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Data assimilation means to find an (approximate) trajectory of a dynamical model that

(approximately) matches a given set of observations. A direct evaluation of the trajectory against

the available observations is likely to yield a too optimistic view of performance, since the

observations were already used to find the solution. A possible remedy is presented which simply

consists of estimating that optimism, thereby giving a more realistic picture of the “out of sample”

performance. Our approach is inspired by methods from statistical learning employed for model

selection and assessment purposes in statistics. Applying similar ideas to data assimilation

algorithms yields an operationally viable means of assessment. The approach can be used to

improve the performance of models or the data assimilation itself. This is illustrated by optimising

the feedback gain for data assimilation employing linear feedback. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4965029]

Data assimilation means to find an (approximate) trajec-

tory of a dynamical model that (approximately) matches a

given set of observations. A fundamental problem of data

assimilation experiments in atmospheric contexts is that

there is no possibility of replication, that is, truly “out of

sample” observations from the same underlying flow pat-

tern but with independent observational errors that are

typically not available. A direct evaluation against the

available observations is likely to yield unrealistic results

though, since the observations were already used to find

the solution. A possible remedy is presented which simply

consists of estimating that optimism, thereby giving a

more realistic picture of the “out of sample” performance.

The approach is particularly simple when applied to data

assimilation algorithms employing linear error feedback.

A realistic performance assessment is obtained by com-

paring with the true trajectory. In addition, this method

provides a simple and efficient means to determine the

optimal feedback gain operationally since it only requires

the known quantities to be calculated. The optimality of

this gain is verified numerically. Further, we illustrate the

theoretical results which demonstrate that in linear sys-

tems with Gaussian perturbations, the feedback thus

determined will approach the optimal (Kalman) gain in

the limit of large observational windows (the proof will be

given elsewhere).

I. INTRODUCTION

Data Assimilation involves the incorporation of observa-

tional data into a numerical model to produce a model state

that accurately describes the observed reality. This procedure

uses an explicit dynamical model for the time evolution of

the observed reality. The results produced by data assimila-

tion must satisfy two requirements. First they must be close

to the observations up to a certain degree of accuracy, and

second they should be consistent with the dynamical model

to a certain degree of accuracy. In other words, the trajectory

produced by data assimilation must be close to the observa-

tions, and it must be close to being an orbit of the model.

Once the observations have been used to estimate these

trajectories, they should not be used to evaluate the perfor-

mance of the model (at least not without precaution) as this

might give unrealistic results. Simply comparing the observa-

tions with the output of the data assimilation scheme will pro-

vide an overly optimistic picture of performance. Moreover,

assessing the performance using this tracking error could eas-

ily be cheated. An example is taking the output to be the

observations themselves.

As we will see in Section II, a more realistic evaluation

of the performance needs to take into account that the output

and the observation errors are correlated. To this end, we

investigate the concept of out-of-sample error from statistics

and adapt it to the problem of data assimilation. In statistics,

estimates of the out-of-sample error are used to measure how

well a statistical model, after fitting it to observations, gener-

alises to unseen data.1,2 Although the concept of the out-of-

sample error is a very general one, actual implementations

differ considerably depending on the structure of the estima-

tion problem. Further, a fundamental assumption often made

in statistics is that the observations (conditionally on the

explanatory variables) are independent and identically dis-

tributed. In the case of linear regression models, a popular

statistic for model selection in statistical learning is the

Cp statistic.3,4 Other examples are Akaike’s Information

Criterion (AIC) or the Bayesian Information Criterion (BIC).

These concepts differ in terms of precise interpretation and

range of applicability.

The aim of this paper is to provide similar tools in the

context of data assimilation. The underlying problem is

essentially the same as in statistics. Suppose a time series of

observations has been assimilated into a dynamical model.
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Then the output should be close to hypothetical observations

from the same flow patterns but with independent errors. If

the results are not close to these hypothetical observations,

then this can only mean that the model is in fact not able to

explain the dynamics underlying the observations. The out-

of-sample error should be a measure of how close the output

will be to such hypothetical observations. Although observa-

tions from the same flow pattern but with independent errors

are typically not available in practice, we show that the

out-of-sample error can be estimated using terms that are

operationally available. Specifically we show that the out-

of-sample error is the sum of the tracking error and a term

which we call the optimism. This optimism gives us a repre-

sentation of how the model and observations depend on each

other, and it quantitates how much the tracking error misesti-

mates the out-of-sample error. The derived expression is

reminiscent of the Cp statistic used in model selection in sta-

tistical learning.3,4 We show that the optimism takes a very

simple form if we assume that the model employs a linear

error feedback. There are many data assimilation algorithms

that implement such a feedback.5 More details and referen-

ces concerning such algorithms can be found in Section II.

Wahba et al.6 apply the ideas of out-of-sample perfor-

mance to data assimilation for linear systems. In this publica-

tion, they use generalised cross validation to get an estimate

of the true performance. The key equation in this paper is

Equation (2.11) which is similar to Equation (7.46) in Hastie

et al.3 with the new aspect being the stochastic approxima-

tion to the denominator. The results presented in Wahba

et al.6 however, apply only in a linear context. As it will be

shown, the analysis presented in our paper does not require

linear models but merely a linear error feedback.

We stress that although in terms of the problem we are

addressing, there is a strong similarity between statistics and

data assimilation, our analysis will be different. For instance,

although the data assimilation uses a linear error feedback,

the dependence of the output on the observations as a whole

is nonlinear, due to the nonlinearity of the dynamic model.

Further, the observations are not independent. The derivation

of the Cp statistic, AIC, BIC, and many other related con-

cepts used in statistics however assumes either linearity,

independence, or both (see Hastie et al.,3 Sec. 7.4).

We demonstrate the usefulness of our approach with

three numerical examples. In all three cases, we consider a

simple data assimilation scheme by means of filtering with a

linear error feedback. A persistent problem in practice is to

find a suitable feedback. The feedback acts as a coupling

between the true dynamics and the model. If the coupling is

too weak, the stability of the system cannot be guaranteed

while if the coupling is too strong, results deteriorate because

the noise will be overly attenuated. Striking the right balance

requires a reliable assessment of the performance which is

provided by our estimate of the out-of-sample performance.

Note that this is relevant even in the case of linear systems

with Gaussian perturbations as computing the theoretically

optimal Kalman Gain requires knowledge of the dynamical

noise which is usually not available in practice. Our experi-

ments demonstrate that the technique can be used in situations

where the feedback gain matrix is completely unspecified and

also in situations where it has a pre-determined structure but

contains unknown parameters.

In Section II, we define the tracking error, out-of-sample

error, and the optimism. These considerations are valid for

any data assimilation algorithm in the case of additive obser-

vational noise. We also consider general data assimilation

algorithms which employ linear error feedback and determine

an analytical expression for the optimism. Section III contains

several numerical experiments. In Section III A, we apply the

methodology to a linear system with Gaussian perturbations.

We minimise an estimate of the out-of-sample error to deter-

mine a feedback gain. We then compare this with the asymp-

totic Kalman Gain which is known to be optimal in this

situation. Our experiments suggest that the gain determined

numerically agrees with the optimal Kalman Gain in the limit

of large observation windows. We discuss a theoretical result

which confirms this finding. Next we consider a situation in

which the data assimilation algorithm is constrained to have

poles in certain locations which determines the gain up to a

single parameter. This parameter is determined by minimising

an estimate of the out-of-sample error.

The remaining experiments consider the non linear sys-

tems. In Section III B, we consider a system in Lur’e form.

These systems are special in that, despite being non linear,

they permit observers with linear error dynamics. Again a

linear feedback is used, and we show how an estimate of the

out-of-sample error can be used to determine the feedback.

The performance of this feedback is assessed numerically by

considering the error between the reconstructed and the true

orbit. Our results indicate that this strategy of choosing the

feedback gives close to optimal performance. Repeating the

experiment with the Lorenz’96 system in Section III C con-

firms the results.

II. TRACKING ERROR, OUTPUT ERROR, AND
OPTIMISM IN DATA ASSIMILATION

Data assimilation is the procedure by which trajectories

fzn 2 RD; n ¼ 1;…;Ng (in some state space which we take

to be RD) are computed with the help of a dynamical model

and observations, fgn; n ¼ 1;…;Ng. These trajectories

should reproduce the observations up to some degree of

accuracy for all n ¼ 1;…;N. We express this latter part of

the procedure formally as: The output yn ¼ hðznÞ is close to

the observations fgn; n ¼ 1;…;Ng up to some degree of

accuracy, where h : RD ! Rd is a function which maps the

model’s state space into the observation space. This function

is usually part of the problem specification. The exact struc-

ture of the model and of h is not important at this stage.

Suppose we have observations fgn 2 Rd; n ¼ 1;…;Ng
from some real world dynamical phenomenon. We assume

gn can be written as

gn ¼ fn þ rrn; (1)

where ffn; n ¼ 1;…;Ng are unknown quantities representing

the desired signal, and r 2 Rd�d is the observational error

standard deviation. We assume that ffn; n ¼ 1;…;Ng can be

modelled as some stochastic process. The observation errors

or noise, frn; n ¼ 1;…;Ng are assumed to be independent
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with mean Ern ¼ 0 and variance ErnrT
n ¼ 1, and they are

independent of ffn; n ¼ 1;…;Ng.
Deviation of the output from the observations can be

quantified by means of the tracking error,

ET ¼ E½yn � gn�2: (2)

The tracking error though is not a very useful performance mea-

sure of data assimilation approaches. It is not difficult to design

algorithms which achieve zero tracking error by simply using

the observations as output, that is any data assimilation (DA)

algorithm which satisfies yn ¼ gn; n ¼ 1;…;N achieves opti-

mal performance with respect to ET as a performance measure.

A performance measure which is much harder to hedge

is the output error

EO ¼ E½yn � fn�2: (3)

A useful relation between EO and ET can be established.

Substituting the expression (1) for the observations into (2)

and expanding, we get

ET ¼ E½yn � gn�2 ¼ E½yn � fn�2 þ trðrTrÞ � 2trðrE½rnyT
n �Þ
(4)

since fn and rn are independent. The notation “tr” denotes

the trace of the matrix.

We re-write this as

EO þ trðrTrÞ ¼ E½yn � gn�2 þ 2trðrE½rnyT
n �Þ: (5)

The term 2rE½rnyT
n � is called the optimism. The optimism

should be understood as a correlation between rn and yn, where

yn depends on frk; k ¼ 1;…;Ng. It is a measure of how much

the tracking error misestimates the output error. We will argue

that both the optimism and the tracking error (i.e., the first

term on the right hand side of (5) can be estimated using oper-

ationally available quantities. This will give us a handle on the

output error which is, as we have argued, directly related to

the true performance of the data assimilation.

The quantity EO þ r2 can be interpreted as an “Out-of-

sample error” as follows: Define hypothetical observations

g0n ¼ fn þ r0n; n ¼ 1;…;N; (6)

where ffn; n ¼ 1;…;Ng is as before, fr0n; n ¼ 1;…;Ng is a

process with the same distribution as frn; n ¼ 1;…;Ng but

independent from it. Then the out-of-sample error is the error

between fyn; n ¼ 1…;Ng and fg0n; n ¼ 1;…;Ng, which can

be written as

E½yn � g0n�
2 ¼ EO þ r2: (7)

The key difference between the tracking error and the out-

of-sample error is the absence of correlation between

fyn; n ¼ 1…;Ng and fr0n; n ¼ 1;…;Ng in the latter, which is

precisely the optimism.

Equation (5) shows that the tracking error augmented

with further terms, can be a useful measure of performance.

Further the tracking error and optimism are relatively easy to

estimate. In our experiments, we will estimate the tracking

error through an empirical average, namely,

ÊT ¼
1

N

XN

k¼1

yk � gkð Þ2: (8)

Estimates of the optimism will be discussed next.

We will first calculate a general expression for the opti-

mism of data assimilation schemes which employ a linear

error feedback. Most operational data assimilation schemes

work in cycles over time. The background field, ẑn, is com-

puted at the start of each cycle and usually it is based on the

information from previous cycles. Since any cycle uses

observations available up to that point, the background field

at time n only depends on g1;…; gn�1. Nonetheless, the

background field ẑn is supposed to be a first guess of the the

state of the system at time n.

In this paper, we consider the data assimilation algo-

rithms which combine the new observation and background

through a relationship of the form

zn ¼ ẑn þKnðgn � hðẑnÞÞ; (9)

where Kn is a D� d matrix and can depend on g1;…; gn�1

but not on gn. As before, the mapping h : RD ! Rd, map

points from model state space to observation space. The

modified background, zn, is referred to as the analysis.

The matrix Kn is the error feedback gain. Equation (9)

tells us that the analysis has a linear dependence on the current

observation, gn, and it depends on the previous observations

through Kn and ẑn. Data assimilation schemes that fall into

the presented approach include Successive Correction Method

(SCM);7,8 Optimal Interpolation (OI);9 3D-Var;10,11 Kalman

Filter variants,12 and certain Synchronisation approaches.

Synchronisation between dynamical systems has been studied

for some time, see for example, Pikovsky et al.,13 Huijberts

et al.,14 and Boccaletti et al.15 Synchronisation in the setting

of data assimilation has also been studied, see Br€ocker and

Szendro,16 Szendro et al.,17 and Yang et al.18 These methods

differ only in the approach they take to calculate the back-

ground ẑn and the matrix Kn.5

We now consider the optimism as in (5) in the context

of DA scheme with a linear feedback as in (9). We assume

that the function hðxnÞ is linear so that hðxnÞ ¼ Hxn, where

H is a d�D matrix. Then,

E½rnyT
n � ¼ E½rnðHznÞT � ¼ E½rnzT

n �HT ; (10)

¼ E½rnfð1�KnHÞẑn þKnðfn þ rrnÞgT �HT ; (11)

¼ E½rnðð1�KnHÞẑnÞT �HT

þE½rnðKnfnÞT �HT þE½rnðHKnrrnÞT �; (12)

¼ E½rnrT
n rTKT

n �HT ; (13)

¼ trðE½rnrT
n �rT �K

T
n HTÞ; (14)

where �Kn ¼ E½Kn�. The first two equalities, (10) and (11),

are obtained by substituting the relevant information while

(12) is obtained by simply expanding the previous equation.
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The derivation from (12) to (13) requires some explanation.

Notice first that only the third term of (12) survives. The first

term is equal to zero because ẑn and Kn are uncorrelated

with rn. The second term is also equal to zero because fn is

independent of rn and because the coupling matrix Kn

depends on the observations ðg1…gn�1Þ and thus is uncorre-

lated with rn.

Therefore, we are only left with the third term of (12) in

(13). Since EðrnrT
n Þ ¼ 1, (14) implies that

2trðrE½rnyT
n �Þ ¼ 2trðr � rT �K

T
n HTÞ: (15)

In the case when d¼ 1, which is the case we consider in the

numerical experiments later, this reduces to

2rE½ynrn� ¼ 2H �Knr
2: (16)

We recall that the assumptions necessary to derive this for-

mula are a linear observation operator, rn is independent of

fg1;…; gn�1g; Ern ¼ 0; ErnrT
n ¼ 1 and Kn depends only on

the observations ðg1;…; gn�1Þ.
In our numerical experiments, we approximate the

expected value of a random variable by the empirical mean.

In particular ET is replaced by its empirical average in (5),

resulting in the following estimate for EO for all subsequent

numerical experiments (in which Kn is in fact constant):

ÊO ¼ ÊT þ
1

N

XN

n¼1

2r2tr �K
T
n HT

� �
� r2: (17)

Let us briefly digress on how the background ẑn and Kn

might be calculated in the context of synchronisation,

although this is in fact irrelevant for the optimism. Suppose

that the reality is given by the non linear dynamical system

xnþ1 ¼ ~f ðxnÞ;
fn ¼ ~hðxnÞ;
gn ¼ fn þ rrn; (18)

where xn 2 RD is referred to as the state and fn 2 Rd are the

true observations. For this non linear dynamical system, we

construct a sequential scheme

ẑnþ1 ¼ f ðznÞ;
znþ1 ¼ ẑnþ1 �Knðhðẑnþ1Þ � gnþ1Þ;

yn ¼ hðznÞ; (19)

where Kn is a D� d coupling matrix which depends on the

observations g1;…gn but not on gnþ1; and yn is the model

output where we hope that yn ffi fn. Here f and h are approxi-

mations to the functions ~f and ~h, respectively. The coupling

introduced in this scheme creates a linear feedback, in the

sense that the error between yn ¼ hðẑnÞ and the observations

gn is fed back into the model.

Synchronisation refers to a situation in which, due to

coupling, the error yn � gn becomes small asymptotically

irrespective of the initial conditions of the model.13 Often a

control theoretic approach is taken to determine conditions

which guarantee the model output, yn ¼ hðznÞ, converging to

the observations, gn or even zn converging to xn (strictly

speaking, the difference converging to zero; note that this

can only be expected in case of noise free observations).

It has been highlighted above that the tracking error is

not an ideal measure of performance; however, the output

error is and moreover can be calculated using terms that are

readily available. An important question that arises in opera-

tional practice is to how to choose the gain matrix K. The

numerical experiments detailed below consider different

conditions under which to select the appropriate coupling

matrix to use in the assimilation. For the first linear experi-

ment, we consider arbitrary candidates for the gain matrix,

while for the second linear experiment, we consider gains

that guarantee a certain structure of the system matrix (or

more specifically the poles thereof).

III. NUMERICAL EXPERIMENTS

We now demonstrate the usefulness of our approach with

three numerical examples. In Section III A, we present the

methodology for a linear system with Gaussian perturbations.

We minimise an estimate of the out-of-sample error to deter-

mine a feedback gain and compare this with the asymptotic

Kalman Gain which is known to be optimal in this situation.

The remaining two experiments concern nonlinear sys-

tems. In Section III B, we present numerical results for the

H�enon Map and in Section III C, results are established for

the Lorenz’96 System. Again a linear feedback is used and

we show how an estimate of the out-of-sample error can be

used to determine the feedback.

There is some repetition in the obtained results, however

this repetition validates our approach across different experi-

ments. The three systems we consider all use a data assimila-

tion scheme that employs a linear error feedback. However,

the underlying systems in each are different; one is linear,

one is in Lur’e form, and one is nonlinear. The similarities in

the results confirm that our methodology applies to many dif-

ferent dynamical systems.

A. Numerical experiment 1: Linear map

In this first linear example, the following experimental

setup was used: The reality is given by

xnþ1 ¼
�1 10

0 0:5

" #
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

A

xn þ qqnþ1 (20)

with corresponding observations

gn ¼ Hxn þ rrn; (21)

where H ¼ ½1 0�; fn ¼ Hxn and q 2 RD�D is the model

error standard deviation. We assume that the model and

observations are corrupted by random noise. For these experi-

ments we have xn 2 R2 and gn 2 R. The model errors, qn,

are assumed to be serially independent errors with mean

Eqn ¼ 0 and variance EqnqT
n ¼ 1.

We set up an observer analogous to our sequential

scheme (19),
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znþ1 ¼ ẑnþ1 þKnðgnþ1 �Hẑnþ1Þ; yn ¼ Hzn; (22)

where

ẑnþ1 ¼
�1 10

0 0:5

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

A

zn: (23)

In this case the model is coupled to the observations

through a linear coupling term which is dependent on the dif-

ference between the actual output and the expected output

value based on the next estimate of the state. For these

experiments we will take the coupling matrix Kn to be con-

stant so from here on we write Kn ¼ K.

The error dynamics in this linear example are given by

enþ1 ¼ xnþ1 � znþ1;

¼ ðA�KHAÞen þKrnþ1 � ð1�KHÞqnþ1: (24)

Since the noisy part of the error dynamics (Eq. (24)) is

stationary, synchronisation can be guaranteed if the eigenval-

ues of the matrix ðA�KHAÞ all lie within the unit circle.

Synchronisation here means that the error dynamics is

asymptotically stationary with finite covariance. To achieve

this, we use a result from control theory, for which we need

a few definitions. Let HA ¼ C so that the error dynamics are

described by the system matrix ðA�KCÞ. A pair of matri-

ces ðA;CÞ is called observable if the observability matrix

O ¼ ½C CA CA2 … CAD�1�T (25)

has a full rank. If this condition holds then the poles of the

matrix ðA�KCÞ can be placed anywhere in the complex

plane by a proper selection of K. In particular they can be

placed within the unit circle.19

In our example, xn 2 R2 so our observability matrix is

O ¼ HA HA2½ �T : (26)

It is straightforward to check that the linear system we are

working with here is observable even though A is not stable.

It is well known in Kalman Filter theory (see for exam-

ple, Anderson and Moore20) that the optimal gain matrix jn

for a linear filter (in the sense of giving least error covari-

ance) is the Kalman Gain which is defined by

jn ¼ RnHTðHRnHT þ r2Þ�1; (27)

where Rn is the error covariance matrix defined by Rn

¼ E½ðẑn � xnÞðẑn � xnÞT � and expressed by the following

recursive equation:

Rn ¼ AðRn � RnHTðHRnHT þ r2Þ�1
HRnÞAT þ q2 � 1:

(28)

Kalman Filter theory states that for n large, the error covari-

ance Rn converges to R1 which is the solution to

R1 ¼ A½R1 � R1HTðHR1HT þ r2Þ�1
HR1�AT þ q2 � 1:

(29)

This in turn implies that the Kalman Gain (27) converges to

the asymptotic gain which is defined by

j1 ¼ R1HTðHR1HT þ RÞ�1: (30)

The asymptotic gain, j1, is obtained by solving the

Discrete Algebraic Riccati Equation (DARE) given by (29)

and using the solution to calculate (30). Using Maple’s

inbuilt DARE solver we were able to find the solution to this

equation for the experimental setup described above. The

Algebraic Riccati Equation is solved using the method

described in Arnold III and Laub.21

The aim of this experiment is to estimate the optimal

gain matrix, j1 without referring to the DARE, in particular,

without knowledge of q. We do this by minimising the

empirical out-of-sample error with respect to K. In other

words, our estimate of j1 is the minimiser of ÊO for a large

(but finite) set of observations (Section III A 1 below). This

strategy is motivated by our previous discussion about the

out-of-sample error being an adequate measure of perfor-

mance. In fact, in the context of linear systems, we can prove

(see the Appendix for details) that the out-of-sample error is

equivalent (in a certain sense) to the asymptotic covariance

of en as a measure of performance. We also stress that esti-

mating the optimism only requires knowledge of A;H; r but

not q, the model noise. This is the term that is difficult to

determine operationally, so estimating the optimism in an

operational situation is possible as all the required terms are

readily available. In Section III A 2, we discuss a variant of

this experiment where the gain matrix is supposed to be opti-

mal under the constraint that the characteristic polynomial

has a certain shape.

1. Estimating the optimal gain matrix

The results obtained in this first experiment are shown in

Figure 1. The model noise is iid with Eqn ¼ 0; EqnqT
n ¼ 1

and q ¼ 0:01 while for the observational noise, which was

also iid with mean zero and variance one, we used r ¼ 0:1.

We let n vary between zero and 3:5� 105. For each n, the

empirical out-of-sample error was minimised, and the mini-

miser was recorded as an estimate of j1. The experiment

was repeated for 100 realisations of the observational noise,

rn so that the estimates were different every time. As a mea-

sure of accuracy, 90% confidence intervals were constructed.

We expect that the estimates converge to the asymptotic gain

j1 given by the solution of ((29) and (30)).

The results obtained are shown in Figure 1. Figure 1(a)

shows a plot in blue squares of the quantity kK� j1k=
kj1k against n. The figure shows that the gain matrix that

minimises the out-of-sample error converges exponentially

to the asymptotic gain. Moreover, it is illustrated in Figure

1(c) that the eigenvalues of the matrix (A�KHA) for each

gain minimising the out-of-sample error, converge to the

eigenvalues of the matrix (A� j1HA). Figure 1(c) shows

the quantity kk� k1k=kk1k against n in blue diamonds,

where k represents the eigenvalues of the matrix (A�KHA).

The convergence of the eigenvalues is also exponential. The
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values of these eigenvalues confirm that the minimising gains

stabilise the system since all of then are within the unit circle.

The remaining two figures in Figure 1 show a log plot of

the same information outlined above. Figure 1(b) represents

the convergence of the gain matrices while Figure 1(d)

shows the same information for the eigenvalues. Both plots

are almost straight lines as expected since the convergence

has already been noted to be exponential. The addition to

these plots are the 90% confidence intervals. As previously

stated, the experiment was repeated for 100 realisations of

the observational noise and the plotted confidence intervals

represent the uncertainty in the numerical experiment. The

lower limit of the error bars was taken at the fifth percentile

while the upper limit was taken at the 95th percentile thus

creating the 90% confidence intervals.

2. Gain matrix with symmetric poles

In this part of the linear numerical experiment, we want

ðA�KHAÞ to have a certain characteristic polynomial.

Suppose that the desired characteristic equation is given by

qðkÞ ¼ ðkþ aÞðk� aÞ; (31)

so that k1 ¼ �k2 and jk1j ¼ jk2j ¼ a. The appropriate K

for a desired characteristic polynomial, qðkÞ of the matrix

ðA�KHAÞ follows from Ackermann’s Formula19 which is

given by

K ¼ qðAÞO�1½0…1�T ; (32)

where O is the observability matrix defined in (26).

The results obtained from our numerical experiment to

test the validity of (16) are shown in Figure 2. Figure 2(a)

shows a plot of the tracking error in blue squares and the

out-of-sample error in black diamonds. The out-of-sample

error calculated via (16) is equivalent to calculating the out-

of-sample error explicitly using the output error. We can see

that the tracking error tends to be zero with decreasing a.

This is what we expected and is confirmed by using our ana-

lytical expression for the optimism.

It is clear from Figure 2(a) that while the tracking error

tends to be zero, the out-of-sample error initially decreases

and then increases resulting in a well-defined minimum. This

is because as the coupling strength increases, the observa-

tions are tracked too closely, and thus the output adapts too

closely to the observations resulting in an increase of the

out-of-sample error. On the other hand, when a is large and

the coupling strength is weak, the observations are tracked

poorly resulting in large tracking and out-of-sample errors.

In these experiments, a was varied between 0 and 1 with the

assimilation window taken to be N¼ 10 000.

The well defined minimum of the out-of-sample error is

also shown in Figure 2(b). Figure 2(b) shows the out-of-sam-

ple error in black diamonds for the range of a where the min-

imum occurs. The figure shows the out-of-sample error for

FIG. 1. (a) shows the convergence of

the gain minimising the out-of-sample

error to the asymptotic gain for increas-

ing n. We plot the quantity kK�
j1k=kj1k against n in blue squares.

(b) shows a log plot of the same infor-

mation with 90% confidence intervals.

(c) shows the quantity kk� k1k=
kk1k against n in blue diamonds, where

k ¼ ðk1; k2Þ represents the eigenvalues

of the matrix (A�KHA). It is evident

that the eigenvalues of the matrix

(A�KHA) for each gain minimising

the out-of-sample error, converge to the

eigenvalues of the matrix (A� j1HA),

with n increasing. (d) shows a log plot

of the same information with 90% confi-

dence intervals.
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100 realisations of the observation noise rn with r ¼ 0:1 so

that the sample estimate is different each time. The error

bars in the plot represent 90% confidence intervals for each

value of a. The lower limit of the error bars is taken at the

fifth percentile, while the upper limit is taken at the 95th per-

centile, hence obtained 90% confidence intervals as a mea-

sure of accuracy. Some further experiments using different

values of r were carried out however, the results are not

included here. The results produced were the same as the

ones presented in this paper; the only difference was the size

of the error bars produced. A smaller value of r resulted in

smaller error bars.

To quantify the variation of the parameter a in this

experiment, we considered the following calculation. The

mean value of the optimal a plus/minus one standard devia-

tion in this case is

�a�6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� � �a�Þ2

q
¼ 0:369860:028: (33)

The second plot in Figure 2(b) illustrates the state error.

This estimate of the state error is defined by

ÊS ¼
1

N

XN

n¼1

zn � xnð Þ2: (34)

This is the error that ultimately wants to be analysed and

minimised in data assimilation experiments. However,

because the model noise (qqn) is difficult to determine, we

cannot explicitly analyse the state error which is why we

consider errors we can calculate, namely, the tracking, out-

put or out-of-sample errors. We can plot the state error ÊS in

this example because we have access to it, however, in gen-

eral this is not possible. The vertical line in Figure 2(b)

draws attention to the minimum of the out-of-sample error. It

is evident that the state error also has a minimum and the

plot suggests that the minima of the out-of-sample and the

state error are the same. Again, we ran the experiment for

100 realisations and plotted the error bars with 90% confi-

dence intervals.

B. Numerical experiment 2: H�enon map

In this experiment, the reality is given by

xnþ1 ¼
a b
1 0

� �
|fflfflfflffl{zfflfflfflffl}

A

xn þ c
ðHxnÞ2

0

" #
þ d; (35)

which for the values a¼ 0, b¼ 0.3, c¼�1.4, d ¼ ½1 0�T is

the chaotic H�enon Map with corresponding observations

gn ¼ Hxn þ rrn; (36)

where H ¼ ½1 0�, and fn ¼ Hxn. The model describing the

reality is completely deterministic and we assume that the

observations are corrupted by random noise. Notice that we

now have a non linear term in the dynamical system. Such

systems are said to be in Lur’e form.

Once again we consider data assimilation by means of

synchronisation so we set up an observer roughly analogous

to our sequential scheme (19) with certain differences,

znþ1 ¼ ẑnþ1 þKnðgnþ1 �Hẑnþ1Þ; yn ¼ Hzn; (37)

where

ẑnþ1 ¼
a b
1 0

� �
|fflfflfflffl{zfflfflfflffl}

A

zn þ c
g2

n

0

� �
þ d; (38)

where a; b; c; d are the same as for the reality. In this case as

in the first example, the model is coupled to the observa-

tions through a linear coupling term which is dependent on

the difference between the actual output and the output

value expected based on the next estimate of the state.

However, there is also a non linear coupling introduced

here by the presence of g2
n in the background term. Note

that (16) is still valid nonetheless because ẑnþ1 is still uncor-

related with rnþ1. For these experiments, we will take the

coupling matrix Kn to be constant so from here on in we

write Kn ¼ K.

We need to choose the matrix K appropriately so that

we can vary the coupling strength. For illustration pur-

poses, consider the error dynamics for the noise-free situa-

tion so that gn ¼ Hxn. The error dynamics in this case are

given by

FIG. 2. (a) shows a plot of the tracking

error in blue squares and the out-of-

sample error in black diamonds. The

errors are plotted against the inverse of

a for r ¼ 0:1 and q ¼ 0:01. (b) shows

a plot of the out-of-sample error in

black diamonds for 100 realisations of

the noise rn with r ¼ 0:1 as well as the

state error in blue circles. They are dis-

played for the range of a where the

minimum occurs. The error bars in

both curves represent 90% confidence

intervals. The black vertical line draws

attention to the minimum of the out-of-

sample error which coincides with the

minimum of the state error.
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enþ1 ¼ xnþ1 � znþ1;

¼ xnþ1 � ẑnþ1 �KHðxnþ1 � ẑnþ1Þ;
¼ ð1�KHÞðxnþ1 � ẑnþ1Þ;
¼ ðA�KHAÞðxn � znÞ;
¼ ðA�KHAÞen:

(39)

The matrix ðA�KHAÞ is stable even if K ¼ 0. This

means that synchronisation occurs even if there is no lin-

ear coupling between the model output and observations

because of the non linear coupling introduced in the model

(38). The eigenvalues for such a case are k1;2 ¼ 6
ffiffiffi
b
p

,

where b is as in the matrix A. However, it might be that

with noise, the out-of-sample error is not optimal for this

coupling and can be improved by some additional linear

coupling.

It is straightforward to check that the system we are

working with here is observable provided that b 6¼ 0. The

appropriate K for a desired characteristic polynomial, qðkÞ
of the matrix ðA�KHAÞ again follows from Ackermann’s

Formula (32). Suppose that the desired characteristic equa-

tion is given by

qðkÞ ¼ ðkþ aÞðk� aÞ; (40)

so that k1 ¼ �k2 and jk1j ¼ jk2j ¼ a. Then by Ackermann’s

formula we get

K ¼ 1� a2=b

aa2=b2

" #
) HK ¼ 1� a2

b
; (41)

where a¼ 0 and b¼ 0.3 as in the matrix A. From (41), we

see that HK ¼ 1 if a¼ 0. Thus,

yn ¼ Hzn ¼ ð1�HKÞHẑn þHKgn ! gn; (42)

meaning that our data assimilation scheme simply replaces

yn with gn, implying that the tracking error is zero. In other

words, in this example, it is possible to render the eigenval-

ues of the error dynamics exactly zero and also to obtain the

zero tracking error. However, the data assimilation is not

perfect and the out-of-sample and state errors will not neces-

sarily be small.

Therefore, from (16) we know that

ÊO ¼ ÊT � 2r2 1� a2

b

� 	
� r2: (43)

Recall that the aim of this work is to find a way to estimate

the out-of-sample error to get a more realistic picture of

model performance. We have already determined that when

there is no linear coupling (i.e., K ¼ 0) the system is stable

and synchronisation occurs. We can see from (43) that this

happens when a ¼ 6
ffiffiffi
b
p

. There are two further cases to con-

sider. When a2 > b the feedback, due to the linear coupling,

is negative. Therefore, in this case we will not be able to

improve the out-of-sample error. However as a tends to be

zero, the optimism will increase and be bounded by 2r2.

Therefore when a2 < b, it may be possible to improve the

out-of-sample error and determine a coupling matrix K 6¼ 0,

that minimises the out-of-sample error, to be used in the

model. We calculate the errors as we did for the linear

numerical example in Section III A.

The results obtained from our numerical experiment to

test the validity of (16) are shown in Figure 3. Figure 3(a)

shows the tracking error in blue squares and the out-of-sample

error in black diamonds. We can see that the tracking error

tends to be zero with decreasing a. This is what we expected

and is confirmed by using our analytical expression for the

optimism. In these experiments a was varied between 0 and 1

with the assimilation window taken to be N¼ 10 000.

By analysing the expression for the optimism in this

case, we see that there is a point where the tracking and out-

of-sample errors meet. This happens when a2 ¼ b. To the

left of this, when a2 > b, the tracking error is greater than

the out-of-sample error. To the right, when a2 < b, the track-

ing error is smaller than the out-of-sample error. In fact the

tracking error tends to be zero while the out-of-sample error

decreases and then starts to increase again resulting in a well

defined minimum.

The well defined minimum of the out-of-sample error is

shown more clearly in Figure 3(b). Figure 3(b) shows the

out-of-sample error in black diamonds for the range of a
where the minimum occurs. The figure shows the out-of-

sample error for 100 realisations of the noise rn for r ¼ 0:01.

FIG. 3. (a) shows a plot of the tracking

error in blue squares and the out-of-

sample error in black diamonds. The

errors are plotted against the inverse of

a for r ¼ 0:01. (b) shows a plot of the

out-of-sample error in black diamonds

for 100 realisations of the noise rn with

r ¼ 0:01. It is displayed for the range

of a where the minimum occurs. The

error bars represent 90% confidence

intervals. The state error is shown in

blue circles also for 100 realisations of

the observation noise with 90% confi-

dence intervals. The vertical line draws

attention to the minimum of both

curves.
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The error bars represent 90% confidence intervals for each a.

Once again we would like to quantify the variation of the

parameter a. The mean value of the optimal a plus/minus

one standard deviation in this case is

�a�6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� � �a�Þ2

q
¼ 0:223860:0079: (44)

Figure 3(b) also shows a plot of the state error in blue

circles for 100 realisations. The black, vertical line draws

attention to the minimum of both curves. We can see that the

minimising gain is the same for both errors. When running

data assimilation schemes, the state error is the error we are

interested in minimising, however we only have access to

the error in observation space. Even though this is the case,

we have shown numerically that the minimising gain is the

same for both errors, even in this non linear situation.

As with the linear numerical experiment presented in

Section III A, further experiments using different values of r
were carried out. The results produced were the same as the

ones presented here; the only difference was the size of the

error bars produced. A smaller value of r resulted in smaller

error bars much like it did for the linear numerical example.

What is particularly of interest here is that even though

the dynamical system included a non linear term, the meth-

odology still applies, provided that the matrix ðA�KHAÞ is

stable. As an aside, the experiment suggests that the eigen-

values of the linear part of the error dynamics have to be

<1� � with some small but non-zero � in order to stabilise

the error dynamics.

C. Numerical experiment 3: Lorenz’96

For this third numerical experiment, the reality is given

by the Lorenz’96 model which is governed by the following

equations:

xi
: ¼ �xi�1ðxi�2 � xiþ1Þ � xi þ F (45)

and exhibits chaotic behaviour for F¼ 8. By integrating the

above differential equation with a time step d ¼ 1:5� 10�2,

we obtain a discrete model for our reality which we denote by

xnþ1 ¼ UðxnÞ: (46)

We take corresponding observations of the form

gn ¼ Hxn þ rrn; (47)

where H is the observation operator, and rn is iid noise. We

shall take the state dimension to be D¼ 12, the observation

space to be d¼ 4, and we define the observation operator so

that we observe every third element of the state; that is

ðx1; x4; x7; x10Þ. The system we construct here is fully non-

linear with linear observations.

The assimilating model will use the Lorenz’96 model

coupled to the observations through a simple linear coupling

term, as done in the previous numerical experiments. We set

the coupling matrix K, to be defined by

K ¼ jHT ; (48)

where j is a coupling parameter taken to be between 0 and 1.

With this information, the assimilating model is defined by

the following equations:

ẑnþ1 ¼ UðznÞ; znþ1 ¼ ẑnþ1 þ jHTðgnþ1 �Hẑnþ1Þ: (49)

Once again we will vary the coupling strength in the

observer by adjusting the coupling parameter j. If the cou-

pling is too strong, the observations will be tracked too rigor-

ously and so the observational noise will not be filtered out.

If the coupling is too weak, the observations are tracked

poorly; so once again we expect the out-of-sample error to

take a minimum at some non-trivial value of j.

As always we are interested in the behaviour of the state

error and, ultimately, this is the error we want to be minimal.

We saw in Section III B that the minimiser for the out-of-

sample error was the same as for the state error. We investi-

gate this here too.

The results obtained are shown in Figure 4. Once again

the observational noise is iid with Ern ¼ 0; ErnrT
n ¼ 1 and

r ¼ 0:01. Since the gain is given by Equation (48), the opti-

mism reduces to 8r2j. To see this note that the observation

operator, H, was defined so that every third element of the

state was observed. It follows then that HHT ¼ 1, the

FIG. 4. (a) presents the out-of-sample

error (black diamonds) and the track-

ing error (blue squares). (b) illustrates

the out-of-sample error (black dia-

monds) and the state error (blue

circles) with the error bars representing

90% confidence intervals. The black

vertical line draws attention to the min-

imum of the out-of-sample error.
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identity matrix. Since we are observing four states, the trace

of HHT is equal to four. Thus, since the optimism is defined

by 2r2trðHKÞ and K is given by Equation (48), it follows

that the optimism reduces to 8r2j.

To calculate the errors, a transient time was ignored to

give the system time to synchronise. In Figure 4(a), the out-

of-sample error (black diamonds) is presented together with

the tracking error (blue squares). The black vertical line

draws the eye to the minimum of the out-of-sample error. As

in the previous experiments, the tracking error reduces to

zero while the out-of-sample error increases eventually with

increasing coupling strength.

Figure 4(b) presents the out-of-sample error (black dia-

monds) and the state error (blue circles). The figure shows

the errors for 100 realisations of the observational noise, rn.

The error bars represent 90% confidence intervals for each

value of j with the lower limit of the error bars taken at the

fifth percentile and the upper limit taken at the 95th. The

mean value of the optimal j plus/minus one standard devia-

tion in this case is

�j�6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� � �j�Þ2

q
¼ 0:305060:1184: (50)

The black line draws attention to the minimum of the out-

of-sample error, and we once again see that the minima of the

state and out-of-sample errors coincide. It is evident here that

these results support the results determined previously in the

numerical experiments. Further experiments using different

values of r were also carried out for this non linear system.

The results produced were the same as the ones presented

here; the only difference was the size of the error bars pro-

duced. Again, as with the results in the previous two experi-

ments, a smaller value of r resulted in smaller error bars.

The flatness of the curves and the uncertainty shown in

the figures are rather deceptive in the plots presented in this

paper. By looking at these figures, one might expect that the

errors in the estimate of j� are in fact quite large. However

this is not the case as it is the correlation between the errors

in the plots that matter.

IV. CONCLUSIONS

A fundamental problem of data assimilation experi-

ments in atmospheric contexts is that there is no possibility

of replication, that is, truly “out of sample” observations

from the same underlying flow pattern but with independent

observational errors are typically not available. A direct

evaluation of assimilated trajectories against the available

observations is likely to yield optimistic results though, since

the observations were already used to find the solution.

A possible remedy was presented which simply consists

of estimating that optimism, thereby giving a more realistic

picture of the “out of sample” performance. The optimism rep-

resents the correlation between the observations and the output

of the data assimilation scheme. This estimate depends on the

observational noise, the observation operator, and the feedback

gain matrix but not on the underlying dynamics or dynamical

noise parameters. The model noise is the term that is difficult

to determine operationally, so estimating the optimism in an

operational situation is possible as all the required terms are

readily available. In this paper, this approach was applied to

data assimilation algorithms employing a linear error feedback.

Several numerical experiments concerning both linear and

non-linear systems give evidence to the success of this method

as it provides a more realistic assessment of performance. This

was demonstrated by comparing the out-of-sample perfor-

mance with the true state error of the algorithm which was

available in these numerical simulations.

The approach outlined above also provides a simple and

efficient means to determine the optimal feedback gain by

optimising the out-of-sample error with respect to the gain

matrix. Further, theoretical results demonstrate that in linear

systems with Gaussian perturbations, the feedback thus deter-

mined will approach the optimal (Kalman) gain in the limit of

large observational windows. The numerical experiments pre-

sented in this paper support this result for linear systems.

We cannot deduce the same thing for the non-linear sys-

tems since first, we do not have a candidate for the asymp-

totic error or gain since the Kalman Filter equations do not

hold in these cases. Second, even if the existence of an opti-

mal asymptotic gain could be proved, the sequence of mini-

misers might not converge to it.

As an outlook for future work, it seems that the presence of

dynamical noise in the underlying system is important when

considering the convergence of the optimal gain matrix for non-

linear systems. (Even in the linear case, the presence of nonde-

generate dynamical noise is essential for the proof to work). If

there is no model noise present, then we cannot expect the gain

matrix to converge in a meaningful way as the optimal asymp-

totic gain may not be well defined. For example it is possible

that the dynamics of both the underlying system and model

enter a region of stability, resulting in a reduction of the error. In

this case it would make sense to reduce or completely eliminate

the feedback gain matrix. This would need the gain matrix to be

adaptive in some way; a concept not considered here.
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APPENDIX: MINIMISING THE OUTPUT ERROR IS
EQUIVALENT TO MINIMISING THE ERROR
COVARIANCE MATRIX

In this appendix, we want to clarify the relationship

between the output error

EO;n ¼ E ðHðxn � znÞÞ2
h i

(A1)

(which we give an index n here as it depends on n) and the

error covariance matrix

Cn ¼ E ðxn � znÞðxn � znÞT
h i

(A2)
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in the context of linear systems (Section III A). Re-writing

the output error, we obtain

EO;n ¼ EfðHðxn � znÞÞTðHðxn � znÞÞg;
¼ EtrfðHðxn � znÞÞTHðxn � znÞg;
¼ EtrfHðxn � znÞðxn � znÞTHTg;
¼ trfHCnHTg; (A3)

and if we assume real values observations (i.e., d¼ 1), we

get EO;n ¼ HCnHT . This does not mean that EO;n carries the

same information as Cn since H is not invertible.

To investigate this further, introduce the mappings F :
RD�RD�D! RD�D; ðK;MÞ ! ðA�KHAÞMðA�KHAÞT
and G :RD!RD�D; K!r2KKTþq2ð1�KHÞð1�KHÞT
and UðK;MÞ¼FðK;MÞþGðKÞ. Note that F is linear in M,

and we will write FðKÞ�M to emphasize this. It follows

from the linear filter theory that

Cnþ1 ¼ ðA�KHAÞCnðA�KHAÞT þ r2KKT

þ q2ð1�KHÞð1�KHÞT ;
¼ FðKÞ � Cn þ GðKÞ ¼ UðK;CnÞ: (A4)

Suppose that K is stabilising, then Cn ! CðKÞ which is a

fixed point of (A4), i.e., CðKÞ ¼ FðKÞ � CðKÞ þ GðKÞ. Note

that CðKÞ describes the asymptotic error performance of the

feedback K.

We will now show that the output error is able to distin-

guish (asymptotically) between better and worse feedbacks.

For any two symmetric matrices M1;M2, we write M1 �M2

if M1 �M2 is positive semi-definite but not zero. Let K1;K2

be two stabilising feedbacks so that CðK1Þ � CðK2Þ; that is

K2 performs better than K1. Further, assume ð1�HK1Þ 6¼ 0

which implies that ðA�K1HA;HÞ is observable. (This con-

dition might seem artificial but we will see later that it is in

fact rather natural). We will now show that HCðK1ÞHT

> HCðK2ÞHT . Note that because CðK1Þ � CðK2Þ we have

Mn ¼ FnðK1ÞfCðK1Þ � CðK2Þg � 0 (A5)

for any n since FðK1Þ preserves the positive and negative

semi-definiteness. Further, the sequence Mn is decreasing.

To see this, note that it must be monotone since

Mnþ1 �Mn ¼ FðK1ÞfMn �Mn�1g (A6)

and again FðK1Þ preserves definiteness. It cannot be increas-

ing though since K1 is stabilising and hence Mn ! 0.

Therefore HMnHT � 0 and decreasing.

Assuming HCðK1ÞHT ¼ HCðK2ÞHT would then imply

0 ¼ HMnHT ¼ HFnðK1ÞfCðK1Þ � CðK2ÞgHT ;

¼ HðA�K1HAÞnðCðK1Þ � CðK2ÞÞðA�K1HAÞnTHT

(A7)

for all n. Now using the spectral decomposition of M0

¼ CðK1Þ � CðK2Þ,

M0 ¼
Xd

i¼1

kiviv
T
i ; (A8)

where ki are the eigenvalues of M0 and vi are the correspond-

ing eigenvectors, we see that

0 ¼ HMHT ¼
Xd

i¼1

kiðHðA�K1HAÞnviÞ2 (A9)

for all n. Since M0 6¼ 0, there is a kj > 0 and hence

HðA�K1HAÞnvj ¼ 0 8n; (A10)

which contradicts the observability of ðH;A�K1HAÞ. This

shows that M0 ¼ 0 finishing the proof.

From the preceding arguments, it follows that any mini-

miser of the output error must be the asymptotic Kalman

gain. To see this, assume K2 is the Kalman gain while K1

optimises the output error HCðKÞHT . By definition of the

kalman gain, CðK1Þ � CðK2Þ, and the preceding discussion

shows that CðK1Þ ¼ CðK2Þ if ð1�HK1Þ 6¼ 0.

To check that this is true, use that the asymptotic output

error satisfies

HCðKÞHT ¼ ð1�HKÞ2fHCðKÞHT þ q2HHTg

þ r2ðHKÞ2: (A11)

Taking the derivative with respect to K at K1 and using the

optimality yields the condition

HK1 ¼
HC K1ð ÞHT þHHTq2

HC K1ð ÞHT þHHTq2 þ r2
; (A12)

so 1 ¼ HK1 > 0. As a final remark, 1�HK ¼ 0 implies

that yn ¼ gn (check example (22) for constant K), that is, the

data assimilation simply reports back the observations.
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