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Estimation of the finite right endpoint in the Gumbel domain

Isabel Fraga Alves

CEAUL and DEIO

FCUL, University of Lisbon

Cláudia Neves

CEAUL and University of Aveiro

Abstract

A simple estimator for the finite right endpoint of a distribution function in the Gumbel max-

domain of attraction is proposed. Large sample properties such as consistency and the asymptotic

distribution are derived. A simulation study is also presented.

1 Introduction

Let Xn,n ≥ Xn−1,n ≥ . . . ≥ X1,n be the order statistics from the sample X1, X2, . . . , Xn of i.i.d.

random variables with common (unknown) distribution function F . Let xF denote the right end-

point of F . We shall assume that the distribution function F has a finite right endpoint, i.e.

xF := sup{x : F (x) < 1} ∈ R.

The fundamental result for extreme value theory is due in various degrees of generality to Fisher

and Tippett (1928), Gnedenko (1943), de Haan (1970) and Balkema and de Haan (1974). The

extreme value theorem (or extremal types theorem) surprisingly restricts the class of all possible

limiting distribution functions to only three different types, while the induced domains of attraction

embrace a great variety of distribution functions. This is particularly true in the case of the Gumbel

domain of attraction. In other words, if there exist constants an > 0, bn ∈ R such that

lim
n→∞

Fn(an x+ bn) = G(x), (1)
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for all x, G non-degenerate, then G must be only one of the following:

Ψα(x) = exp{−(−x)α}, x < 0, α > 0,

Λ(x) = exp{− exp(−x)}, x ∈ R,

Φα(x) = exp{−x−α}, x > 0, α > 0.

Redefining the constants an > 0 and bn ∈ R, these can in turn be nested in a one-parameter family

of distributions, the Generalized Extreme Value (GEV) distribution with distribution function

Gγ(x) := exp{−(1 + γx)−1/γ}, 1 + γx > 0, γ ∈ R.

We then say that F is in the (max-)domain of attraction of Gγ and use the notation F ∈ DM (Gγ).

For γ < 0, γ = 0 and γ > 0, the GEV distribution function reduces again to Weibull, Gumbel

and Fréchet distribution functions, respectively. An equivalent extreme value condition allows the

limit relation in (1) to run over the real line (cf. Theorem 1.1.6 de Haan and Ferreira, 2006):

F ∈ DM (Gγ) if and only if

lim
t→∞

t
(
1− F (a(t)x+ b(t)

)
= (1 + γ x)−1/γ , (2)

for all x such that 1 + γx > 0, a(t) := a[t] and b(t) := b[t], with [t] denoting the integer part of

t. The extreme value index γ determines various degrees of tail heaviness. If F ∈ DM (Gγ) with

γ > 0, then the distribution function F is heavy-tailed, i.e., F has a power-law decaying tail with

infinite right endpoint. On the opposite end, γ < 0 refers to short tails which must have finite

right endpoint. The Gumbel domain of attraction DM (G0) encloses a great variety of distributions,

ranging from light-tailed distributions such as the Normal distribution, the exponential distribution,

to moderately heavy distributions such as the Lognormal. All the just mentioned distributions have

an infinite right endpoint but a finite endpoint is also possible in the Gumbel domain. We shall

give several examples in Section 2. Distribution functions of this sort, i.e. light-tailed distributions

with finite endpoint, but not so light that they are still included in the Gumbel domain, have been

in great demand as feasible distributions underlying real life phenomena. A striking example is

the extreme value analysis by Einmahl and Magnus (2008) of the best marks in Athletics, aiming

at assessing the ultimate records for several events. For instance, Table 3 in Einmahl and Magnus

(2008) has several missing values for the estimates of the endpoint which are due to an estimated

extreme value index γ near zero. An attempt to fulfill these blank spaces with an appropriate
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framework for inference in the Gumbel domain has been provided by Fraga Alves et al. (2013),

although from the strict view point of application to the Long Jump data set used in Einmahl and

Magnus (2008). The tentative estimator proposed by Fraga Alves et al. (2013) is virtually the

same as the one introduced in the present paper. The novelty here is in the development of a

simple closed-from expression for the previous statistic. Hence, the problem of estimating the right

endpoint xF of a distribution function lying in the Gumbel extremal domain of attraction is now

tackled by the semi-parametric statistic

Xn,n +Xn−k,n −
1

log 2

k−1∑
i=0

log
(k + i+ 1

k + i

)
Xn−k−i,n,

or in a more compact form, by

x̂F := Xn,n +

k−1∑
i=0

ai,k

(
Xn−k,n −Xn−k−i,n

)
, (3)

where ai,k := −(log 2)−1
(
log(k + i) − log(k + i + 1)

)
> 0, such that

∑k−1
i=0 ai,k = 1. Here and

throughout this paper, the number k is assumed intermediate, that is, k is in fact a sequence of

positive integers going to infinity as n → ∞ but at a much slower rate than n. More formally,

we are defining x̂F as a functional of the top observations of the original sample, relying on an

intermediate sequence k = kn, i.e.

kn →∞, kn = o(n), as n→∞.

From the non-negativeness of the weighted spacings in the sum (3), we clearly see that the now

proposed estimator x̂F is greater than the maximum Xn,n with probability one. This constitutes a

crucial advantage in comparison with the usual semi-parametric estimators for the right endpoint

of a distribution function in the Weibull domain of attraction (i.e. with γ < 0). We refer to Hall

(1982), Falk (1995), Hall and Wang (1999) and to de Haan and Ferreira (2006) and references

therein. To the best of our knowledge, none of these estimators have ensured so far the extrap-

olation beyond the sample range, meaning that we can encounter in practice estimates for the

endpoint smaller than the observed sample maximum. There have been, however, some devel-

opments of the most well-known endpoint estimators connected with γ < 0 in the sense of bias

reduction and/or correction. Li and Peng (2009), Li et al. (2011) and Cai et al. (2012) are a few of

the most recent works in this respect. In fact, the problem of estimating xF still gathers a great in-
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terest nowadays. Recently, Girard et al. (2012) devised an endpoint estimator from the high-order

moments pertaining to a distribution attached with γ < 0; Li and Peng (2012) proposed a bootstrap

estimator for the endpoint evolving from the one by Hall (1982) in case γ ∈ (−1/2, 0). The present

paper deliberately addresses the class of distribution functions belonging to the Gumbel domain of

attraction, for which no specific inference has yet been provided in the context of estimation of the

right endpoint xF <∞. The appropriate framework for the latter shall be developed in Section 2.

The remainder of the paper is as follows. The rationale behind the proposal of the new estimator

for the right endpoint is expounded in Section 3. Large sample properties of this estimator, namely

consistency and asymptotic distribution, are worked out in Section 4 by taking advantage of this

form of separability between the maximum and the sum of higher order statistics. In order to

perform asymptotics, we require some basic conditions in the context of the theory of regular

variation. These are laid out in the next section (Section 2). In Section 5 we gather some simulation

results taken as key examples. Finally, Section 6 is devoted to some applications and drawing out

conclusions.

2 Framework

Let F be a distribution function (d.f.) with right endpoint xF ,

xF := sup{x : F (x) < 1}.

For now we are assuming xF ≤ ∞.

Suppose F ∈ DM (Gγ), that is F satisfies the following extreme value condition

lim
x↑xF

1− F (t+ x f(t))

1− F (t)
= (1 + γ x)−1/γ , (4)

for all x ∈ R such that 1 + γ x > 0, with a suitable positive function f (equivalent condition to (2),

see Theorem 1.1.6 of de Haan and Ferreira, 2006).

For the most interesting case of γ = 0 the limit in (4) reads as e−x. In this case f > 0 can be

defined as follows

f(t) :=

∫ xF

t

1− F (x)

1− F (t)
dx = E[X − t|X > t] (5)

(cf. Theorem 1.2.5 of de Haan and Ferreira, 2006), then f is the so called Mean Excess Function.

Now let U be the (generalized) inverse function of 1/(1− F ). If F satisfies (4) with γ = 0 then
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we can assume there exists a positive function a0 such that, for all x > 0,

lim
t→∞

U(tx)− U(t)

a0(t)
= log x. (6)

Hence U belongs to the class Π (see Definition B.2.4 of de Haan and Ferreira, 2006) and a0 is a

measurable function such that lim
t→∞

a0(tx)/a0(t) = 1 for all x > 0. Then we say that a0 is a slowly

varying function and use the notation a0 ∈ RV0 (see Theorem B.2.7 of de Haan and Ferreira, 2006).

Moreover, the functions a0 and f (introduced in (6) and (4), respectively) are related to each other

by a0 = f ◦U(see Theorem B.2.21 of de Haan and Ferreira, 2006). Here and throughout the paper,

we use the notation U ∈ Π(a0) in order to put some emphasis on the auxiliary function a0. We

shall assume the following conditions:

(A1) U ∈ Π(a0);

(A2) U(t) = U(t0) +

∫ t

t0

a(s)
ds

s
+ o
(
a(t)

)
, for some t0 ≥ 1, with a positive function a ∈ RV0 satis-

fying a(t) ∼ a0(t), as t→∞.

(B) xF := U(∞) = lim
t→∞

U(t) exists finite.

Assuming (A1), then Propostion B.2.15(3) of de Haan and Ferreira (2006) guarantees the existence

of a twice differentiable function f , with −f ′′ ∈ RV−2, such that U(t) = f(t) + o
(
a0(t)

)
. Let

f(t) = f(t0) +
∫ t
t0
f
′
(s) ds be this function. Hence, U(t) = U(t0) + f(t) − f(t0) + o

(
a(t)

)
, with

a(t) ∼ a0(t) and where we set f
′
(t) = a(t)/t. This is condition A2. Conversely, (A2) implies (A1)

by Proposition B.2.15(5) of de Haan and Ferreira (2006) with g(s) = a(s)/s ∈ RV−1 therein.

(C) The present development (i.e. assuming (A2) and (B)) gives rise to

U(∞)− U(t) =

∫ ∞
t

a(s)
ds

s
+ o
(
a(t)

)
, t→∞, (7)

which is our main assumption eventually. We note that by writing U(∞) we are automatically

assuming xF = U(∞) finite (i.e., condition B is embedded in condition C). Defining

q(t) :=

∫ ∞
t

a(s)
ds

s
=

∫ ∞
1

a(st)
ds

s
=

∫ 1

0

a
( t
s

) ds
s
, (8)

then (C) rephrases as U(∞)− U(t) = q(t) + o
(
a(t)

)
, as t→∞.

We can obtain from (6) with a0 replaced by a (i.e. U ∈ Π(a)) yet another limiting relation now
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involving integration of U and a: applying Cauchy’s rule once, we obtain

lim
t→∞

∫ 1/t

0

(
U
(
x
s

)
− U

(
1
s

))
ds
s∫ 1/t

0
a
(
1
s

)
ds
s

= lim
t→∞

(
U(tx)− U(t)

)
)/t

a(t)/t
, (9)

then for arbitrary positive x, the Π-variation of U ascertains that log x is the limit above, i.e.

lim
t→∞

∫∞
tx
U(s) dss −

∫∞
t
U(s) dss∫∞

t
a(s) dss

= log x, (10)

for all x > 0. Hence
∫∞
t
U(s) ds/s is also Π-varying with auxiliary function q introduced in (8). In

the usual notation, the latter is
∫∞
t
U(s) ds/s ∈ Π(q). Then q is slowly varying while condition C

entails that q(t)→ 0 as t→∞ (cf. Lemma 15 from Appendix C).

Some examples of distributions belonging to the Gumbel domain of attraction with finite right

endpoint, i.e., such that the main condition (7) holds, are listed below.

Example 1 A random variable X is Negative Fréchet with parameter β > 0 if it has distribution

function F (x) = 1 − exp{−(xF − x)−β}, x ≤ xF , β > 0. The associated tail quantile function U is

given by U(t) = F←(1− 1/t) = xF − (log t)−1/β , t ≥ 1 (the arrow stands for the generalized inverse).

Then U ∈ Π(a0) with a0(t) = (1/β)(log t)−1/β−1 → 0, as t → ∞. Therefore, the auxiliary function q

in (10) becomes q(t) = (log t)−1/β , β > 0.

Example 2 Consider the distribution function F given by F (x) = 1 − exp{− tan(x/β)}, 0 ≤ x <

βπ/2, β > 0. The pertaining function U(t) = F←(1 − 1/t) is given by U(t) = β arctan(log t), t ≥ 1.

Hence U satisfies the main condition (7) (condition C) with a(t) = 1/
(
log2 t + β−2

)
and U ∈ Π(a)

where U(∞) = βπ/2 = xF .

Example 3 Consider the distribution function F (x) = 1 − exp{(π/2)−β −
(
arcsin(1 − x/β)

)−β},
0 ≤ x < β, β > 0. Then U(t) = β

{
1− sin

([
(2/π)β + log t

]−1/β)}, t ≥ 1. Therefore, condition C holds

with a(t) = (log t)−(1/β+1) cos((log t)−1/β), U ∈ Π(a) and U(∞) = β = xF .

3 Statistics

Let X1, X2, . . . , Xn be a random sample of size n from the underlying distribution function F with

finite right endpoint xF . Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n be the corresponding order statistics. We

introduce the estimator q̂(n/k) for the auxiliary function q defined in (8), evaluated at t = n/k.
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This estimator has the property that, as n → ∞, k = k(n) → ∞ and k(n)/n → 0 (provided some

suitable yet mild restrictions involving the second order refinement of
∫∞
t
U(s)/s ds),

q
(
n
k

)
a
(
n
k

)( q̂(nk )
q
(
n
k

) − 1

)
d−→

n→∞
N,

where N is a non-degenerate random variable. Several estimators for the right endpoint xF =

U(∞) < ∞ can be readily devised from (7), in the sense that these might evolve from a suitable

estimator q̂(n/k) for q(n/k), i.e.

x̂F = Û
(n
k

)
+ q̂
(n
k

)
= Xn−k,n + q̂

(n
k

)
. (11)

The above relation allows to foresee that x̂F carries analogous large sample properties to q̂(n/k).

In particular, the consistency of x̂F is essentially ensured by the consistency of q̂(n/k). Theorem 5

in Section 4 accounts for this.

We now evaluate relation (10) at x = 1/2 together with q(t) at t = n/k (see last equality in

(8)). This prompts the following approximation for large enough n:

∫ 1

0

(
U
( n

2ks

)
− U

( n
ks

)) ds
s
≈ q
(n
k

)
(− log 2).

Our proposal for estimating q(n/k) thus arises quite naturally from the empirical counterparts

Û
(
n/(θks)

)
= Xn−[θks],n, s ∈ (0, 1], θ = 1, 2, i.e.

q̂
(n
k

)
:= − 1

log 2

∫ 1

0

(
Xn−[2ks],n −Xn−[ks],n

) ds
s
. (12)

A certain amount of simple calculations yields the following alternative expression for q̂:

q̂
(n
k

)
= Xn,n +

1

log 2

k−1∑
i=0

log
( k + i

k + i+ 1

)
Xn−k−i,n. (13)

Combining (11) with (13) we are led to the estimator for the right endpoint

x̂F := Xn−k,n +Xn,n +
1

log 2

k−1∑
i=0

log
( k + i

k + i+ 1

)
Xn−k−i,n. (14)

We note that, after rearranging components, it is possible to express x̂F as the maximum Xn,n
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added by some weighted mean of non-negative summands as follows:

x̂F = Xn,n +

k−1∑
i=0

ai,k

(
Xn−k,n −Xn−k−i,n

)
,

with ai,k := −(log 2)−1
(
log(k+ i)− log(k+ i+1)

)
> 0, i = 1, 2, . . . , k ∈ N, such that

∑k−1
i=0 ai,k = 1.

Remark 4 We emphasize that the now proposed estimator for the right endpoint returns values always

larger than xn,n. This constitutes a major advantage in comparison to the available semi-parametric

estimators for the endpoint in the case of Weibull domain of attraction, for which the extrapolation

beyond the sample range is not guaranteed. This inadequacy of the existing estimators often leads to

some disappointing results in practical applications, with estimates-yields that may be lower than the

observed maximum in the data.

4 Asymptotic results

In this section we shall bear in mind that x̂F is a compound of the two building blocks introduced

in (11): the sufficiently high random threshold Xn−k,n and q̂(n/k) defined in (12). Our line of

reasoning pursues the fact that the large sample properties of the new estimator x̂F are essentially

governed by the asymptotic properties of the estimator q̂(n/k). This is the statement in our main

Theorem 5 with respect to consistency. A proof is provided afterwards in this Section. Hence,

the consistency of our estimator for the right endpoint stems from the consistency of q̂(n/k). The

latter is tackled in Appendix A, with q̂(n/k) defined in (12) (see also (13)), for an intermediate

sequence k = kn. Similarly, the limiting distribution of q̂(n/k) in Theorem 8 renders the asymptotic

distribution of x̂F via Proposition 11. All the remainder proofs regarding q̂(n/k) are postponed to

Appendix B.

Theorem 5 Let X1, X2, . . . be i.i.d. random variables with tail quantile function U satisfying condi-

tion C. Suppose k = kn is a sequence of positive integers such that kn →∞, kn/n→ 0, as n→∞, and

q̂(n/k) is a consistent estimator for q(n/k) in the sense that the following convergence in probability

holds: q̂(n/k)/q(n/k)
p−→1.

Then x̂F := Xn−k,n + q̂(n/k) is a consistent estimator for xF <∞, i.e. x̂F
p−→

n→∞
xF .

Proof: Let Uk+1,n be the (k+1)-th ascending order statistic from the random sample (U1, U2, . . . , Un)

of n uniformly distributed random variables on the unit interval. Then Xn−k,n
d
=U

(
1/Uk+1,n

)
,

where U(·) denotes the underlying tail quantile function and d
= stands for equality in distribution,
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as usual. It will suffice to note there are three main contributing components for xF − x̂F , but these

become negligible with increasing n. Specifically,

xF − x̂F d
=

(
U(∞)− U

(n
k

)
− q
(n
k

))
−
(
U
( 1

Uk+1,n

)
− U

(n
k

))
− q
(n
k

)( q̂(nk )
q
(
n
k

) − 1
)

= I − II − III,

where:

I := U(∞)− U
(n
k

)
− q
(n
k

)
= o
(
a
(n
k

))
,

which follows directly from relation (7);

II := U
( 1

Uk+1,n

)
− U

(n
k

)
= op

(
a
(n
k

))

because U ∈ Π(a) while Smirnov’s Lemma ensures k/(nUk+1,n)
P−→

n→∞
1 (see Lemma 2.2.3 in de Haan

and Ferreira, 2006);

III := q
(n
k

)( q̂(nk )
q
(
n
k

) − 1
)

= op(1)

which is verified by Proposition 13 and the fact that relation (7) implies q(n/k) = o(1). o

The limiting distribution of q̂(n/k) (and, later on, the asymptotic distribution of x̂F ) is attained

under a suitable second order refinement of (6): suppose there exist functions a, positive and A,

positive or negative, both tending to zero as t→∞, such that

lim
t→∞

U(tx)−U(t)
a(t) − log x

A(t)
=

1

2
(log x)2, (15)

for all x > 0.

Remark 6 The second order condition above follows directly from Theorem B.3.6, Remark B.3.7 and

Corollary 2.3.5 of de Haan and Ferreira (2006) because the former states that, in our setup of γ = 0

and xF < ∞, the only case allowed is the case of the second order parameter ρ equal to zero. Like

the function a, the second order auxiliary function A converges to zero, not changing sign for t near

infinity, and |A| is slowly varying, i.e. A(tx)/A(t)→ 1, t→∞ (notation: |A| ∈ RV0).

Example 7 We consider again the Negative Fréchet model with parameter β > 0, i.e., , with dis-

tribution function F (x) = 1 − exp{−(xF − x)−β}, x ≤ xF , β > 0 (see Example 1). The per-

taining auxiliary function is q(t) = (log t)−1/β , β > 0. Now, straightforward calculations yield
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A0(t) = −(1 + 1/β)(log t)−1, which implies that −a0(t)/q(t) = A0(t)/(1 + β), for t near infinity.

As announced in the beginning of this section, given the two main building blocks of our esti-

mator for the right endpoint, the next theorem enables the asymptotic distribution of x̂F stated in

Proposition 11. The proof of Theorem 8 can be found in Appendix B.

Theorem 8 Given condition C (i.e. suppose relation (7) holds), assume the second order condition

(15) holds. Suppose k = kn is such that, as n → ∞, kn → ∞, kn/n → 0, a(n)/a(n/kn) → 1 and
√
knA(n/kn) = O(1). Furthermore assume that

lim
n→∞

1

A(n/k)

(∫ 1

1
2k

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s
− log 2

)
= λ ∈ R. (16)

Then
q
(
n
k

)
a
(
n
k

)( q̂(nk )
q
(
n
k

) − 1
)

d−→
n→∞

Λ− log 2

2
− λ

log 2
, (17)

where Λ is a Gumbel random variable with distribution function exp{−e−x}, for all x ∈ R.

We note that the assumption (16) of the theorem regards a second order refinement of (10),

more concretely:

lim
t→∞

∫∞
tx
U(s) dss −

∫∞
t
U(s) dss

q(t) − log x

Q(t)
=

1

2
(log x)2, (18)

taken in the point x = 2 for large enough t = n/k. Hence, the assumption (16) has been tailored

with Q(t) = O(A(t)), via the usual second order setup (see also Eq. (15)) provided by the theory

of extended regular variation. We refer to Appendix B of de Haan and Ferreira (2006) for a good

catalog on results concerning theory of extended regular variation.

The assumption on that a(n/k)/a(n)→ 1, as n→∞, is however, a bit more restrictive in terms

of screening for an adequate value k which will determine the number of top order statistics to base

our inference from. For example, if we assume the Negative Fréchet for the underlying distribution

function (see Example 1) and kn = np, p ∈ (0, 1), then

a(n)

a(n/kn)
=
(

1− log kn
log n

)1/β+1

= (1− p)1/β+1,

which is approximately 1 if and only if p approaches zero. A more appropriate choice regards

intermediate sequences at a slower rate such as kn = (log n)r, r ∈ (0, 2]. Bearing this choice in

10
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mind, we have that

a(n)

a(n/kn)
=
(

1− log kn
log n

)1/β+1

=
(

1− r

log n
+

log log n

log n

)1/β+1

−→
n→∞

1.

The upper bound r ≤ 2 is imposed in order to comply with the assumption
√
knA(n/kn) = O(1).

Given the slow variation feature of all the functions involved in the characterization of the

present subclass of distributions in the Gumbel domain with finite right endpoint, we believe that

the latter choice for k = kn is a feasible one for most models satisfying (7), meaning that we require

intermediate values kn such that log(kn) = o(log n). Nevertheless, we can bring forward the fact

that a miss-specification of kn in the sense that a(n/kn)/a(n) converges to a constant different than

1, has a direct impact on the asymptotic variance of the normalized relative error presented in

Theorem 8 rather than upon the asymptotic bias. This can be clearly seen in the proof of Theorem

8. In this respect, we defer the reader to Appendix B.

Remark 9 We note that the assumption log k = o(log n) is a common assumption in the theoretical

analysis of estimators for Weibull-type tails, which form a rich subclass the Gumbel max-domain of

attraction, albeit with xF = ∞. In this respect, we refer to Goegebeur et al. (2010) and Gardes et al.

(2011).

Example 10 We resume the results for the Negative Fréchet distribution introduced in Example 1 (see

Example 7 on further developments). The Negative Fréchet distribution has a tail quantile function

given by U(t) = xF − (log t)−1/β , t ≥ 1, 0 < β < 1, satisfying the second order condition (18) with

Q(t) = −(β log t)−1.

We are thus ready to proceed with the asymptotic distribution of x̂F . The following proposition

rests heavily on the statement in Theorem 8.

Proposition 11 Under the conditions of Theorem 8,

1

a(n/k)

(
x̂F − xF

)
−
q
(
n
k

)
a
(
n
k

)( q̂(nk )
q
(
n
k

) − 1
)

P−→
n→∞

0.

Proof: We write:

x̂F − xF

a(n/k)
− q(n/k)

a(n/k)

( q̂(n/k)

q(n/k)
− 1
)

=
x̂F − q̂(n/k)

a(n/k)
− xF − q(n/k)

a(n/k)

=
Xn−k,n − U(n/k)

a(n/k)
− U(∞)− U(n/k)− q(n/k)

a(n/k)
.

11
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Since under the second order condition (15), Theorem 2.4.1 of de Haan and Ferreira (2006) en-

sures that
(
Xn−k,n − U(n/k)

)
/a(n/k) = Op

(
1/
√
k
)

= op(1), the rest follows from condition C. o

Finally, Theorem 12 below encloses an alternative formulation of the results comprised in The-

orem 8 and Proposition 11 aiming at providing confidence bands for x̂F .

Theorem 12 Let X1, X2, . . . be i.i.d. random variables with tail quantile function U satisfying the

second order condition (15). Let â(n/k) be a consistent estimator for a(n/k). Suppose k = kn is a

sequence of positive integers such that, as n → ∞, kn → ∞, kn/n → 0, a(n)/a(n/kn) → 1 and
√
knA(n/kn) = O(1). Furthermore assume that

lim
n→∞

1

A(n/k)

(∫ 1

1
2k

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s
− log 2

)
= λ ∈ R.

Then
1

â(n/k)

(
x̂F − xF

) d−→
n→∞

Λ− log 2

2
− λ

log 2
.

Proof: The result follows easily by conjugating Theorem 8 with Proposition 11 and then applying

Slutsky’s theorem. o

There are in the literature several possibilities for estimating the auxiliary (or scale) function

a(n/k). The most obvious choice is the Maximum Likelihood Estimator (MLE) by pretending that

the exceedances over a certain high (random) threshold follow a Generalized Pareto distribution

(cf. section 3.4 of de Haan and Ferreira, 2006):

â
(n
k

)
= σ̂MLE :=

1

k

k−1∑
i=0

(
Xn−i,n −Xn−k,n

)
.

5 Simulations

The Negative Fréchet distribution features in this simulation for the purpose of illustrating the finite

sample behavior of our estimator for xF defined in (14). Other models would have been equally

possible, for instance the ones provided in Examples 2 and 3.

Negative Fréchet model, with distribution function F (x) = 1 − exp{−(xF − x)−β}, x ≤ xF ,

β > 0, reveals a tail shape versatility, for different values of β. The pertaining tail quantile function

U is given by U(t) = xF − (log t)−1/β , t ≥ 1. Clearly U ∈ Π(a) with a(t) = β−1(log t)−1/β−1, β > 0

12



Simulations

Figure 1: Right tails for probability density functions of Negative Fréchet Model with right endpoint xF = 1 and β =
0.3, 0.5, 0.7, 1.

(cf. Example 1). The range of the chosen values for β offers various tail shapes, as shown in the

graphics drawn in Figure 1.

We have simulated 1000 samples of size n = 100, 1000, 10000, from Negative Fréchet model with

right endpoint xF = 1 and for different parameters β = 0.3, 0.5, 0.7, 1. The results are depicted in

Figure 2. Since the number k actually implies that the number of top order statistics used in the

estimation is twice as much, we have plotted the estimated mean of x̂F as a function of the latter,

i.e., the plots are against k∗ = 2k , from 1 to 80%n.

The most common approach of selecting the number k (or k∗ in the present case) is to look

for a region where the plots are relatively stable. This way, given the consistency property of the

adopted estimator, one should in principle be away from small values of k avoiding large variance

(small k is usually associated with a large variance) and not so far off in the tail preventing bias to

instill (bias usually due to large k). As already discussed in Section 4, for Model 1 an appropriate

choice for an intermediate k = kn may be given by kn = (log n)r, with r ∈ (0, 2]. If we are using

n = 1000, for instance, and if we set r = 2, the maximum allowed for r, we obtain k ≈ 48 and thus

k∗ ≈ 96. Bearing on a value of k∗, around 100 e.g., all the plots in Figure 2 look quite stable in a

13



Simulations

Figure 2: Mean estimate (left) and empirical Mean Squared Error (right) of x̂F defined in (14) (solid line), for Negative
Fréchet Model with the true value xF = 1, β = 0.3, 0.5, 0.7, 1 and several sample sizes: n = 100 (first row), n = 1000
(second row), n = 10000 (third row); All plots are depicted against the number k∗ = 2k of top observations used in the
estimator. The naive maximum estimator, x̃F := Xn,n, has also been considered (dashed line).

,
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Case study and conclusion

close vicinity of the target value xF = 1 represented by the solid horizontal black line. Hence, the

slow convergence imposed by intermediate sequence kn = (log n)2 seems to be of little effect to

almost none, upon the finite sample behavior of the new estimator x̂F . The latter is particular true

in case 0 < β < 1.

A more thorough examination of the graphs in Figure 2 seems to give accounts of a tendency to a

better estimation under Negative Fréchet model if the parameter β is less than 1, which corresponds

to the case where the inherent second order conditions are satisfied. We recall that if β ≥ 1, the

Negative Fréchet distribution still satisfies the first order condition. Further details on the Negative

Fréchet distribution are given in Examples 1, 7 and 10. Moreover, for this model, the general

pattern for the mean estimate of x̂F involves a moderated bias with k∗ in the upper part of the

sample, and a fast increasing bias with k∗ around 40% of the sample size.

Similar simulations have been carried out for the other two models in Examples 2 and 3, leading

also to favorable results. Note that for any model with right endpoint finite, the sample path of x̂F

departures from the top value xn,n, i.e., , the sample maximum, and always returns extrapolated

values beyond the sample. We should highlight that our estimator x̂F yields better results than

the maximum estimator x̃F := Xn,n, which always underestimates the true value xF . The relative

performance of both x̃F and x̂F can also be easily observed if we compare the MSE graphics in

Figure 2 (right): for the top part the sample, depending on the β value, the estimator x̂F always

outperforms the maximum x̃F , presenting the new estimator a lower mean squared error then the

naive maximum estimator.

6 Case study and conclusion

This section is dedicated to the estimation of the finite right endpoint in the Gumbel maximum

domain of attraction, which embraces light-tailed distributions with finite endpoint. This topic

has been developed under the motivation of real life data problems, where extreme value analysis

demands the estimation of the right endpoint, although the underlying distribution tail is not so

light that could be included in Weibull domain of attraction, i.e., where the assumption of negative

extreme value index (EVI), γ < 0, is questionable.

A seminal approach has been worked out in Fraga Alves et al. (2013), with a real example

applied on athletics records data, filling the gap highlighted in Einmahl and Magnus (2008), on

extreme value analysis of the best marks in Athletics, aiming at assessing the ultimate records for

several events. In particular, in Einmahl and Magnus (2008) and for the Long Jump event (LJ-
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Men), the authors estimated a positive EVI much close to zero, which compromises the endpoint

estimation with the available methodology at the time. In Fraga Alves et al. (2013), and for LJ data

taken in the same period of time, an answer to the applied problem of estimation the right end-

point of LJ-Men event has been given, using this same estimator x̂F , but written in an equivalent

algebraic form; as referred therein, that contribution constitutes a first approach to the estimation

of the right endpoint for a distribution in the Gumbel max-domain of attraction, at that time a

subject not yet addressed in the literature of extremes. Although the estimator motivation is pre-

sented in Fraga Alves et al. (2013) by theoretical framework for inference in the Gumbel domain,

encompassing specific tail properties for finite endpoint, the asymptotic properties of the endpoint

estimator were still under study, and are finally addressed in the present paper, which can be seen

as an important development in the subject.

Real data phenomena constitutes a rich portfolio for similar applied problems. We shall consid-

erx an application to statistical extreme value analysis of Anchorage International Airport (ANC)

Taxiway Centerline Deviations for Boeing 747 Aircraft, handled by Scholz (2003).

The goal was to provide a basis for understanding the extreme behavior of centerline deviations

of Boeing-747. That report addressed the risk of an aircraft deviating at a fixed location along

the taxiway beyond a certain threshold distance from the taxiway centerline. The B-747 taxiway

deviation data were collected from 9/24/2000 to 9/27/2001 at ANC; during this period, 9767

deviations were recorded at ANC with a range of [-8.225, 8.863] feet, in both directions of the

taxiways. Based on the extreme value limiting assumption, positive deviations (ANCrt data with

sample size n = 4900) were extrapolated using the k = 385 most extreme deviations at ANC,

the chosen k value of top observations to EVI estimation, namely γ̂ = 0.03925 (cf. Scholz (2003)

pages 43, 48, 64). In Figure 3 it is depicted the samplepath of γ̂, the EVI estimate, using Moment

estimator presented in Dekkers et al. (1989), along with the 95% confidence bandwidths, for the

ANCrt data. It is easily checked that the straight line corresponding γ = 0 is inside the confidence

bandwidths for a very large upper part of the sample, (in the graphic k ≤ 2000). Consequently, the

Gumbel domain of attraction cannot be discarded. Moreover, the testing procedures for detecting

a finite right endpoint (cf. Neves and Pereira (2010)) suggest the presence of a distribution with

finite right endpoint underlying the ANC deviation data.

In Figure 4 it is depicted the samplepath of our endpoint estimator x̂F against k∗. In the range

of 650 ≤ k∗ ≤ 2300 the graphic is quite stable. If we rely on that region we suggest for endpoint

estimate a value approximately equal to 9.21 ft. We highlight that this estimation result is based
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Figure 3: ANCrt data: EVI estimation with Moment estimator and 95% confidence bandwidths, plotted against k

on the data set ANCrt in the period 9/24/2000 to 9/27/2001, and any conclusion can only be

driven for the state of the art at that time; today’s knowledge of the ANC event would improve the

endpoint estimation.

Taking all into account, we may conclude that the proposed estimator x̂F performs reasonably

well for parent distributions in the Gumbel domain detaining finite right endpoint xF .

As a short final remark about the robustness of endpoint estimator defined in (3), we can say

it constitutes an advised inference procedure under Weibull domain of attraction. The theoretical

background supporting this statement is a topic of further undergoing research, but beyond the

scope of the present subject.
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Figure 4: endpoint estimation.

A Consistency of q̂(n/k)

Before we proceed we need to establish some ground results.

Let U1, U2, . . . , Un be independent and identically distributed uniform random variables on the

unit interval and let U1,n ≤ U2,n ≤ . . . ≤ Un,n be their order statistics. Since k = kn is an

intermediate sequence such that kn →∞, kn = o(n), as n→∞, then we can define a sequence of

Brownian motions
{
Wn(s)

}
s≥0 such that, for each ε > 0,

sup
1
θk≤s≤1

s
3
2+ε

∣∣∣∣√θk( θk

nU[θks]+1,n
− 1

s

)
− 1

s2
Wn(s)

∣∣∣∣ = op(1), (19)

for all θ ≥ 1 (cf. Lemma 2.4.10 of de Haan and Ferreira, 2006, with γ = 1).

Let X1, X2, . . . be i.i.d random variables with the same distribution function F belonging to the

Gumbel domain of attraction, i.e., F ∈ D(G0), with finite right endpoint xF , such that condition

C in Section 2 holds. Note that U(1/Ui)
d
=Xi, i = 1, 2, . . .. In view of condition C, the following

relation holds
U(tx)− U(t)

a(t)
=

∫ 1

1/x

a
(
t
s

)
a(t)

ds

s
+
a(tx)

a(t)
o(1) + o(1), (t→∞)
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for all x > 0. Given that a ∈ RV0, we thus obtain for sufficiently large n that

Xn−[θks],n − U
(
n
θk

)
a
(
n
θk

) d
=
U
(
n
θk

θk
nU[θks]+1,n

)
− U

(
n
θk

)
a
(
n
θk

) ≈
∫ 1

nU[θks]+1,n
θk

a
(
n
θk

1
x

)
a
(
n
θk

) dx

x
.

Now the uniform inequalities in Lemma 15.1(ii) tell us that, for any ε > 0,

a
(
n
θk

1
s

)
a
(
n
θk

) = 1± εs−ε, 0 < s ≤ 1.

Since U[θks]+1,n ∈ [0, 1] and for every s ∈ (0, 1],

nU[θks]+1,n

θk
≤
nU[θk]+1,n

θk

P−→
n→∞

1,

we get the upper bound

Xn−[θks],n − U
(
n
θk

)
a
(
n
θk

) ≤ − log s− log

(
1 +

(nU[θks]+1,n

θks
− 1
))

+

((nU[θks]+1,n

θk

)−ε
− 1

)
= − log s− 1

s

(nU[θks]+1,n

θk
− s
)(

1 + op(1)
)

+ (s−ε − 1)
(
1 + op(1)

)
,

with the op(1)-term tending to zero uniformly for s ∈ [(θk)−1, 1]. A similar lower bound is also

possible. Now we can apply Cramér’s δ-method to relation (19) in order to obtain:

Xn−[θks],n − U
(
n
θk

)
a
(
n
θk

) = − log s+
1√
θk

(
s−1Wn(s) + op(s

−1/2−ε)
)
± (s−ε − 1)

(
1 + op(1)

)
, (20)

as n → ∞, uniformly for (θk)−1 ≤ s ≤ 1, θ ≥ 1. We now consider the normalized difference

between a sample intermediate quantile and corresponding theoretical quantile and denote it by

Rθ(s), i.e.

Rθ(s) :=
Xn−[θks],n − U

(
n
θks

)
a
(
n
θks

) (21)

=
Xn−[θks],n − U

(
n
θk

)
a
(
n
θk

) +

(
a
(
n
θk

)
a
(
n
θks

) − 1

)
Xn−[θks],n − U

(
n
θk

)
a
(
n
θk

) +
U
(
n
θk

)
− U

(
n
θks

)
a
(
n
θks

)
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Bearing on (20) combined with the uniform inequalities in Lemma 15(1), we thus get for any ε > 0,

Rθ(s) = − log s+
1√
θk

(Wn(s)

s
+ s−1/2−εop(1)

)
±(s−ε − 1)

(
1 + op(1)

)
± εs−ε(− log s) + log s± εs−ε

=
1√
θk

Wn(s)

s
± (s−ε − 1)

(
1 + op(1)

)
∓ εs−ε log s, (22)

for s ∈ [(θk)−1, 1], all θ ≥ 1. Therefore, we have just seen that the distribution of deviations

between high (large) sample quantiles and their theoretical counterparts is attainable, with a van-

ishing bias, by means of a different normalization than in the left hand-side of (20). The weak

convergence of q̂(n/k) is supported on the latter.

Proposition 13 Let X1, X2, . . . be i.i.d. random variables with tail quantile function U satisfying

condition C in Section 2 (i.e. relation (7)). Suppose k = kn is a sequence of positive integers such that

kn →∞, kn/n→ 0, as n→∞. Then q̂(n/k) is a consistent estimator for q(n/k) in the sense that the

following convergence in probability holds,

q̂
(
n
k

)
q
(
n
k

) p−→
n→∞

1.

Proof: We begin by noting that

q̂
(
n
k

)
q
(
n
k

) = − 1

log 2

∫ 1

0

Û
(
n

2ks

)
− Û

(
n
ks

)
q
(
n
k

) ds

s

= − 1

log 2

{∫ 1

1
2k

Xn−[2ks],n − U
(
n

2ks

)
q
(
n
k

) ds

s
−
∫ 1

1
k

Xn−[ks],n − U
(
n
ks

)
q
(
n
k

) ds

s
(23)

−
∫ 1

k

1
2k

Xn,n − U
(
n
ks

)
q
(
n
k

) ds

s
+

∫ 1

1
2k

U
(
n

2ks

)
− U

(
n
ks

)
q
(
n
k

) ds

s

}
. (24)

The two integral terms in (23) shall be handled jointly through the consideration of R2(s) (see Eq.

(21) with θ = 2) in the one integral below denoted by I1(k, n),

∫ 1

1
2k

Xn−[2ks],n − U
(
n

2ks

)
q
(
n
k

) ds

s
−
∫ 1

1
k

Xn−[ks],n−U
(
n
ks

)
q
(
n
k

) ds

s
=

∫ 1

1
2

Xn−[2ks],n−U
(
n

2ks

)
q
(
n
k

) ds

s
=: I1(k, n) (25)

as follows:

I1(k, n) =
a
(
n
k

)
q
(
n
k

){∫ 1

1
2

R2(s)
ds

s
+

∫ 1

1
2

(a( n
2ks

)
a
(
n
k

) − 1
)
R2(s)

ds

s

}
. (26)
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Now, Lemma 16 ascertains

I1(k, n) =

∫ 1

1
2

Xn−[2ks],n − U
(
n

2ks

)
q
(
n
k

) ds

s

≤
a
(
n
k

)
q
(
n
k

) ∣∣∣∫ 1

1
2

R2(s)
ds

s

∣∣∣+
(a(nk )
q
(
n
k

))2∣∣∣∫ 1

1
2

R2(s) log(2s)
ds

s

∣∣∣
≤

a
(
n
k

)
q
(
n
k

)(1 +
a
(
n
k

)
q
(
n
k

) log 2

)∣∣∣∫ 1

1
2

R2(s)
ds

s

∣∣∣, (27)

with high probability, for sufficiently large n. We can provide a similar lower bound.

Owing to (22) the following holds w.r.t. the integral featuring in the upper bound (27), for any

positive ε,

∣∣∣∫ 1

1
2

R2(s)
ds

s

∣∣∣ ≤ ∣∣∣ 1√
2k

∫ 1

1
2

s−2Wn(s) ds
∣∣∣+

∫ 1

1
2

(
s−ε − 1

) ds
s

(
1 + op(1)

)
− ε

∫ 1

1
2

s−ε log s
ds

s
.

Since ε > 0 is arbitrary, then

0 <

∫ 1

1
2

(
s−ε − 1

) ds
s

=
2ε − 1

ε
− log 2−→

ε↓0
0,

meaning that ∫ 1

1
2

(
s−ε − 1

) ds
s

can be discarded. A similar line of reasoning applies to

ε

∫ 1

1
2

s−ε log
(1

s

) ds
s

= 2ε log 2− 2ε − 1

ε
−→
ε↓0

0,

thus also discarded.

We now recall that k = k(n) is a sequence of positive integers tending to infinity as n→∞. Let us

define

Yn :=
1√
2k

∫ 1

1
2

Wn(s)
ds

s2
,

which regards a sequence of normal random variables with zero mean and variance equal to

V ar(Yn) =
1− log 2

k
−→
n→∞

0.

The latter means that {Yn}n≥1 is a sequence of degenerate random variables, eventually, and the

two integrals in (23) (unified in (25); see also Eq. (26) in terms of R2(s)) vanish with probability
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tending to one as n → ∞. In this respect we note that a(n/k)/q(n/k) = o(1), which entails in fact

that

I1(k, n) = op(1)

(
= op

(a(n/k)

q(n/k)

)
= Op

( a(n/k)√
kq(n/k)

))
.

The rest of the proof addresses the terms in (24). We note that the first integral in (24),

I2(k, n) :=

∫ 1
k

1
2k

Xn,n − U
(
n
ks

)
q
(
n
k

) ds

s

=

∫ 1

1/2

Xn,n − U
(
n
s

)
q
(
n
k

) ds

s

d
=

a(n)

q
(
n
k

){U( 1
U1,n

)
− U(n)

a(n)
log 2−

∫ 1

1
2

U
(
n
s

)
− U(n)

a(n)

ds

s

}
=

a(n)

q
(
n
k

){− log(nU1,n) log 2 +

∫ 1

1
2

log s
ds

s

}(
1 + op(1)

)
=

a(n)

q
(
n
k

) log 2
(
− log(nU1,n)− 1

2
log 2

)(
1 + op(1)

)
.

Now, the probability integral transformation yields the following equality in distribution for the

random term above:

− log(nU1,n)
d
=En,n − log n, (28)

where En,n is the maximum of n i.i.d. standard exponential random variables. Hence, the random

variable (28) converges in distribution to a Gumbel random variable with distribution function

given by exp{−e−x}, x ∈ R. Moreover, a(n)/q(n/k)→ 0, as n→∞, because a(n/k)/q(n/k) = o(1)

(see Lemma 15(2) in Appendix C), where the auxiliary positive function a satisfies a(t) → 0, as

t→∞, by assumption. Therefore,

I2(k, n) = op(1)
(

= Op
( a(n)

q(n/k)

))
. (29)

In order to finally attain consistency of q̂(n/k) let us consider the last integral in (24), which we

will show it is bounded. We establish the upper bound,

∫ 1

1
2k

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s
≤
∫ 1

0

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s
(30)
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and the lower bound,

∫ 1

1
2k

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s

=

∫ 1− 1
2k

0

U
(

n
ks+1/2

)
− U

(
n

2ks+1

)
q
(
n
k

) ds

s+ 1
2k

≥
∫ 1

0

U
(

n
ks+1/2

)
− U

(
n

2ks+1

)
q
(
n
k

) ds

s+ 1
2k

− 2

∫ 1

1− 1
2k

U
(

n
ks+1/2

)
− U

(
n

2ks+1

)
q
(
n
k

) ds

s+ 1
2k

.

Making t = n/k run on the real line towards infinity, then the following condition of Π−variation

(i.e. condition (10)),

lim
t→∞

∫ 1

0
U
(
tx
s

)
ds
s −

∫ 1

0
U
(
t
s

)
ds
s

q(t)
= log x, x > 0, (31)

clearly entails the following limit for the upper bound in (30):

∫ 1

0
U
(
n
ks

)
ds
s −

∫ 1

0
U
(
n

2ks

)
ds
s

q
(
n
k

) = −
∫ 1

0
U
(
n

2ks

)
ds
s −

∫ 1

0
U
(
n
ks

)
ds
s

q
(
n
k

) −→
n→∞

log 2.

Regarding the lower bound provided above, that is,

∫ 1

1
2k

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s
≥

∫ 1

0

U
(

n

k
(
s+ 1

2k

))− U( n

2k
(
s+ 1

2k

))
q
(
n
k

) ds

s+ 1
2k

(32)

− 2
q
(
n
2k

)
q
(
n
k

) ∫ 1

1− 1
2k

U
(

n

k
(
s+ 1

2k

))− U( n

2k
(
s+ 1

2k

))
ds

s+ 1
2k

, (33)

we note that for every ε > 0, there exists n0 ∈ N such that for n ≥ n0,

∣∣∣ 1

s+ 1/(2k)
− 1

s

∣∣∣ < ε. (34)

Whence, we have in turn the following inequality with respect to (32):

∫ 1

0

U
(

n

k
(
s+ 1

2k

))− U( n

2k
(
s+ 1

2k

))
q
(
n
k

) ds

s+ 1
2k

>

∫ 1

0

U
(

n

k
(
s+ 1

2k

))− U( n

2k
(
s+ 1

2k

))
q
(
n
k

) (1

s
− ε
)
ds.

For the first part of the right-hand side of the above we use again condition (31), while the second
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part is dealt with Theorem B.2.19 of de Haan and Ferreira (2006) involving the fact that U ∈ Π(a):

∫ 1

0

U
(

n

k
(
s+ 1

2k

))− U( n

2k
(
s+ 1

2k

))
q
(
n
k

) ds

s
+ ε

a
(
n
k

)
q
(
n
k

) ∫ 1

0

U
(

n

2k
(
s+ 1

2k

))− U( n

k
(
s+ 1

2k

))
a
(
n
k

) ds

= log 2
(
1 + o(1)

)
− ε

a
(
n
k

)
q
(
n
k

) log 2
(
1 + o(1)

)
−→
n→∞

log 2.

For the latter, we recall that a(n/k) = o
(
q(n/k)

)
.

Now we write δ = 1/(2k) > 0 everywhere in (33). Furthermore, we assume that there exists n0 ∈ N

such that, for n ≥ n0, the term nδ is large enough and the integral in (33) can rephrased as

I∗δ :=

∫ 1

1−δ

(
U
(

2
s+δnδ

)
− U

(
1
s+δnδ

))
ds
s+δ∫ 1

nδ
a(s) dss

. (35)

We note that, for every fixed δ > 0, we have that from the Π-variation of U that the following holds

for the numerator of I∗δ properly rescaled by a(nδ) (cf. Theorem B.2.19 in de Haan and Ferreira,

2006): ∫ 1

1−δ

(
U
(

2
s+δnδ

)
− U

(
1
s+δnδ

))
ds
s+δ

a(nδ)
−→
n→∞

∫ 1

1−δ
log 2

ds

s+ δ
= log(1 + δ) log 2.

For arbitrary small δ, the latter approaches zero. Predicated on the above, we apply Cauchy’s rule

to obtain limδ→0 I
∗
δ (we recall that δ → 0 implies n → ∞). Towards this end, we apply Eq. (2.11)

of Chiang (2000) upon the numerator of I∗δ , whence

lim
δ→0

I∗δ = lim
δ→0

∫ 1

1−δ

(
U ′
(

2
s+δnδ

)
2s

(s+δ)3 − U
′( 1
s+δnδ

)
s

(s+δ)3

)
ds

−a(nδ)nδ

+ lim
δ→0

{
δ

∫ 1

1−δ

U
(
2nδ
s+δ

)
− U

(
nδ
s+δ

)
a(nδ)

ds

(s+ δ)2
− δU(2nδ)− U(nδ)

a(nδ)

}
.

Since U ′(t) = a(t)/t then the limit becomes equal to the the limit of

−
∫ 1

1−δ

(a( 2nδs+δ

)
a(nδ)

−
a
(
nδ
s+δ

)
a(nδ)

) s ds

(s+ δ)2
+ δ
(∫ 1

1−δ

U
(
2nδ
s+δ

)
− U

(
nδ
s+δ

)
a(nδ)

ds

(s+ δ)2
− U(2nδ)− U(nδ)

a(nδ)

)
.

We can now take any arbitrary small δ (making n→∞) in order to apply the uniform convergence

of a ∈ RV0 and U ∈ Π(a) so that the above integrals are ensured finite and then equal to zero

by definition. Hence, all the terms are negligible as δ converges to zero meaning that limδ→0 I
∗
δ
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becomes null. Therefore, ∫ 1

1
2k

U
(
n

2ks

)
− U

(
n
ks

)
q
(
n
k

) ds

s
−→
n→∞

− log 2.

and the precise result for consistency of q̂(n/k) thus follows by noting that q(n/k) ∼ q
(
n/(2k)

)
. o

B Asymptotic distribution of q̂(n/k)

In order to establish the asymptotic distribution of the proposed estimator for q(n/k) (see (12) or

(13)), we need to gain further insight about the distributional representation obtained from (20).

Therefore, the proper framework calls for a second order refinement of (6). Specifically, if the tail

quantile function satisfies the second order condition (15), then Theorem 2.4.2 of de Haan and

Ferreira (2006) ascertains that, for each ε > 0,

sup
1
θk≤s≤1

s1/2+ε
∣∣∣∣√θk(Xn−[θks],n − U

(
n
θk

)
a0
(
n
θk

) + log s

)
− Wn(s)

s
−
√
θk A0

( n
θk

)1

2
(log s)2

∣∣∣∣ p−→
n→∞

0, (36)

provided k = kn →∞, kn/n = o(n) and
√
knA0(n/kn) = O(1).

Therefore, the asymptotic distribution of q̂(n/k) will appear intertwined with the proof of con-

sistency in Proposition 13 via Rθ(s), (defined in (21) for s ∈ [(θk)−1, 1], see also (22)), albeit under

the second order grasp provided above. Hence, we have the following Proposition (cf. (2.4.7) of

de Haan and Ferreira, 2006).

Proposition 14 Given condition C from Section 2, suppose the second order condition (15) holds. Let

k = kn → ∞, kn/n = o(n) and
√
knA(n/kn) → λ ∈ R, as n → ∞. Then, for θ ≥ 1 and for each

ε > 0 sufficiently small,

sup
1
θk≤s≤1

s1/2+ε
∣∣∣∣√θk Xn−[θks],n − U

(
n
θks

)
a
(
n
θks

) − Wn(s)

s

∣∣∣∣ = op(1).

Proof: Similarly to the equality right after (21), we have that

Rθ(s) :=
Xn−[θks],n − U

(
n
θks

)
a
(
n
θks

) =
a0
(
n
θk

)
a
(
n
θks

) {Xn−[θks],n − U
(
n
θk

)
a0
(
n
θk

) −
U
(
n
θks

)
− U

(
n
θk

)
a0
(
n
θk

) }
.

Noting that
a0(t)

a
(
t
s

) =
a0(t)

a(t)

a
(
t
)

a
(
t
s

) ,
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for all s > 0, then Lemma 16 combined with Remark 17 yields the expansion

a0(t)

a
(
t
s

) =
a0(t)

a(t)

(
1− a(t)

q(t)
log s+ o

(a(t)

q(t)

))
=
a0(t)

a(t)

(
1 +A(t) log s+ o

(
A(t)

))
, (37)

for all s > 0. In this respect, we also note that |A| ∈ RV0 and a0(t)/a(t) = 1 + o
(
A(t)

)
.

Having set 1/(θk) ≤ s ≤ 1, we thus have from (36), the uniform bounds in (40) and the second

equality in (37), that

√
θk Rθ(s) =

Wn(s)

s
+A

( n
θk

) log s

s
Wn(s)∓ εs−ε

√
θk A

( n
θk

)
± εs−ε log s

√
θk A2

( n
θk

)
+ op(s

− 1
2−ε) + op

(
s−

1
2−ε log sA

( n
θk

))
,

uniformly in s. Hence, the assumption that
√
kA(n/k) = O(1) entails that log(1/s)A

(
n/(θk)

)
→ 0,

whereas εs−ε
√
θkA

(
n/(θk)

)
virtually becomes o(s−1/2−ε) for each ε > 0 arbitrarily small and

uniformly in s ∈ [(θk)−1, 1]. The op-terms are uniform in s ∈ [1/(θk), 1]. Hence the following

representation for
√
θk Rθ(s), valid for ε ∈ (0, 1),

√
θk Rθ(s) =

Wn(s)

s
+ op(s

−1/2−ε).

o

Proof of Theorem 8: Similarly as in (25), we have that

q
(
n
k

)
a
(
n
k

)( q̂(nk )
q
(
n
k

) − 1
)

= − 1

a
(
n
k

) 1

log 2

{∫ 1

1
2

(
Xn−[2ks],n − U

( n

2ks

)) ds
s
−
∫ 1

k

1
2k

(
Xn,n − U

( n
ks

)) ds
s

− q
(n
k

)(∫ 1

1
2k

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s
− log 2

)}
= − 1

log 2

{
J1(k, n)− J2(k, n)

}
+
q
(
n
k

)
a
(
n
k

) 1

log 2
J3(k, n). (38)
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By mimicking the steps of progression from (25) to (26), we obtain for the first integral above that

√
2k J1(k, n) :=

√
2k

∫ 1

1
2

Xn−[2ks],n − U
(
n

2ks

)
a
(
n
k

) ds

s

=

∫ 1

1
2

√
2k R2(s)

ds

s
+

∫ 1

1
2

(a( n
2ks

)
a
(
n
k

) − 1
)√

2k R2(s)
ds

s
.

Hence, Proposition 14 while assuming that
√
k a(n/k)/q(n/k) = O(1) (by appointment of Remark

17) and application of the uniform bounds in (41) with a0(t) := a(t)
(
1+o(A(t)

)
and A0(t) := A(t),

imply for each ε > 0,

√
2k J1(k, n) =

∫ 1

1
2

Wn(s)
(
1− log(2s)

) ds
s2

+ op(1)

∫ 1

1
2

log
( 1

2s

)(1

s

)3/2+ε
ds+ op

(
A0

(n
k

))
.

Since the integral
∫ 1

1/2
Wn(s)(1− log(2s))s−2 ds converges to a sum of independent normal random

variables, then the expression above allows to conclude that the first random component in (38) is

negligible with high probability because

J1(k, n) = Op
( 1√

k

)
.

Now, similarly to I2(k, n) in the proof of Proposition 13, albeit under the second order condition

(15) and pertaining uniform bounds provided by (40), we now have that

J2(k, n) :=

∫ 1
k

1
2k

Xn,n − U
(
n
ks

)
a
(
n
k

) ds

s

=
a(n)

a
(
n
k

){− log 2 log
(
nU1,n

)
+
a0(n)

a(n)

∫ 1

1
2

log s
ds

s
+A0(n)

∫ 1

1
2

( (log s)2

2
± εs−ε

) ds
s

}
.

Again, note that a0(n)/a(n)− 1 = o
(
A(n)

)
and A0(n) = A(n). Hence,

a
(
n
k

)
a(n)

1

log 2
J2(k, n) = − log

(
nU1,n

)
− log 2

2
+

1

log 2
A(n)

∫ 1

1
2

( (log s)2

2
± εs−ε

) ds
s

+ o
(
A(n)

)
= − log

(
nU1,n

)
− log 2

2
+ o(1).

Furthermore, assuming that k = k(n) is such that a(n)/a(n/k)→ 1, then the following convergence

in distribution holds
a
(
n
k

)
a(n)

1

log 2
J2(k, n)

d−→
n→∞

Λ− log 2

2
,
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where Λ denotes a Gumbel random variable with distribution function exp{−e−x}, x ∈ R (cf. Eq.

(28) and subsequent text). We note at this point that, if a(n)/a(n/k) converges to a constant

different than 1, then a change in the scale is performed. The following also holds provided (41)

and that
√
knA(n/kn) = O(1):

1

log 2
J2(k, n)

d−→
n→∞

Λ− log 2

2
,

Finally we turn to the bias term J3(k, n). By assumption,

J3(k, n)

A(nk )
=

1

A(nk )

(∫ 1

1
2k

U
(
n
ks

)
− U

(
n

2ks

)
q
(
n
k

) ds

s
− log 2

)
−→
n→∞

λ,

as n → ∞. Therefore, since A(nk ) ∼ −a(nk )/q(nk ) (cf. Remark 17), the deterministic term J3(k, n)

renders the following contribution to the asymptotic bias:

q
(
n
k

)
a
(
n
k

) 1

log 2
J3(k, n) −→

n→∞
− λ

log 2
.

o

C Auxiliary Results

Lemma 15

1. Suppose U ∈ Π(a). Then,

(i) there exists a positive function a satisfying a(t) ∼ a0(t), as t → ∞, such that for any ε > 0

there exists t0 = t0(ε) such that, for t, st ≥ t0, s ∈ (0, 1],∣∣∣∣U(st)− U(t)

a(t)
− log s

∣∣∣∣ ≤ ε max(sε, s−ε);

(ii) a ∈ RV0 and for any ε > 0 there exists t0 = t0(ε) such that, for t, st ≥ t0, s ∈ (0, 1],∣∣∣∣a(st)

a(t)
− 1

∣∣∣∣ ≤ ε max(sε, s−ε).
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2. Suppose a > 0 is a slowly varying function, integrable over finite intervals of R+ such that

∫ ∞
t

a(s)
ds

s
<∞.

for every t > 0. Then a(t)→ 0 , as t→∞, and

lim
t→∞

∫ ∞
t

a(s)

a(t)

ds

s
=∞.

Proof: Part 1.(i) of the Lemma comes from de Haan and Ferreira (2006, cf. Proposition B.2.17),

which is closely followed by (ii), a result from Drees (1998) (cf. Proposition B.1.10 of de Haan and

Ferreira, 2006). The second part follows from Karamata’s theorem for regularly varying functions

(cf. Theorem B.1.5 of de Haan and Ferreira, 2006). o

The following lemma regards a second order condition on the auxiliary function a:

Lemma 16 Under condition C (i.e. relation (7) provided in Section 2, the following limit holds with

q(t) :=
∫∞
t
a(s) ds/s (defined in (8)):

lim
t→∞

a(tx)
a(t) − 1

a(t)
q(t)

= − log x, x > 0.

Proof: The underlying assumption that U ∈ Π(a) entails

q(t)

a(t)

(a(tx)

a(t)
− 1
)

=
q(t)

U(tx)− U(t)

U(tx)− U(t)

a(t)

(a(tx)

a(t)
− 1
)

=
q(t)

U(tx)− U(t)
log x

(a(tx)

a(t)
− 1
)(

1 + o(1)
)
. (t→∞) (39)

Furthermore, according to the main relation (7),

q(t)

U(tx)− U(t)
=

∫∞
t
a(s) dss∫ tx

t
a(s) dss

(
1 + o(1)

) = 1 +

∫∞
tx
a(s) dss∫ tx

t
a(s) dss

(
1 + o(1)

)
.

By taking the limit of the latter term when t → ∞, we get from Cauchy’s rule together with the

fundamental theorem of integral calculus that

lim
t→∞

∫∞
tx
a(s) dss∫ tx

t
a(s) dss

= lim
t→∞

−a(tx)

a(tx)− a(t)
= − lim

t→∞

(a(tx)

a(t)
− 1
)−1

.
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Giving heed to (39), the limiting statement follows in a straightforward manner:

q(t)

a(t)

(
a(tx)

a(t)
− 1

)
= log x

(
1 +

∫∞
tx
a(s) dss∫ tx

t
a(s) dss

)(a(tx)

a(t)
− 1
)(

1 + o(1)
)

= − log x+ log x
(a(tx)

a(t)
− 1
)(

1 + o(1)
)
. (t→∞)

o

In addition to the second order condition (15), Theorem 2.3.6 of de Haan and Ferreira (2006)

ascertains the existence of functions a0 and A0 satisfying, as t→∞, A0(t) ∼ A(t) and a0(t)/a(t)−

1 = o
(
A(t)

)
, with the property that for any ε > 0, there exists t0 = t0(ε) such that for all t, tx ≥ t0,

∣∣∣∣ U(tx)−U(t)
a0(t)

− log x

A0(t)
− 1

2
(log x)2

∣∣∣∣ ≤ εmax(xε, x−ε) (40)

and ∣∣∣∣ a0(tx)a0(t)
− 1

A0(t)
− log x

∣∣∣∣ ≤ εmax(xε, x−ε). (41)

Remark 17 We note that relation (41) combined with Lemma 16 ascertains that −a0(t)/q(t) =

cA0(t), with c 6= 0 because ρ = γ = 0 (cf. Eq. (B.3.4) and Remark B.3.5 in de Haan and Fer-

reira, 2006). Hence the assumption in this paper that the function q can be redefined in order that

−a/q ∼ A is satisfied.
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