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A multisatellite climatology of clouds, radiation,
and precipitation in southern West Africa
and comparison to climate models
Peter G. Hill1, Richard P. Allan1, J. Christine Chiu1, and Thorwald H. M. Stein1

1Department of Meteorology, University of Reading, Reading, UK

Abstract SouthernWest Africa (SWA) has a large population that relies on highly variablemonsoon rainfall,
yet climate models show little consensus over projected precipitation in this region. Understanding of the
current and future climate of SWA is further complicated by rapidly increasing anthropogenic emissions and a
lack of surface observations. Using multiple satellite observations, the ERA-Interim reanalysis, and four
climate models, we document the climatology of cloud, precipitation, and radiation over SWA in June–July,
highlight discrepancies among satellite products, and identify shortcomings in climate models and
ERA-Interim. Largedifferences exist betweenmonthlymean cloud cover estimates from satellites, which range
from 68 to 94%. In contrast, differences among satellite observations in top of atmosphere outgoing radiation
and surface precipitation are smaller, with monthly means of about 230Wm�2 of longwave radiation,
145Wm�2 of shortwave radiation, and5.87mmd�1 of precipitation. Both ERA-Interim and the climatemodels
show less total cloud cover than observations, mainly due to underestimating low cloud cover. Errors in cloud
cover, along with uncertainty in surface albedo, lead to a large spread of outgoing shortwave radiation.
Both ERA-Interim and the climate models also show signs of convection developing too early in the diurnal
cycle, with associated errors in the diurnal cycles of precipitation and outgoing longwave radiation. Clouds,
radiation, and precipitation are linked in an analysis of the regional energy budget, which shows that
interannual variability of precipitation and dry static energy divergence are strongly linked.

1. Introduction

West Africa is currently experiencing a rapid growth in population and associated air pollution; it is also
subject to the substantial variability of theWest Africanmonsoon (WAM) rains, making this region particularly
vulnerable to climatic impacts relating to health and food security [Knippertz et al., 2015b]. Monsoon
precipitation and related large-scale processes show variability at both intraseasonal [Sultan et al., 2003; Gu
and Adler, 2004] and interannual [Sylla et al., 2009; Jianping and Qingcun, 2003] scales. This rainfall variability
affects regional crop yields [Sultan et al., 2005a] and has been connected to meningitis outbreaks [Sultan
et al., 2005b]. The WAM is intimately linked with the global atmospheric circulation, and consequently, its
impacts spread beyond Africa. For example, modeling studies have shown that a strong monsoon
contributes to the positive phase of the North Atlantic Oscillation [Gaetani et al., 2011].

The most populous part of West Africa is predominantly urban and concentrated along the southern coastal
regions [Nelson, 2004], yet there is a general lack of surface observations in southern West Africa (SWA) and
the region remains understudied [Knippertz et al., 2015a]. Consequently, this highly populated region remains
relatively poorly understood and the complex interplay between clouds, precipitation, radiation, aerosol
pollution, and the WAM further motivates detailed investigations into the climate and the physical drivers
of variability across this region.

The West African monsoon season runs between March and October. During this period the southern coastal
regions experience two rainy seasons separated by a short dry season [Le Barbé et al., 2002]. The first wet sea-
son runs from March to June, with maximum precipitation along the coast in May. The Intertropical
Convergence Zone (ITCZ) and consequently much of the precipitation shift farther north in June/July, which
leads to increased cloudiness and is the focus period for this study. With the ITCZ to the north, the coastal
regions experience a short dry season during July and August, which is linked to stronger subsidence asso-
ciated with outflows from deep convection to the north [Omotosho, 1988]. The ITCZ retreats back toward
the coast, bringing a second wet season from September to October.
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During the monsoon season, SWA experiences a complex pattern of cloud types with a pronounced diurnal
cycle. Stein et al. [2011] identified numerous distinct cloud types in this region, from CloudSat and CALIPSO,
with notable differences in cloud type, frequency of occurrence, and amount when present between the day
and night overpasses. Moreover, low-level stratus has been found to occur frequently, with maximum extent
between 0900 and 1000UTC andminimum around 1800UTC [van der Linden et al., 2015; Schrage et al., 2006].

General circulation models struggle to correctly simulate the complex observed cloud and precipitation cli-
matology in SWA. Hourdin et al. [2010] showed large accumulated precipitation differences between the
models that participated in the African Monsoon Multidisciplinary Analysis Model Intercomparison Project
throughout West Africa. Knippertz et al. [2011] found that Coupled Model Intercomparison Project phase 3
(CMIP3) models show little consensus on themean July–September cloud cover in this region and on average
allow too much solar radiation to reach the surface. Cloud and precipitation errors persist in the CMIP5 mod-
els, which show large zonal mean precipitation and cloud radiative effect differences throughout West Africa
and have problems with the timing and magnitude of the diurnal cycle of precipitation [Roehrig et al., 2013].
Even numerical weather prediction models at convection-permitting resolution can have large cloud errors in
SWA; Stein et al. [2015] showed that the Met Office Unified Model overestimates low cloud cover and under-
estimates anvil cloud cover at all resolutions from 40 to 1.5 km. Cloud errors in SWA can have a large impact
on radiation [Knippertz et al., 2011], which in turn may affect the broader circulation [Li et al., 2015; Marsham
et al., 2013]. In light of these problems simulating present-day climate, it is perhaps unsurprising that projec-
tions of future precipitation in West Africa show large diversity, for both regional [Paeth et al., 2011] and glo-
bal coupled [Cook and Vizy, 2006] models.

The uncertainty arising from existing model deficiencies is compounded by rapid increases in anthropogenic
emissions in SWA; aerosol concentrations in SWA are poorly understood, as are their interactions with clouds
[Knippertz et al., 2015b]. The Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) pro-
ject [Knippertz et al., 2015a] aims to improve our understanding of the physical and chemical processes in this
region, through an extensive field campaign in SWA, including a multiaircraft campaign in June–July 2016,
and a broad range of modeling studies.

The present study aims to document and understand the climatology of clouds, radiation, precipitation, and
their interconnections by combining observations and simulations in June–July over the region of West
Africa centered upon 5–10°N and 8°W–8°E, which we shall hereafter refer to as the DACCIWA region. The pri-
mary motivation is to improve understanding of the physical processes determining the climate of this
region, to highlight deficiencies in the reanalysis and climate model simulations and to provide context for
and interpretation of upcoming planned observational campaigns such as the DACCIWA project. While pre-
cipitation is of great importance for health and agriculture, links between the water and energy cycles and
the complex interaction between cloud, aerosol, and radiation require a holistic approach in evaluating the
climate of this region. For this purpose we rely upon satellite measurements which are able to capture the
large-scale structure of clouds and radiation and greatly add to the limited surface observations available.
Advancing on previous studies [Knippertz et al., 2011; Stein et al., 2011; Roehrig et al., 2013; van der Linden
et al., 2015], we make detailed assessment of multiple satellite products and consider state of the art climate
model simulations including their representation of the diurnal cycle within a focused region. Driving ques-
tions are as follows: what are the primary characteristics of the climatology of this region, which satellite
observations are most suitable for analysis, what are the primary model biases, and what aspects of the cli-
mate system are poorly understood for this region? This analysis therefore also seeks to inform and prioritize
future and ongoing observations and research undertaken as part of the DACCIWA project. The following sec-
tions outline the observations used and detail the climatology of clouds, radiation, and precipitation and their
diurnal cycle in observations, reanalyses, and climate model simulations.

2. Data Sets

This study considers the wider southern West Africa region shown in Figure 1 but focuses in particular on the
area 8°W–8°E and 5–10°N, as highlighted by the dotted boxes, which we refer to as the DACCIWA region.
These boundaries were chosen to avoid the Guinea Highlands to the west, the Jos Plateau to the east, and
the Gulf of Guinea to the south. This results in a domain that is large enough to reduce statistical sampling
errors but sufficiently homogeneous for domain-mean values to be meaningful and matches that used for
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averaging in the modeling component of the DACCIWA project. The DACCIWA region consists of forests and
cropland near the coast, with wooded savannas farther inland and savannas to the north of the domain. We
focus on the months of June and July coinciding with the progression of the summer monsoon and for
consistency with the planned DACCIWA aircraft campaign [Knippertz et al., 2015a].

As noted in section 1, June–July is a transition period for the DACCIWA region. However, June–July differ-
ences (see supporting information) are generally quite small. Cloud cover differences between June and
July are much smaller than the differences between different satellite cloud cover products discussed in
the following section. Moreover, observed differences in clouds, precipitation, and top of atmosphere radia-
tion between June and July are smaller than the errors in the climate models and ERA-Interim discussed in
section 4.

We use seven observational data sets including retrievals from both active and passive sensors and from both
Sun synchronous and geostationary orbiting satellites. Expanded acronyms and key properties for these data
sets are summarized in Table 1. As few of the data sets exist prior to 2000, we focus on 2000 to present. For
ease of comparison, the observational data sets, ERA-Interim, and the climate models are all regridded to a
resolution of 1°.

Longwave cloud radiative effects are strongly dependent on the temperature and consequently height of a
cloud. To facilitate our understanding of cloud-radiation interactions, we consider cloud cover at different
heights, with separate values of cloud cover for high clouds (tops above 440 hPa), mid-level clouds (tops
between 440 and 800 hPa), and low clouds (tops below 800 hPa). These thresholds were chosen as they
are already in use in many of the data sets considered and consequently can be applied consistently across
climate models, ERA-Interim, and observations.

2.1. Satellite Products

The DARDAR [Delanoe and Hogan, 2010] product is based on combined CloudSat radar [Stephens et al., 2002]
and CALIPSO lidar [Winker et al., 2009] observations at 1:30 and 13:30 local time, providing vertically resolved

Figure 1. June–July mean properties of cloud, precipitation, and radiation over year 2002–2008 in southern West Africa,
including (a) total cloud cover from MODIS, (b) precipitation from TRMM, (c) outgoing shortwave radiation from
CERES-SYN, and (d) longwave radiation from CERES-SYN. The dotted line indicates the DACCIWA region that is used in
Figure 2 onward.
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cloud properties. While the DARDAR product is based on active measurements that can detect multiple cloud
layers, the other satellite cloud products use observations from passive instruments that are only able to
detect the highest cloud layer and cannot detect lower clouds beneath higher clouds. Consequently, only
the high clouds from the passive satellite data sets can be usefully compared to DARDAR. To ensure a mean-
ingful comparison between DARDAR and the passive observations, we remove potentially obscured clouds
from DARDAR. This only affects the mid-level and low cloud cover from DARDAR. We shall refer to this as
DARDAR-passive like.

The Moderate Resolution Imaging Spectroradiometer (MODIS) data set is based on radiometer observations
from two polar-orbiting satellites; Terra was launched in 2000 and crosses the equator at approximately 10:30
and 22:30 local time, while Aqua was launched in 2002 and crosses the equator at approximately 1:30 and
13:30 local time. We use themonthly global product, collection 6 [Platnick, 2015], which includes monthly sta-
tistics at a resolution of 1° × 1°. For total cloud cover, we use the mean cloud fraction, which is derived from
the instantaneous cloud mask [Frey et al., 2008] and includes both day and night data. For our analysis of
cloud cover at different heights we calculate high, mid-level, and low cloud cover from the cloud fraction-
pressure histogram, which is based on the instantaneous cloud top pressure [Platnick et al., 2003]. The cloud
top pressure is determined by a CO2 slicing technique using multiple spectral bands between 13.3 and
15μm. For low clouds, if the CO2 slicing technique fails to give a valid solution, then the infrared window
approach is used, where the brightness temperature at 11μm is used to determine a cloud top temperature,
and temperature profiles from the National Centers for Environmental Prediction Global Data Assimilation
System are used to convert this to a cloud top pressure. This ensures that the cloud top pressure is deter-
mined for all cloudy points.

The CMSAF-CLAAS (Climate Monitoring Satellite Applications Facility-Cloud Property Dataset using SEVIRI
(Spinning Enhanced Visible and Infrared Imager)) product is based on instruments on the geostationary
Meteosat Second Generation satellites [Stengel et al., 2014]. The geostationary orbit provides excellent diurnal
sampling; the CMSAF data set has excellent potential for understanding cloud diurnal variability. However, as

Table 1. Key Features of Observational Data Sets Used in This Study

Source Version Period Orbit Resolution References

MODIS-Moderate Resolution
Imaging Spectroradiometer

Atmosphere L3 Monthly
Global Product; collection 6

December 2001 to
present (Terra) June

2002 to present (Aqua)

Polar x2 Gridded to 1.0° Platnick [2015]

DARDAR-radar-lidar DARDAR-MASK 2006–2010 Polar 1.1 km horizontal
60m vertical

Delanoe and
Hogan [2010]

CMSAF-the satellite application
facility on climate monitoring

Cloud Property Dataset using
SEVIRI (CLAAS) version 1

January 2004 to
December 2011

Geostationary Approximately 4 km Stengel et al. [2014]
doi:10.5676/

EUM_SAF_CM/
CLAAS/V001
doi:10.5676/

EUM_SAF_CM/
CLAAS/V001#_blank

GPCC Full data reanalysis
version 7.0 at 1.0°

January 1901 to
December 2013

N/A
(gauge based)

Gridded to 1.0° Schneider et al. [2014]
doi:10.5676/
DWD_GPCC/
FD_M_V7_100
doi:10.5676/
DWD_GPCC/

FD_M_V7_100#_blank
TRMM-Tropical Rainfall
Measuring Mission

3B42 V7 January 1998
to present

N/A
(merged product)

Gridded to 0.25° Huffman et al. [2007]

GPM-Global Precipitation
Measurement

IMERG 3B-HHR March 2014 to present N/A
(merged product)

0.1° Hou et al. [2014] and
Huffman et al. [2013]

CERES-Clouds and the Earth’s
Radiant Energy System

SYN1deg-3Hour Ed3A December 2001 to
present (Terra) June

2002 to present (Aqua)

Polar x2 1.0° Wielicki et al. [1996] and
Doelling et al. [2013]

GERB-Geostationary Earth
Radiation Budget

High-resolution
image version 6

April 2004 to present Geostationary 9 × 9 km at nadir Harries et al. [2005] and
Dewitte et al. [2008]
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a relatively new data set, there is likely to be potential for further refinements to the algorithm. We use the
instantaneous cloud mask and cloud top pressure to calculate monthly mean total, high, mid-level, and
low cloud cover for West Africa at a resolution of 1° × 1°. The cloud detection algorithm [Derrien and Le
Gleau, 2005] is based on visible and infrared threshold tests in multiple bands combined with spatial variabil-
ity tests. The threshold tests use eight bands, compared to the 22 used in the MODIS cloud mask algorithm.
Like MODIS, cloud top pressure is determined using a combination of the infrared window approach and CO2

slicing. However SEVIRI lacks the multiple CO2 channels used in the MODIS algorithm and CO2 slicing is used
much less frequently than in MODIS. The infrared window approach is used for low-level and mid-level thick
clouds. For semitransparent high clouds, the infrared window intercept method is applied. This is similar to
CO2 slicing but uses infrared and water vapor channels. CO2 slicing is only applied for optically thick high
clouds or when the infrared window intercept method fails.

Note that the cloud top pressure in the CMSAF-CLAAS product is not estimated for all cloudy pixels. If a pixel
contains fractional clouds (which are mainly low-level water clouds according to Stengel et al. [2014]), then
no cloud top pressure is determined. Consequently, the mid-level, low-level, and high-level cloud covers,
which are estimated using the cloud top pressure, do not sum to the total cloud cover, which is based on
the cloud mask.

We compare three precipitation data sets. The first data set, the TRMM (Tropical Rainfall Measuring Mission)
Multisatellite Precipitation Analysis (TMPA) [Huffman et al., 2007], has been identified as one of the best
satellite rainfall data sets over West Africa [Roca et al., 2010; Pfeifroth et al., 2016]. We use the 3B42 data that
provide precipitation estimates every 3 h. TMPA combines microwave precipitation estimates from a variety
of satellites (which are intercalibrated to precipitation estimates directly from the TRMM satellite) with
geostationary infrared precipitation estimates created using the calibrated microwave precipitation. To
ensure good performance at the monthly mean scale, the precipitation estimates are subsequently rescaled
to match monthly mean gauge measurements.

The second precipitation data set considered is the Global Precipitation Measurement (GPM) mission [Hou
et al., 2014], which is the follow up to TRMM. The Integrated Multisatellite Retrievals for GPM (IMERG) data
set [Huffman et al., 2013] used in this study uses a similar algorithm to the TMPA product. GPM was launched
in February 2014, and data are available from March 2014. Consequently, our comparison with TRMM is
limited to June–July 2014. Nevertheless, we think that this provides a useful initial examination of the
diurnally resolved differences between the data sets in this region. Initial global comparisons on a monthly
scale show that TMPA-IMERG differences are small over land [Liu, 2016]. Quantifying uncertainty in merged
precipitation products such as TMPA and GPM IMERG is difficult and remains an area of ongoing research
[Sorooshian et al., 2011].

The third precipitation data set considered is the Global Precipitation Climatology Centre (GPCC)
precipitation reanalysis product [Schneider et al., 2014]. This is based on quality-controlled gauge records
obtained from 75,000 surface stations between 1900 and 2013. The GPCC reanalysis product is used to cali-
brate the TRMM product over land at the monthly mean scale up to 2010. For later years, both TRMM and
GPM use the GPCC monitoring product, which is based on fewer gauges. Although the number of gauges
used in the GPCC analysis product in West Africa is relatively small, Nicholson et al. [2003] showed that it
compares well with a denser rain gauge network. However, the GPCC product only provides estimates at
the monthly mean scale, with no diurnal cycle. Consequently, we prefer the TRMM and GPM data sets, which
by design match the monthly mean GPCC values, but provide subdaily data for analyzing the diurnal cycle
of precipitation.

Note that satellite precipitation products generally capture convective precipitation but struggle to detect
warm rain (precipitation produced by liquid clouds) events [Ebert et al., 2007]. The use of gauges in the
TRMM product may improve total biases at the expense of increasing the precipitation amount when present
to compensate for any undetected precipitation events [Tian et al., 2009]. The sparsity of surface observations
may also affect the performance of both TMPA and GPM, which depend on local gauge calibration [Worqlul
et al., 2014].

For top of atmosphere (TOA) radiation, we use Clouds and the Earth’s Radiant Energy System (CERES) [Wielicki
et al., 1996] and Geostationary Earth Radiation Budget (GERB) [Harries et al., 2005] data sets. The CERES
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instrument measures radiances in three channels: total (0.3–200μm), SW (0.3–5μm), and LW window
(8–12μm). These radiances are converted to instantaneous TOA flux estimates using a scene-dependent
angular distribution model (ADM) as described by Loeb et al. [2003]. CERES instruments are limited to the
same two polar-orbiting satellites as MODIS and consequently only sample the diurnal cycle at four times.
We use the synoptic radiative fluxes and clouds (CERES-SYN) product [Doelling et al., 2013], which capitalizes
on geostationary imagers to estimate the diurnal variability between CERES observations, using coincident
geostationary and MODIS/CERES observations to ensure that CERES calibration is maintained. The dominant
source of uncertainty in CERES TOA radiation measurements relates to absolute calibration [Loeb et al., 2009],
which is estimated to be 2% for the SW channel and 1% for the total channel [Priestley et al., 2002]. Clear-sky
fluxes are estimated as the mean for those CERES footprints for which the cloud fraction is less than 1%,
where the cloud mask is estimated using MODIS [Minnis et al., 2011].

The GERB data set [Dewitte et al., 2008] is based on a series of GERB instruments on the geostationary
Meteosat Second Generation satellites. GERB2 was launched in August 2002 and began operations in
February 2004, while GERB1 was launched in December 2005 and began operations in May 2007. The HR
(high-resolution) product used in this study has a temporal resolution of 15min. The GERB instruments
measure radiances in two channels, total (0.3–100μm) and SW (0.3–4μm), and LW radiance is calculated
by subtraction of SW from the total. The theoretical uncertainty for instantaneous unfiltered radiances is
about 2% in the SW and 1% in the LW [Clerbaux et al., 2009].

To convert radiance to flux, the CERES ADMs in the SW and theoretical ADMs [Clerbaux, 2003] in the LW were
used, along with the scene identified from SEVIRI. Comparison of instantaneous fluxes for earlier editions of
the GERB and CERES products [Clerbaux et al., 2009] found reasonable agreement between GERB2 and CERES
in the LW, but larger differences in the SW, which were attributed to differences in the absolute calibration
accuracy; following the GERB2 data quality summary recommendations, we apply an additional calibration
factor which reduces this difference.

Unlike CERES products, the GERB product does not report SW fluxes for solar zenith angles larger than 80°. To
complete the diurnal cycle, we fill this missing data using mean twilight values from CERES [Kato, 2003] for
zenith angles between 86.5° and 104.5°. Kato [2003] does not report fluxes at zenith angles less than 86.5°,
so we use linear interpolation in time to fill zenith angles between 80° and 86.5°.

Estimates of the radiative heating of the atmosphere are required to understand the atmospheric energy
budget and links between radiative heating and latent heating. The atmospheric radiative heating is calcu-
lated by subtracting net downward surface radiative fluxes from the net downward top of atmosphere radia-
tive fluxes. Surface fluxes are not measured by satellites but are calculated using radiative transfer models in
some CERES products. For consistency, atmospheric radiative heating is calculated using surface and top of
atmosphere fluxes from the same product. In particular, we use the CERES-EBAF [Loeb et al., 2009] product
and the CERES-COMPUTED [Rutan et al., 2015] product. We do not use the CERES-SYN product employed
in the analysis of top of atmosphere fluxes as it does not have consistent surface flux estimates.

2.2. ERA-Interim

Reanalyses provide spatially and temporally complete estimates of the state of the atmosphere and estimates
of atmospheric motion that are difficult to observe. For regions of sparse observations such as southern West
Africa, reanalyses are particularly useful, although caution needs to be exercised since they are likely to be
less reliable due to the lack of conventional observations to assimilate.

The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim [Dee et al., 2011] reanalysis
runs from 1979 and is continuously updated. If, as Knippertz et al. [2011] suggest, ERA-Interim performs rea-
sonably in the DACCIWA region, then it potentially provides a useful tool for understanding errors in other
models. The analysis is computed using a 2006 release of ECMWF’s Integrated Forecasting System, which
has a horizontal resolution of approximately 80 km and 60 vertical levels. For comparison to the satellite cloud
products, we calculated high-level, mid-level, and low-level cloud cover (as seen from space) from the cloud
cover on model levels, assuming maximum-random overlap [Geleyn and Hollingsworth, 1979]. The
contribution of horizontal energy transport to the regional energy budget, as discussed in section 3.2.2, is
approximated by the column-integrated divergence of dry static energy flux and calculated from
ERA-Interim with a mass correction following Liu et al. [2015].
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Note that ERA-Interim analysis fields
are available at most every 6 h and
only every 12 h for some fields. To fill
in the missing points in the diurnal
cycle, we use data from the ERA-
Interim forecast, which is available
every 3 h. We also use ERA-Interim

forecast data for variables that are output as accumulated fluxes and therefore not available at the analysis
time (e.g., radiative fluxes and surface precipitation). Differences between ERA-Interim forecast and analysis
fields as noted by Knippertz et al. [2011] are beyond the scope of this study.

2.3. Climate Models

To investigate errors in state of the art climate models, we use simulations from the Coupled Model
Intercomparison Project (CMIP) phase 5 experiment [Taylor et al., 2012]. CMIP5 provided the climate model
simulations that form the basis of the Intergovernmental Panel on Climate Change Fifth Assessment
Report [Pachauri et al., 2014]. As this study focuses exclusively on atmospheric processes, we use
Atmospheric Model Intercomparison Project (AMIP) simulations that employ predetermined realistic sea sur-
face temperatures and sea ice. As SWA exhibits notable diurnal cycles of cloud, precipitation, and radiation
[Stein et al., 2011; van der Linden et al., 2015; Pfeifroth et al., 2016], which will affect their interactions, we focus
on those AMIP5 models for which 3-hourly output is available: CanAM4, CNRM-CM5, HadGEM2-A, and
MRI-CGCM3. Further details of these models are given in Table 2.

3. Satellite Observations of Cloud, Precipitation, and Radiation
3.1. Spatial Variability

To understand the overall relation between cloud, precipitation, and radiation, we first examine their mean
regional distribution using MODIS, TRMM, and CERES products, as shown in Figure 1. Regions with extensive
cloud cover and heavy precipitation are associated with high outgoing shortwave radiation (OSR) due to
substantial reflectance of sunlight by clouds and low outgoing LW radiation (OLR) due to cold cloud top tem-
perature. Largest cloud cover and precipitation occur to the immediate east and west of the DACCIWA region
and are linked to topography, in particular the Guinea Highlands to the west and the Jos Plateau to the east.
Increased cloud cover in these regions is linked to increased OSR and decreased OLR. Between these
cloud/precipitation maxima lies the DACCIWA region, highlighted by the black box. This excludes by design
significant topography but may be affected by convective systems initiated over the Jos Plateau that travel
westward into the region of interest [Fink et al., 2006]. While the DACCIWA region has less extreme values
than observed over the topography to the east and west, it shows larger precipitation, cloud cover, and
OSR and smaller OLR than the Sahel to the immediate north and the Gulf of Guinea to the south.

Table 2. Details of Climate Models Used in This Study

Model Name Country Horizontal Resolution Vertical Resolution

CANAM4 Canada 2.8° × 2.8° L35
CNRM-CM5 France 1.4° × 1.4° L31
HadGEM2-A UK 1.25° × 1.875° L38
MRI-CGCM3 Japan 1.125° × 1.125° L48

Table 3. DACCIWA Region (8W–8E, 5–10 N) Mean and Interannual Variability (Standard Deviation of Annual Means, Given in Parentheses) for June–Julya

Variable Observations Models Reanalysis

Cloud DARDAR MODIS CMSAF CanAM4 CNRM-CM5 HadGEM2-A MRI-CGCM3 ERA-Interim
Total cover 0.94 (0.02) 0.89 (0.01) 0.68 (0.02) 0.82 (0.03) 0.71 (0.04) 0.54 (0.04) 0.72 (0.02) 0.74 (0.03)
High cover 0.74 (0.05) 0.45 (0.04) 0.36 (0.03) 0.31 (0.06) 0.44 (0.03) 0.29 (0.05) 0.36 (0.04) 0.45 (0.04)
Mid-level cover 0.14 (0.03) 0.21 (0.03) 0.13 (0.01) 0.28 (0.02) 0.18 (0.03) 0.16 (0.02) 0.28 (0.03) 0.10 (0.01)
Low cover 0.06 (0.01) 0.18 (0.02) 0.05 (0.01) 0.21 (0.02) 0.04 (0.01) 0.09 (0.02) 0.07 (0.01) 0.16 (0.03)
Precipitation (mmd�1) TRMM GPM CanAM4 CNRM-CM5 HadGEM2-A MRI-CGCM3 ERA-Interim

5.87 (0.89) 5.00 6.45 (0.97) 5.72 (0.74) 4.65 (0.69) 5.16 (0.59) 5.80 (0.89)
Radiation (Wm�2) CERES GERB CanAM4 CNRM-CM5 HadGEM2-A MRI-CGCM3 ERA-Interim
Outgoing SW 147.6 (3.2) 144.7 (4.0) 154.6 (4.4) 137.4 (7.0) 127.7 (6.4) 163.8 (4.5) 149.4 (5.3)
Clear-sky outgoing SW 58.47 (1.2) - 66.7 (0.5) 69.2 (0.1) 70.5 (0.6) 84.4 (0.1) 62.7 (0.1)
TOA SW CRE 88.6 - 87.9 68.2 57.1 79.4 86.7
OLR 229.8 (3.5) 230.4 (2.8) 231.1 (6.5) 234.1 (3.2) 246.6 (5.2) 234.7 (3.4) 244.4 (3.0)
Clear-sky OLR 273.0 (0.8) - 272.4 (1.0) 272.6 (0.9) 276.6 (2.1) 272.9 (0.7) 271.4(1.0)
TOA LW CRE �43.2 - �41.2 �38.5 �30.0 �38.2 �27.0

aFor each data set we use all available years between 2000 and 2015 inclusive.
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The DACCIWA region is relatively homogeneous compared to the strong zonal variability to the immediate
north and topographically induced variability to the east and west. Mean cloud, radiation, and precipitation
fields over the DACCIWA region and uncertainty across observational data set are quantified in the following
section in the context of interannual variability.

3.2. Interannual Variability

The interannual variability can provide insight into the physical processes determining the climate of the
region during June–July as well as contributing context and additional quantification of uncertainty in the
planning for the forthcoming DACCIWA observational field campaign. Multiannual mean and interannual
variability are quantified in Table 3 for each variable and data set.
3.2.1. Cloud, Precipitation, and Radiation
Overall, Figure 2 highlights the large differences between the three satellite cloud products. There is little
coherent variability or trends in cloud fraction across data sets, although the DARDAR-passive-like data set

Figure 2. June–July mean cloud cover from various satellite products. (a–d) Total, high-level, mid-level, and low-level cloud
covers. Shaded regions represent spatial variability, indicated by the interquartile range of cloud cover over the DACCIWA
region. (e and f) Weighted cloud covers are calculated by dividing by the fraction that is not already obscured by higher
cloud. The DARDAR original cloud cover is calculated directly from the DARDAR cloud mask and includes mid-level and
low-level clouds that are detected by DARDAR beneath higher cloud.
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displays an increase in high cloud cover from 71% to 83% over the period 2006–2010. Among the three cloud
data sets used in the study, DARDAR-passive like produces the largest total cloud cover, primarily due to
much larger high cloud cover (Figure 2a); this is not surprising because the lidar observations used in
DARDAR can detect optically thin clouds at high altitudes that are often missed by MODIS [Sun et al., 2011;
Lee et al., 2009]. Although these clouds are optically thin, their radiative effect, particularly in the LW, is
significant [Haladay and Stephens, 2009; Lee et al., 2009; Sun et al., 2011].

In contrast, low and mid-level cloud covers from DARDAR-passive like are less than those from MODIS. This
may be due to cases such as thin cirrus pixels over lower thicker clouds, which are classified as high cloud
by DARDAR-passive like but as low clouds by MODIS. To account for differences in mid-level and low-level
clouds due to obscuration by higher clouds, we calculate new weighted mid-level and low-level cloud covers
(Figures 2e and 2f). To calculate the weightedmid-level cloud cover, we divide the mid-level cloud cover by the
maximum possible mid-level cloud cover, which is less than one due to the presence of high cloud (i.e., we
divide the mid-level cloud cover by one minus the high cloud cover). Similarly, the weighted low-level cloud
cover is calculated by dividing the low-level cloud cover by themaximum possible low-level cloud cover, which
is less than one due to the presence of high-level and mid-level clouds. As detailed in Appendix A, if clouds at
different levels are randomly overlapped, then these weighted values represent the true mid-level and low-
level cloud covers. Thus, if clouds at different levels are randomly overlapped, then the weighted cloud cover
for passive satellite observations can be compared directly to the original DARDAR data set (where we have
not removed mid-level and low-level clouds beneath higher clouds as in Figures 2c and 2d).

To validate the weighted cloud cover, we focus initially on the difference between the weighted DARDAR-
passive-like cloud cover and the original DARDAR mean cloud cover. Agreement between the two indicates
that the weighting can be applied sensibly to the passive cloud cover data sets (i.e., MODIS and CMSAF) for
comparison to the original DARDAR observations. For mid-level cloud the original DARDARmean cloud cover
and weighted DARDAR-passive-like mean cloud cover are very similar (Figure 2e). However, for low-level
clouds, the weighted DARDAR-passive-like cloud cover is larger than the original cloud cover (Figure 2f).
This indicates that low clouds and mid-level or high clouds are not randomly overlapped in the DARDAR data
set. This may be because they are not randomly overlapped in reality but could also be due to missing low-
level cloud beneath higher cloud in the DARDAR data set. Indeed, Schrage and Fink [2012] highlighted pro-
blems detecting low-level stratus beneath higher cloud in SWA, due to attenuation of CALIPSO lidar signal
by the higher cloud and contamination in CloudSat radar reflectivity by ground clutter.

Calculating weighted cloud cover for MODIS gives lower mid-level cloud cover than the DARDAR original
product (Figure 2e); this confirms that the MODIS mid-level cloud cover is only larger than the
DARDAR-passive-like mid-level cloud cover due to larger high cloud cover that obscures mid-level cloud in
the DARDAR-passive-like data set. The difference between DARDAR original and weighted MODIS mid-level
cloud cover shows that MODIS is missing some optically thin mid-level clouds. For low clouds, the weighted
MODIS cloud cover is larger than the original DARDAR cloud cover. Interpretation of this result is complicated
by the lack of agreement between the DARDAR original and weighted DARDAR-passive-like cloud cover and
requires a more detailed comparison of DARDAR and MODIS in this region.

Compared to DARDAR-passive like and MODIS, CMSAF tends to detect less cloud cover at all heights, consis-
tent with results over tropical lands reported in Reuter et al. [2009]. It matches DARDAR-passive-like mid-level
and low-level cloud covers better, but comparison of the CMSAF weighted cloud cover with the DARDAR
original cloud cover shows that this good match is due to increased high cloud in DARDAR-passive like
obscuring more mid-level and low cloud. The MODIS-CMSAF difference is largest for low cloud. This differ-
ence is primarily due to a lack of nocturnal low cloud in CMSAF, as discussed in section 3.3.

Figure 3a shows surface precipitation from TRMM, GPM, GPCC, and ERA-Interim. For 2014, mean precipitation
from GPM and TRMM shows agreement to within 0.5mmd�1 due to both being constrained at the monthly
mean scale by the same surface rain gauge analysis. Given the lack of extended GPM data at this point in
time, TRMM is clearly the better data set for evaluating the climate models and ERA-Interim. TRMM mean
precipitation varies substantially from year to year, ranging from ~4.5mmd�1 in 2013 up to ~7.5mmd�1

in 2002. The longer-term GPCC gauge analysis product shows that this mean and interannual variability is
consistent with the record going back to 1900 (not shown). However, Figure 3b shows that the last few years
have been consistently drier than both the TRMM mean (5.8mmd�1) and the longer-term GPCC mean
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(6.1mmd�1). Indeed, averaging over 5 year periods, the five most recent years of TRMM observations (i.e.,
2011–2015) are drier than any other 5 year period in either the TRMM or GPCC record, with the caveat that
the GPCC full reanalysis currently extends to 2013, so more recent TRMM observations are calibrated using
the GPCC monitoring product.

Figure 4 shows interannual variability of clear-sky and all-sky TOA outgoing fluxes from CERES-SYN and GERB.
For the OSR, there is a notable contrast between the GERB-CERES differences for the GERB2 instrument
(2004–2006) and the GERB1 instrument (2007–2011). GERB2-CERES differences are small, while CERES pre-
dicts larger monthly mean values than GERB1, the magnitude increasing with time up to about 5Wm�2 in
2011, but remains within the sum of the respective observational uncertainties (~6Wm�2). Consequently,
the mean value for the GERB OSR (Table 3) is slightly smaller than the CERES value. The difference between
GERB1 and GERB2 is also evident in the OLR; again, GERB2-CERES differences are smaller, while GERB1
appears to overestimate OLR slightly by around 2Wm�2, which is within the observational uncertainty for
both CERES and GERB.

It is worth noting that the limited sampling of the diurnal cycle in CERES-SYN has a nonnegligible effect on
the mean SW fluxes. Sampling the GERB fluxes at similar points in time leads to an increase in the GERB mean
outgoing SW flux of approximately 6Wm�2 and gives GERB2 values that are larger than CERES and GERB1
values that are a closer match to CERES. Limited sampling of the diurnal cycle can cause similar problems
in climate models [Zhou et al., 2015] and will be discussed further in section 3.3.

Generally, there are little obvious interannual changes in the cloud or radiation observations. Exceptions include
the GERB SW flux, where the change from GERB2 to GERB1 leads to differences of approximately 3.5Wm�2.

Figure 3. June–July mean precipitation (mmd-1). (a) June–July means for individual years as observed by TRMM, GPM, and
GPCC andmodeled in ERA-Interim. (b) Five year runningmeans for June–July for TRMMandGPCC. The shaded regions (error
bar for GPM) shows spatial variability, indicated by the interquartile range over the DACCIWA region, based on 1° resolution.

Figure 4. Mean top of atmosphere outgoing (a) shortwave and (b) longwave radiative fluxes for June–July from CERES-SYN
and GERB. Shaded region shows spatial variability, indicated by the interquartile range, over the DACCIWA region based on
1° resolution. The break in the GERB lines shows where GERB1 replaces GERB2 in 2007.
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The GERB team has more confidence in the calibration of GERB1 (N. Clerbaux, personal communication, 2016),
so we focus on CERES and GERB1 when considering radiation observations in the rest of this paper.
Another notable change is the fall of approximately 10Wm�2 in OLR between 2007 and 2008, which
happens to be the year used for the evaluation of the diurnal cycles in the climate models and
ERA-Interim. This decrease in OLR coincides with a precipitation maximum and high cloud maxima in
MODIS and CMSAF. For precipitation, the natural interannual variability in the DACCIWA region appears
to be large and we must bear in mind that individual years (as used, for example, in section 4) may not be
representative of the longer term.
3.2.2. Budget Analysis
To compare interannual variability of radiation and precipitation, understand how they are linked, and
identify what the sources of variability are, we consider the atmospheric energy and moisture budgets for
June–July. Under the hydrostatic approximation and assuming that kinetic energy transport and changes
in energy and water storage are negligible as in Muller and O’Gorman [2011], the time-mean regional atmo-
spheric energy budget may be expressed as

LcP ¼ Qþ Hd

where Lc is the latent heat of condensation of water vapor, P is the surface precipitation rate, Hd is the
atmospheric horizontal divergence of dry static energy, and Q is the atmospheric net heating from radiation
and sensible heat. Similarly, assuming that changes in water storage are negligible, the time-mean moisture
budget may be expressed as

P � E ¼ Mh

where E is the surface evaporation rate and Mh is the horizontal divergence of moisture.

Satellite data sets provide estimates of precipitation rates, SW column radiative heating, and LW column
radiative cooling, while ERA-Interim can provide sensible heating, surface evaporation, divergence of moist-
ure, and divergence of dry static energy. Figure 5 illustrates the key terms in the atmospheric energy budget
of the DACCIWA region and includes June–July multiannual mean estimates for each term. The DACCIWA

Figure 5. Key terms in the atmospheric energy budget for the DACCIWA region. Numbers shown are June–July means
(standard deviations of interannual means in parentheses) for 2000–2015 from the data source indicated by that color.
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region is fueled by ~110Wm�2 of SW radiative heating, ~170Wm�2 of latent energy release through preci-
pitation, and ~25Wm�2 of sensible heating from the surface. This is balanced by LW net radiative cooling
between �188 and �211Wm�2 (depending on data set) and horizontal divergence of dry static energy of
about �105Wm�2. While SW and LW radiation are among the largest terms in the energy budget, they
and the sensible heat flux show little interannual variability (values in parentheses in Figure 5) and are
relatively homogeneous throughout SWA (not shown). Latent heating and Hd are much more variable, both
temporally and spatially. Year-to-year changes in latent heating and Hd are well correlated (Figure 6a), with a
correlation coefficient of 0.96 when both are estimated from ERA-Interim and 0.41 when latent heating is
based on TRMM precipitation. For both latent heating and Hd these year-to-year changes are generally larger
in the eastern part of the DACCIWA region and appear to be linked to changes in the magnitude and location
of the precipitation maximum near the coast of Nigeria/Cameroon (see supporting information).

Within ERA-Interim, the energy budget balances reasonably well, with cooling exceeding heating by
5.7Wm�2. When we combine satellite estimates of latent heating and radiation with ERA-Interim estimates
of sensible heating and divergence of dry static energy, which are not available from satellites, heating
exceeds cooling by 4.3Wm�2 when we use CERES-EBAF for radiation and 13.9Wm�2 for CERES-
COMPUTED radiation. These differences are primarily due to lower estimates of LW cooling from the satel-
lites. ERA-Interim appears to overestimate LW cooling in the DACCIWA region, which is consistent with an
overestimate of OLR and an underestimate of mid-level cloud cover (Table 3). Assuming that the imbalance
in the combined satellite and ERA-Interim energy budget is due to errors in ERA-Interim, closing the budget
requires either an increase in the divergence of dry static energy or a decrease in sensible heating
in ERA-Interim.

The ERA-interim moisture budget also balances reasonably well; loss of water through precipitation
(5.8mmd�1) is balanced by evaporation (3.4mmd�1) and horizontal moisture convergence (2.4mmd�1).
The mean difference between ERA-Interim and TRMM precipitation is small (Figure 3a), so the balance is
reasonably well maintained when TRMM precipitation (5.9mmd�1) is used. Similarly to the energy budget,
interannual variability is dominated by precipitation and horizontal divergence (Figure 6b). Increased
precipitation is linked to increased horizontal convergence of moisture (i.e., negative divergence), with a
Pearson correlation coefficient of �0.98 when both are estimated from ERA-Interim and �0.33 for
TRMM precipitation.

3.3. Diurnal Cycle

Previous studies have indicated notable diurnal cycles of cloud [van der Linden et al., 2015; Stein et al., 2011]
and precipitation [Pfeifroth et al., 2016] in SWA. Interactions between clouds, precipitation, and radiation are
affected by their respective diurnal cycles. For instance, due to the large amplitude of the diurnal cycle of
shortwave radiation, cloud-radiation interactions are strongly dependent on when in the diurnal cycle cloud
occurs; shortwave cloud heating of the atmosphere tends to be larger than longwave cooling during the day,

Figure 6. Mean contributions to the (a) energy budget and (b) moisture budget for the DACCIWA region for June–July.
Shaded regions show spatial variability, indicated by the interquartile range, based on 1° resolution. To improve readability,
Figure 6a only includes the terms that show largest interannual variability, namely, latent heating and divergence of dry
static energy.
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while at night when there is no shortwave radiation, longwave radiation leads to a cooling of the atmosphere.
This section investigates links between the diurnal cycles of clouds, precipitation, and radiation.

Figure 7 shows a number of key features of the diurnal cycle of cloud cover, precipitation, and outgoing radia-
tion at TOA. To ensure a fair comparison, we focus on those years that are included in all data sets, 2007–2010.

Figure 7. Diurnal cycle of cloud cover, precipitation, and radiativefluxes for June–July. All panels showmeans for 2007–2010,
except for Figure 7f which shows 2014. Shaded regions and error bars show spatial variability, indicated by the interquartile
range, based on 1° resolution.
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Note that DARDAR is the only data set that uses the same method to retrieve daytime and nighttime cloud
cover; therefore, any notable diurnal signature in cloud cover from DARDAR should not be caused by the
retrieval method itself. In contrast, MODIS and CMSAF both have separate methods for daytime and
nighttime retrievals.

Figure 7a shows that DARDAR and MODIS do not display a noticeable diurnal cycle in total cloud cover, but
there is a clear diurnal difference in high cloud cover (Figure 7b). High clouds are more prevalent at night
(roughly at 0000-0500 and 2000-2400 UTC), consistent with reduced OLR (Figure 7h) and following the
diurnal maximum in precipitation (Figure 7f), suggesting that the diurnal cycle of high cloud cover strongly
links to convective systems that develop during the afternoon and evening and lead to increased anvil and
cirrus cloud at night [e.g., Stein et al., 2011]. In contrast, low clouds are more prevalent during the day; this
cycle does not match surface synoptic observations presented by van der Linden et al. [2015], showing that
low cloud cover increases overnight to a maximum at 0600UTC and decreases through the day to aminimum at
1800UTC. This discrepancy may be related to the dependence of low cloud cover from passive satellites on high
cloud cover, as discussed in section 3.2 and the supporting information; diurnal changes in MODIS and DARDAR-
passive-like high cloud cover result in diurnal changes to the amount of low cloud that is obscured by high cloud,
which may lead to unrealistic increases in low cloud cover when high cloud cover decreases.

The diurnal cycle of cloud cover from CMSAF behaves differently to the other data sets. For high-level and
mid-level clouds, the diurnal cycle from CMSAF is generally consistent with that found in DARDAR and
MODIS; however, for the total cloud cover, CMSAF shows a larger cloud cover at daytime than night
(Figure 7a), which is primarily due to low-level cloud cover (as seen in Figure 7d). This raises a question
why CMSAF has similar low-level cloud cover to DARDAR and MODIS during the day, but at night has
virtually no low cloud cover, which is much lower than the other two products and warrants more
detailed discussions.

Focusing on nighttime land retrieval algorithm, MODIS relies on the 11–3.9μm brightness temperature dif-
ference (BTD) to detect low clouds, with empirically derived thresholds that depend on total precipitable
water predicted by the Global Data Analysis System. Similarly, CMSAF uses the 10.8–3.9 BTD, but with thresh-
olds determined from a look-up table that depend on satellite zenith angle, surface type, and numerical
weather prediction forecast integrated water vapor content [Derrien and Le Gleau, 2005]. This suggests that
the lack of nocturnal low cloud in the CMSAF product is due to problems with the threshold applied to the
10.8–3.9 BTD. Further evidence for this is provided by Van der Linden et al. [2015] who obtained better low
cloud cover over SWA from SEVIRI by simply fixing the 10.8–3.9 BTD threshold at 2 K. Since a fixed threshold
is unlikely to be applicable to other scenes and cloud types, this suggests further areas for CMSAF developers
for improvement.

Each of the cloud data sets has strengths and weaknesses. The CMSAF product has excellent diurnal sampling
but has large cloud cover biases, particularly for low cloud cover, due to issues detecting nocturnal low cloud.
On the other hand, DARDAR has the greatest sensitivity and detects themost cloud but has fewest samples of
the diurnal cycle. In terms of both cloud cover biases and diurnal sampling, MODIS lies between DARDAR and
CMSAF. As a compromise between accuracy and diurnal sampling, we use the MODIS data set for comparison
to climate models and ERA-Interim in this study. Satellite simulators that emulate remotely resolved observa-
tions [Bodas-Salcedo et al., 2011] are also a useful tool for evaluating clouds in climatemodels, but the number
of instruments and temporal resolution available from AMIP5 models is limited.

As expected, agreement between the diurnal cycle of precipitation in TRMM and GPM is good (Figure 7f, for
2014 only), with a root-mean-square difference of 0.03mmh�1; both show peak precipitation in the early
evening and a minimum in the morning, which is characteristic of the diurnal cycle of convective precipita-
tion over land [Nesbitt and Zipser, 2003]. Although precipitation shows large interannual variability (Figure 3),
there are no obvious differences between the mean diurnal cycles for 2014 (Figure 7f) and 2007–2010
(Figure 7e). This suggests that the large interannual variability is due to variability in the number and strength
of convective events rather than significant variability in the rainfall type. However, this lack of variability in
the diurnal cycle over a broad region does not necessarily apply at local scales; Pfeifroth et al. [2016] showed
that the diurnal cycle of precipitation at Oueme in Benin showed interannual variability that they linked to
changes in the proportion of precipitation due to local convection and westward propagating convective sys-
tems. Similar to previous studies of the diurnal cycle of convection [Tian, 2004; Chung et al., 2007; Soden, 2000],
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the diurnal precipitation maximum coincides with an increase in high cloud and precedes the diurnal maxi-
mum of high cloud. This may be a consequence of the use of infrared observations in TRMM, which use cloud
top temperature as an indicator of surface precipitation. Pfeifroth et al. [2016] found that the TRMM product
lagged the surface synoptic diurnal maximum by 1–2 h for the Ouémé mesosite (centered on 9.5°N, 2°E) and
attributed this to the use of infrared observations in TRMM.

Figure 7g shows the diurnal cycle of SW radiation from CERES-SYN and GERB1. For the CERES sample time,
differences with GERB values at adjacent times are small. In fact, the mean flux for the GERB1 points closest
in time to CERES is 147.1Wm�2, which is slightly larger than the GERB1 diurnal mean (143.3Wm�2) and clo-
ser to the 2007–2011 CERES mean (147.1Wm�2). A similar result is obtained when we sample GERB2 at simi-
lar times to the CERES-SYN sampling. Differences between CERES-SYN and GERB in the DACCIWA region at
the CERES-SYN sample time are consistent with a previous comparison which showed that GERB2 fluxes were
generally larger than CERES [Clerbaux et al., 2009]. Diurnal mean differences between the data sets are larger
due to different temporal sampling in GERB and CERES-SYN.

The amplitude of the diurnal cycle of OLR (Figure 7h) is much smaller than the OSR. Consequently, the
reduced temporal sampling in CERES has less impact. GERB gives larger values between 2000 and 1330UTC,
so the GERB diurnal cycle has smaller amplitude, but the phases show good agreement. The clear-sky OLR
has virtually no diurnal cycle indicating that the all-sky OLR diurnal cycle is due to cloud. The OLR minimum
at night (around 0130UTC for CERES) and maximum around 1330UTC are consistent with the high cloud
diurnal cycle shown in Figure 7b.

Since the flux differences between CERES and GERB are small, in principle, either is suitable for further
analysis. GERB has advantage of better temporal resolution, but it lacks clear-sky flux estimates that are
necessary to extract the radiative effects of clouds. Therefore, CERES data will be used for the following
evaluation of climate models and ERA-Interim. However, bear in mind that the CERES has a potential diurnal
average difference of ~5Wm�2 due to limitations in temporal sampling.

4. Evaluation of Climate Model Simulations and ERA-Interim

We now undertake a preliminary assessment of CMIP5 simulations and ERA-Interim for the SWA region,
focusing on atmosphere-only model AMIP simulations that provide the set of diagnostics necessary to inves-
tigate climatological and diurnal variability in radiation, precipitation, and cloud cover. The motivation for
this, rather than providing a comprehensive evaluation of the set of CMIP5 models, is to update previous ana-
lyses of older generationmodels [e.g., Knippertz et al., 2011] and to highlight major biases that warrant further
investigation. Based upon the analysis in section 3, the most suitable observational data sets are now
exploited for evaluating ERA-Interim and four climate model simulations and identifying deficiencies in their
representation of cloud, radiation, and precipitation.

With respect to the observed fields shown in Figure 1, Figure 8 shows maps of model mean errors for total
cloud cover, precipitation, OSR, and OLR, respectively. Generally, the climate model errors are fairly homoge-
neous across the DACCIWA region and consistent with the error over SWA. Most of the spatial variability in
errors in the DACCIWA region occurs because the climate models are too homogeneous and fail to capture
the limited spatial variability that does exist in the observations; for example, many of the models fail to cap-
ture the observed decrease in OLR from west to east, which results in errors that increase from west to east.
This is not surprising given the coarse horizontal resolution of the models (Table 2). Of note is the gross
underestimation of cloud and precipitation and overestimation of OLR by the ERA-Interim reanalysis and
the HadGEM2-A climate model simulation at around 10–15°N, immediately to the north of the DACCIWA
region. It is somewhat surprising that the ERA-Interim has the underestimation of cloud by up to ~50% in cover-
age and of OLR of up to ~50Wm�2 given the assimilation of observations, although this bias may be partly a
consequence of the paucity of observations in this region. It is also worth noting that cloud is not directly assimi-
lated in ERA-Interim and errors in the model microphysics scheme can cause problems in cloud altitude and
radiative properties [Chevallier et al., 2001]. Although generally smaller in magnitude, these cloud and radiation
biases also broadly apply across all climate models considered indicating an endemic deficiency in the repre-
sentation of the WAM. Zonal (10°W–10°E) mean values (supporting information) show that in the case of
ERA-Interim (and to a lesser extent HadGEM2-A and MRI-CGCM3) these errors are linked to a failure to capture
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the mean northward progression of the Intertropical Convergence Zone from June to July and are consistent
with the annual mean ERA-Interim precipitation bias identified by Paeth et al. [2011] and the ERA-Interim rainfall
onset timing bias identified by Dunning et al. [2016]. This failure to capture the northward shift of the WAM pre-
cipitation may be a common feature of reanalyses as it occurs in both ERA-Interim and the Modern-Era
Retrospective Analysis for Research and Applications (MERRA) reanalyses [Thorncroft et al., 2011].

Model and ERA-Interim interannual variability is generally of a similar magnitude to the observed interannual
variability (Table 3 and supporting information), the exception being for clear-sky outgoing SW flux, where
the interannual variability in both ERA-Interim and the climate models is smaller than CERES-SYN. We suspect
that this is because the variability is overestimated in the CERES-SYN observations due to sampling errors in
this cloudy region.

Figure 9 shows diurnal cycles for ERA-Interim and climate model total cloud cover, precipitation, and top of
atmosphere radiative fluxes. For most climate models the diurnal cycle is only available for 2008, so we limit
the comparison to this year. Differences in the phase of the diurnal cycles of radiative flux cannot be disen-
tangled from the temporal sampling that the climate models use to reduce the cost of the computationally
expensive radiative transfer schemes. The different climate models and ERA-Interim use different methods to

Figure 8. Maps of ERA-Interim and climate model errors for June–July 2002–2009. Panels from left to right show errors in cloud cover, precipitation, and outgoing
shortwave and longwave radiation, calculated with respect to MODIS, TRMM, and CERES-SYN, respectively. Information on various climate models can be found in
Table 2.
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account for this reduced temporal sampling, and as a result fluxes output at the same point in time may
represent quite different time periods. For example, HadGEM2-A calculates radiative fluxes every 3 h using
atmospheric properties from the start of the radiation time step and a solar zenith angle that is themean over
the radiation time step [Manners et al., 2009], outputting fluxes at the start of the radiative time step. CanAM4
on the other hand applies a 1 h radiation time step and uses atmospheric properties and solar zenith angle
from the start of the time step and output fluxes at the end of the time step. Such differences make compar-
ison of the phase of the diurnal cycles of radiation problematic, so we shall restrict our discussion to the
amplitude of the diurnal cycles.

There is a large spread of clear-sky OSR values among themodels and ERA-Interim (Figure 9e and Table 3). This
is primarily due to surface albedo differences (supporting information); MRI-CGCM3 has a particularly large
albedo and is a clear outlier, but the range of albedos in the other models and ERA-Interim is greater than
0.02, which is large enough to affect regional climate [Taylor et al., 2002]. The AMIP5 models all overestimate
clear-sky OSR compared to CERES-SYN and ERA-Interim, which generally offsets the underestimated SW cloud
radiative effect (Table 3) causedby underestimating cloud cover. However, the CERES-SYN clear-skyfluxesmay

Figure 9. Comparison of diurnal cycles for June–July 2008. In each case, the black line shows the observed diurnal cycle
(from the data set indicated in the legend) and the colored lined show the four AMIP models and ERA-Interim. For
shortwave radiation (Figures 9c and 9e), the AMIP models are shown at a time that is most consistent with the solar zenith
angle used, rather than the output time.
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be subject to a sampling bias in this very cloudy region. The spread in surface albedo values is likely to have an
impact on the simulated cloud and precipitation; many previous studies have shown the sensitivity of West
African climate to small changes in albedo [Charney et al., 1977; Taylor et al., 2002].

Only CanAM4 and ERA-Interim simulate levels of low cloud cover within 0.05 of the MODIS values (Table 3).
CanAM4 actually has a larger value of low cloud cover than MODIS, but this may simply be a consequence of
less higher cloud in CanAM4 to obscure low cloud. The lack of low cloud cover to insulate the surface at night
in ERA-Interim and the climate models leads to a larger surface temperature diurnal cycle (not shown). This
ultimately leads to an overestimate of the amplitude of the diurnal cycle of clear-sky OLR (Figure 9b), but this
signal is dwarfed by the diurnal cycle of cloud in the all-sky OLR. Note that the amplitude of the diurnal cycle
of clear-sky OLR in CanAM4 is a consequence of the unique treatment of solar radiation in the infrared range;
solar radiation between 4 and 1000μm (approximately 12Wm�2) is treated as LW radiation [Li et al., 2010].
This diurnally varying radiation is included in the upwelling LW radiation to ensure that the net LW radiation
at the TOA is unaffected.

In the DACCIWA region, the climate models generally underestimate high cloud cover (Table 3). In most cases
this does not result in significant OLR biases (Table 3) due to compensating biases in mid-level cloud.
However, HadGEM2-A overestimates OLR due to a lack of both high-level and mid-level clouds. The ampli-
tude of the OLR diurnal cycle in HadGEM2-A is much larger than both the observed OLR diurnal cycle and
the HadGEM2-A clear-sky OLR diurnal cycle, which suggests that cold cloud cover is overestimated in the eve-
ning and underestimated during the rest of the day, particularly between 0730 and 1530UTC.

While the ERA-Interim mean high cloud cover compares well with MODIS, ERA-Interim overestimates OLR
due to a lack of mid-level cloud. The previous version of the ECMWF reanalysis overestimated OLR over tro-
pical land due to cloud errors [Allan et al., 2004], and it seems likely that this remains true for ERA-Interim. OLR
diurnal cycle errors (Figure 9d) suggest that ERA-Interim underestimates mid-level cloud throughout the day
and particularly at night.

Precipitation diurnal cycle errors in ERA-Interim and the models (Figure 9b) are typical of general circulation
models (GCMs) in convective regions [Dai, 2006]; the amplitude of the diurnal cycle is too large, and peak pre-
cipitation occurs too early. However, at least some of the climate models do a better job of capturing the
amplitude of the diurnal cycle of OLR (Figure 9d), which is also linked to convective cloud [Hartmann and
Recker, 1986]. While CanAM4 and HadGEM2-A overestimate the amplitude, CNRM-CM5 and MRI-CGCM3
perform better in reproducing the observed amplitude of the diurnal cycle of OLR of 18.8Wm�2, with ampli-
tudes of 25.7Wm�2 and 16.3Wm�2, respectively. ERA-Interim also underestimates the amplitude of the
diurnal cycle of OLR (relating to the overall underestimation in precipitation shown in Figure 8).

Each of the AMIP models has large biases between 8°W–8°E and 5–10°N in some (if not all) of the cloud cover,
precipitation, and radiation fields considered here. ERA-Interim generally does a better job of reproducing
the mean observed values in the DACCIWA region, but Figure 8 shows that this is at least partly due to a
fortuitous cancelation of smaller-scale errors. Moreover, OLR and diurnal cycles related to convection in
ERA-Interim are problematic and over the wider West African region, ERA-Interim biases are as large as the
AMIP models, with particularly notable OLR and cloud cover biases over the Sahel.

5. Conclusions

We have constructed a multisatellite climatology of clouds, top of atmosphere (TOA) radiation, and precipita-
tion for southern West Africa during June–July to support ongoing investigations of the complex interactions
within the West Africa monsoon (WAM) and the evaluation of ERA-Interim and climate model simulations.
The primary characteristics of this climatology are as follows. Mean cloud cover in the DACCIWA region
ranges from 68 to 94%, larger than the global average, which is around 68% [Stubenrauch et al., 2013].
Consequently, the regional mean OSR of ~145Wm�2 is also larger than the global average of 100Wm�2,
while the regional mean OLR of ~230Wm�2 is smaller than the tropical average of which is estimated to
be ~250Wm�2 [L’Ecuyer and Stephens, 2003]. Additionally, surface precipitation in the DACCIWA region is
~5.87mmd�1 which is around double the global mean. Diurnal cycles of high cloud cover, precipitation,
and OLR are typical of convective regions; high cloud cover and precipitation peak in the evening and
coincide with the minimum in the OLR diurnal cycle.
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Total cloud cover and TOA shortwave and longwave fluxes show little interannual variability; for all three the
standard deviation is less than 2% of the mean. However, the interannual standard deviation of the regional
mean surface precipitation is much larger, around 15% of the mean, with mean values ranging from
~4.5mmd�1 in 2013 to ~7.5mmd�1 in 2002. This interannual variability in precipitation in the DACCIWA
region is linked to the regional interannual variability of dry static energy. From an atmospheric energy
budget perspective, interannual changes in latent heat release from precipitation are balanced by dry static
energy changes of a similar magnitude.

Comparisons between different satellite products have been used to identify inconsistencies and determine
which products are most suitable for further analysis. Differences between the TRMM and GPM precipitation
data sets are small, which is unsurprising given the similarity of their algorithms and their use of the same
gauge data. The two radiation data sets, GERB and CERES-SYN, also show generally excellent agreement.
However, CERES-SYN overestimates the diurnal mean outgoing SW flux due to insufficient temporal sam-
pling. Differences between the satellite cloud observations are much larger. MODIS detects less high (45%
compared to 74%) and total (89% compared to 94%) cloud cover than DARDAR but more cloud at all heights
than CMSAF. All three satellite cloud products have faults. Temporal sampling in MODIS is poor and even
more so in DARDAR, while CMSAF and MODIS underestimate cloud cover. We use MODIS for comparison
to ERA-Interim and the climate models as a compromise between temporal sampling and accuracy.
Clearly, a deeper understanding of the interaction between clouds and radiation in this region requires more
frequent diurnal sampling than provided by MODIS, yet improvements in the geostationary satellite-based
CMSAF cloud products are necessary.

Based on our analysis of satellite products, we chose the products that are best suited for comparison to cli-
matemodels and used these to identify a number of significant biases in the climatemodels. With one excep-
tion (CanAM4), the AMIP5 models considered in this study significantly underestimate the MODIS-observed
low cloud cover (18%), with a multimodel mean value of 10%. This is consistent with large low cloud errors in
the previous generation of climate models over southern West Africa identified by Knippertz et al. [2011] and
indeed with a more general climate model bias, where low cloud occurrence in the tropics is systematically
underestimated [Nam et al., 2012]. This is likely to have significant impacts on the surface radiation budget
[Knippertz et al., 2011] and consequently the broader circulation [Li et al., 2015]; it is planned to examine this
in detail using radiation calculations in a future study. High-level and mid-level cloud cover errors are smaller,
but there are deficiencies in the representation of their diurnal cycle and also that of precipitation, which are
linked to convection parametrization in the models [Pearson et al., 2013]. The models have a surprisingly
broad range of surface albedos, which leads to a substantial range of clear-sky outgoing SW flux values
(62.7Wm�2 to 84.4Wm�2) and can mask the effect of cloud errors on the all-sky outgoing SW flux.

Despite assimilating observations, ERA-Interim shares many biases with the free-running climate models. This
is thought to be due to a combination of a lack of nonsatellite observations to constrain ERA-Interim and the
fact that cloud cover, surface precipitation, and top of atmosphere radiative fluxes, which are analyzed in this
article, are not directly assimilated. ERA-Interim generally has smaller domain-mean biases in the DACCIWA
region than the AMIP models. However, this is at least partly due to a cancelation of smaller-scale errors
(Figure 8). Moreover, ERA-Interim precipitation diurnal cycle errors are as large as any of the AMIP models,
as is the overestimate of OLR, both of which are likely to be due to deficiencies in the convection parametri-
zation used. Over the broader SWA region, ERA-Interim performs no better than the AMIP models, with
particularly notable cloud and OLR errors over the Sahel, linked to a failure to capture the northward
progression of the zonal precipitation maximum from June to July.

Current satellite observations provide a wealth of useful data for understanding the climate of southern West
Africa. However, many aspects of the climate system in the DACCIWA region remain poorly understood and
there are a number of obvious areas that require either improved satellite products or observations from
other sources. In particular, there are large differences between cloud cover data sets and those that are
thought to perform better lack adequate temporal sampling in a region with marked diurnal variability. It
is hoped that future releases of the CMSAF data set will address some of the errors identified by this study
as it provides the highest temporal resolution. Surface radiative flux estimates are required to understand
the local atmospheric radiation budget and, consequently, the energy budget. There is a lack of surface-
based radiation measurements in the DACCIWA region, but satellite-based surface radiative flux products
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such as the CERES-EBAF surface fluxes [Kato et al., 2013] and CMSAF-CLARA [Karlsson et al., 2013] provide an
opportunity to fill this data gap. As these products rely on radiative transfer calculations and ancillary data
with associated uncertainties, further validation in the DACCIWA region is required. Similarly, satellites
struggle to provide robust statistics for aerosol properties in the DACCIWA region due to the rarity of clear
sky. The forthcoming DACCIWA field campaign [Knippertz et al., 2015a] will contribute additional observations
that will be used directly for improving the understanding of the regional climate system and to further
evaluate and suggest improvements to satellite products in this region.

Future work will focus on quantifying cloud radiative effects in SWA for individual cloud types, assessing how
different cloud types contribute to the regional energy budget, and consequently, how they affect the
WAM circulation.

Appendix A

One limitation of passive satellite observations is their inability to detect multiple cloud layers, missing low
clouds that may exist beneath higher clouds. In contrast, active radar/lidar observations are less prone to
this problem. Consequently, it is difficult to compare estimates of low cloud cover from different satellite
observations. To minimize the impact of these obscured clouds on our intercomparison, we define a
weighted cloud cover that is normalized by nonobscured areas only. For mid-level clouds, the weighted
cloud cover, Cmid,weighted is calculated by

Cmid;weighted ¼ Cmid;passive

1� Chigh
; (A1)

where Cmid,passive is mid-level cloud fraction from passive observations and Chigh is high cloud cover. As the
nearest clouds to the satellite, high cloud cover is not affected by clouds in other layers. Similarly, the
weighted low cloud cover, Clow,weighted, is calculated as

Clow;weighted ¼ Clow;passive

1� Chigh þ Cmid;passive
� � ; (A2)

where Clow,passive is low-level cloud fraction from passive observations. A schematic illustration of equations
(A1) and (A2) can be found in Figure A1.

The difference between the true mid-level cloud cover, Cmid,true, and the passive mid-level cloud cover is the
fraction of mid-level cloud that is obscured, i.e., the amount of overlap between mid-level and high-level

Figure A1. A schematic illustration explaining the definition and difference between the truth, passive-like, and weighted
cloud covers.
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clouds. Since the amount of overlap would be the product of mid-level and high-level cloud covers if they
were randomly overlapped, we then obtain

Cmid;true ¼ Cmid;passive ¼ ChighCmid;true: (A3)

By rearranging equation (A3), the true mid-level cloud cover is given by

Cmid;true ¼ Cmid;passive

1� Chigh
; (A4)

which is the same as Cmid,weighted as shown in equation (A1), demonstrating that the weighted mid-level
cloud cover represents the true midcloud cover. Similarly, if low clouds are randomly overlapped with high
and mid-level clouds, then the weighted low cloud cover is equal to the true low cloud cover.
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