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Bacterially extracellular biofilms play a critical role in relieving toxicity of fluoroquinolone antibiotic
(FQA) pollutants, yet it is unclear whether antibiotic attack may be defused by a bacterial one-two punch
strategy associated with metal-reinforced detoxification efficiency. Our findings help to assign functions
to specific structural features of biofilms, as they strongly imply a molecularly regulated mechanism by
which freely accessed alkalieearth metals in natural waters affect the cellular uptake of FQAs at the
water-biofilm interface. Specifically, formation of alkali-earth-metal (Ca2þ or Mg2þ) bridge between
modeling ciprofloxacin and biofilms of Escherichia coli regulates the trans-biofilm transport rate of FQAs
towards cells (135-nm-thick biofilm). As the addition of Ca2þ and Mg2þ (0e3.5 mmol/L, CIP: 1.25 mmol/L),
the transport rates were reduced to 52.4% and 63.0%, respectively. Computational chemistry analysis
further demonstrated a deprotonated carboxyl in the tryptophan residues of biofilms acted as a major
bridge site, of which one side is a metal and the other is a metal girder jointly connected to the carboxyl
and carbonyl of a FQA. The bacterial growth rate depends on the bridging energy at anchoring site, which
underlines the environmental importance of metal bridge formed in biofilm matrices in bacterially
antibiotic resistance.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

More and more attention has been paid to the challenging issue
on environmental contamination of antibiotics in recent years
(Martinez, 2009; Pruden et al., 2006). A nationwide survey of
pharmaceutical compounds from USA showed that a number of
antibiotics were detected in 27% of 139 rivers at concentrations up
to 0.7 mg/L (Kolpin et al., 2002). And the annual usage of antibiotics
has been estimated to be between 1.0 � 105 and 2.0 � 105 tons
globally, with more than 2.5 � 104 tons used each year in China (Xu
et al., 2007). The cellular uptake of antibiotics via trans-biofilm
transport will inevitably increase the risk of microbial death,
ecological disruption, amplification of antibiotic resistance genes
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and even the creation of “superbugs” (Desnottes and Diallo, 1992;
Pruden et al., 2013). However, regulated mechanism occurring at
water-biofilm interface, by which bacteria exert extracellular bio-
film barrier to defuse the antibiotic stress, has not been well un-
derstand. This process has profound consequences for
environmental stability.

Fluoroquinolone antibiotics (FQAs), which comprise an impor-
tant and hard-degradable class of synthetic pharmaceuticals, have
been widely used and have been introduced into the environment
by a multitude of human and veterinary activities over the last 30
years in Europe and the United States (Baquero et al., 2008;
Mompelat et al., 2009). Bacteria generally hide into a biofilm ma-
trix to deal with the presence of these synthetic antibiotics
(Wingender et al., 2012). One component of the so-called bacterial
one-two punch strategy is to use an extracellular biofilm perme-
ability barrier to impede the cellular uptake of antibiotic stressors.
Such physical defenses in response to antibiotics might be
es formed in biofilm matrices regulate the uptake of fluoroquinolone
on (2016), http://dx.doi.org/10.1016/j.envpol.2016.09.029
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inefficient and energetically very costly (Martínez et al., 2007; Rice,
2006). For example, previous studies have shown that sorption of
FQAs to oxygen- and nitrogen-containing dissolved organic matter
(DOM) displays a nonlinear saturation pattern (with a Freundlich
exponent n¼ 0.40e0.51) (Zhang et al., 2012), whereas their affinity
to phospholipids exhibits a linear partitioning pattern (partitioning
coefficient ¼ 20.0e79.4 L/kg) (Merino et al., 2002, 2003). These
findings implies that biofilms containing similar oxygen and ni-
trogen groups have a relatively low capacity (Walter, 2012) to
absorb FQAs and may result in high intracellular uptake due to the
low-efficiency of extracellular FQA interception. Furthermore,
extracellular accretions that act as entrapment agents will be
energetically very costly, considering the demand for major
saccharide and protein moieties during the formation of biofilms.
Nevertheless, little information is currently available to determine
how bacteria efficiently and economically deal with such stressors;
this issue requires proper investigation.

A positively charged metal bridging connection between elec-
tronegative biofilms and negatively charged FQAs (i.e., their func-
tional groups) may be the other component of the one-two punch
strategy for defending against antibiotic attack. Given the strong
electrostatic attraction between electronegative biofilms/FQAs and
accessible alkalieearth metals, the formation of a stable structure
would anchor the FQAs in biofilms via a metal bridge. Whereas one
side of the metal-to-FQA connection (metalecarbonyl interaction)
is supposedly understood (Aristilde and Sposito, 2008), attractions
between metals and extracellular biofilm components on the other
side are more multifarious and complicated. Thus, a quantitative
description of an alkalieearthemetal bridge based on these weak
attractions is crucial for quantitatively expounding the association
of such weak interactions at the molecular level. Generally, on the
basis of spectroscopic data, it is considered that alcohol, carboxyl,
phosphoric, and amino-acid residue groups in biofilmmatricesmay
be involved in interactions with such metals as Zn2þ, Co2þ, and
Ca2þ (Ha et al., 2010; Sun et al., 2009; Sundararajan et al., 2011;
Xiong et al., 2002). These results only suggest that biofilms may
utilize their electronegative groups to interact with metals, but not
know whether antibiotic attack may be defused by a metal-
reinforced detoxification efficiency occurring at water-biofilm
interface. And these spectroscopic data should be considered
qualitative, as they do not specify which of the functional groups in
biofilms are involved in metal binding. The listed spectroscopic
techniques have been unable to access quantitative descriptions of
imperceptibly weak interactions at the microscopic level. There-
fore, based on the idea that FQAebiofilm interaction occurs via a
metal bridge, including bridging energy and spectroscopic analyses,
multiple approaches are necessary to substantiate an association
between alkalieearth metals and the extracellular retardation of
FQAs and biological growth.

In the present study, we investigated the association of bacterial
extracellular biofilms with FQAs via an alkalieeartheCa2þ/Mg2þ

bridge and determined the influence of metal bridges in biofilms on
the extracellular interception and cellular uptake of FQAs. In situ
confocal laser scanning microscopy (CLSM), X-ray photoelectron
spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR),
and 13C nuclear magnetic resonance (13C NMR) were used to
confirm the formation of alkalieearthemetal bridges in biofilms. A
series of batch experiments was performed to explore the effect of
alkalieearthemetal bridges in biofilm matrices on extracellular
interception, trans-biofilm cellular uptake of a model antibiotic,
and bacterial apoptosis. Subsequently, eight FQAs were used to
determine the dependence of E. coli growth on the bridging energy
at major sites through a set of fluorescence microtitration and
computational chemistry analyses.
Please cite this article in press as: Kang, F., et al., Alkalieearth metal bridg
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2. Materials and methods

2.1. Materials

Eight fluoroquinolone antibiotics (FQAs, �99.0%) were pur-
chased from Sigma-Aldrich Co., Ltd, USA, namely ciprofloxacin
(CIP), norfloxacin (NOR), enrofloxacin (ENR), ofloxacin (OFL),
lomefloxacin (LOM), levofloxacin (LEV), pefloxacin (PEF), and fler-
oxacin (FLE). Their physicochemical properties, including molecu-
lar weight (MW), the dissociation constant for carboxyl groups
(pKa-COOH), and the octanolewater partition coefficient (logKow),
are listed in Table S1. Magnesium sulfate (MgSO4$7H2O, �99.0%)
and calcium sulfate (CaSO4, �99.0%) were purchased from Sino-
pharm Chemical Reagent Co., Ltd, China. Milli-Q water
(18.2 MU � cm, Millipore, USA) was used for all experiments.

Other chemicals (as listed below, purity > 99.0%) that were
purchased from Nanjing Chemical Reagent Co., Ltd. were used to
prepare modified chloride-free culture medium (Kang et al., 2014).
The medium contained K2HPO4$H2O (28 mmol/L), KH2PO4$3H2O
(2.2 mmol/L), NH4NO3 (18.7 mmol/L), CaSO4 (0.001 mmol/L), K2SO4
(2.0 mmol/L), MgSO4$7H2O (1.0 mmol/L), peptone (10 g/L), and a
trace element solution (10 mL/L). The trace element solution con-
tained Na2EDTA$H2O (5.0 g/L), Fe2(SO4)3 (0.37 g/L), ZnO (0.05 g/L),
CuSO4$5H2O (0.015 g/L), Co(NO3)2$6H2O (0.01 g/L),
(NH4)6Mo7O24$4H2O (0.01 g/L), and H3BO3 (0.01 g/L). The pH of the
medium was adjusted to 7.4 with sulfuric acid (98.0%). When
necessary, solid agar medium was prepared with 1 L of chloride-
free medium and 15 g of agar powder. The sulfuric acid
(0.01 mmol/L H2SO4) and sodium hydroxide (0.02 mmol/L NaOH),
used for pH adjustment in batch experiment and fluorescence
microtitration, were purchased from Nanjing Chemical Reagent Co.,
Ltd. (Nanshi, China).

2.2. Biofilm manipulation

Our previous method was used to manipulate the extracellular
biofilms (Fang et al., 2002; Kang et al., 2014; Liu and Fang, 2002). In
brief, Escherichia coli (DH5a) was initially cultured in 20 mL of
chloride-free medium at 37 �C for a 12-h recovery of growth. The
bacterial suspension (5 mL) was then transferred to fresh chloride-
free medium (1.0 � 103 mL) and grown for an additional 48 h to
reach the stable growth phase. E. coli cells were collected by low-
speed centrifugation (3 � 103 g, 6 min, 4 �C) followed by washing
with Milli-Q water to obtain pure, pristine E. coli (high-biofilm
E. coli).

Low-biofilm E. coliwas obtained by the removal of biofilms from
the E. coli surface using a sonication/centrifugation procedure
(Kang et al., 2014). Specifically, one-half of the (high-biofilm) E. coli
pellet was suspended to an initial volume of 500 mL and then
processed by a low-intensity ultrasonic process for 7.0 min at an
intensity of 2.5 W/cm2 and a frequency of 40 kHz at 4 �C. The E. coli
suspensionwas then centrifuged for 20 min at 2.0 � 104 g and 4 �C.
The settled pellets were collected as low-biofilm E. coli samples.
The supernatant, which was filtered through a 0.22-mm membrane
(Anpel, Shanghai, China), represented an aqueous biofilm solution
and was stored at 4 �C for later chemical analyses. Elemental
analysis was performed on freeze-dried biofilms using an X-ray
photoelectron spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA), and the percentage contents of C (38.96), O (29.88), N
(30.14), and S (1.02) were determined. The dry weight of the
extracted aqueous biofilms (25.7 mg/L) was measured by an oven-
drying method (2 h at 105 �C) (Comte et al., 2006). The major
proteins (345.1 mg/g) and polysaccharides (173.8 mg/g), and a
small quantity of nucleic acid (0.33 mg/g), were measured ac-
cording to previously reported techniques (Burton, 1956; Dubois
es formed in biofilm matrices regulate the uptake of fluoroquinolone
ion (2016), http://dx.doi.org/10.1016/j.envpol.2016.09.029
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et al., 1956; Lowry et al., 1951). The low concentration of nucleic
acid in the biofilms indicated negligible cell lysis during the biofilm
extraction procedure.

2.3. Interception and uptake of FQA and E. coli apoptosis

High- and low-biofilm E. coli cells that were subjected to
different biofilm manipulations were suspended in 1.0 L of ultra-
pure water to obtain approximately 4.0 � 107 cells/mL of each type
of E. coli. A liquid suspension of bacteria (40 mL) was placed into a
50-mL conical flask equipped with a permeable silica-gel stopper
prior to the addition of aqueous alkalieearthemetal stock solutions
(200 mmol/L, alkalieearth Ca2þ or Mg2þ) and an aqueous CIP stock
solution (1 mmol/L) to the desired concentrations (metals:
0e3.5 mmol/L; CIP: 1.25 mmol/L). Notably, the concentrations of the
added alkalieearth metals werewithin the range of natural oceanic
water (Ca2þ: 53.75 mmol/L; Mg2þ: 10.1 mmol/L) and fresh water
(Ca2þ: about 1.75 mmol/L; Mg2þ: about 1.77 mmol/L) (Adkins et al.,
2002; Bowen, 1979). Here, the added concentration of CaSO4 was
far below its solubility limit (14.2e15.4 mmol/L at 10e40 �C)
(Harvie et al., 1984). The static suspension experiment was per-
formed in the dark for 4 h at 120 rpm and 37 �C.

A portion of the E. coli suspension was used to extract the CIP
that was retained in extracellular matrices and absorbed into the
cell interiors. The CIP in extracellular matrices was extracted using
the biofilm-extraction method described above. The CIP antibiotic
was obtained during the separation of biofilms from the E. coli
surface. For low-biofilm E. coli, CIP extraction from extracellular
matrices was also performed using the same procedures. Addi-
tionally, an ultrasonic method of cellular disruption was used to
obtain the intracellular components for CIP antibiotic quantifica-
tion (Turiel et al., 2006). An E. coli sample (5 mL) was subjected to
ultrasonic disruption at 450Wand 24 kHz (Ф6, Scientz, China). The
period was 2.0 s with a 2.0-s interval in an ice-water bath for 5 min,
unless otherwise indicated. No bacterial colonies were observed in
a plate test (15 g/L agar in chloride-free medium), which suggested
that the E. coli cells were completely disrupted by the high-
intensity ultrasound.

The CIP antibiotic in both extracted biofilms and disrupted E. coli
cells was treated with a vacuum freeze-drying technique (�65 �C)
that was followed by extraction using acetonitrile (7.0 mL) with a
1% formic acid-water solution (0.5 mL) (Johnston et al., 2002). The
solutions were processed in a vortex mixer for 6 min and then
centrifuged at 6000 g and 4 �C. This process was performed thrice,
and the supernatants were pooled for later chromatographic
analysis. The CIP in the supernatant was analyzed by high-
performance liquid chromatography (HPLC) in an instrumental
setup that included a 20-mL automatic liquid sampler, a Zorbax
XDB-C18 column (Agilent, USA), and a fluorescence detector (FLD)
(1260 series: Agilent, USA). The composition of the mobile phase
was constant 87/13, v/v, acetonitrile/aqueous H3PO4 buffer
(0.025 mmol/L, pH 3.0, adjusted with triethylamine). The FLD was
operated at 278-nm excitation and 440-nm emission. The experi-
ment demonstrated that the sequential method, including the CIP
extraction and HPLC analysis, gave a high recovery of approxi-
mately 98 ± 3.5%, indicating no loss or metabolism of CIP in the
static suspension experiments.

After the static suspension experiment, another independent
experiment was performed to investigate E. coli growth. A portion
of E. coli from the static suspension experiment was inoculated into
fresh chlorine-free medium (40 mL, 4.0 � 107 cells/mL) and incu-
bated for 18 h at 37 �C and 160 rpm. The cell densities (reflecting
E. coli growth) were determined by a calibration curve for optical
density [cell density (cell/mL) ¼ (1.89 � OD600nm - 0.01) � 108], as
described in a previous study (Kang et al., 2014).
Please cite this article in press as: Kang, F., et al., Alkalieearth metal bridg
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2.4. Spectroscopic analyses of alkalieearthemetal bridges

CLSM technology was used to observe in situ the enhanced
FQAebiofilm association via metals. A water-immersion lens
(1000�) was used to observe the sample (50 mL) on a slide. Image
stacks were created with a Zeiss LSM510 META that was controlled
with AIM software (Jena, Germany). The fluorescence signal of the
CIP was recorded with an excitation/emission matrix of 278/
440 nm. The fluorescence signal of biofilms at this excitation/
emission matrix could not be detected, but the signal from CIP
attached to biofilmswas clearly visible. XPS analysis was performed
to probe the Ca2p and Mg2p signals from the bridges that were
formed in E. coli biofilms (Thermo, USA). The sampling depth was
less than 10 nm, suggesting that the sampling site was located in
the biofilms and not on the cells (the biofilm thickness was
approximately 135 nm).

TEMwas used to observe the removal of the biofilmmatrix from
the E. coli surface. Dried E. coli cells were placed onto carbon-coated
copper grids for TEM observation with a brightfield detector on a
JEM-2100 (Tokyo, Japan). Additionally, after the static suspension
experiment, the CIP-containing biofilms that had been extracted
from the E. coli surfacewere also dried at�65 �C. FTIR (Bruker, USA)
and 13C NMR (Bruker, Germany) analyses were performed to
characterize the functional groups of these dried biofilms through
using previous method (Kang et al., 2014; Kang and Zhu, 2013).
2.5. Fluorescence micro titration

Three-dimensional excitation-emission matrix (3DEEM) fluo-
rescence spectroscopy combined with micro titration (Kang et al.,
2010, 2015) was used to quantitatively explore the association of
FQA with the amino acid residues of biofilms in the presence of
alkalieearth metals. In this test, the fluorescence peaks of trypto-
phan (Trp) residues in biofilms, which were located at 280/340 nm
(EX/EM) in the 3DEEM, were traced by continuous microtitration/
detection processes (Chen et al., 2003; Kang et al., 2010). Specif-
ically, a CaSO4 or MgSO4 stock solution (10 mmol/L) was added in
advance of the 20-mL aqueous biofilm solution (0.5 mg/L, dry
weight basis) to obtain a 250 mmol/L Ca2þ or Mg2þ solution. Af-
terwards, an aqueous CIP stock solution (10 mmol/L) was titrated
into each aqueous biofilm solution containing Ca2þ or Mg2þ using a
chromatographic injector (25-mL scale, Agilent, Santa Clara, CA,
USA); this step was followed by magnetic stirring for 20 min at
160 rpm, pH 7.0, and 25�С. The fluorescence spectrum was recor-
ded at an excitationwavelength of 200e370 nm (5-nm bandwidth)
and an emission wavelength of 280e500 nm (5-nm bandwidth) at
a speed of 3000 nm/min (F96PRO, Lengguang). These micro-
titration/detection procedures were repeated until there was no
significant change in the fluorescence intensity. To obtain
comparative data, similar procedures were also performed to
explore the association between CIP and the biofilm matrix in the
absence of alkalieearth metals. The fluorescence peak from extra-
cellular biofilms matrix (EX/EM: 280/340 nm) did not overlap with
the FQA peak (EX/EM: 278/440 nm). Thus, the changes in the
fluorescence intensity of Trp residues in the biofilms that were
caused by the CIP antibiotic could be well described by the rela-
tionship between the fluorescence intensity and the quencher
concentration (Boaz and Rollefson, 1950; Eftink, 1997; Lakowicz
and Weber, 1973). The SterneVolmer equation is given as follows
(Valeur and Berberan-Santos, 2012):

F0
F

¼ 1þ Kqt0½Q � ¼ 1þ KSV½Q � (1)

where F0 and F are the relative fluorescence intensity of the
es formed in biofilm matrices regulate the uptake of fluoroquinolone
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chromophore in the absence and presence of the quencher,
respectively; Kq is the bimolecular quenching rate constant; t0 is
the average lifetime of the fluorophore in the absence of the
quencher; [Q] is the concentration of the quencher; and KSV is the
SterneVolmer quenching constant. For the static quenching pro-
cess, equation (2) was used to determine the association constant
(KA) and the number of binding sites (n) (Bi et al., 2004). The as-
sociation constants with biofilms via metal bridging were deter-
mined for all eight FQAs as follows:

log½ðF0 � FÞ=F� ¼ log KA þ n log½Q �: (2)
2.6. Quantum mechanical/molecular mechanical (QM/MM)
modeling

Utilizing Gabedit software (Version 2.4.5) (Allouche, 2011), we
structured the 20 standard amino acid residues: alanine, leucine,
isoleucine, valine, proline, phenylalanine, methionine, tryptophan,
glycine, serine, glutamine, threonine, cysteine, asparagine, tyrosine,
aspartic acid, glutamic acid, lysine, arginine, and histidine. These
residues were docked with the CIP antibiotic via an alka-
lieearthemetal bridge. The key bridging site in biofilms must meet
two necessary conditions: a high abundance in biofilms and a high
bridging energy between the residue-metal and the FQA. First, the
backbones of oligopeptides were composed of the reported seven
most common amino acids in bacterial biofilms (Phe, Gly, Asn, Gln,
Ser, Thr, and Tyr) (Nakashima and Nishikawa, 1992, 1994). The 20
standard amino acid residues (R) were then successively joined in
pairs to both sides of these backbones to structure the amino and
carboxyl termini (NH2-R-Phe-Gly-Asn-Pro-Gln-Ser-Thr-Tyr-R-
COOH). This unified model contains 20 short-chain polypeptides
(4940 atoms in all) that share a common central sequence and
sample the 20 different amino acid residues at each end. Second,
the highest bridging energy between the Trp-metal and the FQA
was determined on the basis of the QM/MM computation. Addi-
tionally, the wave functions from the computation were analyzed
using theMultiwfn program. Bridging energies for the combination
of Trp with each of the eight FQAs via a metal girder were
computed based on a frequency analysis from the “FQAeCa/
MgeTrp residue” model.

Our own multilayered, N-layered integrated molecular orbital
and molecular mechanics (ONIOM) scheme in Gaussian 09 was
used to conduct the combined QM/MM computation (Dapprich
et al., 1999; Trucks et al., 2009). The entire molecular system was
partitioned into two layers: a QM system (CIPemetaleresidue),
which was treated with a high-level method, and an MM system,
consisting of the peripheral molecular system (backbone of oligo-
peptides), which was treated with a low-level method. In this
study, the MM system, as described by the Assisted Model Building
with Energy Refinement (AMBER) force field (Cornell et al., 1995),
consisted of the peripheral protein structures but excluded the CIP
antibiotic, the metal girder, and the 20 amino acid residues. The QM
system consisted of the CIP antibiotic, the metal girder, and the
amino acid residues that were involved in the bridging reaction.
The density function B3LYPwas used to treat the QMmodel system.
The geometries of the model system were optimized with the 6-
31G(d, p) basis set (Petersson and Al-Laham, 1991; Petersson et al.,
1988) with a long-range correction of DFT-D3 (Trucks et al., 2009).
All of the atoms in both layers were free to move in the geometry
optimization calculations. A Trp residue was determined as a major
bridging site. The bridging energies at Trp residue-metals were
determined for all eight FQAs. Solvent (water) effects were
implicitly taken into consideration in all computations.
Please cite this article in press as: Kang, F., et al., Alkalieearth metal bridg
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2.7. Bonding type and bridging energy

The wave functions from the computation were analyzed by the
Multiwfn program (Lu and Chen, 2012). Many pieces of information
were extracted by this software, including the reduced density
gradient (RDG), the bridging energy, and the Lorentz oscillator. The
Lorentz oscillators were used to predict the FTIR spectra, which
were then compared with our experimental results. The bridging
site at the Trp residue predicted by the FTIR computation was
confirmed with the experimental FTIR, which supported the reli-
ability of the model. Based on the functions of the CIPemetaleTrp
residue combination, a topological analysis and a graphic illustra-
tion of the distribution of the electron density were also performed
using the Multiwfn program (Lu and Chen, 2012). The theoretical
method for the discrimination of different bonding types can be
explained by the quantum mechanical electron density (r(r))
(Johnson et al., 2010; Kang et al., 2015):

RDGðrÞ ¼ 1

2
�
3p2

�1=3
jVrðrÞj
rðrÞ4=3

; (3)

where r(r), jVrðrÞj, and V are the quantum mechanical electron
density, the gradient operator, and the modular arithmetic of the
gradient operator for the quantum mechanical electron density,
respectively. The bonding types were identified and drawn with
interactive isosurfaces around the metal bridge. In the colored
contour planes between atoms, we used different colors to repre-
sent the bonding types between the metal and the CIP/residue.
Blue, green and, red were used to represent strong coordinate
bonds, weak vdWs bonds, and intermolecular repulsion, respec-
tively. The bridging energies for the combination of Trpwith each of
the eight FQAs via a metal girder were computed based on a fre-
quency analysis from the “FQAeCa/MgeTrp residue” model. The
calculation was as follows:

Bridging energy ðDGÞ ¼ GFQA�metal/Trp � �
GFQA�metal þ GTrp

�
;

(4)

where GFQA-metal/Trp, GFQA-metal, and GTrp are the Gibbs free energies
(G) of the FQA-metal/Trp (dotted line represents the docking
point), the FQA-metal bridge head, and the Trp residue in the
polypeptide, respectively.
3. Results and discussion

3.1. Interactions of a model FQA, CIP, with biofilms are enhanced by
a metal bridge

Fig. 1aed presents a group of CLSM images that demonstrate the
metal-enhanced CIP-biofilm association on the surface of E. coli. In
the absence of alkalieearth metals and CIP, a fluorescence signal
was not observed, as is apparent in Fig. 1a. After the addition of only
CIP (1.25 mmol/L), some faint and scattered rods are visible in
Fig. 1b, indicating a weak association of CIP with E. coli biofilms. In
the presence of the CIP antibiotic (1.25 mmol/L) and alkalieearth
Ca2þ (2.0 mmol/L), many bright rods are visible in Fig. 1c, sug-
gesting the Ca2þ-enhanced attachment of CIP molecules to extra-
cellular biofilms. Similarly, evidence from the CIP (1.25 mmol/L) and
alkalieearth Mg2þ (2.0 mmol/L) conditions reveals numerous
bright rods (Fig. 1d), confirming the Mg2þ-enhanced attachment.
These results confirm that alkalieearth metals can enhance the
association of CIP with biofilms.

Fig. 1e and f presents the core-level Ca2p andMg2p signals from
XPS, respectively. In the reference CaSO4 sample, the Ca2p3/2 and
es formed in biofilm matrices regulate the uptake of fluoroquinolone
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Fig. 1. In situ CLSM and corresponding XPS analyses of an alkalieearthemetal bridge formed in E. coli biofilms. (a): E. coli alone. (b): E. coli plus ciprofloxacin (CIP). (c): E. coli plus
Ca2þ and CIP. (d): E. coli plus Mg2þ and CIP. XPS analyses of a Ca2þ bridge (e) and a Mg2þ bridge (f). The density of E. coli was approximately 1.0 � 108 cells/mL. The concentrations of
the alkalieearth metals and CIP were 2.0 mmol/L and 1.25 mmol/L, respectively.
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Ca2p1/2 peaks were located at 347.7 and 351.2 eV, respectively. After
the addition of Ca2þ to aqueous E. coli, Ca2p3/2 produced two peaks
(primary 347.25 eV and secondary 346.7 eV; Fig. 1e) that shifted
towards a lower energy by 0.45 and 3.95 eV, respectively. The
Ca2p1/2 peak shifted towards a lower energy by 0.1 eV. As CIP
(1.25 mmol/L) was subsequently added, the signal continuously
shifted towards a lower energy, from a primary peak (Ca2p1/2) of
350.6 eV and a secondary peak of 350.3 eV to lower primary
(346.8 eV) and secondary peaks (346.4 eV; shoulder peak). The
signal continuously shifted towards a lower energy, indicating that
Ca2þ acted as an electron acceptor and attracted redundant elec-
trons from the electron-donating biofilms and CIP (Gosselink et al.,
2012; Stipp and Hochella, 1991). Combined with the CLSM result,
these findings indicate that the Ca2þ-enhanced association of CIP
with biofilms on the surface of E. coli occurs through an alka-
lieearth Ca2þ bridge. Additionally, the Mg2p peak decreased to
50.2 eVwhen biofilmswere added and further decreased to 49.7 eV
upon subsequent CIP addition in comparison to the reference
sample, MgSO4 (51.1 eV) (Fig. 1f). Overall, the XPS peaks of alkaline-
earth metals, mediated by biofilms (Fig. 1e and f) and CIP (Fig. S4),
shifted towards a lower energy, demonstrating that the
CIPebiofilm association is enhanced by alkalieearth metals and is
related to the formation of a metal bridge between them.

3.2. Bridging site in biofilms

The CIP-to-biofilm connection via a metal bridge was analyzed
by FTIR spectroscopy (black plots) to further explore the bridging
site in biofilms. In the FTIR spectrum of biofilm alone (Fig. 2a), the
stretching vibrations of the C]O band at 1675 cm�1 and NeH
bending and CeN stretching vibrations at 1600 ± 10 cm�1 are
related to amino acid residues or peptides from proteins in extra-
cellular biofilms. The band at 1430 cm�1 denotes the stretching
vibration of CeOH in carboxylates (Byler and Susi, 1986; Deacon
and Phillips, 1980), whereas the bands near 1115 and 1010 cm�1

are ascribed to the stretching vibrations of hydroxyl and CeOeC in
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saccharides, respectively (Kang and Zhu, 2013). After the binding of
CIP via Ca2þ (Fig. 2b) and Mg2þ bridges (Fig. 2c), the characteristics
of the C]O band at 1675 cm�1 became weaker compared with
those of biofilms alone (Fig. 2a), suggesting that carbonyl groups in
the amino acid residues of extracellular biofilms are responsible for
the formation of the metal bridge. The band at 1430 cm�1, which is
related to CeOH in carboxylates, also becamemuch weaker (Fig. 2b
and c). Considering the change in the C]O band at 1675 cm�1,
these results suggest that the carboxylates in the amino acid resi-
dues of biofilms are responsible for the alkalieearthemetal bridges.

Fig. 2aec shows a group of computational FTIR spectra (red
plots) that were plotted by the Lorentz oscillator (blue plots) based
on computation from short polypeptides. After associating Trp
carboxyl groups with CIP via Ca2þ (Fig. 2b) or Mg2þ (Fig. 2c), the
bands at 1675 and 1430 cm�1 became weaker (decrease in molar
absorption coefficients). These results further confirm that carboxyl
groups of structured Trp residues may act as the main bridging sites
associated with the formation of alkalieearthemetal bridges in
biofilms (further analysis in Fig. 5). In this study, contribution of
COOH in humics to the bridging may be ruled out, because humic
and fulvic acids were not observed in the highly sensitive three-
dimensional excitation-emission matrix (3DEEM) spectra
(Fig. S1), which may be attributed to the lack of long-term humi-
fication (Milori et al., 2002).

CIP-to-biofilm associations via metal bridges may be further
analyzed by the 13C NMR spectral fingerprints of biofilms (Fig. 2d).
Based on previous work (Wishart et al., 1995), the carboxyl groups
in biofilms may be assigned to Trp (176.1 ppm), Tyr (175.8 ppm),
Phe (175.7 ppm), Gly (174.9 ppm), Thr (174.7 ppm), Ser (174.4 ppm),
Cys (oxidized and reduced states, 174.6 ± 0.2 ppm), and His
(174.0 ppm) residues. In Fig. 2d, resonance intensity of Trp residues
(176.1 ppm) was dominant in all peaks; a comparison of this signal
with different treatments revealed a marked downfield shift
(Dd ¼ 0.2) of the resonances attributed to the carbon signals of
carboxyl residues in biofilms after treatment of biofilms with Mg/
Ca-CIP. The downfield shift indicates that there are some
es formed in biofilm matrices regulate the uptake of fluoroquinolone
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Fig. 2. FTIR and 13C NMR spectra of biofilms before and after their association with CIP via alkalieearth Ca2þ and Mg2þ bridges. FTIR spectra: (a) biofilm alone; (b) biofilm-Ca2þ-CIP;
(c) biofilm-Mg2þ-CIP. Black plots represent the experimental data. Blue bar charts and red plots represent the Lorentz oscillators and infrared (IR) spectra from the computation at
the B3LYP/6-31G(d, p) level with a dispersion-corrected DFT-D3(BJ). Red arrows represent the absorption bands related to the bridging sites. (d) Experimental 13C NMR spectra from
biofilm, biofilm-Ca2þ-CIP, and biofilm-Mg2þ-CIP. After the combination of biofilms with Mg/Ca-CIP, the two pink arrows represent two marked downfield shifts (Dd ¼ 0.2) of the
resonances that are attributed to the carbon signal of the carboxyl residues in biofilms. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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multinuclear species containing calcium/magnesium ions that are
bridged through the carboxylates of Trp (Barszcz et al., 2013), as Trp
residues exhibited the highest abundance and the most obvious
change in all of the resonance signals.

3.3. Trans-biofilm uptake of FQA

Fig. S2 shows the appearance of E. coli before and after biofilm
manipulation, suggesting the removal of biofilms from the surface
of low-biofilm E. coli. Fig. 3a shows that the concentration of CIP
that was retained in high biofilms (135-nm thick in Fig. S2)
increased from (5.2 ± 0.3) � 10�3 to 2.1 � 10�2 mmol/109 cells as
Ca2þ was added at concentrations up to 3.5 mmol/L. However, the
concentration of CIP in low biofilms increased only from
(5.2 ± 0.3) � 10�3 to 1.56 � 10�2 mmol/109 cells. High biofilms on
the E. coli surface caused greater retardation of CIP in the extra-
cellular matrix. Fig. 3a also shows that, in contrast, the intracellular
CIP concentration in high-biofilm E. coli gradually decreased from
(4.0 ± 0.2) � 10�3 to 2.5 � 10�3 mmol/109 cells when Ca2þ was
added at concentrations up to 3.5 mmol/L. The intracellular CIP
concentration in low-biofilm E. coli decreased to 3.7 � 10�3 mmol/
109 cells with Ca2þ addition, but this value was still greater than
that in high-biofilm E. coli. These findings confirm that extracellular
retardation in biofilms, which is enhanced by alkalieeartheCa2þ

bridges, reduces cellular uptake of the CIP antibiotic.
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Fig. 3b presents that with the addition of alkalieearth Mg2þ

(0e3.5 mmol/L), the concentration of CIP that was retained in high
biofilms on the surface of E. coli increased from (5.5 ± 0.5)� 10�3 to
2.9 � 10�2 mmol/109 cells, whereas the concentration in low bio-
films increased less, from (5.5 ± 0.5) � 10�3 to 1.8 � 10�2 mmol/
109 cells. Correspondingly, the intracellular CIP concentration in
low-biofilm E. coli decreased to a final value of 2.7 � 10�3 mmol/
109 cells, which was slightly higher than that in high-biofilm E. coli
(2.4 � 10�3 mmol/109 cells). Similar findings reconfirm that high
biofilms on bacterial surfaces, which are enhanced by the formation
of alkalieearthemetal bridges, restrict the cellular uptake of CIP.

Fig. 3c shows the trans-biofilm transport rate of CIP into cells (r)
with the addition of alkalieearth metals. As the Ca2þ concentration
increased up to 3.5 mmol/L (CIP¼ 1.25 mmol/L), the r value for high-
biofilm E. coli decreased from (2.06 ± 0.02) � 10�4 to
1.09 � 10�4 mmol/mm2 h 109 cells. In the low-biofilm E. coli, the r
value was reduced from (2.06 ± 0.02) � 10�4 to 1.75 � 10�4 mmol/
mm2 h 109 cells. High biofilms act to lower the trans-biofilm
transport rate of CIP, and alkalieearthemetal bridges formed in
high biofilms will have greater potential for decreasing trans-
biofilm antibiotic transport. In the presence of Mg2þ

(0e3.5 mmol/L), the r value was reduced from (2.10 ± 0.01) � 10�4

to 1.31 � 10�4 mmol/mm2 h 109 cells in high-biofilm E. coli and to
(2.10 ± 0.01) � 10�4 mmol/mm2 h 109 cells in low-biofilm E. coli. This
finding further supports the notion that the alkalieearthemetal
es formed in biofilm matrices regulate the uptake of fluoroquinolone
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Fig. 3. Extracellular retardation and cell uptake of CIP and its trans-biofilm transport
rate (r) in high- and low-biofilm E. coli. (a) Ca2þ-affected retardation and uptake. (b)
Mg2þ-affected retardation and uptake. (c) Trans-biofilm transport rate of CIP as a
model FQA (r). In (a) and (b), the CIP concentration and cell density were initially
1.25 mmol/L and 1.0 � 108 cells/mL, respectively. In (c), the trans-biofilm transport rate
of CIP (r) was calculated based on r ¼ q/(S � h), where S, q, and h are the interfacial area
between bacterial cells and the biofilm layer, the cellular uptake of CIP, and the stat-
ically suspension time (4 h), respectively. The superficial area of E. coli at the diffusion
layer (S ¼ 2pr � (L þ 2pr)) was calculated by randomly selecting 100 E. coli cells
(diagram at the bottom-left corner of panel (c)). L and r are the length of the rod
(subtraction of rod-head cabochons) and the radius of the rod head, respectively
(p ¼ 3.14). The diffusion layer was measured by TEM analysis (average value:
4.95 ± 0.31 mm2/cell). Error bars represent standard deviations calculated from trip-
licate samples.
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bridges formed in high biofilms are not as conducive to the trans-
biofilm transport of CIP. These comparable results regarding ex-
tra- and intra-cellular distribution underline an important role for
the alkalieearthemetal bridges in reducing the cellular uptake of
FQAs.

On the basis of the extra- and intra-cellular distribution in Figs. 3
and 4 depicts the association of E. coli growth with the distribution
of CIP. In presence of alkalieearth Ca2þ (0e3.5 mmol/L, initially
added CIP ¼ 1.25 mmol/L), the E. coli density was enhanced to
0.42 � 109 cells/mL for high-biofilm manipulation (retardation:
2.08 � 10�2 mmol CIP/109 cells; uptake: 2.13 � 10�3 mmol CIP/
109 cells) and to 0.359 � 109 cells/mL for low-biofilm manipulation
(retardation: 1.58 � 10�2 mmol CIP/109 cells; uptake:
3.49 � 10�3 mmol CIP/109 cells) (Fig. 4a and b). The highest growth
density corresponded to the highest extracellular retardation and
the lowest cellular uptake of CIP, which demonstrates that the
formation of Ca2þ bridges on the surface of E. coli has a positive
effect on the protection of E. coli cells. In the presence of alka-
lieearth Mg2þ (0e3.5 mmol/L, initially added CIP ¼ 1.25 mmol/L),
E. coli densities were enhanced to maximal levels of
0.388 � 109 cells/mL for high-biofilm E. coli and 0.365 � 109 cells/
mL for low-biofilm E. coli (Fig. 4c and d). Accordingly, the CIP
retardation values were 0.392 � 10�2 (high biofilms) and
0.365� 10�2 mmol CIP/109 cells (low biofilms), which corresponded
to uptake values of 2.58 � 10�3 and (4.08e4.18) � 10�3 mmol CIP/
109 cells, respectively. The high-biofilm E. coli causes a higher
density than the low-biofilm E. coli. These results lead us to
conclude that the formation of a metal bridge in biofilms facilitates
E. coli growth by enhancing extracellular retardation of CIP.

3.4. Bond types at key sites

Fig. 5a presents results for structured short polypeptides on the
basis of the quantum mechanical/molecular mechanical (QM/MM)
computation. Metal girder-centered local images are presented in
Fig. 5b, d, and f. The electronegative carbonyl groups in FQAs
interact with the carboxyl groups of Trp residues in extracellular
biofilms through metal girders. To intuitively observe the bond
types of the alkalieearthemetal bridges, we analyzed the gradient
isosurfaces of the interactive forces around the central alkalieearth
metal girder (Fig. 5b, d, and f). The corresponding plots of the
reduced density gradient (RDG) versus the electron density
multiplied by the sign of the second Hessian eigenvalues are pre-
sented in Fig. 5c, e, and g (Johnson et al., 2010). In the absence of
metals, the gradient isosurfaces exhibited a rich H-bonding inter-
action between CIP and biofilms (Fig. 5b). Two pairs of H bonds
were observed, between a Trp residue in the biofilm and the
carbonyl in the carboxyl of CIP and between the carbonyl of a Trp
residue in the biofilm and a hydrogen in pyridine. The corre-
sponding plots of the RDG versus the electron density multiplied by
the sign of the second Hessian eigenvalues revealed two spikes, as
noted in Fig. 5c (�0.01 to �0.04 au). a spike denoting their attrac-
tion (�0.03 to �0.04 au) corresponds to H bonding between a Trp
residue in biofilm and the carbonyl of the carboxyl group in CIP.
Another spike, at �0.01 to �0.02 au, shows the H bond between a
carbonyl in the Trp residue of a biofilm and a hydrogen atom in
pyridine. Additionally, a spike at 0 to �0.01 au reveals a weak
intramolecular H bond between the pyridine and carbonyl in the
molecular interior of the CIP antibiotic. These observations were
consistent with previously simulated result from molecular dock-
ing between NOR and protein (Lu et al., 2010), suggesting that the
CIPebiofilm interaction is based primarily on H bonds.

The gradient isosurfaces exhibited a rich visualization of
nemetal electron donoreacceptor (nemetal EDA) interactions
(Fig. 5d). Four planar isosurfaces (blue) indicate a strong attraction
es formed in biofilm matrices regulate the uptake of fluoroquinolone
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Fig. 4. Association of E. coli growth with extracellular retardation and cellular uptake of CIP. After a static suspension experiment (4 h), a portion of the bacterial culture was
analyzed to obtain the extracellular retardation and cellular uptake of CIP, while another portion was incubated in fresh LB medium for 18 h to obtain a final E. coli density. The data
for the extracellular retardation and cellular uptake of CIP antibiotic in the abscissa of the graphs can be found in Fig. 3aed. The initial concentrations of the added alkalieearth
metals ranged from 0 to 3.5 mmol/L. Each data point shown in the figures is the average of three measurements.
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between Ca2þ and oxygen atoms. The non-bonded interaction be-
tween a pair of oxygen atoms in Trp residues, which is also indi-
cated by the red isosurface, shows the repulsion between them. On
the CIP side (the left side of Fig. 5d), both of the oxygen atoms in the
deprotonated carboxyl group and its adjacent carbonyl in the aro-
matic nucleus together contacted the Ca2þ-bridge girder through a
blue oval-shaped gradient isosurface, indicating a strong nemetal
EDA attraction. On the biofilm side (the right side of Fig. 5d), a pair
of oxygen atoms in a deprotonated carboxyl group of a tryptophan
residue were associated with a Ca2þ-bridge girder through another
blue oval-shaped gradient isosurface, further confirming the pres-
ence of another strong nemetal EDA interaction. These results
suggest that both carbonyl/deprotonated carboxyl groups in FQAs
and deprotonated carboxyl groups in Trp residues are collectively
responsible for the formation of alkalieearthemetal bridges.

Fig. 5e shows plots of RDG versus electron density multiplied by
the sign of the second Hessian eigenvalue (corresponding to
Fig. 5d). Three low-gradient spikes, at 0.01e0.04 au, indicated
molecular repulsions between a pair of oxygen atoms in the
deprotonated carboxyl group of a Trp residue and between the
carbon of the carboxyl and its adjacent carbon in the aromatic
nucleus of CIP (corresponding to the red color of the gradient iso-
surfaces in Fig. 5d). The spike at�0.018 au revealed the weak vdWs
attraction between one of the oxygen atoms in a deprotonated
carboxyl group and its adjacent carbonyl in the CIP molecule (cor-
responding to the green color of the gradient isosurfaces in Fig. 5d).
A pair of spikes (�0.03~�0.06 au) revealed the strong nemetal EDA
attractions around the alkalieearthemetal bridge girder.
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In addition to the weak vdWs attraction in the molecular in-
teriors of CIP and Trp residues, a strong EDA attraction around the
central Mg2þ girder was also indicated by the visual gradient iso-
surfaces (Fig. 5f). In Fig. 5g, an apparent low-gradient spike, which
corresponds to the isosurface of an Mg2þ bridge, has a more
negative value at �0.057 a.u, suggesting a stronger EDA interaction
of electronegative oxygen atoms with Mg2þ than with Ca2þ. This
quantitative result showing the greater negativity of sign (ƛ2)r
suggests that a stronger EDA interaction via an Mg2þ bridge might
be better able to detain CIP in the extracellular matrices.
3.5. Dependency on bridging energy

Association constants between FQAs and the biofilm matrix via
metals were obtained by a fluorescence micro titration (Fig. S3).
Fig. 6a shows that the growth rate of E. coli increased linearly along
with the enhancement of the association constant between
FQAs and the biofilm matrix, which implies that the metal bridge-
enhanced FQAebiofilm association protects against bacterial
apoptosis. The slopes were 0.03 for Ca2þ-enhanced growth
and 0.09 for Mg2þ-enhanced growth. The growth rate
(the vertical coordinate) followed the following order:
CIP z LOM > NOR > LVX z ENX z OFX > PEF z FLE for Ca2þ, and
CIP z NOR > ENX > LOM > OFX > LVX > PEF z FLE for Mg2þ.

Plots of changes in the Gibbs free energy (DG) computed at a
major Trp residue site versus the association constant obtained by
fluorescencemicrotitration (logKA) were used to further explain the
dependence of the bridging energy on the alkalieearthemetal
es formed in biofilm matrices regulate the uptake of fluoroquinolone
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Fig. 5. Models of CIP interactions with Trp residues in biofilms. (a) Model obtained by QM/MM computation of CIP interacting with Trp residues in biofilms via metal bridges.
Magnified gradient isosurfaces (b, d, and f) and the corresponding plots of the reduced density gradient versus the electron density multiplied by the sign of the second Hessian
eigenvalues (c, e, and g). (b) and (c), CIP-biofilms. (d) and (e), CIP-Ca2þ-biofilms. (f) and (g), CIP-Mg2þ-biofilms. In (b), (d), and (f), the gradient isosurfaces are colored on a blue-
green-red scale according to the values of sign (ƛ2)r, which range from �0.08 to 0.08 au. Blue, green, and red indicate the strong attraction of an n-metal EDA interaction, vdWs
interaction, and strong non-bonded overlap, respectively. Here, the sign of ƛ2 is used to distinguish bonded (ƛ2 < 0, such as a p�p bonding) from non-bonded (ƛ2 > 0) interactions (a
negative value of ƛ2 represents strong bonding) (Panels (c), (e), and (g)). The lower the negative value of ƛ2, the stronger the attraction in the region. The O, C, H, N, and F in the
molecular structures are represented as red, cyan, white, blue, and brown spheres, respectively. Solvent (water) effects were implicitly taken into consideration. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Correlation of the Trp-Ca/FQA bridging energy at a major tryptophan (Trp)
residue site in biofilms (computational DGTrp/metal-FQAs) with an association constant
(KA, log-transformed) and the rate of E. coli growth. (a) Growth rate (T/T0) versus logKA.
(b) Computed DGTrp/metal-FQAs versus logKA. (c) Growth rate (T/T0) versus computed
DGTrp/metal-FQAs. The growth rate of E. coli was calculated as the ratio of E. coli density
in the presence of an alkalieearthemetal bridge (T) to the density in the absence of
alkalieearth metals (T0) (growth ratio ¼ T/T0) after 18 h of incubation with a constant
concentration of FQAs (1.25 mmol/L, 37 �C, and 150 rpm). The association constant
(logKA) was obtained by fluorescence microtitration. The Gibbs free energy (DG) at the
major EDA interaction (Trp/metal-FQ) was computed at the B3LYP/6-31G (d, p) level
with a dispersion-corrected DFT-D3 (BJ). The change in DG was calculated by the
difference between the Trp-metal head and FQ. Solvent (water) effects were implicitly
taken into consideration. Each data point shown in panels (a) and (c) is the average of
three measurements. R2: correlation coefficient; p: probability.
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bridge (Fig. 6b). It shows the computed DG values for the listed
eight FQ antibiotics binding at a Trp residue via a metal bridge. A
group of strong linear correlations between DGTrp$$$Ca-FQAs/
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DGTrp$$$Mg-FQAs and the corresponding association constants (logKA)
(R2 � 0.67; probability, p � 0.01) were noted. Importantly, a minus
sign in the computed DG value arises only if a spontaneous reaction
occurs. Thus, the linear correlations suggest that higher logKA
values (absolute value) correspond to greater DG values. With
respect to Mg2þ bridging, this plot has a large slope (absolute value
of 4.7), suggesting that variations in the FQA-Mg-to-biofilm com-
bination may cause a large change in the bridging energy. All
bridging energies were greater than 150 kJ/mol, indicating that all
active sites experienced a spontaneously coordinated reaction (Gu
et al., 1994), which was associated with EDA interactions.

Fig. 6c shows the linear correlations between DG and the rate of
E. coli growth. Bridging energies combined with FQAs (the hori-
zontal axis) followed a descending order (in abscissa), as follows:
FLEz PEF > LVX > OFX > NOR > ENX z CIP > LOM for added Ca2þ

and FLE z PEF > LVX > OFX z LOM > ENX > NOR z CIP for added
Mg2þ. With the decrease in DG at major nemetal EDA interactions,
growth rates exhibit a clear linear reduction. This finding indicates
that a weaker CIPeCaebiofilm combination may result in less
retardation, which acts against the growth of E. coli. Additionally,
the Ca2þ and Mg2þ bridges had the same slope (�0.02), suggesting
that the growth rates of E. coli recovered by these two metals are
dependent on the bridging energy atTrp residue in biofilms rather
than on the particular metal species.
4. Conclusion

More and more attention has been paid to the challenging issue
on environmental contamination of antibiotics in recent years. How
microbes regulate the trans-biofilm uptake of FQAs is a funda-
mental question in environmental chemistry and biology. Tradi-
tional research thinks basically that bacterially extracellular biofilm
matrices are known as passive defense barrier to impede the in-
vasion of hazardous substance, but not know whether FQA attack
may be efficiently defused by a metal-reinforced detoxification
mechanism occurring at water-biofilm interface. We recently found
that metal bridge formed in biofilmmatrices anchors the FQAs, and
efficiently defuses the FQA attack through this reinforced detoxi-
fication mechanism. Here, we present that a deprotonated carboxyl
in the tryptophan residues of biofilms acted as a major bridge site,
of which one side is a metal and the other is a metal girder jointly
connected to the carboxyl and carbonyl of a FQA. Meanwhile, we
further demonstrated that a metal bridge formed in extracellular
biofilms acts through a suppressive trans-biofilm transport to
protect against bacterial apoptosis. Without this metal bridge,
extracellular biofilms exhibit higher permeability, larger antibiotic
uptake towards cells, and profoundly defective chemotaxis.
Computation regarding bridging energy indicates that this metal
bridge is favorable for bacterial survival. This new perspective will
enhance the understanding of bacterially antibiotic resistance
involved in the field of natural products.
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