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ABSTRACT

A novel Lagrangian framework is developed to attribute monthly precipitation variability to physical

processes. Precipitation variability is partitioned into a combination of five factors: airmass origin location,

origin surface temperature variation, ascent intensity,mass fraction of ascending air, and the number of ‘‘wet’’

analysis times per month [.1mm (6 h)21]. Precipitation in a target region is linked to ‘‘origin’’ locations of air

masses where the water vapor mixing ratio was last set by boundary layer moistening and is a maximum along

back trajectories. Applying the technique to the England and Wales region, the factors together account for

83%–89% of the observed summer precipitation variability. The dominant contributor is the number of wet

analyses, which is shown to be associated with cyclone statistics. The wettest summer months are mainly

associated with anomalous cyclone duration rather than the number of cyclones. In addition, surface tem-

perature and saturation humidity at the origin locations are found to be below their climatological averages

(1979–2013). Therefore, the direct thermodynamic effect of anomalous surface temperature on marine

boundary layer humidity acts to reduce monthly precipitation anomalies. The decadal precipitation change

between phases of the Atlantic multidecadal oscillation is approximately 20% of the interannual variability

between summer months. Changes in cyclone statistics have an effect 6 times larger than the direct ther-

modynamic factor in both monthly and decadal precipitation variability.

1. Introduction

Regional precipitation accumulations across the

Northern Hemisphere have been observed and studied

using a wide range of observation types, varying from

surface rain gauges (Wigley et al. 1984; Trenberth et al.

2007) to estimates retrieved using calibrated satellite

data (Prihodko and Goward 1997; Ebert et al. 2007) or a

blend of these (Huffman et al. 2009). However, de-

termining whether regional precipitation climates have

significantly changed in the past century remains diffi-

cult (Alexander et al. 2006), partly because of the large

interannual variability.

Projected precipitation changes in future climate

scenarios are also uncertain (Allen and Ingram 2002;

Trenberth et al. 2003; Held and Soden 2006; Allan and

Soden 2008). The IPCC Fifth Assessment Report states

in chapter 11: ‘‘Zonal mean precipitation will very likely

increase in high and some of the mid latitudes, and will

more likely than not decrease in the subtropics. At more

regional scales precipitation changes may be influenced

by anthropogenic aerosol emissions and will be strongly

influenced by natural internal variability’’ (Kirtman

et al. 2013, p. 956).

A thermodynamic argument often put forward is that

higher surface temperatures imply higher saturation

vapor pressure (via the Clausius–Clapeyron relation),

greater moisture loading within air masses, and hence

greater precipitation within storms, all other things be-

ing equal (Pall et al. 2007; Trenberth 2011). However,

one major uncertainty missing in this simple thermo-

dynamic argument is the role of changing atmospheric

circulation (Shepherd 2014). The IPCC report states

that there is only ‘‘medium’’ confidence in near-term

projections of the Northern Hemisphere extratropical

circulation (Kirtman et al. 2013). It has been established

that global average precipitation is strongly constrained

by the global energy budget (Allen and Ingram 2002),Corresponding author: J. de Leeuw, j.deleeuw1@uu.nl
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although it has been argued that the thermodynamic

argument (Clausius–Clapeyron relation) still applies to

global precipitation extremes (Allan and Soden 2008).

However, vertical motion is required for precipitation,

and a more complete argument must consider the dy-

namics of weather systems. In the midlatitude storm

tracks, cyclones dominate the vertical motion. Hawcroft

et al. (2012) used reanalysis and cyclone-track calcula-

tions to estimate that more than 70% of precipitation in

northwest Europe is associated with the passage of ex-

tratropical cyclones from the North Atlantic storm track.

Hence, in regions such as western Europe, changes in the

storm track will have a major influence on precipitation

variability. Despite a number of studies investigating

precipitation trends and variability over Europe (Pauling

et al. 2006; Frei et al. 2006; Nikulin et al. 2011; Rajczak

et al. 2013), much is still unknown about the physical

mechanisms responsible for the observed temporal vari-

ability. Most studies have not attempted a quantitative

attribution of precipitation accumulations and their var-

iability to the physical mechanisms responsible.

Lagrangian models have proven to be a useful tool in

analyzing precipitation variability and precipitation ex-

tremes (James et al. 2004; Stohl and James 2004;

Sodemann and Zubler 2010; Winschall et al. 2014), as

these enable the investigation of water vapor transport

within air masses along their path toward a region

of interest. Trajectories make a link between the im-

portant moisture sources, conditions at those locations,

and their influence on precipitable water. For example,

Sodemann et al. (2008a) investigated interannual winter

precipitation variability over Greenland by determining

the sources of water vapor using a Lagrangian model.

They found strong moisture source variability related to

variability in the large-scale circulation, which has im-

portant implications for the interpretation of stable

isotopes in ice cores (Sodemann et al. 2008b). On the

global scale, Gimeno et al. (2013) used a Lagrangian

model to investigate the impact of changes in oceanic

moisture sources on continental precipitation and found

that large regions of the Northern Hemisphere are af-

fected by changes in moisture source conditions (mainly

over the central North Atlantic and subtropical western

North Pacific) during boreal winter. Winschall et al.

(2014) linked Mediterranean precipitation extremes

with intensification of moisture source evaporation

using a Lagrangian method. They found that remote

moisture source regions over the North Atlantic and the

European and African land surface show stronger sur-

face evaporation prior to extreme precipitation events,

whereas Mediterranean sources show no increase.

This paper develops a novel framework to attribute

variations in regional precipitation to a number of

physical processes. It adopts a Lagrangian frame of

reference to sample temperature and specific humid-

ity fields from the European Centre for Medium-

Range Weather Forecasts (ECMWF) analyses at

points along back trajectories, but it is not a Lagrangian

model in the sense that it does not solve time-dependent

equations along the trajectories, in contrast to

Lagrangian photochemical models, for example

(Pugh et al. 2012). In the reanalysis system, tem-

perature, winds, and humidity are evolved on the

fixed grid of the ECMWF forecast model, con-

strained by global observations using data assimila-

tion (Dee et al. 2011).

A key difference from the Lagrangian approaches

cited above lies with the identification of the ‘‘origin

location’’ for air masses influencing precipitation and

the way in which the two are linked. The ‘‘origin’’ is here

defined as the location where the humidity mixing ratio

of the air mass last increased through mixing before

arrival. The subsequent precipitation only depends on

the moisture carried by the air mass and its trajectory

after this time. An equation relating precipitation rate to

vertical motion for saturated air masses is given in sec-

tion 2d. The connection between the airmass properties

at this origin point and the underlying surface is assumed

to be rapid (i.e., boundary layer mixing time scale is fast

compared with the interval between analyses) so that

the history before the ‘‘origin time’’ is not relevant. In

essence, it is equivalent to stating that the sources of

individual water molecules within an air mass are not

important for precipitation amount, only the maximum

humidity mixing ratio and the subsequent history of

saturated ascent, condensation, and mixing. This ap-

proach is somewhat similar to Gustafsson et al. (2010),

who studied the atmospheric moisture transport for

extreme summer precipitation events in Sweden. Their

origin region identification technique is based on the last

cycle of humidity uptake prior to arrival over the target

region [see Gustafsson et al.’s (2010) Fig. 4 for

definition].

This differs from other recent trajectory studies (e.g.,

Sodemann et al. 2008a; Martius et al. 2013), where

moisture uptake regions along trajectories associated

with surface evaporation are estimated. This is neces-

sary if investigating the source of water molecules

evaporating from the underlying surface. When in-

vestigating precipitation variability, an advantage of the

approach in this paper is that there is no need to follow

back trajectories into the boundary layer or make as-

sumptions regarding subgrid-scale boundary layer mix-

ing and its influence along trajectories. The humidity

field in the reanalysis is determined by the resolved flow

and parameterization schemes of the ECMWF model.
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Section 2e gives a more detailed evaluation of the origin

definition.

Monthly precipitation amounts P are linked to phys-

ical processes that describe airmass moisture content

and its loss through condensation following trajectories

arriving over a target region (section 2). The processes

are hypothesized to be related through five distinct

multiplicative factors:

P} ST3LOC3AI3AF3NT. (1)

Quantitative factors are developed and the com-

pleteness of the factorization investigated using

trajectory-based metrics in section 4. Two factors (sur-

face temperature ST and origin location LOC) are re-

lated to the origin locations of precipitating air masses.

Factor ST quantifies the direct thermodynamic influence

of surface temperature anomalies (via the Clausius–

Clapeyron relation) on the water vapor mixing ratio of

the marine boundary layer at origin locations and hence

themixing ratio of air leaving the boundary layer, which,

via moisture transport along the trajectory, influences

the precipitation totals. Factor LOC quantifies the im-

pact of varying the origin locations while supposing that

the surface temperature field is fixed, thereby capturing

the impact of variations in large-scale transport for a

given map of surface conditions.

The three remaining factors are related to the ascent

of air masses, which is necessary for condensation and

formation of precipitation. The moisture release can be

altered by the rate of ascent over the target region (as-

cent intensity AI), the mass of ascending air over the

region (ascent mass fraction AF), and the number of

analyses in a given period producing precipitation NT.

For regions strongly affected by cyclones in a storm

track, this last factor is hypothesized to be related to

cyclone variability via the number of cyclones CC and

their average duration over the target region CD.

The physical factors influencingmonthly precipitation

variability in the U.K. summer season are examined

using ERA-Interim reanalysis data (1979–2013) and the

independent rain gauge estimate of England and Wales

precipitation (EWP). The study region is chosen be-

cause of the quality and length (since 1931) of the daily

EWP time series (Alexander and Jones 2000), together

with the influence of the North Atlantic storm track on

the United Kingdom. Summer is chosen because of the

anomalous 5- and 10-day precipitation totals that have

occurred during this season over the last decade (de

Leeuw et al. 2016). Section 2 will discuss the data and

methodology developed to investigate precipitation

variability using the Lagrangian framework. Section 3

investigates the airmass origin locations and their

variability. Section 4 introduces the factorization used to

investigate precipitation variability, which is applied to

the England and Wales region in section 5. Section 6

presents a summary and discussion of the main results.

2. Data and trajectory methodology

a. Observations: England and Wales precipitation

The EWP daily dataset, which is maintained and

updated by the Met Office Hadley Centre (www.

metoffice.gov.uk/hadobs/hadukp/), is a spatial average

of individual rain gauge observations over the England

and Wales region (Alexander and Jones 2000). It con-

stitutes one of the longest statistically homogeneous

daily precipitation datasets available (1931–present).

The EWP estimate is based on the weighted contribu-

tion of five climatologically different subregions (Wigley

et al. 1984; Wigley and Jones 1987). In each region, 7–15

evenly distributed stations (depending on the available

data; see Alexander and Jones 2000) determine the

precipitation for the region. Each rain gauge is scaled by

its corresponding regional monthly climatology so that

the regional data are not weighted toward sites with

locally high precipitation (e.g., because of local oro-

graphic effects). This scaling allows varying gauge con-

figurations (because of changing observation networks)

to be combined to produce a robust and homogeneous

time series.

b. Back trajectory calculations using ECMWF
reanalyses

The Reading Offline Trajectory (ROTRAJ) model

calculates back trajectories following the resolved flow

in atmospheric reanalyses (Methven 1997; Methven

et al. 2003) from the ECMWF. The ERA-Interim re-

analysis is used here, which is based on the ECMWF IFS

model [Cy31r2; Dee et al. (2011) and references

therein]. The analysis has a spectral horizontal resolu-

tion of T255 and 60 vertical levels (top at 0.1 hPa). The

ROTRAJ model takes the full-resolution spectral data

onmodel h levels and transforms temperature, vorticity,

horizontal divergence, and surface pressure to obtain

horizontal winds, temperature, and the vertical velocity

in h coordinates on a Gaussian grid. Specific humidity is

evolved on the same grid without spectral trans-

formation. The velocity at each trajectory point is in-

terpolated from the 3D velocity field of the analysis,

using linear interpolation in time and horizontal di-

rections and cubic interpolation in the vertical direction.

The 3D trajectory equation (in the terrain-following

h coordinates) is integrated using a fourth-order Runge–

Kutta scheme with six time steps over the 6-h interval
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between analyses. At every trajectory position (longi-

tude, latitude, and pressure), four attributes (tempera-

ture, specific humidity, height, and boundary layer

height) are interpolated from analysis fields and stored

every 6 h along back trajectories. Note that boundary

layer height (BLH) is a forecast model product. Data

were retrieved for each boreal summer month (JJA)

from 1979 to 2013, giving 35 yr of data.

Back trajectories were calculated from a dense 3D

‘‘arrival’’ grid positioned over the United Kingdom:

0.258 3 0.48 (’28-km resolution) with 32 equally spaced

pressure levels between 975 and 200 hPa, such that each

point is associated with a box of approximately equal

mass (Fig. 1). The domain spans the England andWales

region (50.68–54.58N, 4.58W–0.78E). A total of 6240

trajectories are released from the grid every 6 h and in-

tegrated backward for 8 days. Throughout the 35-yr

ERA-Interim period, this amounts to 80.4 3 106 tra-

jectories. Work by James et al. (2004) and Gustafsson

et al. (2010) showed that 8-day trajectories are sufficient

to determine the airmass origin regions for precipita-

tion in Europe. It will be shown later that 8-day trajec-

tories are also able to identify origins for all but 3%

of trajectories precipitating over the England and

Wales region.

The reverse domain-filling 3D trajectory (RDF3D)

technique (Methven et al. 2003) described above is able

to capture the humidity structure of air masses associ-

ated with cyclones and their attendant fronts over the

region, as illustrated for summer 2007 by Blackburn

et al. (2008). Methven et al. (2003) compared the

ROTRAJ model with aircraft observations over the

United Kingdom and found that RDF3D calculations

using ECMWF analyses were able to simulate humidity

structures accurately with widths as narrow as 30km

because of the tracer-scale cascade effects of stirring

by the large-scale straining flow (Methven and

Hoskins 1999).

c. The ROTRAJ precipitation estimate

Akey aim of the Lagrangianmethod is to quantify the

contribution to precipitation from each trajectory ar-

riving on the 3D grid and to relate that precipitation to

airmass characteristics. The following three sections

relate to the stages I, II, and III along trajectories illus-

trated in Fig. 1. Section 2c describes stage I—the esti-

mate of precipitation based on changes in specific

humidity along trajectories over the final 6 h. Section 2d

describes the link between moisture at the origin loca-

tion (II) and precipitation in stage I. Section 2e links the

moisture at the origins (II) to the properties of the un-

derlying surface (III).

Condensation over the region is captured in terms of a

specific humidity decrease along each individual trajec-

tory (subscript k):

Dq
k
5 q

k
(0)2 q

k
(2t) , (2)

where qk(0) and qk(2t) are the specific humidity at the

‘‘arrival time’’ and at interval t before arrival, re-

spectively. A 6-h interval is selected: this is the separa-

tion of analyses in ERA-Interim and is sufficiently short

that air parcels do not typically move far relative to the

scale of the arrival domain so that any precipitation can

be considered to be over the domain. Changes in specific

humidity along the trajectory are related to either con-

densation (Dqk , 0), evaporation (Dqk . 0), and/or

mixing (Dqk of either sign). When Dqk , 0, the

FIG. 1. An illustration of the RDF3D technique. This technique calculates back trajectories

from a dense arrival grid using the resolved flow from a model, of which the colored line in the

schematic is an example.Also shown are the three important factors for determining the impact

of the origin location on the precipitation variability: the relation between changes in specific

humidity and precipitation at the arrival region (I; red part of trajectory), the location of the

origin region (II), and the connection with the surface at the origin region (III). The origin is

defined as the locationwhere themoisture content of the air mass is last modified bymoistening

before arrival. Therefore, the orange part of the trajectory does not influence the results pre-

sented in this paper.
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contribution of that trajectory to precipitation is pk 5
mkDqk, where mk represents the arrival gridbox mass.

Summing downward from the top of a grid column

(k increasing), at each level, the vertically integrated

precipitation contribution, denoted as Pk, is calculated as

P
k
5P

k21
2m

k
Dq

k
, (3)

looping over k from P05 0. WhenmkDqk. 0 and is also

larger than the condensate integrated above that level

(mkDqk . Pk21 . 0), it is assumed that all the conden-

sate from above is lost through dry air mixing and

evaporation (i.e., reset pj 5 0 for j # k and Pk 5 0).

In the case of partial evaporation of condensate at

level k (i.e., Pk21 . mkDqk . 0), the contribution to

precipitation of all trajectories above the evaporating

layer ( j , k) is adjusted by a constant fraction, using

p
j
52m

j
Dq

j

�
12

m
k
Dq

k

P
k21

�
. (4)

This redistribution does not change the vertically in-

tegrated precipitation Pk. Within the boundary layer

(z, zBL), all trajectories where Dqk . 0 are assumed to

be influenced by evaporation of moisture from the sur-

face and are therefore not included in the precipitation

calculation Eq. (3).

Descending air masses (increasing pressure) move to

higher temperature and saturation vapor pressure, so mois-

ture is not expected to condense. Therefore, descending

trajectories with Dqk , 0 are assumed to be mixing with

drier air and do not contribute to the surface precipitation

estimate. Hence, only trajectories ascending upon arrival

will be consideredwhencalculating the surfaceprecipitation.

Finally, the surface precipitation Ps for each column is

given by Ps 5�N

j51pj, where pj is the precipitation con-

tribution for individual ascending trajectories after the

adjustments described above. Note that Ps would equal

Pk at the bottom of the column if it were not for the

evaporation in the boundary layer and the exclusion of

contributions from descending trajectories.

Here, the ROTRAJ estimate of daily precipitation is

compared with EWP observations and ERA-Interim

forecasts for all summers (JJA) between 1979 and 2013,

using a ranked comparison of all daily precipitation es-

timates (Fig. 2). The largest discrepancy is for light pre-

cipitation events (,4mmday21) where the ROTRAJ

estimate is too large by 58% relative to EWP. Excluding

these light precipitation events, the best linear fits with

EWP are similar. The linear regression has a slope 0.776
0.005 for ROTRAJ, versus 0.78 6 0.005 for ERA-

Interim, indicating that the ROTRAJ estimate is lower

than observations by the same factor as the underlying

ECMWF model precipitation. Comparison of the PDFs

of precipitation rates for ECMWF and ROTRAJ (not

shown) reveals that both are indistinguishable from a

Weibull fit to theEWPobservations aside from a uniform

scaling factor of 0.77 (de Leeuw et al. 2015). This dem-

onstrates consistency between the back-trajectory calcu-

lation and the evolution of moisture in the ERA-Interim

analysis. The Spearman rank correlation coefficient be-

tween the time series of ROTRAJ with EWP observa-

tions (R2 5 0.76) is also similar to correlation between

ERA-Interim forecasts and EWP (R2 5 0.78).

d. The relation between humidity at origin locations
and precipitation over the arrival region

The aim in this section is to relate precipitation rate at

any point along a trajectory to the moisture at the origin

location (to be defined in section 2e). Since satura-

tion vapor pressure is a function of temperature T only

[es(T) is given by the Clausius–Clapeyron relation], the

saturation specific humidity qs is a function only of

pressure p and temperature. Moreover, the thermody-

namic state of a saturated air parcel is described by only

two independent variables. Therefore, we can consider

the equivalent potential temperature at saturation ues,

as a function of qs and p only, and its total derivative can

be written without approximation as

du
es
5

›u
es

›p

����
q

dp1
›u

es

›q

����
p

dq . (5)

Now consider the rate of change along a trajectory

within a saturated air mass. Since Dues/Dt 5 0 in the

absence of mixing, Eq. (5) reduces to

FIG. 2. Comparison of the ranked daily precipitation estimate

(1979–2013) between EWP and the ROTRAJ (black line) estimate

(only ascending trajectories are included). The ECMWF model

estimate (blue line/dots) is also compared with EWP. Both models

underestimate the observations by a similar amount (23%), apart

from the light precipitation (,4mmday21) events where the

ROTRAJ estimate is too large. For wet events (.4mmday21),

both models have similar skill.

15 SEPTEMBER 2017 DE LEEUW ET AL . 7363



R5
v

p
0

S(p, q
s
), (6)

where R 5 2Dq/Dt is the condensation rate and

v 5 Dp/Dt is the vertical velocity in pressure co-

ordinates. The quantity p0 is a constant used to non-

dimensionalize S(p, qs), which is the thermodynamic

function

S(p,q
s
)5 p

0

›u
es

›p

����
q

,
›u

es

›q

����
p

. (7)

Equation (6) encapsulates a physical basis for a par-

tition of precipitation rate between thermodynamics

(the invariant function S) and the dynamics through

the vertical motion v (O‘Gorman and Schneider

2009). The partition is dependent on using the

Lagrangian frame. Since each trajectory follows a

different path (p, qs), the thermodynamic influence is

implicitly dependent upon the path. Also, the vertical

motion depends on the coupling between the mo-

mentum and thermodynamic equations. Despite these

complexities, we use this Lagrangian framework to

identify different physical mechanisms influencing

precipitation variability.

In Fig. 3a, the function S(p, qs) is shown holding the

pressure constant at 900 hPa. The empirical formula of

Bolton (1980) is used to define ues in the numerical

calculations. The function S is almost linearly dependent

upon qs. This implies that if humidity at low-level origins

is varied, the precipitation rate is expected to scale with

the origin humidity in Eq. (6) (if the trajectory pathway

can be taken as unchanged). Figure 3b shows the vari-

ation of S as pressure decreases following a moist

pseudoadiabat during saturated ascent. It illustrates how

the greatest proportion of condensation must be asso-

ciated with ascent at the lowest levels (highest pressure).

Nevertheless, the key point is that the curve is known

given only the value of ues, and all adiabats give a

similar-shaped monotonic variation in S with p. There-

fore, in section 4a, it will be assumed that a fractional

increase in specific humidity at the origin would result

in a proportionate increase in precipitation along a tra-

jectory. This relies only on S(p, qs) being a known

monotonic function of qs and an assumption of

weak mixing.

The integral of Eq. (6) along trajectories yields dq 5
X3 dp/p0. The variable X is not known in general since

S(p, qs) is nonseparable and one cannot evaluate the

integral analytically. However, a compact nonlinear re-

lation is expected between dq and dp if trajectories

originate from a similar pressure level and experience

saturated ascent. This prediction is tested for the tra-

jectories calculated from analyses using a number den-

sity plot of [porigin 2 p(6 h)] versus [qorigin 2 q(6 h)] for

all trajectory origins identified as last exit from the

boundary layer (called ‘‘CAT I’’ in section 2e). It

shows a reasonably compact relation (linear correlation

R5 0.83) between the two quantities (Fig. 4), indicating

that the Eq. (6) holds to some extent following the flow

resolved in the reanalyses between origin (location II in

Fig. 1) and the start of the saturated ascent over the last

6 h (phase I). The effects of mixing and different origin

pressures smear the relation out. Note that this means

that although mixing occurs, the precipitation along the

trajectory scales with qorigin.

e. Determining the trajectory origin locations

In section 1, the airmass origin was introduced as the

location where the water vapor mixing ratio last in-

creased related to mixing. It will be shown that this oc-

curs most often at the point of exit from the boundary

layer (BL). However, to specify the precise origin

FIG. 3. Thermodynamic function S(p, qs) for (a) a constant pressure level p5 900 hPa and (b) along a moist adiabat

with equivalent temperature ues 5 320K.
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locations, it is necessary to consider boundary layer type

and the implications for mixing of moisture.

The first criterion used to define a trajectory origin

point is based on the last exit of the BL as defined by the

ECMWF forecast model. The BL height diagnostic

identifies the height of the well-mixed turbulent bound-

ary layer. In unsaturated conditions, this coincides often

with an inversion. However, in moist convective bound-

ary layers capped by cloud, it identifies the top of thewell-

mixed subcloud layer, not the partially mixed cloud layer

above. If a trajectory is below zBL at any time, the last exit

from the BL is identified as the origin location, and the

trajectory is described as CAT I.

In unsaturated conditions, the virtual potential tem-

perature uy (including molecular mass effects of water

vapor loading) becomes well-mixed, and the mixing line

between the surface and BL top (Emanuel 1994) is used

to isolate the influence of surface temperature variabil-

ity on trajectory humidity.

A second criterion is necessary to identify trajectories

originating from the cloud layer of moist convective

boundary layers but that do not stray below zBL at any

point. These will be described as CAT II origins. The

criterion is based on the last significant increase in

equivalent potential temperature ue along the trajectory,

as this is a conserved quantity following saturated or

unsaturated air masses in the absence of mixing. Typi-

cally, air leaving the BL, for example, in a warm

conveyor belt flow, possesses ue that is greater than its

surroundings. Consequently, ue can only decrease

through mixing and radiative cooling after exit (e.g.,

Methven et al. 2003). Therefore, any significant increase

in ue is attributed to mixing within the cloudy BL or a

region of deep convection. The Intercontinental Trans-

port and Chemical Transformation (ITCT) Lagrangian

experiment in 2004 used aircraft to intercept the forecast

trajectories of air masses at locations spanning the

North Atlantic. Methven et al. (2006) showed that in

Lagrangian cases (avoiding regions of convective mix-

ing), the observations by multiple aircraft connected by

airmass trajectories revealed matching chemical finger-

prints (indicating that it was indeed the same air mass),

and the ue agreed to within 2K on average between the

analyses and observations at those locations. Therefore,

to be certain to not sample model errors, the threshold

defining a CAT II origin is a ue increase exceeding 2.5K.

Using this ue threshold does not exclude mixing in very

stably stratified regions with drier air above the trajec-

tory air mass. Therefore, increases in ue must be ac-

companied by an increase in q to ensure they represent

moistening of the trajectory.

The fraction of the ROTRAJ precipitation estimate

associated with CAT I origins is 70%, CAT II origins

27%, and trajectories with no origin within 8 days con-

tribute 3%. This small percentage of unidentified origins

justifies the 8-day limit for back trajectories used in

this study.

Figure 5 compares time of last exit from the BL (se-

lected using CAT I or CAT II origin) with the time of

observed maximum specific humidity along each con-

tributing trajectory (using the whole dataset). The

FIG. 4. A number density plot of the change in pressure between

the origin location and t 5 26 h at the start of the precipitation

calculation [porigin 2 p(26 h)] vs the change in specific humidity

between the same time points [qorigin 2 q(26 h)]. The calculations

are based on CAT I trajectories only.

FIG. 5. Relative frequency histogram of the difference between

the time determined for the origin location and time of maximum

specific humidity (q). Results are shown for CAT I origins (blue

line/points, well-mixed turbulent BL) and CAT II origins (black

line/points, partially mixed moist convective layer) separately.

Negative times indicate a maximum specific humidity that occurs

later (closer to the arrival time) than the point labeled as origin.
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resulting histogram shows that the definition used for

the origin location coincides with the key location where

the maximum moisture content of each trajectory air

mass is set. The tighter peak for CAT I trajectories in

Fig. 5 indicates a stronger link between the cessation of

BL mixing and maximum humidity in those cases.

3. Trajectory origins and their variability

The number density map of trajectory origins can be

estimated as

D(x)5�K(x
j
) , (8)

where K(xj) is a kernel function at the origin position of

each trajectory xj that arrives over the target region. The

kernel is defined in spherical coordinates, following

Hodges (1996), by a parabolic function with radius of

200km, sufficient to obtain a smooth density map over the

Atlantic from approximately 10 5 trajectories per month.

The global integral of D(x) equals the total number of

contributing trajectories.

A map of origin-average precipitation contribution

A(x) [mm (trajectory)21] is obtained following the

technique of Methven et al. (2001) by weighting each

trajectory with the corresponding precipitation con-

tribution pj [defined by Eqs. (2)–(4)]:

A(x)5
�K(x

j
)p

j

D(x)
. (9)

The total contribution of each origin location to the

target region precipitation is given by

P(x)5A(x)3D(x) . (10)

Integrating P(x) over the globe results in the total

monthly ROTRAJ estimate of precipitation over the

target region. This method will now be applied to the

England and Wales region.

a. Climatology

The number density map1 for origins of trajectories

arriving over England and Wales, D(x), is shown in

Fig. 6a. The maximum density of origins is over the

England and Wales region itself, but a large fraction of

the trajectories originates to the southwest of theUnited

Kingdom over the North Atlantic Ocean, related to

moisture transport by cyclones in the storm track. Local

maxima are also found along the coasts of North

FIG. 6. Origin maps for (top) the climatological period and for the (middle) wet and (bottom) dry composites, consisting of (left) a map

for the trajectory origin number density per monthD(x), (center) the average precipitation contribution per trajectory A(x), and (right)

the total precipitation contribution per month P(x) 5 D(x) 3 A(x).

1 The results are rescaled to represent the number of trajectories

per steradian. For Earth, 105 trajectories per steradian corresponds

to approximately 1 trajectory per 10 km2.
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America and North Africa. These are related to the

deeper boundary layers over land in daytime compared

to the ocean boundary layer. Trajectories can exit the

boundary layer horizontally moving from land to ocean

(e.g., Peake et al. 2014).

The origin-average precipitation contribution per

trajectory A(x) is shown in Fig. 6b. Typically, the pre-

cipitation falling in the last 6 h before arrival (over the

target region) is much smaller than the net condensation

along the trajectory, [qorigin 2 q(0)], because a fraction

of the origin humidity qorigin is lost through condensa-

tion and precipitation earlier along the trajectory. Tra-

jectories originating over the Atlantic Ocean southwest

of the United Kingdom contribute most on average to

precipitation over England and Wales. There is a ten-

dency for more precipitation to be associated with tra-

jectories originating farther south, which is related to the

higher temperatures in those regions (and therefore

higher saturation vapor pressure and more BL

moisture).

The product of Figs. 6a and 6b gives the total pre-

cipitation contribution (Fig. 6c). The maximum occurs

over the United Kingdom, while the importance of tra-

jectories originating from North America is decreased

because of their small individual contribution to pre-

cipitation over England and Wales. Trajectories over

the Atlantic basin southwest of the United Kingdom

dominate the ocean origin contribution to England and

Wales precipitation.

b. Composites of wet versus dry months

Composite plots are created for the 10 wettest and

driest summer months in the EWP observational data-

set. Changes in density of origin D(x), are mainly asso-

ciated with the number of precipitating trajectories over

the arrival region. Comparing Figs. 6d and 6g, more than

double the number of trajectories originate over the

Atlantic Ocean in the wet composite. The trajectory

origin density from the European continent is also

higher but does not change in shape, with a peak over

northern Spain and large parts of western France.

The origin-average precipitation per trajectory A(x),

also differs markedly between wet and dry months

(Figs. 6e and 6h). This includes the effects of both the

changes in origin moisture content and changes in

ascent at arrival. Again, the highest origin-average

precipitation contribution in the wet composite origi-

nates over northwest France.

Multiplying these two fields gives the total pre-

cipitation contribution P(x), in Figs. 6f and 6i. Com-

paring the two extreme composites with climatology

(Fig. 6c), the largest changes are observed over the At-

lantic Ocean to the southwest of the United Kingdom.

This indicates that a large fraction of the precipitation

variability is related to air masses originating from

this region.

c. Ocean and land origin regions

Integrating the total precipitation contribution P(x)

separately over the ocean, land, and local (England and

Wales) regions gives the partial contribution of each

region to the total ROTRAJ precipitation estimate for

the wet and dry composites (Fig. 7). The total pre-

cipitation is almost 3 times higher in the wet relative to

the dry composite.

The relative contributions of the three regions are

broadly similar in the wet and dry composites, with over

half of the precipitation having an oceanic origin. De-

spite the highest origin number density over England

and Wales, the small area results in a small total con-

tribution (’11% in wet and 16% in dry months). The

main difference between the wet and dry composites is a

larger contribution of ocean origins in the wet compos-

ite, which is replaced by a larger local contribution in the

dry composite. The relative contribution of other land

regions is unchanged.

The partition between CAT I and CAT II origins in

Fig. 7 reveals that the land and local origin regions are

dominated by CAT I (the turbulent boundary layer),

while the ocean has a relatively large contribution from

CAT II (the cloud layer capping the convective

marine BL).

Differences between the wet and dry composites

in the precipitation contributions imply systematic

FIG. 7. The partial contribution of the local region (red), other

land regions (green), and the ocean (blue) to the EWP. The dark

and light colors represent the contribution of the CAT I and CAT

II trajectories, respectively. The diagrams show the (left) wet and

(right) dry composites, each consisting of the 10 most extreme

months. The area of both diagrams is scaled to represent the total

precipitation for each composite.
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differences in the large-scale circulation and the char-

acteristics of cyclones in the North Atlantic storm track.

This could involve a combination of the number of cy-

clones, their intensity, and tracks. The consideration of

all the factors outlined in the introduction [Eq. (1)] will

allow a more specific attribution of precipitation

changes to individual mechanisms.

4. Factorization of precipitation variability into
physical mechanisms

Five factors are hypothesized to dominate pre-

cipitation variance, as introduced in section 1. First, the

dataset is partitioned into ‘‘dry’’ (subscript d) and ‘‘wet’’

(subscript w) analyses because the statistics of these two

subsets are very distinct. Wet analyses are defined by a

threshold of 1-mm precipitation accumulation (for the

England and Wales average) over the 6 h prior to each

analysis using the ROTRAJ estimate. Figure 8 shows a

histogram of EWP ranked from wettest to driest months,

with the separate contributions to the ROTRAJ estimate

from the wet analyses (TOTw), the dry analyses (TOTd),

and their total. All monthly values are normalized by

the climatologicalmeanEWP, and the trajectory estimates

have been divided by the appropriate scaling (0.77) to

account for the underestimation of EWP byROTRAJ. To

reduce noise, a 5-point running mean is applied to the

ranked wet and dry contributions. Figure 8 shows that

ROTRAJ is able to explain most of the observed summer

EWP variability (approximately 88% without the running

mean) and that the majority of the variability is related to

the wet analyses. Therefore, the remainder of the paper

will focus on the monthly precipitation estimate using the

wet analyses only, Pw. This may be partitioned into three

metrics:2

P
w
5p

w
3M

w
3 n

w
, (11)

where pw represents the monthly average of pre-

cipitation contribution per trajectory during wet ana-

lyses [Eq. (4)]; Mw is the average number of ascending

trajectories precipitating per wet analysis, proportional

to themass of ascending air in the arrival domain; and nw
is the number of wet analyses in the month.

The time series of each term inEq. (11) is calculated as a

fraction of its climatological mean (Fig. 9). The variability

in nw clearly dominates (r 5 0.81–0.90). The other two

metrics (pw and Mw) are less variable, with some in-

teresting exceptions (e.g., August 1986). Therefore, most

of the monthly precipitation variability observed over

FIG. 8. The ranked monthly EWP observations for JJA 1979–2013 (bars) and the summed

impact for the wet and dry analyses and their combination (lines). The fractional contribution

of the wet and dry analyses in eachmonth are normalized relative to the climatological average

precipitation. The colors of the bars indicate the decade of the month (blue is 1979–89, green is

1990–99, yellow is 2000–09, and red is 2010–13), showing that most of the wettest months oc-

curred after 2000. To reduce noise, a 5-point running average is applied to the wet (blue) and

dry (red) contributions and their combination (black).

2 The subscript w will be implicitly assumed in the remainder of

this paper unless stated otherwise.
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England and Wales can be related to the total number

of analyses that exceed the wet analysis threshold

[1mm (6h)21].

The partition of monthly precipitation in Eq. (11) is

closely related to the trajectory origin metrics defined in

Eqs. (8) and (9) as follows:

p
w
5

ð
A(x) dx and M

w
3 n

w
5

ð
D(x) dx , (12)

showing that A(x) is related to the monthly average

precipitation contribution per trajectory, while D(x) is

related to the total number of contributing trajectories.

Using the trajectory model metrics in Eq. (11), it is now

possible to partition the precipitation variability into

multiplicative factors associated with distinct physical

processes,

P
w
5P

clim,w
3 ST3LOC3AI3AF3NT

w
(13)

where Pclim,w is climatological average of ‘‘wet day’’

monthly precipitation, NTw 5 nw/hnwi the anomalous

number of wet analyses, and AFw 5 Mw/hMwi the

anomalous ascent mass fraction (i.e., variations in the

mass of ascending air over the region). The angle

brackets denote the time average over the entire data-

set. The pw factor is factorized into three mechanisms

that are hypothesized to dominate its variability: ST, the

impact of anomalous surface temperatures at the ori-

gins; LOC, the impact of variability in origin locations;

andAI, the ascent intensity. The impact on precipitation

variability is calculated by changing one variable and

keeping all other factors constant. By definition, the

climatological average of each factor is unity.

a. ST variability

The ST factor quantifies the impact of surface tem-

perature variations at the trajectory origins on moisture

content and thence on precipitation contribution per

trajectory pw. It is calculated by substituting surface

temperature Ts at each origin location with its climato-

logical value. The assumption is that affects the trajec-

tory moisture content through the increase in saturation

vapor pressure, which then scales the moisture loss

FIG. 9. Monthly variations between 1979 and 2013 for the three ROTRAJ precipitation metric terms in Eq. (11)

for the wet analysis type; nw is the total number of wet analyses (green), Mw (red) is the average number of

ascending trajectories precipitating per wet analysis, and pw(cyan) is the average precipitation contribution per

trajectory for the wet analyses. Values are calculated as ratios relative to the climatological average. The black line

represents the combined precipitation variability in the ROTRAJ model for the wet analyses.
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through condensation in the arrival region, holding all

else equal. It is necessary to link the surface temperature

to the boundary layer moisture content, the trajectory

properties at the origin location, and finallyDqk [Eq. (2)]
over the last 6 h before arrival (as outlined in section 2d).

The first key assumption is that turbulent mixing be-

tween the surface and BL top is sufficiently rapid that

the humidity and temperature at the location of last exit

from the BL are instantaneously connected to condi-

tions at the surface underneath. Model studies indicate

that the BL exchange time scale is of the order of hours.

For example, motivated by observations from the Cou-

pled Boundary Layer Air–Sea Transfer (CBLAST) ex-

periment, Edson et al. (2007) and Skyllingstad et al.

(2007) investigated the impact of SST variability on the

structure of the boundary layer using a large-eddy sim-

ulation (LES) model. They found that the boundary

layer had adjusted to near steady state after 80min.

For CAT I trajectories, defined in section 2e, the

connection between the ‘‘point of origin’’ within the BL

and the surface is made using the conserved thermody-

namic property virtual potential temperature uy, which

is well mixed within turbulent boundary layers. Taking

all CAT I cases, where back trajectories extend below

zBL diagnosed from the ECMWFmodel, it is found that

uy at the trajectory origin heights (point II in Fig. 1)

is related to air surface uy by a linear regression with

R2 5 0.97.

For the CAT II trajectories, identified with origin

above the turbulent mixed layer but experiencing

moistening, it is found that equivalent potential temper-

ature, ue, at the trajectory origin heights is related to

surface ue by a linear regression with R2 5 0.67. This is

consistent with amixing line in amoist convectiveBL, but

the relationship is not as tight, indicating partial mixing.

The impact of substituting the actual surface tem-

perature at each locationTswith its climatological value,

denoted by hTsi, is calculated as follows. For each indi-

vidual trajectory, a revised saturation vapor pressure,

e(hTsi), is calculated using the Clausius–Clapeyron re-

lation, which yields saturation specific humidity qs(hTsi,
ps). Assuming that relative humidity (RH) is unchanged

in the BL enables the calculation of huyi at the surface.

The observed linear regression between the surface and

BL top results in a value for huyi at the height of the

‘‘airmass origin.’’ Again assuming that the RH profile is

unchanged, huyi(porigin, RH, hqi) can be inverted to

obtain an estimate of the specific humidity hqi at the

trajectory origin point. Note that the RH vertical profile

is observed to vary little with time within the marine

boundary layer (Stevens et al. 2007; Holloway and

Neelin 2009) even though the temperature and specific

humidities may vary substantially. Since the marine BL

profile is typically near saturation at the top, the RH

profile is tightly constrained.

Finally, the fractional change in precipitation contri-

bution of each individual trajectory pj over England and

Wales is assumed to be equal to the ratio qj/hqij, derived
at each trajectory origin. This approach relies on the

physical argument given in section 2d and the un-

derpinning Eq. (6). Adding the changes for all trajectory

origins results in an area average precipitation factor

ST 5 Sjpj/Shpij. Similar calculations are applied for

CAT II trajectories but using ue as the well-mixed BL

quantity in the adjustment of the vertical profile to cli-

matological surface conditions. More details can be

found in de Leeuw (2014).

b. LOC variability

The impact of changing the origin location on pre-

cipitation, while holding all else fixed, is represented by

the LOC factor in Eq. (13). This factor is calculated by

substituting the origin density map (as shown in Fig. 6)

from the actual month with the climatological map.

First, define the total available moisture (TAM) for

precipitation along trajectories as

TAM5

ð
D(x)q

origin
(x) dx , (14)

where D(x) is the trajectory number density and

qorigin(x) the origin-average specific humidity at a loca-

tion x, defined following Eq. (9) with qj as the kernel

weight. Assuming a constant fraction a of the total

available moisture (i.e., combining all trajectories) pre-

cipitates over England and Wales gives

P5a3TAM, (15)

where a is a constant (a5 2.83 1025mmkg21 kg21 for

JJA climatology). The LOC factor in Eq. (13) is calcu-

lated as LOC 5 P/hPi 5 TAM/hTAMi, where hTAMi
is defined by Eq. (14) substituting the climatological

distribution hDihxi.
c. AI variability

The AI factor is an estimate of the effect on pre-

cipitation of replacing the probability distribution of as-

cent rate for each month with the climatological

distribution, keeping all else fixed. Assuming pseudoa-

diabatic displacement, a change in ascent rate of trajec-

tories over the arrival region is related to the average

decrease in specific humidity (Dqw) as predicted byEq. (6).

Calculation of AI for an individual month is illus-

trated schematically in Fig. 10. For each trajectory, the

ascent rate (net ascent in the last 6 h over the arrival

region, denoted by 2Dp) is known, and its percentile in
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that month’s cumulative distribution function (CDF) of

ascent rate is found. The 2Dp is replaced by the ascent

rate corresponding to the same percentile in the clima-

tological CDF. The change in ascent rate dp (the left

arrow in Fig. 10b) is used to calculate a change in con-

densation dq assuming a pseudoadiabatic displacement

[i.e., moving along the S curve illustrated in Fig. 3b and

using Eq. (6)]. More details of these calculations are

given in de Leeuw (2014).

d. Association of NTw with cyclone statistics

In midlatitude storm tracks, fractional changes in the

number of wet analyses per month, NTw, are hypothe-

sized to be chiefly associated with cyclone activity.

These variations may be partitioned into the number of

cyclones passing over the region of interest (cyclone

count CC) and the average time that each cyclone af-

fects the region (cyclone duration CD):

NT
w
’CC3CD. (16)

To test this, cyclone count and duration are estimated

using Hodges’ (1994) cyclone-tracking scheme. This

scheme tracks maxima in 850-hPa relative vorticity

fields at a 6-h frequency. The ERA-Interim reanalyses

are used, truncated to a spectral resolution of T42, en-

suring that vorticity maxima are associated with cyclone

centers rather than fronts (Hodges 1999).

The correlation betweenNTw (wet analyses permonth)

and the number of analyses with cyclones (CC 3 CD)

is maximized by varying the boundaries of the domain

within which cyclones are counted. The maxi-

mum correlation is found to occur for a threshold of

1mm(6 h)21 and the domain sizes as indicated in Table

1 for each calendar month. Based on these criteria, the

total number of cyclone tracks per month and their

average duration within the domain are calculated and

divided by their climatological average to obtain nor-

malized factors CC and CD.

5. The factorization applied to precipitation
variability for England and Wales

Now that distinct factors quantifying the variability of

specific physical mechanisms have been determined,

their individual and combined skill in explaining the

observed precipitation variability for summer in the

EWP dataset can be assessed. The combination of fac-

tors using Eqs. (13)–(16) is able to represent approxi-

mately 86% of the variance in the EWP precipitation

observations (see Table 2 for related correlation co-

efficients), giving confidence that all the important

mechanisms of the precipitation variability are cap-

tured. The Pearson correlation coefficients in Table 2

also show that the combination of all the wet factors

(TOTw column) gives a better correlation with obser-

vations than any individual factor.

a. Relative importance of precipitation factors

Figure 11 shows ranked monthly precipitation, as

in Fig. 8, together with the total and individual contri-

butions of the five factors for the wet analyses [Eq. (13)].

FIG. 10. Schematic illustration of the calculation of AI factor with the black lines representing climatology and the red, the actual

monthly values. (a) Net ascent (2Dp) over the last 6 h of each trajectory is adjusted by comparing the PDF of monthly ascent rates with its

climatology. At each value of (b) the CDF, the additional pressure change (dp) required to shift the monthly curve to climatology is

calculated. (c) The change in ascent dp is then applied to each individual trajectory (given its net ascent rate 2Dp) and is related to

a change in condensation dq using the moist adiabatic lapse rate.

TABLE 1. The domain size within which the cyclone feature oc-

currence has the highest correlation with the number of wet 6-h

intervals for the England and Wales regional average. The asso-

ciated squared correlation R2 and the climatological average

monthly CC (average is between presented values) and CD

(number of 6-h analysis intervals) are shown.

Relevant cyclone area R2 CC CD (analyses)

June 498–61N8, 108W–08 0.66 5–6 3.5

July 478–648N, 128–18W 0.69 6–7 4.1

August 488–608N, 198–18W 0.65 7–8 4.6
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The dominant factor in the precipitation variability is

simply the number of wet analyses within each individ-

ual month NTw. The two factors related to local storm

dynamics, AI and AF, also vary systematically with

monthly precipitation anomalies.

The relative contribution of each factor to pre-

cipitation variability is more clearly quantified

using a Taylor diagram (Taylor 2001), shown in

Fig. 12. This displays factor variance and correlation

with observed precipitation. Radius represents the

ratio of the standard deviation (SD) of each factor to

the climatological average precipitation and is a

measure of the amplitude of variability. Azimuth

represents the correlation coefficient between the time

series of each factor and observed precipitation (1979–

2013). The axis scaling is chosen so that the distance be-

tween any two points on the diagram equals their centered

RMS difference (green semicircles in Fig. 12). Therefore,

the skill of an individual factor is related to its distance

from the ‘‘observed’’ variability.

Figure 12 confirms that the number of wet analyses

NTw is the dominating factor in the ROTRAJ pre-

cipitation variability, with a correlation coefficient

between 0.8 and 0.9 and a standard deviation (percent

of mean) between 28% and 36% for the three summer

months. As shown in Table 1, this variability is dom-

inated by cyclone statistics in the region. The second

and third most important factors are the AI and AF,

but their individual contributions are much smaller

than NT in terms of correlation and amplitude, re-

sulting in much larger RMS departures (.35%) from

observations. Table 2 gives the standard deviation and

correlation with observations for each factor for June,

July, andAugust separately. The results are similar for

each month except for AI, which has a lower corre-

lation with EWP in August, perhaps indicating greater

importance of convective (unresolved) ascent. The

wetter months are characterized by stronger ascent

(per trajectory), a greater proportion of ascending

trajectories, and more wet days. Table 3 shows that the

corresponding factors NTw, AI and AF are signifi-

cantly correlated. Because of the large covariances

between them, the combined effect of NTw, AI, and

AF is also shown in Fig. 12 and accounts for almost all

TABLE 2. Pearson correlation coefficients r for all the factors of

the ROTRAJ model related to the wet analyses in June, July, and

August compared with the observed precipitation variability

(EWP) between 1979 and 2013. Also included is the total wet an-

alyses variability (TOTw). The SD for each factor, calculated as

a fraction of the climatological average (SD/mean), is scaled to

account for the underestimate of 23% by the ROTRAJ model.

EWP TOTw NT AF AI LOC ST

June

rEWP 1 0.943 0.900 0.669 0.658 0.004 20.342

SD 0.541 0.447 0.358 0.148 0.128 0.068 0.039

July

rEWP 1 0.939 0.805 0.623 0.699 0.238 20.506

SD 0.464 0.338 0.277 0.136 0.115 0.056 0.049

August

rEWP 1 0.910 0.855 0.750 0.421 0.033 20.462

SD 0.420 0.358 0.294 0.165 0.154 0.065 0.048

FIG. 11. As in Fig. 8, but overlaying all the individual factors influencing precipitation var-

iability: NT (solid black,AF (blue),AI (red), LOC (green), ST (orange), andwith TOT (dashed

black). To reduce noise, a 5-point running average is applied to the ranked factors.
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of the total variability in the ROTRAJ wet

analyses (TOT).

In contrast, the ST factor is negatively correlated

with observed monthly precipitation, revealing that

surface temperature at airmass origins is anticorrelated

with EWP (R between 20.34 for June and 20.51 in

July, in Table 2). This is consistent with negative SST

anomalies spanning the Atlantic to the west and

southwest of the United Kingdom for the wet com-

posite (Fig. 13). ST therefore acts as a weak damping

factor on monthly precipitation variability (as seen in

Figs. 11 and 12).

Figure 12 also shows that the skill of the LOC

factor is negligible in explaining the variability (r 5
0.07). Interannual variability of the shape of the

origin density map is therefore unimportant for

the England and Wales summer precipitation

variability.

Finally, the dominant factor NT is related to cyclone

count and duration. The CC and CD factors for each

month in the dataset are shown in rank order of EWP

in Fig. 14. The product ncycl 5 CC3 CD, representing

the number of analyses with a cyclone within the vi-

cinity of the United Kingdom, is significantly corre-

lated with NT (R 5 0.66). The implication is that

precipitation variability for England and Wales is

dominated by cyclone-track variability, as might be

expected given its position at the end of the North

Atlantic storm track.

FIG. 12. Taylor diagram showing the relative skill of each of the precipitation factors compared to the observed monthly EWP time

series. Each factor is located on the diagram by its normalized SD, giving the radial coordinate, and its correlation with the observations

(blue numbers), giving the angle. The green lines represent the centered RMS difference (percent) between the factor and the observed

time series. Each individual factor is included, as well as the combined impact of the three factors NT, AI, and AF, the total for the wet

analysis type (TOT), and the combined skill of the wet and dry analyses (ALL) (red).

TABLE 3. Pearson cross-correlation coefficients for all the factors in

the ROTRAJ model for the wet analyses (1979–2013).

NT AF AI LOC ST

June

SUM 0.96 0.54 0.68 0.07 20.29

NT 1 0.38 0.58 20.02 20.29

AF — 1 0.32 0.38 20.40

AI — — 1 0.22 20.19

LOC — — — 1 20.07

July

SUM 0.93 0.45 0.74 0.16 20.31

NT 1 0.23 0.55 0.18 20.29

AF — 1 0.47 0.05 20.42

AI — — 1 0.12 20.21

LOC — — — 1 20.49

August

SUM 0.89 0.62 0.61 0.07 20.46

NT 1 0.42 0.33 20.11 20.26

AF — 1 0.46 20.05 20.62

AI — — 1 0.12 20.40

LOC — — — 1 20.18
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Despite noise in the ranked data, a clear relation is

found between increased cyclone duration and the

wettest months. For the driest summer months only,

there is an indication that the dominant factor is a

low CC rather than shorter cyclone duration. This

generalizes the result of the case study of summer of

2007 (Blackburn et al. 2008), which showed that the

extreme precipitation over England and Wales was

related to stalling of cyclones giving persistent

rainfall over the region. In that case, it was a sta-

tionary Rossby wave pattern on the jet stream, with a

persistent trough over the British Isles, that coupled

with cyclones developing at low levels and enabled

them to slow while growing through mutual in-

teraction. De Leeuw et al. (2016) correlated EWP

observations with seasonal average 500-hPa geo-

potential height for 1961–2013, revealing a very

strong upper-level trough over the east Atlantic and

the United Kingdom and also pronounced troughs

over eastern North America and to the west of North

America in wetter summers. Therefore, the pattern

seen for summer 2007 (Blackburn et al. 2008) is

representative of the other wettest months in the

record. The Rossby wave pattern has a similar wave-

length and phase to the leading pattern of Northern

Hemisphere variability in July identified by Ding and

FIG. 13. The ERA-Interim JJA surface air temperature T(2m) anomalies (K) from the climatological (1979–

2013) fields for the (a) wet and (b) dry composite. Stippling represents the regions exceeding 1s deviation from the

climatological mean value.

FIG. 14. The ranked monthly EWP observations for JJA 1979–2013 (bars) as in Fig. 8 and

the corresponding factors for the number of wet analyses NT (black), cyclone duration CD

(blue), and cyclone count CC (red).
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Wang (2005) by applying EOF analysis to the 500-hPa

geopotential height.

b. Multidecadal variability

Sutton andDong (2012) found that a change in summer

precipitation in northern Europe in the 1990s coincided

with a change in the phase of the Atlantic multidecadal

oscillation (AMO), which characterizes variability of

North Atlantic SSTs on multidecadal time scales. To in-

vestigate the mechanisms contributing to AMO-related

variability of England and Wales summer precipitation,

the trajectory model factors are analyzed for two periods,

1979–1993 and 1996–2013, based on those used by Sutton

andDong (2012), that are representative of cold andwarm

North Atlantic SST anomalies, respectively.

Differences in the five factors averaged separately

over the warm and cold phases of the AMO (DF5
Fwarm2Fcold) are shown in Fig. 15a. The combination of

all factors (TOT) shows a precipitation increase of 15% in

theAMOwarm phase compared to the cold phase, which

is slightly larger than the observed difference in the EWP

observations between the two phases (12%). This is a

significant fraction (20%) of the interannual variability of

monthly precipitation (Fig. 15b).

The main contribution to the AMO-precipitation var-

iability comes from the number of wet analyses NT,

which increases by approximately 18% during the warm

phase. This is associated predominantly with an increase

in cyclone duration CD, with little difference in cyclone

count CC. The remaining factors all have smaller con-

tributions between AMO phases. The direct impact of

surface temperature changes at the origin locations (ST)

is weakly positive, contributing a 3%–4% increase in

precipitation during the warm phase. This is only one-

sixth of the NT factor, a similar ratio to their interannual

variances. The dominance of cyclone factors between

AMO phases is consistent with Dong et al. (2013), who

suggested that the positive AMO-precipitation correla-

tion is most likely related to multidecadal variability of

the storm track.

It can be concluded from this comparison that un-

derstanding monthly precipitation variability and multi-

decadal precipitation variability are two distinct problems.

The thermodynamic ST factor is anticorrelated with

monthly precipitation, while it is positively correlated with

summer precipitation on multidecadal time scales, Fur-

thermore, the correlation between summer precipitation

and AMO phase primarily results from changes in the

North Atlantic storm track: the impact on the number and

duration of cyclones giving precipitation over England and

Wales is more than 6 times larger than the direct ther-

modynamic impact of SSTs on the water vapor content of

air masses that ascend and precipitate over the region.

6. Conclusions and discussion

A Lagrangian framework is used to relate the pre-

cipitation falling over a target region to the history of air

masses bringing the water vapor that condenses on as-

cent and precipitates. In this way, precipitation vari-

ability is connected to the physical processes that enable

condensation and influence its magnitude. In this study,

the ‘‘origin’’ of back trajectories is defined as the loca-

tion where the water vapor mixing ratio of the air mass

last increased (going forwards in time toward the ’’ar-

rival region’’ where precipitation is recorded). Two

categories of origin are identified depending primarily

upon the location of last humidity increase relative to

the top of the turbulent boundary layer (as diagnosed in

the ECMWF model). The Lagrangian framework

FIG. 15. (a) Seasonal average difference between the warm phase (1996–2013) and cold phase (1979–93) of the

AMO for each factor, their combination (TOT), and the cyclone factors CC and CD. Positive values indicate

increased precipitation during theAMOwarm phase. (b) Interannual variability (represented by 2s) for all factors.

Values for each calendarmonth are shown in Table 2. All values are for wet analyses only, expressed as a fraction of

JJA climatological average precipitation.
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enables a partition of precipitation rate, based on

Eq. (6), between the influence of thermodynamics of

saturated ascent [governed by the function S(p, qs)] and

the dynamics associated with the history of vertical

motion (pressure change) along trajectories.

A technique is introduced that quantifies the pro-

portion of monthly precipitation variability associated

with five distinct physical mechanisms, expressed in

terms of factors that combine multiplicatively to explain

the total variability. The five mechanisms include the

variability in 1) the surface temperature at origin loca-

tions of precipitating air masses, 2) shifts in origin lo-

cations, 3) ascent intensity, 4) the ascending fraction of

total air mass over the target region, and 5) the number

of ‘‘wet analyses’’ (.1mm in 6h averaged across the

region). The Lagrangian methodology is then used

to test the relative importance of each factor for the

observed precipitation variability over England and

Wales, a region with a dense network of reliable ob-

servations.Motivated by an exceptional sequence of wet

summers over western Europe since 2007, the method is

applied to the JJA season between 1979 and 2013.

The Lagrangian ROTRAJ model (Methven 1997)

used in this study is used to calculate back trajectories

from a 3D ‘‘arrival grid’’ over England and Wales

throughout the ERA-Interim reanalysis period (over

80 million trajectories). The specific humidity change in

the last 6 h before arrival is able to explain 82% of the

observed daily precipitation variance, very similar to the

result obtained from the ECMWF model forecasts used

to produce ERA-Interim (de Leeuw et al. 2015). The

ROTRAJ estimate and ECMWF forecast model esti-

mates have a similar precipitation bias in that the PDFof

precipitation rates is indistinguishable from aWeibull fit

to the EWP observations aside from a uniform scaling

factor of 0.77.

The origin number density maps differ significantly

between the wet and dry months (Fig. 6), mainly because

of changes in the mass of air contributing to precipitation

over the target region. The variations in origin are a re-

flection of a change in the large-scale dynamics and the

cyclone passage in the storm track. The largest contri-

bution to the precipitation is from the marine boundary

layer, while a smaller contribution is related to moisture

origins locally (over England and Wales) and from the

boundary layer over other landmasses (see Fig. 7).

Monthly precipitation variability in the United King-

dom is well described by the five factors as presented by

Eqs. (13)–(16). The dominant factor in the precipitation

variability is simply the number of wet analyses within

each individualmonthNTw (responsible for 80%–90%of

the variance). The two factors related to local storm dy-

namics, namely, ascent intensity AI and mass fraction of

ascending air AF, are found to be related to approxi-

mately 40%–60% of the variance. Because of significant

cross correlations between these three cyclone-related

factors (NTw, AF, and AI), together they explain 93%–

98% of the variance. Cyclone variability is therefore the

dominating factor for observed summer precipitation

variability over England and Wales.

The cyclone-tracking algorithm of Hodges (1994)

enables the number of wet analyses to be partitioned

using cyclone-track statistics. In the wettest summer

months over England and Wales, it is the duration of

cyclones that is anomalous rather than the number of

individual cyclones. Blackburn et al. (2008) identified

this as an important contributor to the extreme U.K.

precipitation events that occurred in the summer of

2007. The results presented here show that this conclu-

sion is more generally applicable to wet summer months

over the past 35 yr. This result is also in agreement with

Hand et al. (2004), who identified that 20% of all the

observed twentieth-century extreme U.K. flood events

were related to slow-moving frontal systems.

In contrast, the ST factor is anticorrelated with

monthly EWP, showing that the direct thermodynamic

influence of SST anomalies on water vapor content in

precipitating air masses (via the Clausius–Clapeyron

relation) reduces precipitation variability for locations

at the end of the North Atlantic storm track (such as the

United Kingdom). This arises because SST is below the

climatological (1979–2013) average at the moisture ori-

gins in months with the largest precipitation accumula-

tions over the target region. Furthermore, since the

meridional variation in the surface temperature near the

dominant origin locations is small, the impact of shifting

the origin density map (the LOC factor) is very small for

England and Wales precipitation. However, this does

not imply that SST has no role to play in precipitation

variability, because SST gradients can influence the

dynamics of the storm track itself (e.g., Czaja and

Frankignoul 2002; Brayshaw et al. 2008; Nakamura et al.

2012) and therefore the number, duration, and intensity

of cyclones.

The decadal-average precipitation change associated

with moving from the cold to warm phase of the Atlantic

multidecadal oscillation (AMO) shows an overall in-

crease of 15% in England and Wales summer pre-

cipitation. This is mainly associated with an increase in

cyclone duration, which increases the number of wet days

per month in the warm phase. The ST factor is positively

correlated with summer precipitation for this AMO

phase change because of the SST increase, in contrast to

the negative correlation on the monthly time scale.

However, the decadal precipitation change attributable

to the ST factor is still 4 times smaller than that associated
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with the change in cyclone duration, illustrating that

changes in circulation dominate precipitation variability

at the end of the North Atlantic storm track. The La-

grangian framework introduced here enables us to make

this quantification by physical process rather than a

purely statistical association. It seems reasonable to hy-

pothesize that these conclusions apply to other regions at

the downstream end of midlatitude storm tracks.

Shepherd (2014) argued that the most uncertain aspects

of the observed climate change to date, and in climate

projections, are related to circulation change as opposed

to global average temperature change. This study has

shown that midlatitude precipitation is dominated by

circulation variability (on both monthly and decadal time

scales). Therefore, we can expect that precipitation

changes in midlatitude regions are at least as uncertain as

the storm-track changes. Application of the trajectory

methodology developed here to other regions is needed

to test the wider applicability of this conclusion.
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