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ABSTRACT: Determination of biomass produced in cocoa ecosystems is an important step 

towards quantifying the carbon sequestration potential of cocoa production systems. This study 

provides data on the biomass of cocoa systems being influenced by management, cocoa stand 

ages and region. Eight cocoa farms were sampled on the basis of three variables: region 

(Eastern, Western region), shade management (shaded, unshaded) and stand age (<15, >15 

years). Allometric equations (R2 > 0.94) were developed to estimate the biomass of live cocoa 

trees, while the biomass of non-cocoa trees was estimated using an existing equation by FAO. 

Generally, biomass stocks were higher in the Eastern than Western region, shaded than 

unshaded, and in stands >15 years than those <15 years. The total cocoa ecosystem biomass 

range was, 48.1 ± 6.5 to 101.6 ± 12.6 Mg/ha. The high biomass estimates reveals a potential 

of system to restore appreciable biomass losses resulting from deforestation and forest 

degradation in Ghana. 
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INTRODUCTION 

 

Cocoa cultivation in Ghana takes place in the forest regions where farmers shift with the crop 

from one region to another at a rate dependant on the accessibility of forest lands. Traditionally, 

cocoa is noted as shade-loving crop and so grows well under remnant taller trees from thinned 

forest. With this practice, cocoa seedlings can grow into productive trees by utilising the built-

up nutrients in forest soils and the protection from the full impact of sunlight by the remnant 

forest trees.  

Planting cocoa seedlings under taller shade-providing trees regenerated either naturally after 

clear-felling, or planted artificially makes cocoa cultivation environmentally preferable to 

many other forms of agriculture in the tropics (Greenberg, 1998; N'Goran, 1998; Power and 

Flecker, 1998). Other benefits derived from growing cocoa in the presence of other trees are 

conservation of forest biodiversity and  ecological benefits of forests while still allow farmers 

to obtain their cocoa produce (Rice and Ward, 1996; Greenberg et al., 1997; Moguel and 

Toledo, 1999; Greenberg et al., 2000; Rice and Greenberg, 2000).  

However, cocoa intensification in the tropics is gradually displacing the inclusion of shade-

providing non-cocoa trees leading to the practice of full-sun or monoculture cocoa systems 

(Anim-Kwapong, 1994). Recent data on cocoa production from Cameroon, Côte d’Ivoire, 
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Ghana and Nigeria showed that 8.1, 27.9, 28.1 and 3 %, respectively, are cocoa farms without 

shade trees (Gockowski and Sonwa, 2011). This practice invariably leads to huge biomass 

depletions of native forest trees. Accordingly, cocoa expansion over the years has been 

implicated and estimated to have played a major role in the deforestation and degradation of 

about 80 % of the natural forest sites in Ghana (World Bank, 1987; Cleave, 1992; Ministry of 

Environment and Science, 2002). Notwithstanding, the cocoa sector is still highlighted in the 

January 2010 Readiness Preparation Proposal of Ghana submitted to the United nation 

Framework on Climate Change as pivotal in the development of a national strategy for reducing 

greenhouse gas emissions from deforestation and forest degradation (Chagas et al., 2010). It is 

therefore, a pre-requisite to quantify the amount of biomass produced in cocoa systems with or 

without shade trees as a step to producing a sustainable carbon-friendly cocoa sector in this 

country. 

Previous methods of biomass quantification have been time-consuming activities, especially 

the measurement of certain biomass components, such as foliage or branch biomass. However, 

a number of allometric relationships exist for conversion of easily measurable tree biometrics 

(e.g. stem diameter at breast height, DBH, or tree height, H) to above ground biomass for many 

forest tree species. For most of the allometric relationships, researchers combined other 

regression equations to produce either species-specific allometry for Betula papyrifera 

(Schmitt and Grigal, 1981), for black spruce (Picea mariana) (Grigal and Kernik, 1984), for 

some northeast tree species (Pastor et al., 1984), for six boreal tree species or allometry for 

groups of species of northern Manitoba (Bond-Lamberty et al., 2002), for woody biomass in 

Australia (Keith et al., 1999), for United States tree species (Jenkins et al., 2003); for tree 

allometry in tropical forests (Chave et al., 2005), and for some tree species in Europe 

(Muukkonen, 2007).  

This paper sought to provide reference data on total biomass production and distribution in 

cocoa systems under different regions, shade managements and cocoa stand ages. Therefore, 

cocoa trees were selected and harvested to estimate the biomass produced from two shade 

management options; cocoa farms (1) with shade trees (shaded system) and (2) without shade 

trees (unshaded system). The above ground biomass of all adjacent non-cocoa trees was 

estimated using the allometric relation developed by FAO (1997) based on trees harvested from 

moist tropical forest sites around the world.   

The primary objectives were: (i) to develop an allometric function based on a simple biometric 

variable to predict cocoa tree biomass to estimate the total biomass stock and distribution in 

the cocoa ecosystems (iii) to evaluate the effects of region, shade management and cocoa stand 

age on the total system’s biomass and its distributions. These objectives were set out to test the 

hypotheses that; (a) cocoa tree biomass could be determined simply by measuring simple 

biometric variables of the standing cocoa tree, (b) the distribution of the total biomass differs 

among the cocoa components and within the cocoa tree, and (c) the total biomass differs 

between regions, shade managements and tree stand ages. 

MATERIALS AND METHODS 

Cocoa farms selection and factor combinations 

Cocoa systems from farmers’ fields were selected with respect to location, age of planting and 

management system. Four farms were selected at Duodukrom community in the Suhum 
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District of the Eastern region (6o 2’ N, 0o 27’ W). Of the four farms, two were shaded farms 

and the other two were farms without shade trees. The shaded farms were of 14 and 25 year-

old cocoa stands while the farms without shade trees were of 10 and 28 year-old cocoa stands. 

These cocoa farms were further grouped into two age categories viz. farms with less than 15 

year-old cocoa stands and farms with greater than 15 year-old cocoa stands. In that grouping, 

the 14-year-shaded and 10-year-unshaded farms represented the category of less than 15-year-

old cocoa stands and the greater than 15 –year category consisted of the 25-year-shaded and 

the 28-year-unshaded cocoa farms in the Eastern region (ER). In the Western Region (WR), 

farms were selected in the Anyinabrim community within the Sefwi-Wiawso District (6o 57’ 

N, 2o 35’ W). Similarly, four farms comprising two shaded and two farms without shade trees 

were selected for this study. The shaded farms were of 7 and 17 years old stands while those 

without shade trees were of 13 and 27 years. As in the ER, the farms were further categorised 

to two age groups, namely, farms with less than 15 years old cocoa trees and those with greater 

than 15 years old cocoa trees regardless of the system of production. This put the 7-year- shaded 

and 13-year-unshaded farms into the less than 15-year age group while the 17-year-shaded and 

the 27-year unshaded belonged to the greater than 15-year age group. 

Data collection 

At each farm site, a 30 m x 90 m (0.68 acre or 0.27 ha) plot was laid out. Two 30 m transects 

dividing the plot into three of 30 m x 30 m (~0.23 acre or 0.09 ha) sub-plots were demarcated 

a plot as pseudo replicates of the selected farms. All plant species including cocoa and non-

cocoa trees within the plots were tagged with small paper-sellotapes and serially numbered 

using a pen marker. The circumference at breast height (CBH, 1.37 m) of all the labelled-trees 

were then measured and recorded. The diameters at breast height (DBH) were later calculated 

for each tree from the measured CBH. 

The cocoa tree stands did not have uniform spacing from simple visual observations and some 

random plot measurement results. A total of 16 cocoa trees, comprising of two trees from each 

farm, were felled and each separated into component trunks or stem, branches and foliage 

(leaves, fruits/buds). Prior to cutting down the selected trees, the CBH was measured again and 

recorded with the tree number, farm identity and region. When appropriate, the parts were cut 

to smaller pieces, weighed in batches and then summed to give total component weight. The 

total fresh weights of the different components (𝐹𝑊𝑐) were determined in the field immediately 

after cutting using a pan top weighing scale. To effectively manage the large amounts of the 

harvested tree components, known weights (approx. 200 g) of fresh component samples (𝐹𝑊𝑠) 

were carried to the CRIG laboratory and oven-dried at 70 oC until a constant weight, dried 

sample weight (𝐷𝑊𝑠) was obtained. The ratio, 𝐷𝑊𝑠: 𝐹𝑊𝑠, was used to convert the 𝐹𝑊𝑐 to the 

dry weight of the tree component 𝐷𝑊𝑐 using the relation below as in Snowdon et al. (2002):  

𝐷𝑊𝑐 = (
𝐷𝑊𝑠

𝐹𝑊𝑠
) × 𝐹𝑊𝑐          …[1] 

Based on the measured DBH and the biomass per tree of the 16 trees that were destructively 

sampled across all the study sites, an allometric relation was developed using regression 

techniques to estimate standing cocoa tree biomass. Due to the vast number of shade trees 

encountered, as well as the lack of species-specific allometric equations for each shade tree 

species in the literature, the general equation from FAO (1997), recommended by UNFCCC 

(2006) was used to estimate the above-ground biomass of adjacent non-cocoa trees in this 

study. This equation was appropriate for the precipitation zone of this study as has been 

prescribed by FAO (1997). 

𝐴𝑔𝐵 = exp[−2.134 + 2.530 ln(𝐷𝐵𝐻)],          …[2] 
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where: 𝐴𝑔𝐵 is = above-ground biomass, kg tree-1, and 𝐷𝐵𝐻 is = diameter at breast height, cm.  

Roots were sampled by carefully excavating the soil around the felled trees from the base to 

half the distance between the immediate adjacent trees. The depth of excavation was 

approximately to 80 cm though it also depended on the site conditions. The roots removed were 

separated in the field by brushing off attached soil or by washing in the case of fine/tiny roots 

and then weighed. Known weights of fresh root subsamples were also sent to CRIG laboratory 

where they were oven-dried at 70 oC for 72 hours and used to determine the dry weight to fresh 

weight conversions (Snowdon et al., 2002). Litter sampling was done from 50 cm x 50 cm 

micro-plots established at random within the sampling plots. All litter gathered from the micro-

plots was immediately weighed. Most of the measured stumps were the remains of previously 

felled cocoa trees. From measurements of stump diameter (d, cm) and height (h, cm), the stump 

volumes (V, cm3) were calculated from:  

𝑉 =
𝜋×𝑑2×ℎ

4
,                …[3] 

Dry mass of stumps were then calculated by multiplying the estimated volume by the specific 

gravity of cocoa tree of 0.42 g/cm3, which other studies have also used (e.g. Chave et al., 2006; 

Wade et al., 2010). Also, the mean root-to-shoot ratio value of 20% established by this study 

was used to estimate the root biomass of the stumps. The total stump biomass was then 

estimated as the sum of the mass of stumps and their root biomass.  

Statistical analysis of data 

Cocoa tree circumferences, CBH, at breast height were converted to diameter at breast heights, 

DBH. A box plot of the DBH values revealed that the cocoa trees in the selected farms were 

wide-ranging with respect to size distribution (Figure 1). This was considered to be a major 

source of variation to data normality. As such, the box-plot statistical summaries were used to 

exclude the outliers before performing any further statistical analysis.  The number of cocoa 

trees per plot excluding the outliers were further extrapolated to give cocoa tree stands per ha 

for each farm. 

To assess the response of cocoa stand properties in farmers’ fields as a function of site, 

production system and cocoa stand ages, the data from the two regions (Eastern and Western 

regions) were analysed statistically as a 2 x 2 x 2 factorial experiment. The pooled data 

produced a total of 3260 trees on which the CBH was measured and converted to DBH. Taking 

the cocoa densities and DBH values as the response variables to the influence of shade 

management, region, and cocoa stand age, an analysis of variance (ANOVA) was carried out, 

using GENSTAT release 16 software, on (i) the regional data as a two factor (stand age x 

system)  experiment and the combined data from the regions as a three factor experiment (stand 

age x system x region), to evaluate the variations in stand densities and in DBH values between 

different management of shade, region and cocoa stand age category. Fisher’s least significant 

difference (LSD) test at 0.05 level of significance was used to separate means among the farms.  

Figures were produced by Excel and SigmaPlot 10.0 using the mean values of the parameters 

(DBH, and number of trees/ha). To examine the relationship between cocoa tree biomass 

(kg/tree) and the DBH, a regression analysis was carried out on the dry biomass data from the 

destructively sampled cocoa trees against the DBH values. Models tested included linear, 

logarithmic, exponential and power functions and the best fit was selected based on the 

biological logic of the equation generated and the coefficient of determination (R2) value. 
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Finally, biomass per hectare was calculated using the allometric models developed herein. 

First, the leaf, branch, root and stem biomass of cocoa trees in each farm was calculated and 

extrapolated to a per hectare basis. Secondly, the biomass of shade trees was also estimated per 

farm and extrapolated to per hectare. The total ecosystem biomass particularly, for shaded 

farms was then estimated as the sum of the biomass of cocoa trees and shade trees per hectare. 

 

RESULTS AND DISCUSSION 
 

Effects of region, system and stand age on tree stand properties of cocoa ecosystem 

components 

The mean density of tree stands and their DBH values in cocoa ecosystem components as 

presented in Figures 2 - 7 appeared to be affected by region, shade management, and the age 

group of the cocoa trees. The main live stand components of cocoa ecosystem are cocoa trees, 

shade trees and stumps. 

 

Typically, the cocoa ecosystems densities comprise approximately 78 - 85% as cocoa trees, 2 

- 11% as shade trees and 6 - 10% as stumps. The stumps are mostly the standing remains of 

felled cocoa trees. The data on cocoa ecosystem components indicated considerable variations 

in the stand densities and their DBH values with respect to region, shade management and 

cocoa stand age category (Figures 2 - 7). Cocoa stand density did not differ significantly (P > 

0.05) between regions and between the shade management options (Figures 3, and 4). Cocoa 

stands in the age group below 15 years were denser compared to stands in the above 15 -year-

old category (Figure 4). These results conform to those reported by (Isaac et al., 2007) in Ghana 

on cocoa agroforestry, and Smiley and Kroschel (2008) in Indonesia on Cocoa-Glyricidia 

agroforestry. With the range of cocoa stands being 1409 - 1656 trees/ha, the current data agree 

with previous work carried out in Ghana by Ofori-Frimpong et al. (2011) on cocoa plant 

densities. It thus implies cocoa farmers in Ghana somehow achieve the standard cocoa density 

over time (Manu and Tetteh, 1987; Lachenaud and Montagnon, 2002; Wade et al., 2010). 

Although the mean cocoa stands per hectare did not vary between regions and between shade 

management options, their DBH values varied considerably (Figure 5, and 6). Cocoa trees in 

the Eastern region farms developed larger trunks than in the Western region and farms without 

shade also developed cocoa trees with larger trunks than farms with shade trees. The 

significantly larger cocoa trees in unshaded systems suggest that cocoa trees received closer to 

optimal light from the sun for development via photosynthesis (Oke and Olatiilu, 2011). As 

expected, cocoa trees below 15 years had narrow trunks compared to the stands in farms above 

15 year-old (Figure 7).  

Considerable interactions of region x system; region x age group; system x age group; and 

region x system x age group were observed to have significant effects on the stand densities of 

the cocoa ecosystem components (Table 1). With respect to cocoa tree density, only the system 

and age group showed significant interactions such that the stand densities in unshaded system 

were the same under <15 and >15 years but for the shaded system, the stand density under <15 

years group was significantly higher than that under >15 years group (Table 1). Thus, unshaded 

farms appeared to have high stability to changes in cocoa stand density as the stand age 

progresses. 

Due to the extensive cultivation of cocoa in Ghana (for example approximately 1.75 million ha 

being cultivated) measurement of DBH of representative cocoa tree samples is not feasible. 
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Thus, a model to predict the mean cocoa DBH of farms based on cocoa tree stand ages was 

developed as: 

𝐷𝐵𝐻 = 4.9305 × (𝑎𝑔𝑒)0.2451,          …[4] 

where, DBH is = diameter at breast height (in cm), and age is = age of cocoa tree (in years). 

Although the R2 value (0.72) of equation [4.4] reflects an appreciable level of variability using 

stand age to estimate cocoa DBH, the cocoa stands age in a farm still explains about 72% of 

the observed variations in the DBH measurements. 

The DBH of the cocoa trees ranged from 6.7 - 11.6 cm (Table 1). Compared to previous similar 

studies (Isaac et al., 2007; Smiley and Kroschel, 2008), the present study found generally lower 

DBH values for cocoa trees in Ghana (Table 1). However, in the case of Smiley and Kroschel 

(2008), their stockings ranged from 370 to 1111 trees/ha, the stand age ranged from 1 to 9 year-

old, and was based on cocoa-Gliricidia agroforestry systems. These differences make it 

difficult to directly compare their study to the current work. 

Shade tree densities in cocoa ecosystems varied dramatically between regions with the Eastern 

region containing denser shaded systems than Western region (Figure 2). Whereas the ER had 

about 11% shade trees, the WR contained only 2% shade trees with respect to standing trees in 

the cocoa ecosystems selected in the respective regions. This suggests that farmers in the 

Western regions are more inclined to cultivate cocoa without shade trees. Shade tree density 

did not appear to be affected by the age group of the cocoa trees (Figure 4). This lack of 

significant effect of stand age group on shade tree density partly supports the previous assertion 

in here that existing stumps in the ecosystem are not the remains of shade trees but of cocoa 

trees that were felled over time. 

With respect to the shade tree species, the mean DBH values generally ranged from 13.5 to 

22.4 cm, which indicates that the shade trees were larger than the cocoa trees (Table 1). Unlike 

cocoa tree sizes, the shade tree sizes were neither affected by region nor cocoa stand age group 

(Figure 5, and 6). This unexpected non-significant effect of age group on shade tree size could 

be possible where the cocoa farms were established under existing forest remains as in the case 

known as rustic cocoa plantation (Rice and Greenberg, 2000). The high variability of shade 

trees as indicated by the coefficient of variation of 51.6% (Table 1) suggests that mixtures of 

very large (forest remains) and narrow (from recent plantings) shade trees might have been 

present in the shaded cocoa ecosystem across regions and age categories. This practice is very 

common in the Western region where cocoa cultivation is a recent farming system and mostly 

takes place by clearing or thinning out new forest lands. 

Appreciable proportion of cocoa stumps (6 - 10%) was found in the cocoa ecosystems of 

Ghana. The stump density did not differ significantly between regions and between systems of 

production (Figure 2, and 3). The stumps in the ER were significantly (P < 0.05) taller than 

those found in the WR (Figure 8). Taller stumps were also found on farms without shade when 

compared to those on farms with shade. There was no difference in stump height with respect 

to stand age (Figure 8).   

Significantly, more stumps were found in farms with cocoa stands below 15 years old as 

compared to stands that were more than 15 years old (Figure 2). The density of stumps 

correlated positively with cocoa density in farms (r = 0.7911, P = 0.0022, Table 2). Thus, the 

larger density of cocoa trees in farms less than 15 years old resulted in more stumps found in 

those farms. However, the greater number of stumps in farms with stands less than 15 years is 
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partly also due to the existence of a negative correlation between stump density and cocoa DBH 

(r = -0.6548, P = 0.0208, Table 2) indicating that as the stump density declines as cocoa tree 

size or DBH value increases with stand age.  

Figures 5 - 7 also reveal considerable variations in stump diameter. The ER had significantly 

(P < 0.05) larger stumps than the WR (Figure 5), unshaded system contained larger stumps 

than shaded system (Figure 6), and stand age group >15 years developed larger stumps than 

that in stand age group <15 years (Figure 7). Thus, the variation in stump diameter with respect 

to region, shade management and cocoa stand age category was similar to that observed for 

cocoa trees’ mean DBH values (Figure 5, and 6). In addition, the mean diameter range of 6.4 

to 12.1 cm of the stumps is similar to that for the cocoa tree supporting the claim that the tumps 

were largely (> 90%) the remains of previously felled cocoa trees (Table 1). Indeed, the DBH 

values of cocoa trees and stumps were positively correlated (r = 0.8040, P = 0.0016, Table 2). 

Also the density of stumps correlates negatively with the stumps DBH (Table 2). 

Biomass stocks and partitioning in cocoa ecosystems 

The main live biomass components in cocoa ecosystem are cocoa trees, shade trees, stumps 

and surface litter. Allometric relations, often developed from destructive sample data have been 

used to estimate standing tree biomass and carbon sequestered (FAO, 1997; Dossa et al., 2008). 

Similarly, the biomass of cocoa and its distribution within the cocoa trees for this study was 

estimated using allometric modelling. The biomass was estimated as a function of DBH from 

the total destructive sampling of 16 cocoa trees from the farms evaluated (Figure 9). Similar 

models that utilise DBH as the independent variable were developed by Smiley and Kroschel 

(2008) for a cocoa-Gliricidia agroforestry system at Sulewesi, Indonesia. Among the tested 

models, the power function had consistently higher coefficients of determination with R2 

ranging from 79 to 95% and was considered as the best fit or model for the cocoa tree 

components. Dossa et al. (2008) reported similarly high R2 values when data from shaded and 

open-grown coffee plantations were fitted to a power function.  

Based on the models’ estimations of aboveground (stem, branches and leaves) and below 

ground (roots) biomass, estimated root-to-shoot (R/S) ratios of cocoa trees ranged from 19 to 

21%.  A similar trend for R/S ratios was observed for other tree species by Ritson and Sochacki 

(2003). The root-to-shoot biomass ratios estimated in this study (0.19 - 0.21) are within the 

range of 0.18 to 0.35 commonly reported for forest tree species (Cairns et al., 1997) although 

lower than the standard root to shoot biomass ratios range of 0.23 to 0.26 as reported by Kurz 

et al. (1996) and Cairns et al. (1997) for tropical forests trees. However, our roots were sampled 

by digging soil pits and this does not capture many fine roots as was also observed by Resh et 

al. (2003). Thus, the actual root-to-shoot ratio of cocoa tree would expectedly be higher 

because the present study did not include the component biomass of fine roots. These results 

agree with previous studies reported by Dickson (1989) and Tobin and Nieuwenhuis (2007) in 

which root biomass is noted to stabilize at around 20% of the aboveground dry weight. 

For the shade trees, the biomass was estimated using a general equation from FAO (1997), 

developed for this specific precipitation zone and recommended by the UNFCCC (2006) for 

above-ground biomass of tree species. The ratio of root to shoot for the shade trees was 

assumed to be 24%. Similar root to shoot proportions have been used by other researchers 

(Cairns et al., 1997).  

The amount of biomass produced in any ecosystem is dependent on the stand densities, the 

stands sizes (DBH and/or heights of trees) of existing ecosystem components and the floor 
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litter.  Figures 10 - 12 present the total cocoa ecosystem biomass and its distribution according 

to regions, system of production and age category of cocoa stands. There was significantly 

higher biomass contribution from cocoa in the ER than in the WR (Figure 10). The biomass 

contributions of cocoa trees to the ecosystem biomass ranged between 29.2 Mg/ha to 40.2 

Mg/ha for shaded and unshaded farms, respectively (Figure 11). This study contradicts earlier 

reports from Ghana and elsewhere that suggest cocoa biomass benefits from shade trees (Beer 

et al., 1997; Isaac et al., 2005; Isaac et al., 2007). The higher mean cocoa biomass stocks in 

the Eastern region relative to the Western region is attributable to the significantly (P < 0.05) 

large cocoa tree sizes in the former (Figure 3). Similarly, the larger cocoa tree sizes produced 

on farms without shade largely explains why the cocoa biomass stock is greater than that from 

shaded systems. This is likely a consequence of greater light incidence on cocoa in the 

unshaded system, suggesting that light interception and competition for water and nutrients by 

the shade trees might create conditions that are suboptimal for cocoa development (Clough et 

al., 2011; Oke and Olatiilu, 2011). Some previous studies have also mentioned the negative 

impact of shading on cocoa tree development (Ahenkorah et al., 1987). Also, the mean biomass 

stocks from cocoa trees were higher in farms where the stands were more than 15 years old 

than stands with age group below 15 years (Figure 12). Obviously, the older a cocoa tree is, 

the larger is its DBH, which in the main determines the amount of biomass that accumulates. 

The biomass contribution of shade tree species to the cocoa ecosystems ranged between 14 

Mg/ha to 53 Mg/ha with a mean of 30.75 Mg/ha (Table 3). Shade tree biomass stocks varied 

according to the region and the stand age category of cocoa trees (Figure 10, 12). Due to the 

high variability of shade tree biomass as illustrated by the large coefficient of variation (cv = 

111.8%, Table 3), comparison of treatment effects is best determined in terms of order of 

magnitude. Thus, shade trees contributed more to ecosystem biomass in the ER than in the WR 

and did so dramatically (about 4-fold) on farms with cocoa stands older than 15 years when 

compared to stands less than 15 years old (Figures 10, and 12; Table 3).  

With respect to cocoa ecosystem components, stumps contributed the least to total cocoa 

ecosystem biomass stocks. The biomass contribution from stumps varied significantly between 

systems and between stand age category but not so between regions (Figures 10 - 12). 

Unshaded systems were characterised by more biomass from stumps than shaded systems 

which is a reflection of the larger stump diameters and heights found in the former (Table 1). 

Significantly, only stumps contributed large biomass in farms with stand age less than 15 years 

relative to farms with stand age above 15 years among the ecosystem components (Figure 12). 

The high biomass contribution of stumps in stand age category below 15 years is a reflection 

of its density rather than the diameters and heights as was so for the effects of shade 

management. Considerable interactions between regions, shade management and age groups 

impacted differently on stump biomass (Table 3). Generally the biomass contribution from 

stumps to the cocoa ecosystems ranged between 60 kg/ha in shaded cocoa farms in the ER with 

cocoa stands older than 15 years to 740 kg/ha under unshaded cocoa farms in the ER with 

cocoa stands less than 15 years of age (Table 3). 

As shown in Table 3, the total litter production by cocoa ecosystems ranged from 4.55 Mg/ha 

in farms with cocoa stands less than 15 years to 8.52 Mg/ha under farms with cocoa stands 

beyond 15 years of age. Similar ranges of litter biomass produced under cocoa systems in 

Ghana and elsewhere have been reported (Wessel, 1985; Beer, 1988; Owusu-Sekyere et al., 

2006; Ofori-Frimpong et al., 2011). The current results indicated significant variations in litter 

biomass stocks between regions and between stand age category but not so between systems 
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(Table 4.3). According to Wood and Lass (1985), relatively more leaves fall from older cocoa 

plants. The lack of significant difference in litter biomass with respect to system of cocoa 

production suggests that the shade trees had a minimal contribution to the litter-fall of the 

system. Ofori-Frimpong et al. (2007) estimate that about 3% of the total litter fall under shaded 

cocoa farms comes from shade trees. 

In this study, the mean total cocoa ecosystem biomass reached 26.5 Mg/ha to 101.6 Mg/ha 

under shaded cocoa systems of stands less than 15 years in the WR and under shaded system 

of stands greater than 15 years in the ER, respectively (Table 3). As expected, biomass 

production in the shaded cocoa system exceeded that in the unshaded one. Furthermore, 

approximately 45% of the bulk of the biomass in the shaded cocoa systems was contributed by 

shade trees. However, the results indicated high variability with a coefficient of variation of 

46.6%, probably due to the differences in shade tree species, density and whether those shade 

trees were planted with cocoa or were the result from a thinned forest, the latter practice termed 

as rustic. Thus, the differences in total ecosystem biomass are better compared in terms of 

magnitude. Farms in the Eastern region produced higher total biomass than the Western region 

farms. Among the ecosystem components, only the shade trees indicated significant positive 

correlation to total system’s biomass (r = 0.9672, P < 0.001, Table 4). 

Biomass distribution in cocoa trees 

The biomass distribution of cocoa trees among roots, stem, branches and leaves in Ghana is 

presented in Table 5. It is evident that the biomass stocks of cocoa tree components are 

influenced by the system of production and the stand age category but not the region. This 

study estimated cocoa tree biomass as ranging between 17.38 kg/tree in farms with planting 

that were less than 15 years, and 27 kg/tree from cocoa trees planted over 15 years. However, 

under any given factor of influence, the biomass change of a component is consistent. This 

suggests possibility of a genetic control on cocoa tree biomass distribution other than the 

factors under study.  

The woody stem and branches of cocoa trees were the major biomass pools in each cocoa tree. 

Each of these pools was consistently higher than the sum of the root and leaf pools in a cocoa 

tree, irrespective of the region, system of production and the stand age category. However, the 

sum of the root and leaf biomass pool constitute approximately one-third of the total biomass 

and therefore needs to be included in large scale biomass accounting of cocoa ecosystems. 

Aside, these pools provide the prominent nutrient transfer mechanisms in the cocoa ecosystem 

through litter fall and root decomposition. Another study however reported a high biomass 

allocation to cocoa leaves (Anglaaere, 2005). The current work indicates an increase in leaf 

biomass pool in more recently established farms but not so much as to produce higher biomass 

relative to the stem and branches, as was the case in Anglaaere (2005). 

 

CONCLUSION 
 

Ghana is currently the second largest producer of cocoa beans in West Africa with an estimated 

total cultivation area of about 1.75 million hectares. Cultivation of cocoa is restricted to six 

forest regions holding farms with cocoa stand ages most of which range from less than 15 years 

to 30 years; these are either with or without shade trees. Although cocoa stockings were within 

the recommended plant population, planting distances were found to be variable in farmer 

fields. A simple biometric measure of cocoa diameter at breast height (DBH, 1.37 m) appeared 

dependable (R2 = 89) at predicting standing cocoa biomass. Cocoa tree root-to-shoot ratios 
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ranged from 19 to 21% depending on the tree DBH, and the ratio decreased with increasing 

cocoa tree sizes. Presence of shade trees affected cocoa biomass stocks negatively but 

contributed significantly to the bulk of the total biomass of cocoa ecosystems. The results 

showed that the unshaded system produced the least biomass production.  Standing biomass 

was higher in the Eastern than Western region and in stand age >15-year old systems than in 

those <15 years. It was recommended that research on optimal shade management to reduce its 

impacts on cocoa biomass accumulation is required. 
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Table 1: Variations in stand density and diameter at breast height (DBH) of cocoa trees, shade 

trees and stumps as affected by the interactions between region (Eastern (ER), Western (WR)), 

system (shaded (S), unshaded (U)) and age group (< 15 years, > 15 years) 

Factor Treatment 

interaction 

Tree density (trees/ha) Tree DBH (cm 

 Cocoa Shade Stump Cocoa Shade Stump 

Region * 

System 

ER * S 1630a1 207.4 104a 9.7a 16.4 8.2a 

ER * U 1530a n.a2 143a 10.7a n.a. 10.2a 

WR * S 1363b 42.6. 117a 8.7a 20.6. 7.9a 

WR * U 1607a n.a. 187a 10.2a n.a. 8.3a 

Region * Age 

group 

ER * <15 1744a 244a 230a 9.4a 13.5a 7.6a 

ER * >15 1417a 170a 17a 11.0a 19.3a 10.9a 

WR * <15 1569a 44a 209a 8.1a 18.9a 7.1a 

WR * >15 1402a 41a 94a 11.0a 22.4a 9.2a 

System * Age 

group 

S * <15 1713a 105.6 178a 7.8a 13.5. 6.6a 

S * >15 1280c 144.4 43a 10.5a 19.3. 9.5a 

U * <15 1598b n.a. 261a 9.6a n.a. 8.1a 

U * >15 1539b n.a. 69a 11.2a n.a. 10.5a 

Region * 

System * Age 

group 

ER* S*<15 1959a 170.4 185a 9.0d 13.5 6.7a 

ER*S*>15 1300a 244.4 22a 10.3bc 19.3. 9.7a 

ER*U*<15 1530a n.a. 274a 9.7bcd n.a. 8.4a 

ER*U*>15 1533a n.a. 11a 11.6a n.a. 12.1a 

WR*S*<15 1467a 40.7 170a 6.7e 18.9 6.4a 

WR*S*>15 1259a 44.4 63a 10.7ab 22.4 9.4a 

WR*U*<15 1670a n.a. 248a 9.5cd n.a. 7.7a 

WR*U*>15 1544a n.a. 126a 10.8ab n.a. 8.9a 

Coefficient of variation (%) 10.0 55.4 46.9 8.7 73.0 10.9 
1Different letters within same factor and column indicate significant difference at P < 0.05.  
2Not applicable. 

 

Table 2: Correlation coefficient (r) for properties of live stand cocoa components in cocoa 

ecosystemsa 

 Cocoa 

density 

Cocoa 

DBH 

Shade 

Density 

Shade 

DBH 

Stumps 

density 

Stumps 

DBH 

Cocoa  

DBH 

-0.3339      

Shade 

density 

0.2647 0.3223     

Shade  

DBH 

-0.4356 0.1604 -0.1730    

Stumps 

density 

0.7911** -0.6548* -0.2248 -0.3354   

Stumps  

DBH 

-0.5405 0.8040** 0.2973 0.2271 -0.6770*  

Stumps 

height 

0.5624 0.0064 0.1718 -0.1379 0.1760 -0.4992 

aValues with ‘**’ are significant at P < 0.01, with ‘*’ are significant at P < 0.05, and without 

symbol are not significant, (2 – tailed test). 
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Table 3: Variations in total ecosystem biomass partitioned into cocoa, shade, stump and litter 

components in region (Eastern (ER), Western (WR), system (shaded (S), unshaded (U)) and 

age group (< 15 years, > 15 years). 

Factor Treatment 

interaction 

Biomass (Mg/ha) 

 Cocoa Shade Stump Litter Ecosystem 

Region * 

System 

ER * S 34.5a1 39.5 0.24a 7.0a 81.2a 

ER * U 41.9a n.a2 0.42a 7.1a 49.4c 

WR * S 23.8b 26.7 0.16a 6.1a 56.8bc 

WR * U 38.5a n.a. 0.51a 6.0a 45.0c 

Region * Age 

group 

ER * <15 34.9a 19a 0.58a 4.4c 49.3a 

ER * >15 41.6a 60a 0.08c 9.7a 81.4a 

WR * <15 24.3b 8a 0.37b 4.7c 33.6a 

WR * >15 38.0a 45a 0.30b 7.4b 68.2a 

System * Age 

group 

S * <15 25.4a 13.6 0.29a 4.4a 43.7a 

S * >15 33.0a 52.6. 0.11a 8.7a 94.4a 

U * <15 33.9a n.a. 0.66a 4.7a 39.2a 

U * >15 46.6a n.a. 0.27a 8.3a 55.2a 

Region * 

System * Age 

group 

ER*S*<15 36.6a 18.8. 0.42a 5.0cd 60.8ab 

ER*S*>15 32.5a 60.1 0.06a 9.0ab 101.6a 

ER*U*<15 33.2a n.a. 0.74a 3.8d 37.7c 

ER*U*>15 50.7a n.a. 0.11a 10.4a 61.1ab 

WR*S*<15 14.1a 8.4 0.17a 3.8d 26.5d 

WR*S*>15 33.5a 45.1 0.16a 8.5b 87.2ab 

WR*U*<15 34.5a n.a. 0.57a 5.7c 40.7bc 

WR*U*>15 42.5a n.a. 0.44a 6.3c 49.2bc 

Coefficient of variation (%) 4.9 111.8 24.8 16.0 21.0 
1Different letter within same factor and column indicate significant difference at P < 0.05.  
2Not applicable. 

 

 

 

Table 4: Correlation coefficients (r) for biomass components in cocoa ecosystemsa 

 Ecosystem Cocoa Shade Stumps 

Cocoa 0.5195    

Shade 0.9672** 0.2895   

Stump -0.1866 0.2943 -0.2608  

Litter 0.5174 0.5402 0.3813 -0.4871 
aValues with ‘**’ are significant at P < 0.01, and without symbol are not significant, (2 – tailed 

test). 
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Table 5: Influence of by region, system and cocoa stand age category on total cocoa biomass 

(kg/tree) and its distribution. 

Factor Treatment Branch Leaf Root Stem TOTAL 

Region Eastern 8.69a 3.08a 4.01a 8.32a 24.10a 

Western 7.42a 2.70a 3.45a 7.10a 20.67a 

       

System Shaded 7.01b 2.59b 3.27b 6.71b 19.58b 

Unshaded 9.10a 3.20a 4.19a 8.70a 25.19a 

       

Age group <15 years 6.19b 2.35b 2.91b 5.93b 17.38b 

>15 years 9.92a 3.44a 4.55a 9.49a 27.40a 

 cv % 21.9 16.7 20.5 21.9 21.0 

Different letters in a column within the same factor indicate significant difference at P < 0.05. 
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Figure 1: Box-plot of the diameter at breast height showing the distribution of cocoa tree sizes 

in the selected farms. 

LEGEND 

Farm ID Region System Age (years) 

A Eastern Shade 25 

B Eastern Shade 14 

C Eastern No shade 10 

D Eastern No shade 28 

E Western Shade 17 

F Western No shade 13 

G Western No shade 27 

H Western Shade 7 
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Figure 2: Variations in tree densities as influenced by the region of cultivation. Error bars are 

standard errors. Different letters on bars within a component indicate significant difference at 

P < 0.05. 

 

Figure 3: Effects of shade management on tree densities in cocoa ecosystems of Ghana. Error 

bars are standard errors. Different letters on bars within a component indicate significant 

difference at P < 0.05. 
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Figure 4: Effects of stand age group on tree densities in cocoa ecosystems of Ghana. Error bars 

are standard errors. Different letters on bars within a component indicate significant difference 

at P < 0.05. 

 

 

Figure 5: Effects of region on diameter at breast height of trees in cocoa ecosystems of Ghana. 

Error bars are standard errors. Different letters on bars within a component indicate significant 

difference at P < 0.05. 
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Figure 6: Effects of shade management on diameter at breast height of trees in cocoa 

ecosystems of Ghana. Error bars are standard errors. Different letters on bars within a 

component indicate significant difference at P < 0.05. 

 

Figure 7: Effects of cocoa stand age group on diameter at breast height of trees in cocoa 

ecosystems of Ghana. Error bars are standard errors. Different letters on bars within a 

component indicate significant difference at P < 0.05. 
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Figure 8: Variations in stump height with region, system and stand age group in cocia 

ecosystems of Ghana. Error bars are standard errors. Different letters on bars within a 

component indicate significant difference at P < 0.05. 
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Figure 9: Models developed for estimating biomass (y; in kg/tree) for cocoa tree components 

as a function of its diameter at breast height (DBH, cm). 
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Figure 10: Effects of region on biomass of the components of cocoa ecosystem in Ghana. Error 

bars are standard errors. Different letter within the same component indicate significant 

differences at P < 0.05. 

 

Figure 11: Effects of shade management on biomass of the components of cocoa ecosystem in 

Ghana. Error bars are standard errors. Different letter within the same component indicate 

significant differences at P < 0.05. 
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Figure 12: Effects of cocoa stand age group on biomass of the components of cocoa ecosystem 

in Ghana. Error bars are standard errors. Different letter within the same component indicate 

significant differences at P < 0.05. 


