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and DFT methods 
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A mononuclear iron complex with 2-ethynylbenzo[b]thiophene C-coordinated to the 

(η5-Cp*)(η2-dppe)Fe (Cp* = pentamethylcyclopentadienyl, dppe = 1,2-diphenylphosphinoethane) 

framework (1) was prepared and characterized by 1H-NMR, elemental analysis and single crystal 

X-ray diffraction. The redox behavior of 1 was investigated by voltammetric methods and anodic 

spectroelectrochemistry in the UV-vis-NIR-IR region and compared with reference complexes 

including 2-ferrocenylbenzo[b]thiophene (2) and the 2-ethynylpyridine derivative of 1. The spin 

density distribution along the linear molecular backbone in 1+ was analyzed by DFT (BLYP35) 

and TDDFT calculations of a truncated model complex. The combined experimental and 

theoretical results revealed an important role of the ethynylene linker in determining the redox 

properties of this family of complexes and participation of the 2-ethynylbenzo[b]thiophene 

framework in the largely iron-based anodic electron transfer. 
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1. Introduction 

Oligonuclear organometallic complexes featuring carbon-rich molecular bridges as linkers or 

components of redox-active centers have served as attractive objects in the field of molecular 

electronic devices by virtue of their versatile redox and magnetic properties [1-9]. In particular, 

redox-active iron derivatives linked to aromatic and heteroaromatic rings have served as suitable 

models in studies of electronic communication between metallic termini and screening of 

molecular wires [10-14]. For example, Lang [8, 15] and Iyoda [16] reported a series of 

heteroatomic multiferrocenyl species, using palladium-catalyzed C‒C cross-coupling Negishi 

reaction, and studied their electronic coupling properties. In the past decade, Lapinte et al. 

[6, 11, 17-19] also investigated electronic and magnetic properties of dinuclear complexes with 

redox-active half-sandwich Cp*(dppe)Fe units. These studies reveal that electronic and 

spectroscopic properties of the metal complexes are determined by molecular bonding properties 

and the type of redox-active terminal groups. Mononuclear metal complexes with attached 

conjugated aromatic frameworks are often used as building blocks to afford multinuclear 

organometallic molecular wires [20-22], serving as references to unravel their electronic 

properties. Benzo[b]thiophene frameworks with a reactive α-hydrogen in the thiophene ring and 

a peculiar electronic character have been applied widely in the field of materials chemistry and 

molecular electronics [23-25]. We describe herein the synthesis and molecular structure of 1 with 

benzo[b]thiophene-2-yl linked to the Cp*(dppe)Fe−C≡C− group (chart 1). Along with 1, we also 

synthesized the reference 2-ferrocenylbenzo[b]thiophene complex (2) to assess the impact of the 

ethynylene linker on the redox and bonding properties; meantime, 2 has been reported in the 

literature [9]. The anodic behavior of 1 was investigated in situ by cyclic voltammetry and 

spectroelectrochemical methods in the UV-vis-NIR and IR spectral regions. The electronic 
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structure and molecular spectroscopic characteristics of stable monocation 1+ were further 

explored by DFT and TD-DFT calculations. 

 

2. Experimental  

2.1. Materials and methods 

All manipulations were carried out under an atmosphere of dry argon by using standard Schlenk 

techniques, unless stated otherwise. Solvents were pre-dried, distilled and kept under an 

atmosphere of a dry inert gas (nitrogen or argon) prior to use in spectro-electrochemical 

measurements.  Tetrabutylammonium hexafluorophosphate (Bu4NPF6), used as a supporting 

electrolyte, was recrystallized twice from absolute ethanol and dried overnight under vacuum 

prior to electrochemical experiments. Trimethylsilylacetylene (TMSA), ferrocene, anhydrous 

zinc chloride, tBuOK, NaBPh4, [Pd(PPh3)4], KF, solvents and Bu4NPF6 were purchased from 

Sinopharm Chemical Reagent Co., Ltd. and used without purification. The starting complex 

[Cp*Fe(dppe)Cl] was prepared by a literature procedure [26]. 

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian Mercury Plus 400 

spectrometer (400 MHz) operating at 298 K in the Fourier transform mode. 1H- and 13C-NMR 

chemical shifts (ppm) are relative to TMS and 31P NMR chemical shifts are relative to 85% 

H3PO4. Elemental analyses (C, H and N) were performed with a Vario ElIII CHNS instrument. 

Electrochemical data were obtained from cyclic voltammetry and square-wave 

voltammetry using a CHI 660C potentiostat (USA) and a standard air-tight three-electrode cell. 

The concentrations of the analyte (1 and 2) and supporting electrolyte (Bu4NPF6) were typically 

10-3 and 10-1 mol dm-3, respectively. A pre-polished 500-μm diameter platinum disk working 

electrode, a platinum wire counter electrode, and an Ag/Ag+ (10-2 M AgNO3 + 10-1 M Bu4NPF6 

in acetonitrile) reference electrode were used; the standard ferrocene/ferrocenium (Fc/Fc+) 

couple was found at E1/2 = 0.21 V under these conditions. Spectroelectrochemical experiments at 

room temperature were performed with an air-tight optically transparent thin-layer 

electrochemical (OTTLE) cell (optical path length of ca. 200 μm) equipped with a Pt minigrid 
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working electrode and CaF2 windows [27]. The cell was positioned in the sample compartments 

of a Bruker Tensor FT-IR spectrometer (1 cm-1 spectral resolution, 8 scans) and a Shimadzu 

UV-3600 UV-vis-NIR spectrophotometer. The controlled-potential electrolyses within the 

OTTLE cell were carried out using a CHI 660C potentiostat. 

DFT calculations were performed with Gaussian 09 [28] at the B3LYP/6-31G* and 

BLYP35 [29]/6-31G* levels of theory. Geometry optimizations were performed without any 

symmetry constraints, and frequency calculations on the resulting optimized geometries showed 

no imaginary frequencies. Electronic transitions were calculated by the time-dependent DFT 

(TD-DFT) method. The MO contributions were generated using the Multiwfn2.6.1_bin_Win 

package and plotted using GaussView 5.0. 

 

2.2. Preparation of iron complexes 

2.2.1. η5-Pentamethylcyclopentadienyl η2-1,2-diphenylphosphinoethane 

2-benzo[b]thiophenylethynyl iron(II) (1). A solution of 2-trimethylsilylethynylbenzo[b]-

thiophene [3, 30] (32 mg, 0.14 mmol) and K2CO3 (127 mg, 2.20 mmol) in CH3OH (20 mL) was 

heated to reflux under nitrogen for 10 h. Then [Cp*Fe(dppe)Cl] (0.5 g, 0.8 mmol, 1.1 equiv) and 

Na[BPh4] (274 mg, 0.8 mmol, 1.1 equiv) were added. After 12 h of stirring, tBuOK (100 mg, 

1.1 equiv) was introduced. Stirring was maintained for an additional 4 h before the solvent was 

removed. The residue was extracted with toluene (4 × 20 mL), and the solution was concentrated 

to ca. 4 mL. Addition of pentane (40 mL) led to precipitation of a dark red powder. The solid 

was washed with pentane (5 × 10 mL) and dried to give 1. Crystals of 1 suitable for X-ray 

analysis were grown from dichloromethane upon slow diffusion of hexane. Yield of red brown 

crystals: 80 mg, 72%. 1H NMR (400 MHz, CDCl3): δ 1.42 (s, 15H, C5(CH3)5), 1.99 (br, 2H, 

CH2/dppe), 2.63 (br, 2H, CH2/dppe), 6.52 (s, 1H, thiophene ring), 7.10 (t, J(HH) = 7.2 Hz, 1H, 

benzene ring), 7.19 (t, J(HH) = 7.2 Hz, 1H, benzene ring), 7.26-7.38 (m, 16H, HAr/dppe), 7.47 (d, 

J(HH) = 3.6 Hz, 1H, benzene ring), 7.55 (d, J(HH) = 4.4 Hz, 1H, benzene ring), 7.80-7.89 (m, 
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4H, HAr/dppe). 
31P NMR (160 MHz, CDCl3): δ 96.51 (s, dppe). IR (KBr/cm−1): ν(C≡C) 2034 (w). 

Anal. Calcd. for C46H44P2FeS (%): C, 73.99; H, 5.94. Found: C, 74.10; H, 5.76. 

 

2.2.2. 2-Ferrocenylbenzo[b]thiophene (2). The complex was prepared following a slightly 

modified procedure reported by Santi et al. [9] having used [Pd(PPh3)4] as catalyst instead of 

[PdCl2(PPh3)2]. 
1H NMR (400 MHz, CDCl3): δ 4.12 (s, 5H, C5H5), 4.35 (s, 2H, C5H4), 4.67 (s, 

2H, C5H4), 7.21 (s, 1H, thiophene), 7.30 (t, J(HH) = 8.4 Hz, 1H), 7.32 (t, J(HH) = 7.6 Hz, 1H), 

7.66 (d, J(HH) = 4.4 Hz, 1H), 7.76 (d, J(HH) = 3.6 Hz, 1H). 13C NMR (100 MHz, CDCl3): 

δ 67.3 (Fc), 69.2 (Fc), 70.1 (Fc), 79.4 (Fc), 117.9, 122.0, 122.6, 123.5, 124.3, 139.1, 140.6, 143.9. 

Anal. Calcd. for C18H14FeS (%): C, 67.94; H, 4.43. Found: C, 67.76; H, 4.49. 

 

2.3. Single crystal X-ray crystallography 

Single crystals of 1 suitable for X-ray diffraction were obtained by slow diffusion of hexane into 

a dichloromethane solution containing 1 at room temperature. A crystal of approximate 

dimensions 0.12 × 0.10 × 0.10 (in mm) was mounted on a glass fiber for diffraction experiments. 

Intensity data were collected on a Nonius Kappa CCD diffractometer with Mo Kα radiation (λ = 

0.71073 Å) at room temperature. Data reduction was carried out using the SAINT-NT software 

package [31]. Multi-scan absorption corrections were applied to all intensity data using 

SADABS [32]. The molecular structure was solved by a combination of direct methods and 

Fourier difference techniques, and refined by full matrix least squares (SHELXL-97) [33]. All 

non-H atoms were refined anisotropically. Hydrogens were placed in ideal positions and refined 

as riding. Crystal parameters and details of the data collection are summarized in table 1. 

 

3. Results and discussion 

3.1. Synthesis and crystallography 

Complex 1 was prepared from precursor 1b (scheme 1) described in the literature [3, 30]. A 

subsequent straightforward three-step procedure gave 1 in high yield. Complex 2 was 
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synthesized by the classical palladium-catalyzed Negishi C‒C cross-coupling reaction, following 

a slightly modified procedure to that reported in the literature [9]. Complex 1 was characterized 

by 1H NMR spectroscopy (Supporting Information, figure S1), elemental analysis and single 

crystal X-ray diffraction. The 13C NMR spectrum of 1 was complicated by signal broadening 

caused either by minor paramagnetic (Fe(III)) impurities from the synthetic procedure or by 

spin-crossover effects at room temperature. 

Single crystal X-ray diffraction elaborated further the solid state structure of 1 (figure 1). 

In the process of crystal refinement, we dealt with disorder of the thiophene ring (S1, C45 and 

C46) by setting free variable refinements, and the ratio of the occupancy of two disordered 

components is 0.41/0.59 (figure S2) (Supporting Information). We carried out DFT-optimized 

calculations with both of the disordered structures of 1 and obtained the same results. Selected 

bond lengths (Å) and angles (deg) from the crystal structure of 1 and the DFT-optimized 

structures [1-H]n+ (n = 0, 1) are listed in table 2. The extension ‘-H’ indicates that η-C5Me5 and 

dppe ligands in 1 were replaced by η5-C5H5 and two PH3 ligands, respectively. Viewing from 

figure 1, 1 exhibits a pseudotetrahedral piano-stool geometry of related iron complexes 

[6, 18, 19]. Bond lengths Fe(1)‒C(37) (1.883 Å) and C(37)‒C(38) (1.226 Å) represent the 

iron‒ethynyl unit; the corresponding bonds in model [1-H] from the DFT-optimized structure are 

slightly longer. Bond angles C(37)‒C(38)‒C(46) and Fe(1)‒C(37)‒C(38) of 174.84° and 178.23°, 

respectively, mark the linear iron‒Cα‒Cβ(ethynylene)‒Cγ(benzothiophene) backbone in 1 and are 

in close proximity to the corresponding values calculated for [1-H]. The model complex has 

stronger π-conjugation along the molecular backbone due to a greater conformational freedom at 

iron. Compared with the crystal structure of 2-ferrocenylbenzo[b]thiophene (2) [9], the bond 

lengths in the benzo[b]thiophene skeleton exhibit small differences. The C‒S bond in 1 is longer 

than that in 2, and the C‒C bonds linking the benzo[b]thiophene moiety with the ferrocenyl and 

(η5-Cp*)(η2-dppe)Fe‒C≡C terminals also display small differences, which can be attributed to 

orientation and conjugation effects. The dinuclear iron complex with 2,6-bis(ethynyl)pyridine 

spanning the same terminal groups [19] shows a C≡C bond length of 1.219 Å, which is slightly 
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shorter compared to 1.226 Å in 1, in line with the less negative oxidation potential of the latter 

complex (see below) caused by the withdrawing nature of the benzothiophene system. 

Oxidation of model complex [1-H] to [1-H]+ caused elongation of the Fe(1)‒P(1,2) and 

C(37)‒C(38) bonds, along with a decrease of the Fe(1)‒C(37) bond length and the 

P(1)‒Fe(1)‒P(2) bond angle (table 2). These structural changes clearly indicate that the 

one-electron oxidation of [1-H] is strongly localized on the iron‒ethynyl moiety, with some 

participation of the terminal benzothiophene unit. 

 

3.2. Electrochemistry 

The anodic response of 1 was investigated by cyclic voltammetry (CV) and square-wave 

voltammetry (SWV) in CH2Cl2/Bu4NPF6. Both 1 and 2 exhibit a reversible anodic wave 

(figure 2). The E1/2 value determined for 1 is lower by 0.56 V compared to 2 (table 3). The 

HOMO of 2 has been shown to reside 74% on Fe [9] with the withdrawing effect of the 

benzo[b]thiophene-2-yl substituent increasing the potential of the ferrocene oxidation. In contrast, 

the HOMO of 1 is strongly delocalized over the π-conjugated Fe‒ethynyl‒benzothiophene 

backbone (see the Crystallography and DFT sections for support). The negative oxidation 

potential (vs Fc/Fc+) of benzo[b]thiophene-2-yl complex 1 nicely corresponds with similar 

values reported in the literature [19] for the phenyl and 2-pyridyl derivatives (table 3), proving 

the key role of the ethynylene linker in determining the redox properties of this family of 

complexes (see the IR SEC section below). 

 

3.3. UV-vis-NIR and IR spectroelectrochemistry 

UV-vis-NIR (figure 3) and IR (figure 4) spectroelectrochemcial monitoring of the reversible 

oxidation of 1 and 2 to the corresponding cations was carried out with an optically transparent 

thin-layer electrochemical (OTTLE) cell under dry conditions. 

Both 1 and 2 exhibit strong, presumably π-π* absorption in the UV spectral region, with 

maxima at 387 nm and 303 nm, respectively. In addition, 2 features a weak MLCT absorption at 
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457 nm [9]. The oxidation to monocations 1+ and 2+ results in the appearance of a broad band at 

788 nm for 1+ and 942 nm for 2+ (table 4). The visible absorption of 2+ is broader and weaker 

than that of 1+ (figure 3). The UV-vis-NIR absorption spectrum recorded for 2+ after anodic 

electrolysis agrees with that obtained after the chemical oxidation of 2 with acetylferrocenium 

[9]; the assignment of the visible-NIR absorption of 2+ as a benzo[b]thiophene-to-iron(III) 

charge transfer (LMCT) has been reported. The visible absorption of 1+ (table 4) has a strongly 

mixed ILCT/LMCT character, as revealed by TD-DFT calculations (see below). 

IR spectral monitoring showed that the ν(C≡C) band of 1 at 2033 cm-1 shifted to 

1967 cm-1 upon oxidation to 1+ (figure 4), implying an increased contribution of the Fe=C=C 

mesomeric form to the molecular backbone structure and significant participation of the 

ethynylene linker in the anodic electron transfer, in agreement with the structural analysis of 

[1-H]+ (table 2). 

 

3.4. DFT and TD-DFT calculations 

To describe the nature of the one-electron oxidation of 1 and determine the electronic structure 

of the stable cationic product in greater detail, corresponding model complexes [1-H] and [1-H]+ 

with dppe and Cp* in the half-sandwich unit replaced by two PH3 ligands and Cp [4] were 

selected to perform density functional theory (DFT) calculations at the B3LYP/6-31G* and 

BLYP35/6-31G* levels. 

First we have calculated the ν(C≡C) frequencies for [1-H] and [1-H]+: the values of 2174 

and 2065 cm-1 (with B3LYP), and 2448 and 2388 cm-1 (with BLYP35), respectively, document 

that the red shift of Δῦ = 64 cm-1 obtained with the BLYP35 method is very close to the 

experimentally determined difference, Δῦ = 66 cm-1 (figure 4). Spin densities in [1-H]+ (figure 5) 

calculated with both DFT methods are distributed along the whole linear molecular backbone 

(figure 1). However, the dominant 70% contribution from the Fe center revealed by BLYP35 

(figure 5b) is much larger than the 58% obtained with B3LYP (figure 5a). The BLYP35 values 
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are consistent with the spin density data published for the reference cationic mononuclear 

2-ethynylpyridine complex [34] that also shows a similar oxidation potential to 1 (table 3). 

The visible electronic absorption spectrum of 1+ has been assigned on the grounds of 

TD-DFT calculations of [1-H]+ with the more rational BLYP35 method that has successfully 

reproduced the ν(C≡C) wavenumber change upon oxidation of 1 residing dominantly at the Fe 

center. Cation [1-H]+ features an intense electronic absorption at 784 nm (12800 cm-1) and a 

weaker one at 538 nm (18600 cm-1). The calculated data including the oscillator strength (table 5) 

are indeed in excellent agreement with the observed electronic absorption of 1+ in the 

500-900 nm range (figure 3a, table 4). Both optical excitations are dominated by the 

β-HOSO→β-LUSO transition (figure 6) exhibiting a 2-ethynylbenzothiophene-to-Fe(III) charge 

transfer (LMCT) character. Another LMCT transition, viz. β-HOSO-1→β-LUSO, contributes to 

the electronic absorption in the green light spectral region. On the other hand, the lowest energy 

(red light) absorption also encompasses the α-HOSO→α-LUSO+2 transition corresponding to an 

intraligand, π→π* (2-ethynylthiophene based) excited state. 

 

4. Conclusion 

DFT and TD-DFT calculations of model [1-H]+ with the BLYP35/6-31G* method have 

reproduced the significant decrease in the ν(C≡C) frequency recorded in the reversible oxidation 

of [Cp*Fe(dppe)(2-ethynylbenzo[b]thiophene)] (1) to the corresponding cation along with the 

visible electronic absorption of the oxidized complex. The distribution of the spin density in 1+ 

can be presented as largely localized (ca. 70%) at the iron center. In this regard 1+ closely 

resembles the reference iron complex with 2-ethynylpyridine bound to the half-sandwich moiety 

[34]. It is therefore not surprising that both complexes feature very similar oxidation potentials 

[19]. The accentuated contribution of the Fe=C=C= mesomeric structure of the ethynylene linker 

in the linear molecular backbone of the oxidized complexes ensures distribution of the spin 

density also over the conjugated heterocyclic (benzothiophene, pyridine) termini. This electronic 

communication is probably emphasized in the ruthenium derivative of 1 (Ru-1) [35] where the 
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one-electron oxidation causes a larger red shift of the ν(C≡C) frequency (66 cm-1 for 1 vs 77 cm-1 

for Ru-1). The oxidation potential of Ru-1 is shifted significantly less negatively by 410 mV 

compared to 1, which may signal stronger participation of the terminal benzothiophene. Varying 

the transition metal center in this family of complexes therefore has a higher impact on the 

HOMO energy than different conjugated termini at the ethynylene linker, as expected for the 

largely metal-based oxidation. 

The other reference complex 2-ferrocenylbenzo[b]thiophene (2) [9] converts upon 

one-electron oxidation almost exclusively to the ferrocenium product (2+). Despite lacking the 

ethynylene linker in 2+, both formally Fe(III) cationic complexes feature similar electronic 

absorption in the visible spectral region assigned to benzothiophene-to-iron charge transfer 

(LMCT) transitions. The lowest-energy LMCT absorption of 1+ (with a sizable π-π* intraligand 

component) exhibits much higher intensity compared to that of 2+, which may reasonably be 

attributed to participation of the ethynylene linker mediating the charge transfer to the iron center 

and facilitating its interaction with terminal benzothiophene. 

 

Supplementary material 

The 1H NMR spectrum and molecular structure of 1 with fully labeled thermal ellipsoid plot (50% 

level). CCDC 1443689 contains the supplementary crystallographic data for 1. These data can be 

obtained free of charge from the Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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Table 1. Crystallographic data and refinement details for 1. 

Formula C46H44FeP2S 

FW 746.66 

Temperature 100(2) K 

Wavelength 0.71073 Å 

Crystal system Orthorhombic 

Space group Pbca 

a (Å) 11.0315(10) 

b (Å) 20.1820(18) 

c (Å) 33.601(3) 

α (°) 90 

β (°) 90 

γ (°) 90 

V (Å3) 7480.8(11) 

Z 8 

D(calc) (mg/m3) 1.326 

Abs. coeff. (mm-1) 0.577 

F(000) 3136 

Crystal size (mm3) 0.12 × 0.10 × 0.10 

θ range (°) 1.21 to 26.00 

Index ranges -13≤h≤13, -24≤k≤21, -41≤l≤41 

Reflections collected 49926 

Independent reflect. 7363 [R(int) = 0.0982] 

Data / restr. / param. 7363 / 49 / 508 

Goodness-of-fit on F2 1.052 

Final R indices [I>2σ(I)] R1 = 0.0371, wR2 = 0.0936 

R indices (all data) R1 = 0.0455, wR2 = 0.0977 

Diff. peak and hole (e.Å-3) 0.503 and -0.382 
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Table 2. Selected bond lengths (Å) and angles (deg) from crystal structure of 1 and 
the DFT-optimized structures of [1-H]n+ (n = 0, 1). 

 1 [1-H] [1-H]+ 

Fe(1)‒P(1, 2) 2.175, 2.184 2.206, 2.206 2.245, 2.245 

Fe(1)‒C(37) 1.883 1.910 1.840 

C(37)‒C(38) 1.226 1.233 1.246 

C(38)‒C(46) 1.423 1.407 1.386 

C(46)‒C(45) 1.412 1.373 1.393 

C(46)‒S(1) 1.697 1.785 1.777 

P(1)‒Fe(1)‒P(2) 86.00 95.98 93.35 

Fe(1)‒C(37)‒C(38) 178.23 178.84 179.74 

C(37)‒C(38)‒C(46) 174.84 179.50 179.76 
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Table 3. Electrochemical oxidation of 1 and reference compounds. 

Complex E1/2 (V)a ΔEp (mV) Ep (V)b 

1 -0.51 100 -0.51 

2 0.06c 

0.06d,e 

100c 

62 

0.06 

 

[Cp*(dppe)Fe−C≡C−Ph] f  -0.61e 80 -- 

[Cp*(dppe)Fe−C≡C−(2-Py)] f -0.54e 90 -- 
aCyclic voltammetry. Electrode potentials in volts vs Fc/Fc+ obtained at 298 K 
in dichloromethane/10-1 M Bu4NPF6. 

bSquare wave voltammetry. cThis work. 
dRef. [9]. eThe reported values of E1/2 determined against SCE were converted 
using E1/2 (Fc/Fc+) = 0.46 V vs SCE in dry dichloromethane. f Ref. [19] (Ph = 
phenyl; 2-Py = 2-pyridyl). 
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Table 4. UV-vis-NIR absorption data for 1n+ and 2n+ (n = 0, 1).a 

Complex 
λmax(nm) 
(εmax (dm3 mol-1 cm-1)) 

1 277 (41900), 387 (21200) 

1+ 367 (11600), 422 (9700), 516 (2100), 788 (8300) 

2 303 (28900), 457 (1100) 

2+ 395 (8700), 465 (4900), 942 (1600) 
a In dichloromethane/Bu4NPF6 at 293 K. 
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Table 5. Major electronic excitations in model complex [1-H]+ determined by the TD-DFT 
method (BLYP35 /6-31G*). 

Complex 
Energy 
(cm-1) 

Wavelength 
(nm) 

Osc. Str. 
(f) 

Major contribution Assignment 

[1-H]+ 

12800 784 0.23 

β-HOSO→β-LUSO 
(78%) 
α-HOSO→α-LUSO+2 
(20%) 

LMCT 
 
π-π* 
 

18600 538 0.08 

β-HOSO→β-LUSO 
(65%) 
β-HOSO-1→β-LUSO 
(30%) 

LMCT 
 
LMCT 
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