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Nonlinear Differential Equations
and Applications NoDEA

On the numerical approximation
of ∞-harmonic mappings

Nikos Katzourakis and Tristan Pryer

Abstract. A map u : Ω ⊆ R
n −→ R

N , is said to be ∞-harmonic if it
satisfies

Δ∞u :=
(
Du ⊗ Du + |Du|2�Du�⊥⊗ I

)
: D2u = 0. (1)

The system (1) is the model of vector-valued Calculus of Variations in L∞

and arises as the “Euler-Lagrange” equation in relation to the supremal
functional

E∞(u, Ω) := ‖Du‖L∞(Ω). (2)

In this work we provide numerical approximations of solutions to the
Dirichlet problem when n = 2 and in the vector valued case of N = 2, 3
for certain carefully selected boundary data on the unit square. Our exper-
iments demonstrate interesting and unexpected phenomena occurring in
the vector valued case and provide insights on the structure of general
solutions and the natural separation to phases they present.

Mathematics Subject Classification. Primary 35J47, 35J62, 53C24;
Secondary 49J99.

Keywords. ∞-Laplacian, Vector-valued Calculus of Variations in L∞,
Interfaces, Phase separation.

1. Introduction

Let n,N ∈ N and Ω an open set in R
n. Given a smooth map u : Ω ⊆

R
n −→ R

N with components (u1, . . . , uN )ᵀ, the Jacobian matrix map Du :
Ω −→ R

Nn is denoted by Du = (Diuα)α=1...N
i=1...n and the Hessian tensor D2u :

Ω −→ R
Nn2

s is denoted by D2u = (D2
ijuα)α=1...N

i,j=1...n. We use R
Nn and R

Nn2

s

to denote respectively the matrix space and the symmetric tensor space in
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which Du and D2u are valued. In this paper we are interested in the numerical
approximation of solutions to the ∞-Laplacian which is defined on smooth
maps as the following PDE system

Δ∞u :=
(
Du ⊗ Du + |Du|2�Du�⊥⊗ I

)
: D2u = 0 on Ω. (1.1)

In the above, “⊗” denotes the algebraic tensor product, “|Du|” denotes
the Frobenius norm of the Jacobian in the matrix space R

Nn, that is

|Du|2 :=
N∑

α=1

n∑
i=1

Diuα Diuα ,

“I” is the identity matrix and, given a linear map A : Rn −→ R
N , “�A�⊥”

denotes the orthogonal projector onto the orthogonal complement of the range
R(A) of the map:

�A�⊥ := Proj(R(A))⊥ . (1.2)

Note that R(A) and (R(A))⊥ are vector subspaces of R
N . The notation “:”

symbolises a contraction with respect to 3 indices as above which extends the
Frobenius inner product in R

Nn. In index form with respect to the canonical
bases, (1.1) reads

N∑
β=1

n∑
i,j=1

(
Diuα Djuβ + |Du|2�Du�⊥

αβ δij

)
D2

ijuβ = 0, α = 1, . . . , N.

The system (1.1) (whose solution we call ∞-harmonic mappings) arises as the
analogue of the Euler-Lagrange equations associated to the supremal func-
tional

E∞(u,Ω) := ‖Du‖L∞(Ω) . (1.3)

The functional (1.3) and the PDE system (1.1) are the archetypal model
objects of vector-valued Calculus of Variations in the space L∞. Throughout
this exposition we will use the terminology scalar to denote the case N = 1
and vectorial to denote the case N > 1. In the scalar case, the system (1.1)
simplifies to the following single equation

Du ⊗ Du : D2u =
n∑

i,j=1

Diu Dju D2
iju = 0 (1.4)

since the second term involving the orthogonal projection (1.2) vanishes iden-
tically. The field of Calculus of Variations in the space L∞ was initiated by
Aronsson in the 1960s [1–6] where (1.4) was derived and its relation to vari-
ational problems arising from (1.3) was explored. Since then, the field has
recieved considerable interest within the PDE community [8,12,19, c.f.]. Up
to the early 2010s, all considerations were restricted to the scalar case. The
general vectorial case of (1.1) as well as the study of the associated PDE
systems arising from more general first order functionals
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E∞(u,Ω) :=
∥∥H(·, u,Du)

∥∥
L∞(Ω)

(1.5)

has been initiated in a series of recent papers [20–28]. Besides the intrinsic
mathematical interest of the field, L∞ functionals can be applied in a variety
of scenarios. A specific example arises in the study of polycrystals, see [10]
where the authors use supremal functionals to describe the plasticity of these
polycrystals.

A fundamental difficulty arising already in the scalar case is that (1.4) is
degenerate elliptic and not in divergence form. This means classical approaches
to define and study weak solutions via integration-by-parts fail. In general the
Dirichlet problem cannot be solved in the class of smooth functions. Indeed,
Aronsson himself demonstrated the existence of singular solutions in [6,7]
which are minimisers of the functional. The theory of viscosity solutions of
Crandall–Ishii–Lions [12,14,19] proved to be the appropriate framework in
which to seek “weak” solutions for scalar L∞ variational problems.

In the vectorial case, as in the scalar case, solutions of (1.1) may also
be singular [20,22] but in addition to this further difficulties arise in the vec-
torial case that are not present in the scalar case. One such issue is that the
projection �Du�⊥ may be discontinuous even for C∞ maps u, whence the non-
linear operator Δ∞ of (1.2) may have discontinuous coefficients even when
applied to C∞ maps. This happens because the range of the Jacobian matrix
Du(x) ∈ R

Nn may not be constant throughout the domain Ω. The appro-
priate duality-free notion of generalised solution for (1.1) has very recently
been proposed in [26] and is based on the probabilistic representation of the
Hessian. The latter may not exist classically and we define it “weakly” in a
duality-free manner by considering the limits of difference quotients as Young
measures. In this setting, existence of a solution to the Dirichlet problem (1.1)
and for the more general class of equations arising from (1.5) for n = 1 has
been proven [27]. Another difficulty is that solutions to (1.1) are not in general
unique [24]. This is typical when studying systems of equations, also arising in
the area of conservation laws for example, and appropriate selection criterion
must be employed to pick a “good” solution. For (1.1) we advocate the use of
p-approximation, the approximation of ∞-harmonic mapping with p-harmonic
ones for increasing p, as a selection criterion and illustrate, at least numerically,
that this is reasonable.

In the scalar case some numerical schemes have been proposed for the
direct approximation of viscosity solutions of (1.4). In [16,34,35] Oberman uses
techniques from Barles and Souganidis [11] for the approximation of fully non-
linear PDEs to construct wide stencil difference schemes for the ∞-Laplacian.
See also [33] where the authors construct a local mesh refinement (h-adaptive)
finite element scheme based on a residual error indicator and the method
derived in [32]. Herein we report on numerical experiments that provide fur-
ther understanding of ∞-harmonic mappings. To the best of our knowledge,
the experiments we perform have not been attempted in the vectorial case
elsewhere. We consider a set of five different boundary conditions on the unit
square Ω = (−1, 1)2 with targets as either R

2 or R
3 (Sects. 4.3–4.6). The
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method we follow is based on the approximation of the L∞ system (1.1) by
the respective Lp Euler-Lagrange system, that is the p-Laplacian

Δpu := div
(|Du|p−2Du

)
= 0, (1.6)

for large p ∈ N . Our numerical scheme of choice is the finite element method.
We utilise the approach described in [36] for the scalar version of (1.1) where
it was shown that by forming an appropriate limit we are able to select can-
didates for numerical approximation along a “good” sequence of solutions,
the p-harmonic mappings. This approach has been analytically justified in the
scalar case of (1.4) in [36]. Herein we justify its application to the full vectorial
case of (1.1).

The numerical method we employ is a finite element approximation, based
on an earlier work of Barrett and Liu on numerical methods for elliptic systems
[9]. Therein the authors prove that, for a fixed exponent p, the method con-
verges to the respective p-harmonic mapping under certain regularity assump-
tions on the solution. We would like to stress that significant care must be
taken with numerical computations using this approach because the resulting
nonlinear system is ill-conditioned. This owes to the nonlinearity of the prob-
lem which grows exponentially with p. Work to overcome this issue includes,
for example, the work of Huang et al. [17] where preconditioners based on gra-
dient descent algorithms are designed and shown to work well for p up to 1000.
We circumvent the need for such preconditioners by choosing our boundary
data carefully such that |Du| ≈ 1 over the domain allowing us to control the
nonlinearity |Du|p for large p.

The purpose of this work is to demonstrate some key properties of ∞-
harmonic mappings by using an analytically justifiable numerical scheme which
currently is the only technique available to give insight into the limiting vector-
valued problem. We note that our goal is not to construct an efficient approxi-
mation method for the ∞-Laplace system; indeed this indirect approximation
of the ∞-Laplacian system by variational problems is not computationally
efficient.

Our results exhibit some interesting phenomena arising as p → ∞. More
specifically, as p increases the image of the solutions tends to “flatten” and they
behave like minimal surfaces. If the boundary condition includes two compo-
nents which have ranks equal to 1, 2 (Sects. 4.3, 4.4), then the solutions tend
to achieve the maximum possible rank throughout the domain. Moreover, as p
increases the angle between the 2 partial derivative vectors appears to approach
a constant value throughout without any interfaces inside the domain. If we
prescribe boundary data which have rank equal to 1 (Sect. 4.5), then as p
increases the solutions tend to “break” and attain rank 1 for p = ∞ without
interfaces, while for all finite p there is a region whereon the rank of the gra-
dient is 2 and nontrivial interfaces appear. However, in general interfaces may
be formed and they may not be either smooth or with locally Euclidean topol-
ogy: in Sects. 4.6 and 4.7 we use as boundary data the explicit ∞-harmonic
maps constructed in [21] whose interfaces are either rectangular or with triple
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junctions. Our results show that the p-harmonic maps approach the explicit
solutions as p increases, forming interfaces with these shapes.

We conclude this introduction by noting that in the paper [37] the authors
derived a different more singular multi-valued version of “∞-Laplacian” which
describes optimal Lipschitz extensions. In our setting this amounts to changing
in (1.3) from the Euclidean norm “| · |” we are using on R

Nn to the nonsmooth
operator norm ‖A‖ = max|a|=1 |Aa|.

2. Basics on Vectorial Calculus of Variations in L∞ and its
Fundamental Equations

2.1. Lp approximations as p → ∞ of the L∞ equations

The nomenclature ∞-Laplacian of (1.1) owes to its very derivation as the limit
of the p-Laplacian (1.6) as p → ∞. In addition, the respective functionals
also approximate the L∞ functional, if rescaled appropriately, in that for any
W 1,∞(Ω) function we have

Ep(u,Ω) :=
(∫

Ω

|Du|p
)1/p

−→ ‖Du‖L∞(Ω) = E∞(u,Ω), as p → ∞.

(2.1)

In the vectorial case the derivation of the full system (1.1) from (1.6) was first
performed in [20]. We recall here the formal derivation which is the scaffolding
we employ for the numerical approximations to our solutions. Suppose u :
Ω −→ R

N is a smooth map. We rewrite the p-Laplacian (1.6) in index form
as

n∑
i=1

Di

(|Du|p−2Diuα

)
= 0, α = 1, . . . , N. (2.2)

By distributing derivatives, we have
N∑

β=1

n∑
i,j=1

(p − 2)|Du|p−4Diuα Djuβ D2
ijuβ + |Du|p−2

n∑
i=1

D2
iiuα = 0, α = 1, . . . , N

and we may normalise and contract the derivatives in the first summand to
find

n∑
i=1

(
Diuα Di

(1
2
|Du|2

)
+

|Du|2
p − 2

D2
iiuα

)
= 0, α = 1, . . . , N.

In vector notation this means

Du D
(1

2
|Du|2

)
+

|Du|2
p − 2

Δu = 0. (2.3)

If we let p → ∞ in (2.3), we lose information and we formally obtain only
the system Du ⊗ Du : D2u = 0 which is one of the components of (1.1). In
the scalar case this idea is correct and we obtain the full equation (1.4). In
the general vectorial case, we have the information that the two summands
of (2.3) are opposite and in particular |Du|2Δu is tangential to the image
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u(Ω) ⊆ R
N . In order to retain this information, for any fixed x ∈ Ω we split

R
N as the direct orthogonal sum of the range of Du(x) : Rn −→ R

N and of
its complement

R
N = R(Du(x)) ⊕ R(Du(x))⊥

and by recalling (1.2), we also set

�Du(x)�‖ := ProjR(Du(x)) = I − �Du(x)�⊥. (2.4)

By utilising (2.4) and (1.2), we split the system (2.3) as follows
{

Du D
(1

2
|Du|2

)
+

|Du|2
p − 2

�Du�‖Δu

}
+

1
p − 2

{
|Du|2�Du�⊥Δu

}
= 0.

(2.5)

Note now that for each x ∈ Ω the term in the first bracket is valued in
R(Du(x)), while the second term is orthogonal to the first and is valued in
R(Du(x))⊥. Hence, the two summands are linearly independent. We choose to
renormalise (2.5) by multiplying the second summand by p − 2. Then, after
this normalisation we see

Du D
(1

2
|Du|2

)
+ |Du|2�Du�⊥Δu = − |Du|2

p − 2
�Du�‖Δu. (2.6)

By letting p → ∞ in (2.6) we obtain the full system (1.1). A byproduct of
this derivation is that (1.1) actually can be decoupled to a pair of systems
(tangential and normal) which are independent of one another:

Du ⊗ Du : D2u = 0, |Du|2�Du�⊥Δu = 0. (2.7)

Although the above arguments, (2.3)–(2.7) do not make sense rigorously
for classical C2 solutions, they are very instructive of the approach we follow.
In the scalar case the above method of studying the L∞ equations by utilising
the asymptotic limits of the Lp equations as p → ∞ has proved to be successful.
This idea, which dates back to Aronsson, has been effectively put into action by
applying the theory of viscosity solutions to the ∞-Laplacian (see e.g. [12,19]
and references therein) which, in view of the equivalence of weak and viscosity
solutions [18,31] for the p finite case, is very stable under limits. Further, in
view of the uniqueness in the scalar case, all subsequential limits as p → ∞
give rise to a viscosity solution of the limit equation.

In the vectorial case the situation is much more complicated since there
is no effective counterpart of viscosity solutions stable under limits which
would allow for existence proofs with elementary estimates. Motivated partly
by the equations arising in L∞, a duality-free theory of generalised solutions
which applies to general fully nonlinear systems of any order [26]. In partic-
ular, it allows to make sense of (1.1) in the appropriate regularity class of
W 1,∞(Ω,RN ) mappings. Among other results, in [26] is the existence of a
solution to the Dirichlet problem for (1.1) and in [28] variational characteri-
sations of ∞-harmonic maps in terms of the functional (1.3) are proven. The
idea behind this new notion of so-called D-solutions is briefly explained in
Sects. 2.3.
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Due to these additional complications arising in the vectorial case it is
impossible to obtain uniqueness for the Dirichlet problem to (1.1) even in
the class of C∞ solutions and for n = N = 2 [24]. Evidence provided herein
suggests that the method of Lp approximations as p → ∞ provides a necessary
selection principle to pick a “good” solution to (1.1) which is conjectured to be
unique.

We now state an existence result for asymptotic limits of p-harmonic
maps as p → ∞ needed later. The proof can be found in [36] and is a minor
vectorial extension of standard results on limits of p-harmonic functions as
p → ∞. Since the proof utilises only arguments involving norms, the proof in
the vectorial case is essentially the same as in the scalar case [19,36]. Let us
also remind here the standard notion of weak solutions to the p-Laplacian: a
map u ∈ W 1,p

g (Ω,RN ) is weakly p-harmonic when
∫

Ω

|Du|p−2 Du : Dv =
∫

Ω

f · v, ∀ v ∈ W 1,p
0 (Ω,RN ). (2.8)

Theorem 2.2. (Existence of limits of p-harmonic maps as p → ∞) Let
{up}∞

p=1 denote a sequence of weak solutions to the p-Laplace system (1.6)
with up ∈ W 1,p

g (Ω,RN ). Then, there exists a subsequence such that as p → ∞
that sequence converges uniformly to a mapping u∞ ∈ W 1,∞(Ω,RN ). Namely,

upj
−→ u∞ in C0(Ω,RN ), as p → ∞. (2.9)

We emphasise that the map u∞ is a candidate ∞-harmonic mapping,
that is a generalised solution to (1.1). This is true in the scalar case N = 1 in
the sense of viscosity solutions of Crandall–Ishii–Lions [14,36]. In the vectorial
case when n = 1, it is true in the sense of D-solutions of [27]. We conjecture
this to also be true in the case of (1.1) when both n,N > 1, but this is not
a consequence of the current results of [26] since the method of the existence
proof was based on an ad-hoc method (an analytic counterpart of Gromov’s
“Convex Integration” for a differential inclusion) rather than on p-harmonic
approximations. A complete proof of this conjecture, at least to date, eludes
us, but recently we have made significant progress in this regard.

2.3. Generalised solutions of the L∞ equations

For the sake of completeness we briefly motivate here the definition of gener-
alised solutions to (1.1). Since we do not utilise it in an essential manner in
this paper, we refrain from giving all the details which can be found in [26]
and [27–30]. The idea applies to general fully nonlinear systems of any order
and allows for merely measurable solutions. It is based on the following obser-
vation: a map u : Ω −→ R

N in C2(Ω,RN ) is a solution to (1.1) if and only if
for any compactly supported function Φ ∈ C0

c (RNn2

s ), we have
∫

RNn2
s

Φ(X )
(
Du ⊗ Du + |Du|2[Du]⊥⊗ I

)
: X d[δD2u](X ) = 0, on Ω.

(2.10)
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The equation (2.10) is a mere restatement of the system (1.1) where we just
change the viewpoint and instead of considering the Hessian as a classical map
D2u : Ω −→ R

Nn2

s , we instead view it as a probability valued map given by
the Dirac mass at the Hessian:

x �−→ δD2u(x) : Ω −→ P(RNn2

s ).

Note that by attaching one point and compactifying R
Nn2

s for any map there
always exist limits of the difference quotients in the appropriate space of
probability-valued maps. These may not be the concentration measures δD2u

but instead more general probability valued maps D2u : Ω −→ P(RNn2

s ∪{∞})
called diffuse Hessians. More precisely, if D1,h denotes the first difference quo-
tient operator on R

n, our generalised Hessians are the subsequential limits of
the form

δD1,hDu
∗−−⇀ D2u, as h → 0 in the Young measures Ω −→ R

Nn2

s ∪ {∞}.
The respective generalisation of (2.10) is called a D-solution to the ∞-

Laplacian (1.1) and is the primary notion of generalised solution in this context
for the vectorial case.

2.4. Some explicit smooth ∞-harmonic mapping in 2 × 2 dimensions

The following explicit solutions of the system (1.1) have been constructed in
[21] and we briefly recall them here because they are utilised later in Sect. 3.
Let u : R2 −→ R

2 be a map in C1(R2,R2). We set⎧
⎪⎪⎨
⎪⎪⎩

Ω2 :=
{

x ∈ R
2 : rank

(
Du(x)

)
= 2

}
,

Ω1 := int
{

x ∈ R
2 : rank

(
Du(x)

) ≤ 1
}

,

S := R
2 \ (Ω1 ∪ Ω2).

(2.11)

Here “int” denotes the topological interior. We call Ω2 the 2-dimensional phase,
Ω1 the 1-dimensional phase and S the interface of the map u and notice that
R

2 = Ω2∪Ω1∪S. On Ω2 u is a local diffeomorphism and on Ω1 it is “essentially
scalar”. In [21] we proved that the explicit formula

u(x, y) :=
∫ x

y

eiκ(t) dt (2.12)

defines a smooth explicit ∞-harmonic map (−1, 1)2 ⊆ R
2 −→ R

2 when κ ∈
C1(R) and ‖κ‖C0(R) < π/2. Here, recall that we are using eit to symbolise
(cos (t) , sin (t))ᵀ. Moreover:
(I) If κ is qualitatively as in Fig. 1a, namely κ ≡ 0 on (−∞, 0] and κ′ > 0

on (0,∞), then u is affine on Ω1 and Ω1, Ω2, S are as in Fig. 1c, i.e.

Ω1 = {x, y < 0}, S = pΩ1 ∪ {x = y ≥ 0}, Ω2 = R
2 \ (Ω1 ∪ S).

(II) If κ is qualitatively as in Fig. 1b, namely if κ ≡ 0 on [−1,+1] and κ′ > 0
on (−∞,−1) ∪ (1,∞), then u is affine on Ω1 and Ω1, Ω2, S are as in
Fig. 1d, i.e.

Ω1 = {−1 < x, y < 1}, S = pΩ1 ∪ {x = y, |y| ≥ 1}, Ω2 = R
2 \ (Ω1 ∪ S).



NoDEA On the numerical approximation of ∞-harmonic mappings Page 9 of 23 61

Figure 1. Illustrations of explicit solutions to the ∞-Laplace
system with n = N = 2

These examples show that in the vectorial case very complicated phenom-
ena can arise even for smooth solutions. We will further examine these phe-
nomena in Sect. 4 numerically by studying p-harmonic mappings for increasing
values of p using boundary data provided by (2.12) with choices of κ as in (I)
and (II).

3. Numerical Approximations of ∞-harmonic mappings for
n = N = 2 and n = 2 < N = 3

In this Section we describe the technique we use to approximate ∞-harmonic
mappings. The method we use is a conforming finite element discretisation of
the p-Laplacian analysed in [9] for fixed p. We will describe the discretisation
and justify its application to the problem at hand by studying the behaviour
as the meshsize parameter tends to zero and as p gets large. To that end we
will also extend the results given in [36] to the vectorial case.

We let T be an admissible triangulation of Ω, namely, T is a finite
collection of sets such that
(1) K ∈ T implies K is an open triangle,
(2) for any K,J ∈ T we have that K ∩ J is either ∅, a vertex, an edge, or

the whole of K and J and
(3)

⋃
K∈T K = Ω.

The shape regularity constant of T is defined as the number

μ(T ) := inf
K∈T

ρK

hK
, (3.1)
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where ρK is the radius of the largest ball contained inside K and hK is the
diameter of K. An indexed family of triangulations {T n}n is called shape
regular if

μ := inf
n

μ(T n) > 0. (3.2)

Further, we define the piecewise constant meshsize function of T to be

h(x) := max
K�x

hK . (3.3)

A mesh is called quasiuniform when there exists a positive constant C such
that maxx∈Ω h(x) ≤ C minx∈Ω h(x). In what follows we shall assume that all
triangulations are shape regular and quasiuniform. Further, whenever we write
h without argument, we consistently refer to h = maxK∈T hK .

We let Pk(T ) denote the space of piecewise polynomials of degree k over
the triangulation T , i.e.,

P
k(T ) =

{
φ such that φ|K ∈ P

k(K)
}

(3.4)

and introduce the finite element space

V := P
k(T ) ∩ C0(Ω) (3.5)

as the space of continuous piecewise polynomial functions of at most degree k.

Definition 3.1. (L2(Ω) projection operator) The L2(Ω) projection operator, Ph :
L2(Ω) −→ V is defined for w ∈ L2(Ω) such that∫

Ω

Phw vh =
∫

Ω

w vh, ∀ vh ∈ V. (3.6)

It is well known that this operator satisfies the following approximation prop-
erties for w ∈ W 1,p(Ω) [13]

lim
h→0

‖w − Phw‖Lp(Ω) = 0 (3.7)

lim
h→0

‖Dw − D(Phw)‖Lp(Ω) = 0. (3.8)

We consider the Galerkin discretisation of (2.2), to find uh,p ∈ V
N with

uh,p|∂Ω = Phg such that
∫

Ω

|Duh,p|p−2 Duh,p : Dvh = 0, ∀ vh ∈ V
N . (3.9)

This is a conforming finite element discretisation of the vectorial p-Laplacian
system proposed in [9].

Proposition 3.2. (existence and uniqueness of solution to (3.9)) There exists a
unique solution of both the weak formulation (2.8) and the Galerkin approxi-
mation (3.9).

Proof. Existence and uniqueness of this problem follows from examination of
the p-functional

Ep(u,Ω) =
(∫

Ω

|Du|p
)1/p

. (3.10)
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Notice that (3.10) is strictly convex and coercive on W 1,p
0 (Ω,RN ) so we may

apply standard arguments from the Calculus of Variations showing that the
minimisation problem is well posed. Hence, there exists u ∈ W 1,p

g (Ω,RN ) such
that

Ep(u,Ω) = min
v∈W 1,p

0 (Ω,RN )
Ep(v,Ω). (3.11)

Noticing that the weak problem (2.8) is the weak Euler-Lagrange equation for
(3.11) we have equivalence of (2.8) and (3.11) as such the weak formulation
is also well posed. To see this for the Galerkin approximation notice that
V

N ⊂ W 1,p(Ω,RN ). As such the minimisation problem over V
N is equivalent

to (3.9) and the same argument applies as in the continuous case. �

Theorem 3.3. (convergence of the discrete scheme to weak solutions) For fixed
p let (uh,p)h be the finite element approximation generated by solving (3.9) and
up, the weak solution of (2.8), then we have that

uh,p −→ up in C0(Ω,RN ), as h → 0. (3.12)

Proof. We begin by noting the discrete weak formulation (3.9) is equivalent to
the minimisation problem: Find uh,p ∈ V

N with uh,p|∂Ω = Phg such that

Ep(uh,p,Ω) = min
vh∈VN

Ep(vh,Ω). (3.13)

Using this, we immediately have

‖Duh,p‖p
Lp(Ω) ≤ Ep(uh,p,Ω) ≤ Ep(Phg,Ω) ≤ ‖D(Phg)‖p

Lp(Ω) . (3.14)

In view of the stability of the L2 projection in W 1,p(Ω) [15] we have

‖Duh,p‖Lp(Ω) ≤ C, (3.15)

uniformly in h. Hence by weak compactness there exists a (weak) limit to the
finite element sequence, which we will call u∗. Due to the weak semicontinuity
of Ep(·,Ω) we have

Ep(u∗,Ω) ≤ Ep(uh,p,Ω). (3.16)

In addition, in view of the approximation properties of Ph given in Definition
3.1 we have for any v ∈ C∞(Ω,RN ) that

Ep(v,Ω) = lim inf
h→0

Ep(Pkv,Ω). (3.17)

Using the fact that uh,p is a discrete minimiser of (3.13) we have

Ep(u∗,Ω) ≤ Ep(uh,p,Ω) ≤ Ep(Phv,Ω), (3.18)

whence sending h −→ 0 we see

Ep(u∗,Ω) ≤ Ep(v,Ω). (3.19)

Now, as v was generic we may use density arguments and that up was the
unique minimser to conclude u∗ = up, concluding the proof. �
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Theorem 3.4. (convergence) Let uh,p be the Galerkin solution of (3.9) and u∞
the candidate ∞-harmonic mapping. Then, along a subsequence we have

uh,pj
−→ u∞ in C0, as p → ∞ and h → 0. (3.20)

Proof. The proof consists of combining Theorems 2.2 and 3.3 and noticing
that

∥∥uh,pj
− u∞

∥∥
C0(Ω)

≤ ∥∥uh,pj
− upj

∥∥
C0(Ω)

+
∥∥upj

− u∞
∥∥

C0(Ω)
, (3.21)

as required. �

Remark 3.5. (convergence up to a subsequence) The result of Theorem 3.4
shows convergence of the p-approximation, and indeed the Galerkin approxi-
mation, up to a subsequence. As already mentioned, in the vectorial problem
there is no unique solution to this problem, hence different subsequences could
tend to different limits. We conjecture that the p-approximation procedure is a
good selection criteria for this problem. In the next section we will numerically
demonstrate this, although analytically we are, at the time of the writing of
this article, unable to show this.

4. Numerical experiments

In this Section we summarise extensive numerical experiments which focus
on quantifying the structure of solutions to the ∞-Laplacian PDE system
(1.1). This is achieved using Galerkin approximations to the p-Laplacian for
sufficiently high values of p. We focus on studying the behaviour solutions have
as p increases which allow us to make various conjectures on the behaviour of
their asymptotic limit as p → ∞.

Remark 4.1. (practical computation of (3.9) for large p) The computation of
p-harmonic mappings is an extremely challenging problem in its own right.
The class of nonlinearity in the problem results in the algebraic system, which
ultimately yields the finite element solution, being ill-conditioned. One method
to tackle this class of problems is by using preconditioners based on descent
algorithms [17]. For extremely large p, say p ≥ 10000, this may be required;
however for our purposes we restrict our attention to p ∼ 1000. This yields
sufficient accuracy for the results we want to illustrate.

We emphasise that even the case p ∼ 1000 is computationally tough
to handle. The numerical approximation we are using is based on a damped
Newton solver. Such methods require a good initial guess in order to achieve
converge. A reasonable initial guess for the p-Laplacian is given by numerically
approximating with the q-Laplacian for q < p sufficiently close to p. This leads
to an iterative process in the generation of the initial guess, i.e., we solve the
2-Laplacian as an initial guess to the 3-Laplacian which serves as an initial
guess to the 4-Laplacian, and so on. In each of our experiments the number of
Newton iterations required to achieve a relative tolerance of 10−8 was achieved
in less that 20 iterations.
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Remark 4.2. (rates of convergence of the scheme) Using the methodology of
p-approximation which we advocate here it has been numerically demonstrated
in the scalar case the rates of convergence both in p and in h that we expect
to achieve [36, Section 4]. It was noticed that these rates were dependant on
the regularity of the underlying ∞-harmonic function and that

‖u∞ − uh,p∗‖L∞ ≈ O(h) (4.1)

for solutions u∞ ∈ C∞ and

‖u∞ − uh,p∗‖L∞ = O(h1/3) (4.2)

if u∞ ∈ C1,1/3. Where we use p∗ as the smallest p such that infp ‖u∞ − uh,p‖L∞
is achieved.

In both cases as h is decreased, an increasing value of p is required to
achieve optimal approximation (in h). This suggests a coupling p = Chα is
necessary to achieve convergence, where the α is determined by the regularity
expected in u∞. We found experimentally that coupling p = h−1/2 worked
well for the singular case (u∞ ∈ C1,1/3) and p = h−1 for the smooth case
(u∞ ∈ C∞).

In the vectorial case, which is the focus of this work, we observed the
same convergence phenomena with the smooth solutions we test in Sects. 4.6
and 4.7.

We mention that we do not have access to exact solutions in general.
For the experiments in Sects. 4.3–4.5 we only provide boundary data and in
principle the solutions to this problem are non-smooth and must be interpreted
in the D-sense described in Sect. 2.

To tie into the explicit examples given in Fig. 1 we are particularly inter-
ested in the rank of the solution. Except for the intrinsic interest, this relates
directly to a deeper understanding of the solutions to ∞-Laplace system since
the coefficients of (1.1) are discontinuous on the interfaces of the solution. We
compute this by calculating det(Duh,p) and representing the areas Ω2, Ω1 and
S of (2.11) by plotting contours of the function det(Duh,p).

4.3. Solutions (−1,+1)2 −→ R
2 with mixed rank-two and rank-one

boundary data

In this test we construct approximations of solutions of (1.1) with mixed rank-
two and rank-one boundary data. We take

g(x, y) :=

⎧
⎪⎨
⎪⎩

1
2
(
x, y

)ᵀ
, if x ≥ 0 or y ≤ 0,

1
4
(
x + y − 1, x + y + 1

)ᵀ
, otherwise.

(4.3)

This gives us rank-one data in the quadrant x < 0 and y < 0 and rank-two
data elsewhere. The results are illustrated in Fig. 2.
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Figure 2. An illustration of the rank of the solution to the
vectorial p-Laplacian with the mixed rank-one and rank-two
boundary conditions given in Sect. 4.3 for various increasing
values of p. Here we plot det(Duh,p) and associated contour
lines. These are plotted at increments of 0.05. Notice as p
increases, the region where the solution is not of full rank,
Ω1, decreases in size
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Figure 3. The image of the solution to the vectorial (N =
3) p-Laplacian with mixed rank-one and rank-two boundary
conditions given in Sect. 4.4 for two values of p.

4.4. Solutions (−1,+1)2 −→ R
3 with mixed rank-two and rank-one

boundary data

In this experiment we examine an extension to the example given in Sect. 4.3
to the case N = 3. We study the image of the problem with boundary data
given as
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Figure 4. The image of the solution to the vectorial p-
Laplacian with the rank-one boundary conditions given in
(4.5) for various increasing values of p. Notice as p increases,
the image flattens. It is behaving like a minimal surface

g(x, y) :=

⎧
⎪⎨
⎪⎩

1
2
(
x, y, x

)ᵀ
, if x ≥ 0 or y ≤ 0,

1
4
(
x + y − 1, x + y + 1, x + y − 1

)ᵀ
, otherwise.

(4.4)

4.5. Solutions (−1,+1)2 −→ R
2 with rank-one boundary data

In this test we construct mappings with rank-one boundary data. We take

g(x, y) :=

{
exx, if x < 0,

eyx, if x ≥ 0,
(4.5)
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Figure 5. An illustration of the rank of the solution to the
vectorial p-Laplacian with the rank-one boundary conditions
given in (4.5) for various increasing values of p. Here we plot
det(Duh,p) and associated contour lines. These are plotted
at increments of 0.05. Notice as p increases, the solution has
lower rank over a larger portion of the domain, that is the size
of Ω1 increases
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Figure 6. An illustration of the rank of the solution to the
vectorial p-Laplacian with the rank-one boundary conditions
given in (4.5) for various increasing values of p. Here we plot
det(Duh,p) and associated contour lines. These are plotted at
increments of 0.05. Notice as p increases, the structure illus-
trated in Fig. 1c becomes more pronounced
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Figure 7. An illustration of the rank of the solution to the
vectorial p-Laplacian with the boundary conditions given in
2.12 for the rectangular interface illustrated in Fig. 1c for
various increasing values of p. Here we plot det(Duh,p) and
associated contour lines. These are plotted at increments of
0.05. Notice as p increases, the structure illustrated in Fig. 1d
becomes more pronounced
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where ex = (1, 0)‖ and ey = (0, 1)‖ denote the unit vectors in the x and y

directions. Notice that g ∈ C0(∂Ω,R2). We examine the image and rank of the
numerical approximation for various values of p in Figs. 4 and 5.

4.6. Solutions (−1,+1)2 −→ R
2 with boundary data an explicit ∞-

harmonic map with triple junction interface

In this test we construct boundary data which give rise to the example of
an explicit smooth ∞-harmonic mapping with a triple junction interface as
illustrated in Fig. 1c. We take

κ(t) :=

⎧
⎨
⎩

1 − 1
1 + t2

, if t > 0,

0, otherwise.
(4.6)

We also take

g(x, y) :=
3
4

(∫ x

y

cos (κ(t)) dt,

∫ x

y

sin (κ(t)) dt

)ᵀ
. (4.7)

The numerical experiment is given in Fig. 6.

4.7. Solutions (−1,+1)2 −→ R
2 with boundary data an explicit

∞-harmonic map with rectangular interface

In this test we construct boundary data which give rise to the example of an
explicit smooth ∞-harmonic mapping with a box interface as illustrated in
Fig. 1d. We take

κ(t) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 1
1 +(t − 1)2 + 1

, if t > 1,

1
1 +(t + 1)2 + 1

− 1, if t < −1,

0, otherwise.

(4.8)

and

g(x, y) :=
3
4

(∫ x

y

cos (κ(t)) dt,

∫ x

y

sin (κ(t)) dt

)ᵀ
. (4.9)

The numerical experiment is given in Fig. 7.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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