's Cottage; brown columns, Priors Farm.  
Abbreviations as for Table 7:9 
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The trait data of those taxa with a cumulative abundance of more than 100 individuals from 

all samples (Table 7:10) were studied in more detail. Many taxa are assigned to more than 

one functional feeding group, and the number of functional feeding groups to which they 

were assigned was used to infer their degree of specialism. There was a higher proportion of 

generalists (defined here as individuals assigned to multiple (>2) functional feeding groups) 

in the Priors Farm reach. This bias was also observed in functional feeding group specific 

comparisons for scrapers and shredders, the functional feeding groups expected to 

contribute most to the ecosystem processes of macro-invertebrate leaf litter degradation 

and herbivory measured in this study (Figure 7:19, a-c).  

Of the taxa assigned to the shredder functional feeding group, Gammarus pulex was the 

most abundant taxon in the Cool’s cottage reach, contributing 24% of the total number of 

individuals counted throughout the study period (Table 7:10) whereas in the Priors Farm 

reach, Gammarus pulex constituted only 4%, with Assellus aquaticus contributing 7%. 

Chironomidae (assigned to multiple functional feeding groups), were abundant in both 

reaches (16% and 25% at Cool’s cottage and Priors Farm respectively). Ptychoptera sp., 

(assigned to both shredder and deposit feeder functional feeding groups) contributed 2% to 

the total in the Cool’s Cottage reach but were absent from the Priors Farm reach. Other taxa 

assigned to the shredder functional feeding group in the Priors Farm were the snails, Anisus 

sp., Potamopyrgus antipodarum and Gyraulus sp. that together contributed 10% of all 

individuals counted. Both study reaches had large populations of Pisidium sp, a filter feeder 

(12% and 6% at Cool’s cottage and Priors Farm respectively), and of Tubificidae (17% and 13 

% at Cool’s Cottage and Priors Farm respectively), a deposit feeding oligochaete, whose 

preferred substrate is mud and sand, reflecting the high proportion of fine sediments in the 

stream beds of both reaches (Chapter 3).  
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Table 7:10 Macro-invertebrate taxa with a combined total of more than 100 individuals 
 from all samples within each site 

Taxon Cool’s Cottage  Priors Farm 

Agapetus sp. 137   

Anisus (Disculifer) vortex   1066 

Asellus aquaticus   2620 

Baetis rhodani 222  154 

Ceratopogonidae 308   

Chironomini [tribe] 358  6065 

Elmis aenea 112  180 

Ephemera sp. 154   

Gammarus pulex 16424  1750 

Gyraulus sp.   126 

Habrophlebia fusca   169 

Helophorus sp.   272 

Limnius volckmari 825   

Limnephilidae 196  508 

Orthocladiinae [sub-family] 715  811 

Oulimnius sp.   271 

Pisidium sp. 7830  2179 

Potamopyrgus antipodarum   2807 

Ptychoptera sp. 1351   

Simulium sp. 102  141 

Tanypodinae [sub-family] 1107  790 

Tanytarsini [tribe] 8427  2163 

Tubificidae 11756  4937 
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Figure 7:20 Flow regime preferences for those taxa with more 
than 100 individuals from all samples: blue columns, Cool's 
Cottage; brown columns Priors Farm. 
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Figure 7:19 Proportion of taxa assigned to multiple functional feeding groups at Cool's Cottage and Priors 
Farm: a, proportion of all taxa with more than 100 individuals; b, proportion of scrapers and c, proportion 
of shredders. Blue columns, Cool's Cottage; brown columns, Priors Farm 
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Macro-invertebrate assemblages associated with the leaf litter packs were not quantified. 

However, visual assessments of the populations picked from the leaf packs, prior to drying 

and weighing, were broadly similar to the benthic communities. In the samples from the 

Priors farm reach, however, the contribution of Assellus aquaticus appeared to be greater 

than in the benthic samples, and Limnephilidae were commonly recovered from leaf litter 

packs from both streams. These apparent differences in density between benthic and litter 

pack assemblages suggested active feeding preferences in these two taxa.  

The preference for flow regime was also examined and there was a slightly higher 

proportion of individuals in the Priors Farm reach that preferred, or tolerated zero or slow 

flow than in the Cool’s Cottage reach (Figure 7:20). 

7.4. Interactions between macroinvertebrate community structure and 

function  

A range of factors, can affect both species richness and behaviour. In this section, process 

rates are discussed in the context of the macro-invertebrate community assemblages and 

possible errors arising from methodological bias. Further considerations of these findings, in 

the wider context of contrasting sub-catchment characteristics, are discussed in chapter 8.  

The differing rates of macro-invertebrate detritivory and herbivory observed are likely to 

have been influenced by more than one factor. The lower macro-invertebrate abundance in 

the Priors Farm reach is unlikely to be the only cause of the observed low rates of ecosystem 

function, as not all species make the same contribution to process rates. Some species, 

although present in small numbers can have a disproportionate effect on ecosystem 

processes.  
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 Detritivory  7.4.1.

Macro-invertebrate abundance at Priors Farm averaged 71% of that at Cool’s Cottage 

(excluding the data immediately following dredging; Table 7:9), but rates of macro-

invertebrate mediated detritivory ranged from 5% to 34% of that at Cool’s Cottage, except 

in February 2013 (Table 7:11). 

Table 7:11 Macro-invertebrate detritivory at Priors Farm ( -k(invert) dd
-1

);  
expressed as a percentage of that at Cool's Cottage 

Season  
Priors Farm: Cools’ 

Cottage 

Autumn ‘11  34% 

Spring ‘12  32% 

Summer ‘12  5% 

Winter ’12-‘13  206% 

Spring ‘13  23% 

Autumn ‘13  7% 

Spring ‘14  17% 

 

Research using mesocosms, aimed at untangling the drivers of leaf litter degradation, has 

found that macro-invertebrate numbers alone cannot explain rates of leaf litter 

degradation, and community diversity exerts a key influence (Woodward, 2009; Tolkkinen et 

al., 2013). Predictions based on the distribution of functional feeding groups can also be 

misleading as they are based on morphological characteristics and not necessarily related to 
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expressed feeding preferences (MacNeil et al., 1997; Rawer-Jost et al., 2000; Baldy et al., 

2007; Woodward, 2009; Lauridsen et al., 2014).  For example, although Asellus aquaticus is 

assigned to the ‘shredder’ functional feeding group, its main feeding mode on leaves is to 

scrape rather than chew, and predominantly feeds on the fungal assemblages that colonise 

and condition them (Graca et al., 1993; Chung and Suberkropp, 2009). Examination of their 

gut contents (Lecerf et al., 2006; Baldy et al., 2007 Lauridsen et al. 2014) has also shown 

that Asellus aquaticus feed on fine particulate organic matter (FPOM). Species interactions, 

both within and between trophic levels, as well as species richness are important in 

influencing ecosystem function (MacNeil et al., 1997; Woodward, 2009; Tolkkinen et al., 

2013).  In this study, the shredder community at Cool’s Cottage was dominated by 

Gammarus pulex, an efficient shredder. Gammarus pulex is less tolerant of organic pollution 

than Asellus aquaticus (Whitehurst and Lindsey, 1990; Maltby, 1995; MacNeil et al., 2002); 

the latter dominates the Crustaceaea at Priors Farm. However, where conditions are more 

favourable for Gammarus pulex, it out-competes Asellus aquaticus and may even feed on 

them (Fries and Tesch, 1965; Oseid and Smith, 1979). The contribution of macro-

invertebrates to total leaf litter degradation (-k(inv)dd-1/- k(tot)dd-1)  at Priors Farm was highest 

in February 2013, when the proportion of Gammarus pulex in the Crustaceaea was greatest 

(Table 7:12 and Figure 7:21). This ratio has previously been proposed as a good indicator of 

organic pollution (Whitehurst and Lindsey, 1990; MacNeil et al., 2002). Notwithstanding the 

uncertainties in the specificity of functional feeding groups, a higher proportion of 

individuals in the Priors Farm reach are assigned to multiple functional feeding group and 

are likely to feed preferentially on easily digestible and nutrient rich foods in preference to 

high C:N foods that require conditioning, such as oak leaf litter (Sterner and Elser, 2002; 

Woodward et al. 2009; Hladyz et al,. 2011; Lauridsen  et al. 2014).  
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Table 7:12 The proportions of Gammarus in the Crustaceaea and macro-invertebrate mediated 
 leaf litter degradation at Priors Farm.  

Priors Farm 

Season  
Proportion of Gammarus 

 in the crustaceaea 

Proportion of leaf processing 

by macro-invertebrates 

Autumn ‘11  24% 34% 

Spring ‘12  8% 66% 

Summer ‘12  26% 20% 

Autumn/winter ’12  70% 88% 

Spring ‘13  95% 68% 

Summer ‘13  15%  

Autumn ‘13  74% 16% 

Spring ‘14   70% 
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Figure 7:21 Relationship between Gammarus pulex and macro-invertebrate leaf litter 
processing at Priors Farm: stippled bars represent the proportion of Gammarus in the 
Crustaceaea, brown columns represent the proportion of total leaf degradation 
attributable to macro-invertebrates.  
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 Herbivory:  7.4.2.

Three of the four sites exhibited low photosynthetic primary production, echoing the 

findings in chapter 6 and indicating that shading was an important limiting factor, at least in 

the Priors Farm reach.  In the Cool’s Cottage reach, both sites were shaded in the summer 

and the extent to which light limited algal growth was, therefore, not assessed. In common 

with other eutrophic streams, filamentous algae were prolific in the Priors Farm 

downstream site and were observed at the upstream site before canopy closure. 

Filamentous algae were not observed in the Cool’s Cottage reach, even in an un-shaded 

stretch of the stream downstream of the sub-catchment outlet. The low grazing rates in the 

Priors Farm reach suggest that filamentous algae may not be palatable to the crawling 

macro-invertebrates in this reach. As with the degradation of leaf litter, the ready 

availability of alternative food sources may have resulted in preferential feeding strategies 

for those taxa with the ability to exploit that resource (Lecerf et al., 2006; Baldy et al., 2007; 

Woodward et al., 2012; Lauridsen et al., 2014). In the Cool’s Cottage reach, Agapetus sp. 

and Simuliidea were commonly found on the grazed tiles; although other potential grazers 

that were recorded in the benthic communities at Cool’s Cottage, were not. Agapetus sp. 

have been shown to suppress populations of other grazing macro-invertebrates as a result 

of resource competition for periphyton biomass (McAuliffe, 1984b). Simuliidae are filter 

feeders and not constrained by this competitive pressure. Macro-invertebrates were not 

observed on the grazed tiles from the Priors Farm reach. 

In addition to nutrient status and grazing pressure, physical factors impact on algal 

community structure and abundance (Law, 2011; Law et al., 2014b). The most obvious of 

these is light. However, stream velocity also plays an important role through the action of 
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shear stress and, combined with sediment load, sloughing of attached algae through 

abrasion, known as scouring (Biggs and Close, 1989). Differences in stream velocity favour 

different algal morphologies due to variations in their attachment modes and strengths. Low 

growing communities that attach along their length, for example, tend to demonstrate 

stronger attachment than filamentous algae that attach via a stalk (Allan, 2007). On the 

other hand, stalked algae have a competitive advantage in slow flowing waters, particularly 

in low light or nutrient conditions, where the greater surface area in contact with the water 

promotes better nutrient uptake and access to light (Biggs et al., 1998). 

During high flows, both average daily velocities and peak velocities during storm events 

(recorded at 15 minute intervals) were higher at the Priors Farm downstream site than at 

the Cool’s cottage downstream site (Figure 7:22).   
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Figure 7:22 Stream velocity between December 2011 and April 2014 in the two study reaches: (a) and (b), average daily velocity; 
(c) and (d), high resolution velocity (15 minute intervals), showing short term response to rainfall events. 
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Nevertheless, filamentous algae were abundant in the Priors Farm reach, but were not 

observed in the Cool’s Cottage reach during the study period. The seasonal pattern of 

accumulation at Priors Farm, taken together with velocity data, suggest that shear stress 

due to these higher flows did not constrain algal accumulation during this study, with the 

possible exception of February 2013 (Figure 7:23). 

 

 

 

 

 

 

 

 

Both study reaches were impacted by high loads of fine sediment (Chapter 3) giving similar 

conditions for scouring as a result of abrasion. High flows that occurred during deployments 

of the ceramic tiles used to measure phytoplankton accumulation and macro-invertebrate 

herbivory, may have resulted in some scouring and loss of algal standing stock. The 

experimental sites were chosen to represent similar deployment depths and substrate 
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Figure 7:23 High resolution velocity (m/s) at the Priors Farm downstream site showing 
periphyton accumulation (mg Chla) during 30 day ceramic tile incubations. 
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experiment was subject to the same conditions of stream velocity, turbulence and shear 

stress, with the un-grazed tile acting as an internal control for the grazed tile. Thus, the 

experimental protocol allows for the measurement of realistic, in situ, accumulation and 

macro-invertebrate herbivory, within the constraints of methodological bias that are further 

explored in section 7.5. 

 Top-down predator-prey interactions 7.4.3.

Fish were more abundant in the Priors Farm reach than in the Cool’s Cottage reach. 

Bullhead (Cottus gobio), stone loach (Barbatula barbatula), minnows (Phoxinus phoxinus) 

and sticklebacks (Gasterosteus aculeatus) were all recorded at Priors Farm, and they may 

have had an effect, both on the abundance of macro-invertebrates and on their feeding 

behaviour. In order to avoid visual predators, macro-invertebrates avoid the exposed 

surface of the tiles and stick to more protected environments in the gravel. This effect has 

been reported following the introduction of predatory fish that reduced macro-invertebrate 

mediated herbivory and detritivory more than it reduced macro-invertebrate density (Jones 

pers. Comm.).  The American signal crayfish (Pacifastacus leniusculus), found at Cool’s 

Cottage, but not at Priors Farm, is also an efficient predator, but it is unlikely that similar 

avoidance tactics would be as effective against it. 

7.5. Methodological bias: 

The model used to calculate macro-invertebrate detritivory and herbivory relies on the 

assumption that the two measured processes rates from which they are derived are still in 

an exponential phase (Mitchell and Wass, 1996). If the faster of the two processes has 

reached the lag or stationary phase, the variable calculated from the difference will be 
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underestimated. Furthermore, if the process to be calculated somehow benefits the slower 

process measured, an apparent negative rate may occur in the calculated variable. For 

example, if periphyton growth on the un-grazed tile, p(gross)dd-1, has reached a density where 

it is subject to self-shading, growth on the grazed tile, p(net)dd-1 may catch up over the course 

of the incubation, leading to an underestimate of herbivory, p(herb)dd-1. It is also possible that 

counterintuitive positive effects of grazing can occur, for example if sediment builds up 

around the algae and restricts growth, grazing macro-invertebrates on the grazed tiles may 

displace this sediment, potentially increasing p(net)dd-1 and resulting in a negative value for 

p(herb)dd-1.  

Periphyton accumulation at the Priors farm downstream site reached a maximum of 119 mg 

Chl-a 30 days-1 in spring 2014. It is possible that this represents a maximum threshold for 

periphyton growth at this site, thereby leading to underestimates of p(herb)dd-1. However, 

much denser periphyton growth developed on the tiles that remained in situ between 

deployments, suggesting that the stationary phase of growth had not been reached during 

the 30 day incubations and p(herb)dd-1  was not underestimated as a result of this potential 

methodological bias. Certainly, higher growth rates have been observed in other nutrient 

rich rivers. For example, Bowes et al. (2012) measured algal accumulation of 140 mg Chl-a 

m-2 over nine days in the Thames. In addition, calculation of the rate of herbivory at the 

Priors Farm downstream site during deployments with much lower rates of periphyton 

accumulation, yielded similarly low values. Taken together, these results do not provide 

evidence to reject the findings presented in section 7.2.3. Intermediate sampling of a subset 

of tiles part-way through the incubation would help to resolve whether these potential 

sources of error are significant in future deployments.  
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In the measurement of macro-invertebrate detritivory, rapid degradation in the coarse 

mesh bags, -k(tot)dd-1, may lead to resource limitation and an underestimate of -k(invert)dd-1. 

From the data presented here, rapid processing of leaf litter in the Cool’s cottage reach may 

have led to resource limitation in the spring and summer deployments when up to 85% of 

the material was lost by the time the leaf bags were recovered (Table 7.2). This may have 

resulted in an underestimate of the absolute value of -k(invert)dd-1 on these dates. However, 

the patterns of both seasonal variability and overall litter processing in comparison to the 

Priors Farm reach remain unchanged. 

Further errors in the estimation of -k(invert)dd-1 may arise from well recognised limitations in 

the litterbag methodology. Preferential loss of leaf litter from the coarse mesh bags due to 

abrasion during high flows is one such factor, as the fine mesh bags are likely to offer more 

protection from physical damage.  It is possible that this could have contributed to the 

heightened rate of macro-invertebrate mediated leaf litter degradation in the Priors Farm 

reach in February 2013. However, this proportional increase was not seen in the Cool’s 

Cottage reach that was subject to the same increase in flow regime, and is likely to have 

experienced similar rises in turbulence and suspended sediment during this deployment. 

Another factor that can increase the uncertainty in measuring rates of litter loss is the 

leaching of material, early in a deployment. The relative contribution of leaching to total 

degradation is highly variable and related to leaf species, velocity and water temperature 

(Barlocher, 2005a).  In this assessment of the contrast in the dynamics of leaf litter 

degradation between two neighbouring reaches, such losses were assumed to be 

comparable between the study sites. The low rates of mass loss in the fine bags in the Priors 



Page 231 
 

Farm reach suggested that losses due to leaching were low during this study. Consequently, 

calculations of litter degradation were not adjusted for leaching and abrasion.  

7.6. Conclusions 

The data presented in this chapter demonstrate a significant suppression of the key 

ecosystem processes, detritivory and herbivory in the Priors Farm reach when compared to 

the Cool’s Cottage reach. The contrast in both overall process rates and their seasonal 

variability was very marked between the two study reaches. Seasonal sampling revealed 

strong minima in macro-invertebrate detritivory during the autumn at both sites, the season 

traditionally chosen for studies of leaf litter degradation.  Differences in the macro-

invertebrate assemblages were also recorded. However, biotic indices based on community 

structure were less emphatic in their distinction between the streams (chapter 3) and the 

scale of the difference in process rates between the two study reaches was greater than the 

differences in benthic macro-invertebrate communities might suggest. This echoes the 

finding of other research where community structure and function have been found to 

respond differently to environmental stressors (McKie and Malmqvist, 2009). They indicate 

that a change in macro-invertebrate behaviour, over and above changes to community 

structure, arise from the environmental stressors that impact on key ecosystem processes.  

This suggests that targeted on-farm mitigation works have the potential to promote rapid 

improvements in ecosystem function delivered by these processes, where a change in 

behaviour may be a faster response than a change in community structure. For example, a 

substantial reduction in the delivery of organic rich fine sediments may alter the feeding 

habits of macro-invertebrate detritivores and herbivores.  
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One unexpected outcome of this work was the independence of the measurement of 

herbivory to light at the Priors Farm downstream site, where the high productivity might 

have been expected to obscure any conclusive results. The data presented here show that 

these measures of ecosystem function provide a sensitive and straightforward, 

complementary tool to assess in-stream health and recovery.  Further considerations of how 

the differences in sub-catchment characteristics have impacted on these processes are 

discussed in chapter 8. 
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 In-stream ecosystem functional response to variations in Chapter 8.

the aquatic environment  

The main aims of the project were: to describe and compare the in-stream chemistry of two 

headwater streams flowing through agricultural land with similar land use and underlying 

geology; to identify the consequences of contrasting in-stream chemistry to ecosystem 

function, and to assess the potential for using ecosystem functional metrics as an aid to 

management, by providing complementary measures of stream health to augment currently 

used structural measures. Current standard methods are based on describing what is in the 

stream – not what it is doing. Characterising the community structure is time consuming 

and highly dependent on extensive expert knowledge. In addition, community structure 

does not take account of behavioural changes in the community, whereas functional 

changes give an integrated picture of both community structure and behaviour; and may be 

more readily understood as having a direct bearing on the provision of ecosystem services.  

8.1. Key findings 

 Contrasts in water chemistry and in-stream environments 8.1.1.

A detailed comparison of the study sub-catchments provided evidence that, despite broad 

similarities in land use and the geology through which the streams flow, a combination of 

differences in source geology and land management contributed to contrasting in-stream 

environments that impacted on communities and ecosystem function (Figure 8:1, A – F). 
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Figure 8:1 Illustration of the contrasting nutrient chemistries at Cool's Cottage and Priors farm; A, C, E; Cool’s Cottage: B, D and F; Priors Farm 

 NH4 - N  TON  DON  PON

0

1

2

PO4 - P SUP PP

NPOC

 PO4 - P  SUP TP

0

5

10

15

 NH4 - N TON  DON (corr) PON

0

10

20

30

40

NPOCDOC 

 

N
u

tr
ie

n
t 

co
n

ce
n

tr
at

io
n

s,
 m

g 
l-1

 

A 

C 

F 

D 

E 

B 

DOC 

Date 



Page 235 
 

While the underlying geology of both streams is based on clay and subject to the flashy flow 

regime associated with impermeable catchments, the Cool’s Cottage study reach was 

supplemented by groundwater sources and water supplied from a local reservoir that 

maintained flow throughout the study period. The residence time for these sources was 

increased by the presence of a lake that acts as a header tank for the reach, allowing 

substantial in-stream processing to occur and influencing the chemistry of the study reach 

below it.  Land cover upstream of the lake is largely woodland, and sources of organic 

matter entering it are likely to be derived from leaf litter decomposition and characterised 

by high C:N ratios. Downstream of the lake, the land is farmed organically and used as 

pasture for a beef herd. Waste is managed as solid manure. Cattle are excluded from the 

pasture in the winter and stock movements are minimal throughout the year. The remaining 

areas of the upper catchment are farmed more intensively with strip grazing of dairy cattle 

and some arable land supplemented with inorganic fertilizers. The organically managed 

pasture, therefore, acts as a buffer zone and, despite visible inputs of particulates from a 

road drain upstream of the study reach, the stream is characterised by low concentrations 

of DOC, DON, SRP and PP when compared to the Priors Farm reach (Figure 8.1 A – F).  

The Priors Farm study reach is supplied by surface water runoff and interstitial flow from the 

sub-catchment, with no apparent groundwater sources. As a result it was subject to periodic 

episodes of zero flow resulting in isolated pools along the study reach. The land was 

predominantly used as pasture for dairy herds. Cattle were excluded from the pasture 

during wet weather. However, while outdoors, stock were regularly moved from pasture to 

the farm for milking, resulting in the mobilisation of fine sediments with increased organic 

matter content, that were transported to the stream in wet weather. Additional inputs of 
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fine sediments resulted from surface runoff from an arable field adjacent to the stream. 

Waste in this sub-catchment was largely managed as slurry, and slurry stores had 

insufficient capacity during the extreme wet weather experienced throughout 2012 and the 

winter of 2013 – 2014; this resulted in pulses of discharge characterised by low dissolved 

oxygen, high DOC and high NH4-N concentrations reaching the stream (chapter 5).  

While both streams were impacted by high loads of fine sediment, the Priors Farm reach 

was significantly enriched with organic matter when compared to the Cool’s Cottage reach. 

Together with intermittent low or zero flow, this resulted in several periods when 

concentrations of dissolved oxygen in the Priors Farm reach were severely impaired, with 

implications for both short term metabolic processes and macro-invertebrate community 

structure and behaviour.  

Reports of ecosystem functional response to environmental stressors often use 

concentrations of dissolved inorganic nutrients, usually SRP and DIN, as indicators of 

anthropogenic impact. In these livestock dominated catchments, dissolved inorganic 

nutrients often represent only a small fraction of the total nutrient load (chapter5). In the 

Cool’s Cottage reach; only 15% of phosphorus is represented by SRP, and 27% in the Priors 

Farm reach. Phosphorus associated with particulate matter (PP) dominates the phosphorus 

load in both study reaches; 64% in the Cool’s Cottage reach and 57% in the Priors Farm 

reach, with a significant proportion present as SUP; 21% in the Cool’s Cottage reach and 

16% in the Priors Farm reach. Although DIN represents a higher proportion of the nitrogen 

load in both study reaches (58% and 45% in the Cool’s Cottage and Priors Farm, 

respectively), DON and PON constitute substantial additional resources to the in-stream 

communities.  
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 Short term metabolic functional metrics 8.1.2.

Examination of the relationships between aerobic respiration and in-stream nutrient 

concentrations emphasised the reciprocal nature of nutrient / ecosystem process 

interactions. At Cool’s Cottage, aerobic respiration was negatively correlated with both SRP 

and TON while positively correlated with DON, PON, PP and DOC; and at Priors Farm, 

aerobic respiration was negatively correlated with NH4-N while positively correlated with 

DON and DOC. These results highlight a key area missing from our ability to model the 

effects of nutrient enrichment on ecosystem function; essentially, there is a lack of 

information on how much of these potential resources are readily available to the in-stream 

community.  More refractory dissolved nutrients, and those in particulate form, can be 

accessed through the action of exo-enzymes. However, where more labile nutrients are 

available, the production, or activation of these enzymes is unlikely to be energetically 

favourable, resulting in a hierarchy of nutrient uptake.  In chapter 6, the changes in 

speciation and fractionation of nutrients during 24-hour dark incubations suggested that 

readily available phosphorus may have been limiting in the Cool’s Cottage reach during 

spring and summer, stimulating the release of available phosphorus from more refractory 

sources. Counter-intuitive increases in DOC during dark incubations in both reaches seemed 

to indicate that particulate organic matter was also being utilised to supplement growth. 

Overall, in both study reaches, aerobic respiration was low and suggested medium to severe 

impact using the framework proposed by (Young et al., 2008). High concentrations of DOC, 

N and P in the Priors Farm reach weaken any suggestion of nutrient limitation and suggest 

that low diffusion of oxygen into the sediments is the most probable limiting factor in this 

reach. Poor oxygen availability in the sediments is also likely to impact the Cool’s Cottage 

reach. 
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The increase in fine sediments clogging stream beds is a recurring feature of anthropogenic 

impact. Where this is combined with increasing organic matter, the prevalence of anoxic 

sediments are set to increase and a better understanding of anaerobic processes becomes a 

priority. Temperature exerts a strong influence on the production of greenhouse gasses 

(Bonnett et al., 2013), making increased greenhouse gas emissions from stream beds a likely 

consequence of predicted temperature rises. Measurements of greenhouse gas exchange 

across the sediment–water interface provided an indication that the suppression of aerobic 

respiration increased the resources available to anaerobes and amplified the warming 

potential of impacted streams through the production of CH4 and N2O.  In the Cool’s Cottage 

reach, TON was the dominant nitrogen species and N:P ratios did not fall below the 

threshold proposed by Sterner and Elser (2002) as the switch between nitrogen and 

phosphorus limitation  (chapter 5). The transfer of N2O across the sediment-water interface 

in the Cool’s Cottage reach suggests this resource was exploited as an electron acceptor in 

denitrification, while at Priors Farm, where the N:P ratio was lower, N2O production was 

also lower (chapter 6).  A striking result was the substantial difference between methane 

transfer across the sediment-water interface at the two sites in the Priors Farm reach. 

Methanogens are obligate anaerobes and, therefore, unlikely to be present in the upper 

layers of sediment that are exposed to light and oxygen. Nonetheless, methane transfer 

across the sediment-water interface at the unshaded downstream site in the Priors Farm 

reach was up to two orders of magnitude greater than at the shaded upstream site which 

experienced similar in-stream water chemistry. These measurements of gas transfer across 

the sediment-water interface are examples of net ecosystem function – not processes per 

se. The underlying mechanisms controlling these functions need further investigation if 

management recommendations are to take account of these findings.  
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 Time integrated functional metrics 8.1.3.

For processes that are integrated over a longer time period (weeks rather than hours), 

environmental conditions were expected to act synergistically on the community within a 

reach. It was not expected, therefore, that relationships between process rates and single 

parameters would be as clear as those for the short term functional metrics described in 

chapter 6; this proved to be the case. 

There were significant differences between the study reaches both in leaf litter degradation 

and macro-invertebrate herbivory. Macro-invertebrate mediated leaf litter degradation 

(k(invert)dd-1) was significantly correlated with macro-invertebrate abundance ( P < 0.05) and 

relationships between nutrient chemistry and process rates echoed the differences in 

nutrient chemistry between reaches (chapter 7). Herbivory, on the other hand, showed no 

correlation with either macro-invertebrate abundance or periphyton accrual, but did exhibit 

a positive relationship with both discharge and velocity, and with nutrient concentrations 

that again reflected characteristic differences in nutrient chemistry between reaches.  

More detailed examination of the relationships between nutrient fractions and within- 

stream variability were inconclusive. However, there were suggestions of some possible 

nutrient limitation in the Cool’s Cottage reach that impacted on algal accrual, and an 

increase in macro-invertebrate mediated process rates during higher flows at Priors Farm 

(chapter 7). Episodic discharges with high organic content and accompanied by flocculated 

material appeared to provide an alternative resource to both microbial and macro-

invertebrate communities in the Priors Farm reach; this may have impacted on feeding 

choices (Lauridsen et al., 2014) and resulted in the reduced rates of detritivory and 

herbivory recorded in the Priors Farm reach when compared to the Cool’s Cottage reach. 
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Macro-invertebrate processes are also affected by low DO concentrations. Uncertainties in 

the reliability of the data retrieved from the DO sensor at Priors Farm (chapter5) precluded 

statistical analysis of this potentially critical influence. However, the combination of low flow 

and high organic matter In the Priors Farm reach adversely affected dissolved oxygen 

concentrations, with extreme DO fluctuations at the unshaded downstream site and chronic 

low DO concentrations at the upstream, shaded site (chapters 3 and 5). Studies on the 

effects of low concentrations of DO on macro-invertebrates show limited lethal effects on 

prolonged (24 hr) exposure and increased deaths in survivors for up to 30 days thereafter 

(Maltby, 1995). Exposure to less extreme concentrations (particularly over prolonged 

periods as experienced at the upstream site in the Priors Farm reach) leads to behavioural 

effects that are accompanied by reduced feeding activity (Jones et al., 2009). Gammarus 

pulex is more sensitive to low DO concentrations than Asellus aquaticus (Maltby, 1995; 

Jones et al., 2009), leading to the dominance of Asellus aquaticus in the Priors Farm reach. 

The increase in the ratio of Gammarus pulex to Asellus aquaticus in the winter, when the 

reach experienced periods of high flow and increased DO concentrations, supports these 

observations. 

8.2. Evaluating ecosystem functional metrics in assessments of  

 stream health - and future directions 

To be effective, a measure of stream health needs to be sensitive to the stressors of 

interest, and robust to other environmental factors. Three distinct groups of ecosystem 

function were assessed for their suitability as routine measures of functional integrity, 

thereby complementing current standard, structural measures. The results presented here 

indicate that all process measurements were sensitive to the pressures that arise from 
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differing management practices. However, each has different limitations and implications 

both to logistics and resources. 

 Community aerobic respiration  8.2.1.

Aerobic respiration is one of the most fundamental ecosystem processes and was proved 

sensitive to the different environments in the two study reaches (chapter 6). In its simplest 

form (measurement of changes in dissolved oxygen concentration in closed chambers as 

used in this study), it is straightforward, and relatively low cost. However, issues arising from 

low frequency of incubations were identified. Discrete measurements of community 

respiration failed to coincide with the episodic pulses of high organic matter that appeared 

to be a dominant factor in the loss of functional integrity in the Priors Farm study reach. 

Methods, such as one and two point, open-channel diel monitoring can be modified to 

provide continuous monitoring of community respiration (Uehlinger, 2006) that would 

overcome this limitation.  Continuous monitoring of DO is a high cost, high maintenance 

option, especially in the conditions prevalent at the Priors Farm downstream site.  However, 

reliable, continuous measurements of dissolved oxygen, combined with accurate measures 

of atmospheric pressure, would make possible the high frequency estimation of whole 

stream community respiration that is needed to capture the effects of these episodes on 

this key ecosystem process.  

 Anaerobic respiration  8.2.2.

The net accumulation of greenhouse gasses across the sediment-water interface varied with 

contrasting in-stream chemistry. Although not individual process measurements, they 

represent a useful measure of ecosystem function in streams with a high proportion of fine 

sediments in the stream bed. Direct measurements of anaerobic processes present 
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significant problems. Measurements using stable isotopes and narrow bore piezometers 

have demonstrated high within-site variability (Pretty et al., 2006; Sanders et al., 2007; 

Trimmer et al., 2009) and the methods are costly, making direct measurements unsuitable 

for routine use.  However, the development of techniques to measure whole-stream 

nitrogen metabolism (analogous to the diel oxygen curves for photosynthesis and aerobic 

respiration) is gaining pace (Trimmer et al., 2012 and references therein), and future uptake 

of these methods would allow the inclusion of anaerobic processes in the improved 

assessment of aquatic ecological status.  

 Time integrated functional metrics 8.2.3.

Rates of detritivory and herbivory were highly sensitive to the different environmental 

conditions experienced by the in-stream communities in the Priors farm and Cool’s Cottage 

study reaches. Process rates within this study fitted well into the proposed frameworks for 

assessing the degree of impact based on these key metrics. However, the bimodal response 

of these variables to dissolved inorganic N and P highlights the need for a better 

understanding of the availability of other nutrient fractions. The development of a rapid and 

reliable index of the availability of nutrients other than SRP and DIN, perhaps through a 

combination of biological assays and optical characterisation of DOM, would greatly assist in 

our understanding of the detrimental effects of high level pollution. In both processes, 

temporal variation in rates of detritivory and herbivory were much greater than within-

stream variability. This seasonal variation emphasises the need for process measurements 

to be conducted throughout the year; for example, substantial minima in leaf litter 

degradation in the autumn (commonly the season chosen for studies of leaf litter 

processing) would result in underestimates of the differences between these two sub-
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catchments. Despite the strong influence of light on rates of algal productivity, rates of 

herbivory proved to be independent of light in the Priors Farm reach and highlighted the 

increased availability of alternative food sources in the Priors Farm reach.  Methods for the 

measurements of leaf litter processing and macro-invertebrate herbivory are 

straightforward and inexpensive, making them suitable for routine assessments of in-stream 

ecosystem functional integrity. 

Despite being one of the most obviously visible manifestations of nutrient enrichment, 

photosynthetic primary production proved the least useful variable in distinguishing 

between the study reaches. The overriding factor influencing this process was light, making 

it less suitable for many small headwater streams that are often shaded by bankside 

vegetation (unless clearance is the environmental stressor to be tested). It remains a useful 

measure of ecosystem function in unshaded reaches where the ratio of photosynthetic 

primary production to community respiration can be a powerful indicator of the extent to 

which these processes become de-coupled with increasing impact (Battin et al., 2008). 

8.3. Conclusions 

The outputs from this project confirm the value of measuring ecosystem function in 

assessments of aquatic ecological status. Extreme variation in environmental conditions, 

particularly in streams subject to episodic pulses of organically rich inputs (as in the Priors 

Farm reach), emphasises the importance of high frequency monitoring of all nutrient 

species and fractions as well as of key ecosystem processes. Future research into the 

availability of ‘black box’ nutrient fractions to the in-stream community is key to improving 

our understanding of the mechanisms behind detrimental human impact. Understanding 
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the mechanisms behind deterioration of functional integrity in impacted streams is essential 

to effective targeting of management strategies. 
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Appendix A – Index to data files on accompanying CD. 

 

Data files for Chapter 3 

1. Daily and monthly rainfall totals at Tisbury weather station:  

(data provided by Environment Agency, SW region). 

2. Daily minimum and maximum river temperatures at the outlet to the Cool’s 

Cottage sub-catchment: (data provided by ADAS). 

3. Locations and Mg:Ca ratios for the spatial sampling sites in the Cool’s Cottage 

and Priors Farm sub-catchments. 

Data files for Chapter 5 

1. Spatial variation in nutrient concentrations at weekly & occasional sampling 

sites in the Cool’s Cottage and Priors Farm sub-catchments. 

2. Nutrient fractions and NP ratios at the outlets to the Cool’s Cottage and Priors 

Farm sub-catchments. 

3. Daily discharge and nutrient concentrations at the outlets to the Cool’s Cottage 

and Priors Farm sub-catchments: (discharge data provided by ADAS). 

4. High resolution DO concentration at the outlets to the Cool’s Cottage and Priors 

Farm sub-catchments: (data provided by ADAS). 
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Data files for Chapter 6 

1. Summary of key short term aerobic metabolic indicators. 

2. Aerobic metabolic rates during benthic incubations_master (for stats). 

3. Nutrient transformations during benthic incubations. 

4. Daytime dissolved oxygen readings at weekly sampling sites. 

5. Greenhouse gas accumulation during benthic incubations_master (for stats). 

Data files for Chapter 7 

1. Absolute leaf loss by mass and degradation rates for individual deployments. 

2. Leaf litter degradation rates_ master (for stats). 

3. Absolute algal accumulation and herbivory; and process rates_master for stats). 

4. Macro-invertebrate numbers and trait data (data provided by QMUL_RCG). 

5. Stream velocity at Cool’s Cottage (data provided by ADAS). 

6. Stream velocity at Priors Farm (data provided by ADAS). 

 

 

 


