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Abstract Using straightforward linear algebra we derive response operators describing the
impact of small perturbations to finite state Markov processes. The results can be used
for studying empirically constructed—e.g. from observations or through coarse graining
of model simulations—finite state approximation of statistical mechanical systems. Recent
results concerning the convergence of the statistical properties of finite state Markov approx-
imation of the full asymptotic dynamics on the SRB measure in the limit of finer and finer
partitions of the phase space are suggestive of some degree of robustness of the obtained
results in the case of Axiom A system. Our findings give closed formulas for the linear and
nonlinear response theory at all orders of perturbation and providematrix expressions that can
be directly implemented in any coding language, plus providing bounds on the radius of con-
vergence of the perturbative theory. In particular, we relate the convergence of the response
theory to the rate of mixing of the unperturbed system. One can use the formulas derived
for finite state Markov processes to recover previous findings obtained on the response of
continuous time Axiom A dynamical systems to perturbations, by considering the generator
of time evolution for the measure and for the observables. A very basic, low-tech, and com-
putationally cheap analysis of the response of the Lorenz ’63 model to perturbations provides
rather encouraging results regarding the possibility of using the approximate representation
given by finite state Markov processes to compute the system’s response.
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1 Introduction

1.1 A Brief Summary of Response Theory

The development of methods for computing the response of a complex system to small
perturbations affecting its dynamics is the subject of very active investigation in many fields
of science and of technology. Statistical mechanics provides tools for approaching such a
problem through so-called response theories, which allow for evaluating the change in the
properties of a system through suitably defined operators that factor in the statistical properties
of the unperturbed system and the specific nature of the perturbation one wants to study.

One can see a response theory as a virtual experimental setting where one has at hand a
given system, various measurement instruments, and a knob controlling the value of a para-
meter, and knows how to relate the position of the knob with the reading of the instruments.
In other terms, response theories provide the basis for understanding the outcome of exper-
iments, and, not by chance, physical sciences have been at the forefront of the theoretical
investigation in this direction. The monumental contribution by [1] provided the basis and
the explicit formulas needed for studying the impact of very general perturbations to statis-
tical mechanical systems at equilibrium, as described by the canonical ensemble. The Kubo
formulas are extremely useful for studying a large class of problems in e.g. transport, optics,
and acoustics. A cornerstone of Kubo’s theory is the fluctuation–dissipation relation, which
enables connecting—within linear approximation—the free fluctuations of a system to its
response to perturbations. This property is closely related to the celebrated diffusion law for
the brownian motion and has been recently extend to a fully nonlinear case [2]. Despite its
obvious relevance, Kubo’s approach has been criticized for several reasons:

• it is not physically consistent in treating the transition from equilibrium to non-
equilibrium dynamics, because it studies the impact on equilibrium systems of pertur-
bations that drive them near (but out of) equilibrium, but does not clarify how a new
stationary state is reached and maintained; additionally, it is not suited for studying the
response to perturbations of non-equilibrium systems;

• it lacksmathematical rigour, as it is not clear which are the systems forwhich the response
formulas apply, and why it should apply at all.

In [3–5] it was clarified that it is possible to establish a rigorous response theory for Axiom
A [6] continuous or discrete time dynamical systems. One obtains that the invariant SRB
measure is smoothwith respect to the parameter ε that controls the strength of the perturbation
changing the dynamics of the system from ẋ = F(x) to ẋ = F(x) + εX(x), in the case of
continuous time evolution, and from xk+1 = F(xk) to xk+1 = F(xk)+εX(xk), in the discrete
case. We continue our discussion taking into consideration the continuous case.

We can introduce the unperturbed evolution operator St0 = exp(tF·), whichmoves forward
in time any function of phase space O(x) by an interval t according to the unperturbed
dynamics, so that O(x(t)) = St0O(x(0)), and its perturbed counterpart Stε = exp(t (F+εX)·),
which instead describes the evolution in the perturbed system.

We define ρ0(dx) and ρε(dx) the invariant measures of the unperturbed and perturbed
states, respectively. In particular, one obtains that the expectation value of sufficiently smooth
observables O(x) in the perturbed state can be expressed in the form:

[O]ε = [O]0 +
∞∑

n=1

εnδ[O]n, (1)
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314 V. Lucarini

where [Q]ε = ∫
νε(dx)Q(x) and [Q]0 = ∫

ν0(dx)Q(x), while the various terms of the
perturbative expansion can be written as:

δ[O]n =
∫

ν0(dx)
∫ ∞

0
dt1 · · ·

∫ ∞

0
dtn�St10 · · · Stn−1

0 �Stn0 O(x), (2)

where �(•) = X · ∇(•). In particular, the linear term can be written as:

δ[O]1 =
∫

ν0(dx)
∫ ∞

0
dt1�St10 O(x), (3)

All terms δ[O] j can be written as an expectation value on the unperturbed measure of a new
observable expressed as a functional of the background vector field F, of the perturbative
vector fieldX, and of the observable O . The somewhat surprising conclusion we draw is that
the invariant measure of the system, despite being supported on a strange geometrical set, is
differentiable with respect to ε. Among the many merits of the Ruelle response theory, one
can mention that a) it clarifies the mathematical framework needed for developing a response
theory, whose main ingredient, roughly speaking, is the robustness deriving from having a
uniformly hyperbolic dynamics on the attractor supporting an SRB measure; and b) it works
seamlessly, in principle, in equilibrium and non equilibrium statistical mechanical systems,
reducing toKubo’s formulaswhen considering thefirst scenario, if one assumes that statistical
mechanical systems are Axiom A. Non-trivial implications of the nonequilibrium/equilibrium
dichotomy regarding the validity of the fluctuation-dissipation relations are discussed in
[2,5,7], while the a physical interpretation of the first and second order terms occurring in
Ruelle’s response formalism is provided in [8].

Of course, at this stage one needs to bridge the gap between mathematical formalism and
physicalmeaningfulness,Onemanages to bringRuellle’s formalism into the realmof applica-
bility by adopting the chaotic hypothesis [9,10], which basically says that a high-dimensional
chaotic physical system can be treated at all practical purposes as if it were Axiom A if we
focus onmacroscopic observables. The chaotic hypothesis is the generalisation of the ergodic
hypothesis, and provides a firm background for translating the mathematical properties of
Axiom A systems into physically meaningful statements. Clearly, the chaotic hypothesis
applies far from regimes of metastability and far from critical transitions, where entirely
different phenomena appear. The chaotic hypothesis might also be practically problematic
in the case one treats multiscale systems featuring many near-zero Lyapunov exponents; see
discussion in [11].

Taking the point of view of the chaotic hypothesis, one has that, after transients have died
out, nonequilibrium systems reach a nonequilibrium steady state (NESS) where the phase
space is on the average contracting (with the rate of contraction corresponding, broadly
speaking, to the entropy production of the system [12]), so that one can associate to the
hyperbolic strange attractor supporting the invariant measure a Hausdorff dimension that is
lower that the dimensionality of the phase space and, in general, not integer [6,13].

The last piece of the puzzle one needs to lay in order to sort out the above-mentioned
criticisms toKubo’s theory relies on the physical interpretation of howaperturbed equilibrium
system reaches a steady state. A convincing point of view on this relies on emphasizing the
role of thermostats, which are large physical systems interacting with the system of interest
in such a way to extract the excess of heat generated as result of the energy input due to the
perturbation. Thermostats are also responsible formaking it possible the set-up of stationarity
in the case of forced and dissipative non equilibrium systems. An extensive treatment of the
role of thermostats in equilibrium and nonequilibrium systems in the context of the chaotic
hypothesis is given in [14]. We will not elaborate further on this aspect here.
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1.2 Transfer Operator Approach

One can point out that the formulas above describe the impact of and expressed in terms
of expectation values of a generic observable O , whereas one might like to derive directly
results for the impacts of the perturbations on the invariant measure.

In [3–5] one constructs the response of the system to perturbations by following the
changes in the individual trajectories and summing over the possible initial configurations
distributed according to the unperturbed invariant measure. A different point of view on
response theory focuses on studying the properties of the unperturbed and perturbed transfer
operators and of their generators (see [15] for an introduction on these mathematical objects),
through the construction of an appropriate framework of suitable (Banach) functional spaces
where their actions are well defined, able to carefully treat the fundamental differences
between the (smooth) unstable and (singular) stable manifolds of the Axiom A systems
[16–19].

The evolution of the measure driven by the system ẋ = F(x) up to time t ≥ 0 starting
from an initial condition at time t = 0 is described by the Perron–Frobenius transfer Lt (see,
e.g., [15]), so that ρ(x, t) = Ltρ(x, 0). We have that the family of {Lt }t≥0 forms a one-
parameter semigroup, such that Lt+s = LtLs and L0 = 1. The Perron–Frobenius operator
Lt is the adjoint of the evolution operator St = (Lt

)�, so that 〈St O, ρ〉 = 〈O,Ltρ〉, where
〈 f, g〉 is the action (computation of the expectation value) of the linear functional g (the
probability measure) on the test function f (the observable). We have thatLtν0 = ν0 ∀t ≥ 0,
meaning that the invariant measure is an eigenvector corresponding to unitary eigenvalue of
the Perron–Frobenius operator.

Assuming strong continuity and boundedness of the semigroup given by {Lt }t≥0, we can
introduce the unperturbed Liouvillian operator L , which is the generator of the unperturbed
Perron–Frobenius operator Lt = exp(t L), and write the Liouville evolution equation for
ρ(x, t) as follows [20]:

∂tρ = −∇ · (ρF) = Lρ (4)

One immediately obtains that Lν0 = 0. In general, the spectrum of L is complex and in a strip
of finite width including and below the imaginary axis consists only of isolated eigenvalues
of finite multiplicity corresponding to the Ruelle–Pollicott resonances, while below such a
strip one finds the essential spectrum, which is responsible for the continuum of the power
spectra of integrable observables. Furthermore, the presence of a unique SRBmeasure comes
from the presence of a simple vanishing eigenvalue, while mixing properties result from the
absence of any other eigenvalue along the imaginary axis. The relevance of these properties
for constructing a response theory are discussed in great detail in [18,19]. In [21] it is argued,
using mathematical considerations and examples of geophysical relevance, that the presence
of Ruelle–Pollicott resonances having real part close to zero may lead to the presence of
rough parameter dependence, as the smoothness of the response if lost. Additionally, in [22],
it is shown, along similar lines, that the crisis of a very high-dimensional chaotic attractor
near a critical transition—namely, of a climate model in the vicinity of the tipping point
responsible for the transition between warm and snowball climate [23–26]—can be detected
and anticipated by looking at spectrum of the transfer operator.

We then have that the presence of the ε perturbation to the dynamics changes the Liouville
equation as follows:

∂tρ = −∇ · (ρF) − ε∇ · (ρX) = Lερ, (5)
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316 V. Lucarini

so that we can introduce the perturbed Perron–Frobenius operator Lt
ε = exp(t Lε), which

pushes forward in time the measure according to the perturbed dynamics: ρ(x, t) =
Lt

ερ(x, 0). Clearly, 〈StεO, ρ〉 = 〈O,Lt
ερ〉. Additionally, we have that Lt

ενε = ρε ∀t ≥ 0 and
Lενε = 0.While this approach is in some sense mathematically more problematic, because it
is based on studying a partial differential equation instead of a finite dimensional dynamical
system, it seems to provide a more comprehensive set of tools for studying the response of a
system and relating it to its unperturbed fluctuations, see, e.g., [16], where Ruelle’s formulas
are obtained along these lines. See also a comprehensive review given in [18], where the
applicability of the response theory beyond the case of Axiom A systems is discussed in
detail..

One needs to emphasise that the transfer operator approach is more natural in all the
cases when our interest focuses on studying the properties of the response of an ensemble
of trajectories (initialised according to the unperturbed invariant measure) rather than on
individual orbits of a system.

Note that in some applications there is not an obvious separation between the two
approaches. Let’s take the problem of constructing climate projections through the use of
(extremely complex) numerical climate models, which is one of the core activities summa-
rized in the IPCC reports [27]. Indeed,modelling centers are actively pursuing the preparation
of multiple runs starting from an ensemble of initial conditions for a given scenario of forcing
in order to estimate more accurately the uncertainties in the projections. Nonetheless, we will
not experience an ensemble of realizations of the climatic evolution, but just one.

1.3 Computing the Response

The analysis of high-dimensional complex system in terms of direct numerical simulation
and of time series analysis suffers from the (almost) ubiquitous curse of dimensionality,
which makes it hard to represent correctly the details of the dynamics because computational
complexity explodes with the number of degrees of freedom. The construction of efficient
and accurate algorithms for studying the response of a complex system to perturbations
faces serious difficulties. Let’s focus now on the linear case. Some previous studies have
emphasised the need for treating separately the contributions to the response coming from
short and long-time delayed contributions in Eq. 3, and have underlined the need for reducing
the complexity of the invariant measure by adding in the background state some stochastic
forcing, able to smooth out the singularity of the SRB measure [28,29].

A promising way to deal with the actual computation of the scalar product in Eq. 3 is to
use as time-dependent basis the covariant Lyapunov vectors [30,31], which automatically
separate the contributions to the response coming from the unstable, neutral, and stable
directions. This clarifies that the convergence of the formula given in Eq. 3 comes from the
two distinct facts that (a) perturbations along the stable directions naturally decay, and (b)
perturbations along the unstable directions grow in size, but are dominated by the loss of
correlation due to mixing.

Recently, algorithms based upon adjoint methods have shown a good degree of accuracy
and seem promising, even if scaling them up to high-dimensional systems has not been
attempted yet [32,33]. A different approach to the problem has been proposed in [7,34–36],
where, instead of trying to computing ab initio and directly the response given in Eq. 3, the
authors construct it a posteriori, probing the system with some test forcings and using the
formal properties of the theory to be able to predict the response for new patterns of forcings.
One can say that by studying the differential response to similar yet differently modulated
perturbations, it is possible to derive the overall response properties of the system.
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1.4 This Paper

Any numerical representation of a continuum system builds upon the need of discretizing
the phase space and, in the case of time-continuous system, of time.

In this case, we partition the phase space of the system in say N statesφ1, . . . , φN . Inmany
cases, the states are constructed by discretizing the phase space in a grid of boxes, which
provide a (Galerkin) basis of orthogonal functions. We then construct an initial ensemble as
defined by the occupancy u10, . . . , u

N
0 of each of the φi ’s, i = 1, . . . , N , so that

ui0 =
∫

dxρ(x, 0)1(φi ),

where 1(A) is the characteristic function in the set A, and we want to approximate the
evolution of such occupancies change with time, considering discrete time steps 	t , so that,
to a good approximation the occupancy at time k	t is

ui (k	t) ∼
∫

dxLk	tρ(x, 0)1(φi ).

Moreover, in such a discrete representation, we have that the value of an observable O in the
state φi is given by its average

O(k	t) =
∫
dxρ(x, k	t)1(φi )O(x)∫

dxρ(x, k	t)1(φi )
. (6)

Let’s emphasize that when analyzing virtually any sort of complex system, almost invariably
one proposes a natural spatial and temporal cut-off, so that one on not in fact interested in
really being able to compute the response of any possible observable defined at any possible
spatial and temporal resolution, whereasmeso- or macroscopic properties are relevant. Going
again to the useful example of climate science, it is commonly regarded as a good and useful
question to learn about the change in the surface temperature in response to climate forcing on
a spatial scale corresponding to say a continent or a fraction thereof, and on a temporal scale
of say one year. Nobody would find useful nor intelligent to study the surface temperature
response over extremely small temporal and spatial scales.

Empirically, using long numerical integrations and defining the set of finite states φi ,
i = 1, . . . , N , we can construct the stochastic matrix Mi, j describing the probability of
performing a transition from state φi to state φ j in a period of time 	t . The same operation
can in principle be performed using experimental and observational data. A fundamental
issue at the core of such procedure is whether for some dynamical systems in the limit
of finer and finer partitions covering the phase space (actually, the attractor of the system)
with N → ∞ one reconstructs the actual invariant measure of the original system. See in
[37] a comprehensive discussion of such an issue, the so-calledUlam conjecture, and in [38]
some extremely promising applications of finite stateMarkov processes for studying severely
reduced representations of complex systems.

Following the idea that the performing the discretization of the phase space amounts to
adding a stochastic perturbation of the original dynamical systems, with intensity going to
zero with the scale of the actual partitions, and exploiting the fact that the SRB measure can
be constructed as zero-noise limit (with measure that is absolutely continuous with respect to
Lebesgue) of the physical measure, in [39,40] it has been proposed that the Ulam conjecture
applies in the case of Axiom A systems, which are endowed with an SRB measure. The con-
vergence in the case of Anosov diffeormorphism has indeed been proved provided one adds
some noise of asymptotically vanishing intensity (through stronger than the noise induced
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by the partition itself) to the underlying dynamics [41]. Somehow this is not so surprising
because by adding noise one introduces a cutoff below which partitions do indeed work. At
any practical level, these results suggest that in the case ofAxiomA system constructing finite
state Markov processes using Ulam partitions can do a pretty good job in simulating the true
dynamics, if one consider reasonably well-behaved, smooth observables as test functions.
Nonetheless, one has to note that different choices for the partitions can lead to very different
rates of convergence [37]. See also the discussion and the numerical examples presented in
[42].

Apart from theUlammethod, one can follow amathematicallymore elegant but practically
much harder way to construct finer and finer partitions. As well known, Axiom A systems
possess Markov partitions, i.e. well-defined, metric independent, finite resolution represen-
tations of the phase space that refine themselves with the dynamics [6,14]. Such Markov
partitions can be used to construct in the limit the actual SRB measure of the system, and,
additionally, following [43], they provide a natural way to build finite Markov chains whose
properties converge in the limit to those of the Perron–Frobenius operator of the system.

Having a response formulas in the finite case has direct relevance for finite Markov chains
and for interpreting the results of reducedmodels.Another good reason to construct a response
theory in a finite state space has to do with the fact that the response operators for Axiom
A systems introduced by Ruelle can be written as expectation value of certain observables
on the unperturbed SRB measure. Therefore, given what said above, one can hope to have
convergence of the finite state reconstructed response operators to the corresponding true
response operator in the limit of infinitely fine partitions of the dynamics. Actually, provid-
ing explicit formulas for the response operator for a finite state partition of a system the
response operator and taking the limit for (suitably defined) finer and finer partitions could
be interpreted as a rigorous way for constructing the actual response on the asymptotic SRB
measure. One needs to note—see discussion in Sects. 2.1 and 3—that special attention has
to be paid when studying the convergence of such operators.

In what follows, we present the derivation of the response formulas at all orders of pertur-
bations (as well as the full nonlinear versions) for finite state spaces of arbitrary size N . All
expressions are given in terms of the transitions matrix of the unperturbed system, to its cor-
rections to the perturbation, and of the parameter controlling the strength of the perturbation.
The interest we see in the calculations we present below is mostly three-fold:

• our results are obtained using basic linear algebra operations in finite dimensional spaces,
which can used to interpretmore complex operators acting on infinite dimensional spaces.
It is also possible to use the finite dimensional expressions to derive, e.g., the the actual
response operators for continuous time Axiom A dynamical systems;

• we are able to derive an explicit expression for the a lower bound to for the radius of
convergence of the perturbative theory, and relate it with the mixing properties of the
unperturbed system. We also find a (very tentative) expression for such a lower bound in
the case of continuous time case Axiom A dynamical systems;

• our formulas can be translated into one-line commands in now widely available software
tools like R, Octave, or MATLAB�. This might greatly facilitate the actual implemen-
tation of response operators. In particular, we can say that our results provide a direct
translation of the response theory into a readily implementable algorithms.

The paper is organised as follows. In Sect. 2, we introduce some notation and provide basic
properties of ergodic finite state Markov chains, which can be taken as mathematical model
on its own or as finite precision representation of ergodic (in this case, Axiom A) systems.
We also show how it is possible to find an exact expression for the impact of a perturbation
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on the invariant measure of the Markov process and we study the radius of convergence of
the perturbative expansion. In Sect. 3 we rephrase our results in terms of observables, by
constructing straightforward adjoint operators in finite dimensions. In Sect. 4 we show how
our findings agree with the response theory for continuous time systems when we suitably
translate the matrix operations into operators. In Sect. 5 we present a simple yet instructive
investigation of the response of the Lorenz ’63 system [44] to perturbations using Ulam-
like partitions and the formalism developed here. In Sect. 6 we recapitulate and discuss our
results.

2 Response Operators for Finite-State Markov Processes

Let’s consider an ergodic Markov process with a finite number of states defined by the N -
component vector u.We consider the infiniteMarkov chain generated as u0,Mu0,. . .Mnu0,
. . . where u0 is the initial ensemble of states, and Mi, j ∈ R

N×N is the stochastic transition
matrix determining the probability of reaching the state i at step n if at step n − 1 we are
in the state j . The process is taken to be stationary, so that M does not change with n. We
remind that M is such that

∑N
i=1 Mi, j = 1 and Mi, j ≥ 0 ∀i, j = 1, . . . , N .

The invariant measure is obtained by solving the eigenvalue problem

Mu = λu, (7)

and selecting the unique solution with eigenvalue λ = 1. The corresponding (column) eigen-
vector u11 is the invariant measure of the system. We also remind that

lim
n→∞Mnz = α1u1, ∀z. (8)

where {λ j ,uj} j = 1, . . . , N are the pairs of eigenvalues and eigenvectors of M, where
λ1 = 1, |λ j | < 1 if j > 1, and z can be expressed as z = ∑N

j=1 α juj.
Our goal is to find a formula for expressing the change in the invariant measure resulting

from perturbing the transition matrix M → M + εm.
We note that in order to preserve theMarkov property of the system,m obeys the following

constraint:
∑N

j=1 mi, j = 0, so that
∑N

j=1

(Mi, j + εmi, j
) = 0. Moreover, an additional

constraint on εm comes from the fact that all elements of M + εm have to be positive. We
define

ε+ = max
ε

|∀i, j ∈ {1, . . . , N },Mi, j + εmi, j ≥ 0, (9)

and
ε− = min

ε
|∀i, j ∈ {1, . . . , N },Mi, j + εmi, j ≥ 0; (10)

clearly, ε− ≤ 0 ≤ ε+, and the perturbed matrix is a stochastic matrix ∀ε ∈ [ε−, ε+]. In order
to have some room for studying the impacts of perturbations, we require that ε+ − ε− > 0.
Such conditions show that, for a given M, it makes sense to consider only a specific class
of perturbation matrices m. Let’s provide an example of an ill-chosen m: if M has two zero
entries Mi1, j1 = Mi2, j2 = 0 and mi1, j1mi2, j2 < 0, then we have ε− = 0 = ε+.

The new invariant measure is the unique solution to the eigenvalue problem:

(M + εm)u = λu, (11)

1 Most commonly Markov chains are constructed using row vectors; we use column vectors because we find
it easier to perform formal matrix manipulations and because we are closer to the formulation most commonly
implemented in scientific software.
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with unitary eigenvalue. We define v1 as the invariant measure of the perturbed system. Our
goal is to express it as a function ofM, m, ε and u. This amounts to constructing a response
theory. We first present the results of the explicit calculation, and then discuss issues of
well-posedness of the problem and convergence of the procedure in Sect. 2.1. Let’s express
v1 = u1 + ∑∞

n=1 εnwn, so that we obtain:

(M + εm)

(
u1 +

∞∑

n=1

εnwn

)
= u1 +

∞∑

n=1

εnwn, (12)

Note that the first eigenvalue is not changed by the perturbationM → M+εm, because also
M+εm is a stochastic matrix. Using the definition of u1 we obtain a system of concatenated
equations

(1 − M)w1 = mu1 (13)

(1 − M)wn = mwn−1, ∀n ∈ N, n > 1. (14)

We obtain

w1 = �1u1 = (1 − M)−1mu1 (15)

wn = �1wn−1. (16)

Given the recursive structure, we immediately derive the general formula:

wn = �nu1 = �n
1u1 =

n∏

j=1

(
(1 − M)−1 m

)
u1. (17)

where �n = �n
1 . Concluding, we have that:

v1 = u1 +
∞∑

n=1

εnwn = u1 +
∞∑

n=1

εn�n
1u1 = u1 +

∞∑

n=1

εn
n∏

j=1

(
(1 − M)−1 m

)
u1 (18)

which provides the formula we have been looking for. We note that the term responsible for
the nth order of perturbation to the measure can be expressed as

lim
ε→0

1

n!
dn

dεn
v1. (19)

Using the matrix identity (1 − N )−1 = ∑∞
k=0 N k with N = ε�1 = ε (1 − M)−1 m, we

can also formally express the previous result as:

v1 = (1 − ε�1)
−1u1 = (1 − ε(1 − M)−1m)−1u1. (20)

Using again the matrix identity (1 − M)−1 = ∑∞
k=0 Mk , the previous expression can be

rewritten as:

v1 = (1 − ε�1)
−1u1 =

(
1 − ε

∞∑

k=0

Mkm

)−1

u1. (21)

or

v1 = u1 +
∞∑

n=1

εn
n∏

j=1

( ∞∑

k=0

Mkm

)
u1 (22)
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2.1 Well-Posedness and Convergence

In the previous equations, we have used somewhat carelessly the expression (1 − M)−1.
Unfortunately, the matrix 1−M is not invertible, because all of its columns sum up to zero,
or, alternatively, because we know that 1 is an eigenvalue ofM. Nonetheless, the expression
makes sense if we apply it to a vector belonging to span{u2, . . . ,un}. We now want to prove
that:

Lemma 1 IfM is aMarkov transitionmatrixRN → R
N with eigenvectors (u1,u2, . . . ,uN),

and corresponding eigenvalues (λ1 = 1, λ2, . . . , λN ), 1 > |λ2| ≥ . . . |λN |, andm is amatrix
matrix RN → R

n such that
∑n

i=1 mi, j = 0, then mz ∈ span{u2, . . . ,un} ∀z ∈ R
n.

Proof Let’s consider the vector y = mz. Its i th component can be written as yi =∑N
j=1 mi, j z j . Since

∑N
i=1 mi, j = 0, we have that

∑N
i=1 zi = ∑N

i=1
∑N

j=1 mi, j z j = 0.

Let’s now consider the kth eigenvector uk of M. We have
∑N

j=1 Mi, j uk; j = λkuk;i .
Since

∑N
i=1 Mi, j = 1, taking the sum over the i components of the previous expression, we

obtain:
∑N

i=1
∑N

j=1 Mi, j uk; j = ∑N
j=1 uk; j = λk

∑N
j=1 uk; j . Therefore, either λk = 1, or

∑N
j=1 uk; j = 0. We have that if k > 1,

∑N
j=1 uk; j = 0.

We conclude that y = mz ∈ span{u2, . . . ,uN} ∀z ∈ R
N . �

Remark One needs note that finite numerical precision might cause troubles, so that one
should be careful in eliminating any component along u1 at each before applying

∑∞
j=1 M j .

Note that we must use
∑∞

j=1 M j expression for (1−M)−1 in any code, because otherwise
any software would give us automatically a NaN as error message.

Remark We wish to underline another method for avoiding the NaN problem mentioned
above. Following [45], we introduce the fundamental matrix of the Markov chain as Z =
(1−M+M∞)−1, whereM∞ is the limit matrix whose columns are all equal to u. One can
show that Z exists as the operation of inverse is well defined given the spectral properties of
M−M∞ [39]. One can show thatM∞mz = 0 ∀z ∈ R

N . Therfore, in all the previous Eqs.
16-22 we can substitute (1 − M)−1m = ∑∞

j=0 M jm = Zm = ∑∞
j=0(M − M∞) jm.

Let’s consider the problem of convergence of the expression in Eq. 18. We want to make
sure that the L1 norm of

∑∞
n=1 εnwn does not diverge, and use this to find a bound for the

value of ε. A simple way to approach this problem is to study the ratio of the L1 norm of two
consecutive terms in the previous series. Using Eqs. 15-16, we have:

εn ||wn ||1
εn−1||wn−1||1 = ε

||(1 − M)−1mwn−1||1
||wn−1||1 ≤ ε

||(1 − M)−1||∗1||mwn−1||1
||wn−1||1 (23)

≤ ε||(1 − M)−1||∗1||m||1 (24)

≤ ε(1 − ||M||∗1)−1||m||1 (25)

where we use the submultiplicative property of the norm and we introduce a modified defi-
nition of the L1 norm taking into account that the vector mv ∈ span{u2, . . . ,uN}∀v ∈ R

N :

||Q||∗1 = sup
v∈span{u2,...,uN},||v||1=1

||Qv||1
||v||1 .

Using expression 25, we have that the perturbative expression converges if

|ε|(1 − ||M||∗1)−1||m||1 < 1 → |ε| < εmax = 1 − ||M||∗1
||m||1 , (26)
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The previous expression provides an explicit bound for our calculations. We note that εmax

is finite because of the restriction imposed in the definition of the norm || • ||∗. Such a bound
ensures also the invertibility of (1− ε�1)

−1. From the previous result, we find the following
bound for the first order correction to the invariant measure:

||εw1||1 ≤ ε||m||1
1 − ||M||∗1

,

so that ||m||1/(1 − ||M||∗) can be though as a bound to the first order sensitivity of the
measure to perturbations.

Using expression 24, we can derive a more generous bound for ε:

|ε| < ε∗
max = 1

||m||1||(1 − M)−1||∗1
≥ εmax . (27)

while ||m||1||(1−M)−1||∗1 provides an additional (stricter) bound to the first order sensitivity.
Note that in all the previous expressions we can substitute ||(1 − M)−1||∗1 with ||Z||1.

At this point, we wish to refer to previous results (see, e.g., [46]) providing bounds for
the L1 norm of the difference between the perturbed and unperturbed invariant measure:

||v1 − u1||1 ≤ ε||m||1
1 − τM(1)

(28)

where τM(1) is the so-called ergodicity coefficient [47] defined as:

τM(1) = 1

2
sup
i, j

||M(ei − ej)||1

with ei indicating the unit vector having 1 at the i th entry and zero elsewhere. We remind
that τ1(M) is larger than any subdominant eigenvalue of M, and 1/(1 − τM(1)) can be
taken as a definition of conditioning number of M [48]. Clearly if τM(1) is close to 1, the
bound given in Eq. 28 diverges. Note that 1/(1 − τM(1)) is the bound to non-perturbative
sensitivity mirroring the bound to the perturbative, linearized sensitivity given previously as
1/(1 − ||M||∗1). See also additional results presented in [49].

The sensitivity of the unperturbedmeasure to perturbations given in Eq. 28 can also be cast
in terms ρM, the smallest possible value for the constant controlling the rate of convergence
of iterates Mei, M2ei, . . ., Mnei to u1, so that ∀n ∈ N+,∀i ∈ 1, . . . N we have that
||Mnei − u1||1 ≤ Cρn

M, C ≥ 1 [46,48]. The sensitivity diverges as ρM approaches 1, i.e.
when the unperturbed matrix has slow properties of convergence.

While the quantities ||M||∗1, τM(1), and ρM are indeed different, they all point to the fact
that if the mixing rate of the unperturbed matrixM is slow—so that such quantities are close
to 1 (so that ||(1 − M)−1||∗1 and ||Z||1 are very large)—then the sensitivity of the measure
to perturbations is high. See in [21] a discussion of the link between slow mixing of a system
and the presence of rough parameter dependence in its response to perturbations, with some
examples of applications in a geophysical context.

Bringing together the results presented in Eqs. 9, 10 and in Eq. 27, we conclude that Eqs.
18–22 provide the exact expression for the invariant measure of the stochastic matrixM+εm
∀ε ∈ {[−ε∗

max , ε
∗
max ] ∩ [ε−, ε+]}.
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3 Response Theory for Observables

Let’s now look at the problem in terms of impact of the perturbation m on the expectation
value of observables. Observables live in the dual space of the densities, and, given our
convention, they are row vectors. They are approximated as having a constant value within
each cell of the chosen partition of the phase space. The expectation value of the observable π

with respect to a measurew can be written as 〈π,w〉, where 〈•, •〉 denotes the scalar product.
By definition, we have that 〈π, Aw〉 = 〈A�π,w〉, where A� indicates the transpose (and
adjoint, because we are studying real functions) of A.

Let’s look at the change in the expectation value of the observable π as a result ofM →
M + εm. We can write:

〈π, v1〉 = [π ]ε = [π ]0 +
∞∑

n=1

εnδ[π]n (29)

= 〈π,u1〉 +
∞∑

n=1

εn〈��
n π,u1〉 (30)

= 〈π,u1〉 +
∞∑

n=1

εn〈
(
��

1

)n
π,u1〉, (31)

where [π]0 = 〈π,u1〉 is the expectation value ofπ in the unperturbed system, [π]ε = 〈π, v1〉
is the expectation value of π in the perturbed system, δ[π]n is the nth order perturbation,
which can be expressed as

δ[π ]n = lim
ε→0

1

n!
dn

dεn
〈π, v1〉. (32)

Moreover, ��
n is the nth order adjoint response operator, acting on the observables, which

can be written as:

��
n = (��

1 )n =
n∏

j=1

m�
( ∞∑

k=1

Mk

)�
. (33)

We can also wrote Eq. 31 as:

〈π, v1〉 = 〈(1 − ε��
1 )−1π,u1〉 (34)

=
〈⎛

⎝1 − εm�
( ∞∑

k=1

Mk

)�⎞

⎠
−1

π,u1

〉
(35)

= 〈(1 − εm�(1 − M�)−1)−1π,u1〉. (36)

where the last two expressions provide the nonperturbative formulas.

Remark Equations 22 and 31 provide at all orders the response formulas for the discrete
Markov process studied here. If we are constructing empirically the discrete phase space,
we expect that different choices of the partitions, corresponding to different approximate
representations of the full dynamics, will deliver different results in terms of response. Hence,
our results can be model dependent, which is reasonable, as we are starting from a subjective
choice on the way we approximate the phase space. In fact, one can empirically test the
robustness of the obtained results against a set of given criteria by comparing whether the
perturbations to a certain set of relevant observables weakly depend on the specific partition
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used. We present a very preliminary (and encouraging) numerical study performed on the
Lorenz ’63 model [44] later in Sect. 5.

Moreover, as discussed in Sect. 1.4, if we construct finer and finer partitions of for studying
the response of systems whose unperturbed dynamics features an SRB invariant measure
(most notably in the case of Axiom A systems), and indeed if we follow the self-refining
Markov partitions of the dynamics, our results should converge to the exact response theory
built upon the true SRB measure.

One needs to note that Eq. 27 gives an estimate of the largest possible value of ε for a
given partition, but we are are not sure whether the minimum over all the finer and finer
partitions of ε∗

max is positive—this corresponds to imposing the uniform—in N—bound on
the norm of ||(1 − M)−1||∗1 or ||Z||1.

In [39] it is shown that L1 convergence of the finite state measure constructed using the
Ulam method to the actual SRB measure is realized when ||Z||1 grows asymptotically not
faster than log N , where N is the number of states. The requirement we seem to have here for
applying response theory here is unavoidably stricter because computing the response entails
considering the expectation value of not necessarily well behaved observables, constructed
through nontrivial operations of differentiation of the actual observables of which we want
to study the sensitivity to perturbations, see Eq. 2 and [3–5]. This essential difficulty is
exactly what motivates the point of view discussed in [18,50], where a delicate analysis of
the relationship between tangent space of the unperturbed dynamics, the perturbation flow,
and of the observable allow to set up a robust framework for the response theory.

Similarly, in our case, making the response theory work at practical level means hav-
ing/choosing m and u in such a way that ||(1 − M)−1||∗1 or ||Z||1 grossly overestimates in
terms of norm the effect of applying (1 − M)−1 or equivalently Z in, e.g., Eq. 22. Addi-
tionally, a suitable choice of the observable π can help avoiding potential singularities in Eq.
36. In other terms, response theory can work much more easily once we get rid of or cure
pathological cases.

4 Towards Continuous Time Dynamical Systems

Wewant to rephrase the previous results in the context of continuous time dynamical systems
and derive some formulas previously presented in the literature concerningAxiomA systems.
Wecoonsider a time continuous dynamical systemof the form ẋ = F(x) and study its response
to the perturbationF(x) → F(x)+εX(x). Correspondingly, as a result of the perturbation, the
original invariant measure ν0(dx) is changed into νε(dx). The Liouville equation describing
the evolution of a given initial density of states ρ(x) for the unperturbed system can bewritten
as

∂tρ(x, t) = −∇ · (F(x)ρ(x, t)) ; (37)

considering two instants of time separated by a small time interval dt , we have:

ρ(x, t + dt) = ρ(x, t) − dt∇ · (F(x)ρ(x, t)) = Mρ(x, t)

M = 1 + dtF F = −∇ · (F(x)•) . (38)

We understand that M is in this context the unperturbed Perron–Frobenius operator Ldt
ε

pushing forward the measure ρ from t to t+dt . When looking at the perturbed flowwe have:

ρ(x, t + dt) = ρ(x, t) − dt∇ · (F(x)ρ(x, t)) − dtε∇ · (X(x)ρ(x, t))

= (M + εm)ρ(x, t), . (39)
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where
m = dtX X = −∇ · (X(x)•) (40)

In this case, starting from Eq. 23, and considering that no normalization is applied to the
perturbation operator, it is possible to propose a definition of ε∗

max for the continuous time
dynamics taking inspiration from Eq. 27:

ε∗
max = 1

||X ||B||F−1||∗B
, (41)

such that the perturbative expansion converges if ε ≤ ε∗
max , where || • ||B describes the norm

of the operator in the appropriate Banach space B it belongs to, while || • ||∗B is such that the
computation of the norm excludes the SRB measure. Note that ε∗

max is finite if both ||X ||B||
and ||F−1||∗B are finite. This expression is admittedly tentative. As mentioned before, the
problem of selecting appropriate functional spaces for constructing the response theory for
AxiomAsystems along the lines of studying the perturbations to the transfer operator requires
a careful construction of suitable Banach spaces and of the related metrics [16,18,19] and is
beyond the scope of this paper.2

4.1 Linear Response

We now want to derive the Ruelle response formulas for computing the linear correction to
the invariant measure resulting from the perturbation. We write

νε(dx) = ν0(dx) +
∞∑

n=1

εnνn(dx), (42)

where n indicates the order of perturbation. Let’s first go back to the first order term in Eq.
15:

εw1 = ε�1u1 =
( ∞∑

k=1

Mk

)
mu1. (43)

Each term of the form Mk pushes forward up to time tk = k × dt what is positioned to
its right. Summing over k in, in fact, amounts to looking forward in time. If we insert the
definition of m given above, we get the integrating factor dt , so that we obtain the following
expression:

ν1(dx) = −
∫ ∞

0
dt∇ · (X(x(t))ν0(dx)), (44)

where the evolution takes place according to the unperturbed system, and we have used the
invariance of ν(dx) with respect to such an evolution law.

By going into the dual space of the observables, we have that the change in the value of
an observable O(x) from time t to time t + dt in the unperturbed system can be written as:

d

dt
O(x(t)) = F(x) · ∇O(x(t)), (45)

so that
O(x(t + dt)) = O(x(t)) + dtF(x) · ∇O(x(t)) = M�O(x(t)). (46)

2 Following [51], one might tentatively consider the norms of the operator acting between the Banach spaces
B2,q and B1,q+1.
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where the operatorM� = 1+dtF� = 1+dtF(x) ·∇(•). Along the same lines, one derives
that the perturbation operator m� acting on the observable can be written as m� = dtX� =
dtX(x) · ∇(•). Furthermore, we introduce the following expansion for the expectation value
of O(x):

[O]ε = [O]0 +
∞∑

n=1

εnδ[O]n, (47)

where [O]ε is the expectation value in the perturbed system, [O]0 is the unperturbed expec-
tation value, and the corrections are included in the summation.

Applying this expression to the first order term in Eq. 31–33:

δ[π ]1 = ε〈��
1 π,u1〉 = ε〈

⎛

⎝m�
( ∞∑

k=1

Mk

)�⎞

⎠ π,u1〉. (48)

we get:

δ[O]1 = ε

∫
ν0(dx)

∫ ∞

0
dtX(x) · ∇O(x(t)) = ε

∫
ν0(dx)

∫ ∞

0
dt�St0O(x) (49)

which is exactly the original version of Ruelle’s linear response formula given in Eq. 3.
One needs to note that what in Ruelle’s formulation is causality (time integration in the

response starts from 0), in the context of theMarkovmatrices formalism followed here comes
from the algebraic expansion of (1 − M)−1. The issues of convergence mentioned in the
original paper by Ruelle can be translated in the rate of mixing of the system as determined
by the properties of M discussed in Sect. 2.1.

4.2 Higher Order Terms

We can repeat the same construction to derive the higher order perturbation terms in the case
of the continuous time dynamical systems. Inserting in Eqs. 15, 16 the expression 38 forM
and expression 40 for m, we obtain for the second order the following expression for the
perturbation to the invariant density:

ν2(dx) = ε2
∫ ∞

0
dt1

∫ ∞

0
dt2∇ · (

X(x(t1)∇x(t1) · (X(x(t1 + t2))
)
ν0(dx), (50)

while the expression for the nth order correction reads like

νn(dx) = (−1)nεn
∫ ∞

0
dt1 . . .

∫ ∞

0
dtn∇ · (

X(x(t1) . . . ∇x(t1+...tn−1)

· (X(x(t1 + . . . tn))) ν0(dx), (51)

Considering the adjoint problem and computing the higher order corrections to the expecta-
tion value of the observable O , we derive the general response formula proposed by Ruelle

δ[O]n = εn
∫

ν0(dx)
∫ ∞

0
dt1 . . .

∫ ∞

0
dtn�St1 . . . Stn−1�Stn O(x), (52)

as reported in Eq. 2.
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5 A Very Basic Numerical Experiment

In order to make a (very) preliminary assessment of the potential of some of the ideas
presented in this paper, we have focused on investigating some properties of the celebrated
Lorenz ’63 system [44]:

ẋ = σ(y − x)

ẏ = x(ρ − z) − y (53)

ż = xy − βz

where we have chosen the standard value for the parameters σ = 10, ρ = 28, and β = 8/3.
We remark that such a system is not an Axiom A, but instead a singular hyperbolic system
[52], which possesses a chaotic attractor and an invariant SRB measure [53]. In a previous
publication [34], we have performed an analysis of the linear and nonlinear response of
the Lorenz ’63 to perturbations, extending a previous investigation by Reick [54], which
makes us confident that response theory can be safely applied at all practical purposes also
in this case. We consider the special case of time-indepedent perturbations to the dynamics
resulting from substituting ρ → ρ + ε in Eq. 53, so that the perturbation flow can be written
as εX(x) = [0 εx 0]�.

We have then identified a 3-dimensional box B containing the attractor, defined as B =
{(x, y, z) ∈ R3|x ∈ [−20, 20], y ∈ [−30, 30], z ∈ [−0, 50]}, and subdivided it, á la
Ulam, in smaller boxes of identical size using a regularly spaced cartesian grid. We have
considered partitions obtained using small boxes with linear dimension given by dx = 2× j ,
dy = 3 × j , and dz = 2.5 × j , along the three directions, with j = 1, 2, 4, see Fig. 1. This
amounts to partitioning B into 8000/j3 smaller boxes. Note that our construction delivers a
much lower resolution with respect to what used in, e.g., [55].

We run the model with standard values of the parameters choosing as initial condition
[1 1 1]� (in fact, given the global attractivity and ergodicity of the Lorenz attractor, any
initial condition can be chosen), and, after discarding a transient of 1000 time units, which
brings us safely into the asymptotic regime, we run the model for 50,000 time units with
a simple Runge–Kutta 4th order adaptive scheme and obtain the output with time step of
0.001 time units. This takes less than 10 minutes in a today’s commercial laptop with stan-

Fig. 1 Attractor of the Lorenz ’63 system with indication of the cartesian grids used for constructing the
partitions of its phase space. See text
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Table 1 Expectation value of the observables x2, y2, z2, and z and their linear response with respect to the
perturbation ρ → ρ + ε

〈x2〉 〈y2〉 〈z2〉 〈z〉 δ[x2]1 δ[y2]1 δ[z2]1 δ[z]1
Lorenz ’63 Model 62.9 81.2 630.0 25.6 2.8 3.7 50.3 1.01

MC, j = 1, N j
B = 770 63.2 82.0 630.5 23.6 2.9 3.8 50.3 1.01

MC, j = 2, N j
B = 205 64.3 84.2 632.2 23.6 3.0 3.5 49.7 1.02

MC, j = 4, N j
B = 56 71.3 84.8 637.5 23.5 2.9 3.9 50.1 1.02

The first row refers to the integration of the Lorenz model given in Eq, 53. The other rows refer to the empirical

discrete Markov chain constructed using boxes of different sizes. N j
B refers to the number of states

The linear response of the observables defined in Eq. 32 has been obtained using Eq. 48. The derivative with
respect to ε is estimated using finite differences with ε = 0.1. See text

dard specifics using MATLAB�. We present results at such a low level of sophistication in
order to clarify that the appracch proposed here is rather robust and of relatively simple
implementation.

As the box-counting dimension or capacity of the attractor of the model given in Eq. 53
is d0 ∼ 2.05, we expect that the number of boxes B j

k , k = 1, . . . , N j
B needed to cover the

attractor decreases N j
B ∝ 1/jd0 .We obtain a slightly lower exponent∼1.9, which is perfectly

acceptable as we are far from the asymptotic regime where the scaling given by d0 is realized.
For each value of j , the boxes B j

k define the discrete states φ
j
k , k = 1, . . . , N j

B . By

counting the number of times the trajectory is included in each state φ
j
k and normalizing we

derive experimentally the asymptotic normalized occupancies ū j
k . Instead, by tracking the

transitions between the various discrete states, we construct the estimate of the stochastic
transition matrix M j

p,q describing the probability that the state φ
j
q makes a transition to the

state φ
j
p in one time step. By finding the eigenvector corresponding to the unique unitary

eigenvalue of M j
p,q , we find the invariant measure, which agrees up to very high precision

with the empirical occupancy rate ūk computed from the trajectory. As a first step, we evaluate
the expectation values of four meaningful observables given by x2, y2, z2, and z, as obtained
from the time integration of the Lorenz model and from its discrete representation in terms of
Markov chain. Table 1 shows that the agreement is rather good even when extremely coarse
resolution is used.

We then show how to compute the response of the system to the perturbation due to the
introduction of the vector field εX(x). We keep in mind that when continuous time dynamics
is considered, there is a very simple linear relation between the perturbation flow and the
corresponding perturbation to the Perron–Frobenius operator, see Eqs. 38–40.

Therefore, we repeat the the steps described above for the ε−perturbed flow (we choose
ε = 0.1 in order to be on the safe side in terms of convergence), compute the new stochastic
transition matrices M j,ε

p,q , and derive the perturbation matrices εm j
p,q = M j,ε

p,q − M j
p,q .

Once mp,q and M j
p,q are known, we can use them to compute the response of the systems

at all orders of nonlinearity using Eqs. 22 and 36.
One needs to note that because of the non-infinite integration time considered, of the

non-infinitesimal perturbation applied, and of the somewhat arbitrary choice of the boxes, it
can happen that the original and perturbed flow may be characterized by a different number
of discrete states. We have observed such a difference only in the case j = 1, involving one
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single extra state for the perturbed flow, with normalized relative occupancy (≤10−6). This
problem can be easily sorted out by imposing a cutoff and removing from the the discrete
description all states with very low.

As discussed above, one needs to test accurately the well-posedness and convergence of
the expansion in order to be sure to obtain meaningful results. This is not our goal at this
stage given such a preliminary numerical test of our results. Therefore, we limit ourselves to
the less ambitious yet interesting goal of computing the linear response defined in Eq. 32 for
the observables indicated above, using Eq. 48. The results are reported in Table 1 and seem
very encouraging. We have that the estimates of the response are very stable with respect
to changes in the resolution of the boxes, and agree to a high degree of precision with the
results one obtains by empirically evaluating the sensitivity of the observables with respect
to the introduction of the perturbation flow using two integrations, as well, in the case of the
z observable, with what reported in [34]. We note that the results are virtually unchanged
if one uses instead of the high resolution time series with time step of 0.001 time units
sparser observations corresponding to, e.g. a time step of 0.01 time units. Obviously, using
a time resolution lower by a factor of s with respect to what considered here, one derives by
tracking the transitions a stochastic transition matrix corresponding to the sth power of the
one obtained at higher resolution. This does not affect the results as long as the sampling
is much higher than the characteristic time scale of the system, which can be approximated
in ∼1/λ1 ∼ 1.1 time units, where λ1 is the positive Lyapunov exponent of the system. On
much longer time scales, instead, the stochastic matrix is quasi-degenerate, with all columns
almost equal to the invariant measure

6 Conclusions

Taking the point of view of finite state Markov systems, we have been able to construct a
perturbation theory for studying the impact of small perturbations to the background dynam-
ics. While previous approaches focus on the constructing a theory able to account for the
effect of adding small perturbations to the baseline flow, we focus on computing the change
in the invariant measure and for the change in the expectation values of general observables
(one problem being the adjoint of the other) occurring when the Markov transition matrix
M → M + εm.

The perturbation term εm has to be such that all the columns of the new stochastic matrix
sum up to 1 and all entries are positive. All of our findings are obtained with rather simple
linear algebra manipulations and using basic properties of the stochastic matrices. We can
express the response as a perturbation series or, after suitable resummation, using compact
exact formulas. We are also able to assess the convergence properties of the response theory
by defining a value ε∗

max such that if |ε| ≤ ε∗
max the perturbative expansion converges. We

have that the stronger is the mixing of the unperturbed system, the larger is the value of εmax .
These findings match well with previous results providing upper bounds to the sensitivity of
stochastic matrices to perturbations.

Our results provide a direct algorithmic method for studying the response to perturbations
for finite state Markov processes and have the advantage of allowing for an immediate and
practical change of point of view between response theory seen in terms of changes of the
invariant measure or in terms of changes in the expectation values of observables, by simply
computing the transpose of the resulting finite dimensional linear operators. Our findings give
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closed formulas for the linear and nonlinear response theory at all orders of perturbations
through explicit matrix expressions that can be directly implemented in any coding language.

We can use our formulas to study the response to perturbations of finite state Markov
processes constructed in order to have a simplified and treatable picture of a complex system.
Given two different state spaces constructed using different finite partitions covering the
attractor of the system, we cannot expect to obtain the same results for the change in the
expectation value of a given observables. The results might indeed be model dependent, but
this is the obvious price one has to pay because of the subjective choice of the reduced state
space. An assessment of the robustness of the obtained results is key to applying our methods
in the context of reducedmodels. Nonetheless, the extremely unsophisticated numerical study
reported here on the Lorenz’63 model is quite encouraging at this regard, even if test should
be made on much higher dimensional models.

If the underlying dynamics is Axiom A (or Axiom A equivalent, as in the cases where
the chaotic hypothesis applies), one can impose conditions such that the response operators
constructed using finer and finer partitions converge to to the actual corresponding response
operators constructed on the SRBmeasure. Having in mind the Ulammethod, the conditions
are stricter than what needed in order to have convergence of the unperturbed measure, the
basic reason being that Ruelle response operators correspond to nontrivial observables. One
expects better convergence if the self-refiningMarkov partitions of the system are considered
when constructing the finite state approximations.

Our results can be thought as intermediate steps at finite precision leading to the correct
response formulas in the limit. One needs to add as a caveat that going from finite state to
functional spaces is far from trivial and requires a high degree of mathematical precision,
which is beyond the scopes of this paper. Nonetheless, the finite construction proposed
here seems to somehow point at why some important mathematical issues emerge when the
Perron–Frobenius operator formalism is considered in a continuum setting. In particular, the
need for selecting suitable norms for vectors and linear operators in finite dimension points
to the complex requirements in terms of functional spaces described in e.g. [51].

Interestingly, we can use the formulas obtained for finite state Markov processes to study
the impact of perturbations to continuous time dynamical systems, after making a suitable
identification between the considered transitionmatrices and the evolution operators for mea-
sures and observables. This operation is straightforward because there is a simple linear exact
relation between the perturbation in the vector flow of the dynamical system and the pertur-
bation in the Perron–Frobenius operator when infinitesimal time intervals are considered. As
a result, we are able to derive in a very simple way previous formulas obtained studying the
perturbations to the transfer operator as well as the original expressions proposed by Ruelle
for the linear and higher order perturbations in the expectation values of observables. Using
the results obtained in the finite state case, we propose a formula for the radius of expansion
of the perturbative theory.

One can envision that in the case the underlying dynamics is discrete, there is not such a
one-to-one correspondence between perturbations to the vector field and perturbations to the
Markov transitionmatrix. This canbe easily checkedwhen constructing the perturbedPerron–
Frobenius operator resulting from adding a ε correction to the vector field, which results into
changes in the Perron–Frobenius operator at all orders in ε. Therefore, the perturbative
expansion is different in the two cases. Agreement is instead found in the limit ε → 0, or,
more practically, when we retain only the linear terms in ε perturbative expansion, i.e. when
aiming only at the linear response function.

Future investigations will try, on the one side, to have a sharper mathematical look at the
problem of going from finite to infinitely small partitions of the phase space, and, on the
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other side, to delve in the numerical study of the effectiveness and efficiency of the proposed
tools. Apart from testing the results on specific finite state Markov systems, we will test how
robust the proposed methods are when studying finite state Markov processes that have been
empirically constructed from time series of observations or of numerical simulations of high-
dimensional complex systems. One may be led to hoping that it could be possible to have
an accurate representation of the response of a high dimensional system to perturbations
by constructing a smart finite state model well suited to studying specific observables of
interest. Of course, in order to deal with the curse of dimensionality, one would like to be
able to go beyond the Ulam method and deal with finite partition of reduced phase spaces
where projection is applied on many or even most dimensions.

Our formulas may address the now long-standing problem of constructing suitable algo-
rithms for studying the response of chaotic systems to perturbations. It is extremely hard to
construct an algorithm for computing the (linear) response theory directly on the flow, because
serious problems emergewhen considering the contributions coming from the unstable direc-
tions in the tangent space. Thismight have great relevance for studying problems, like climate
dynamics, where a direct construction of the response operator is especially challenging and
slightly indirect methods have to be used [35] and a lot of effort has been devoted to defining
the so-called atmospheric regimes and predicting their response to forcings [56].
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