Manganese tricarbonyl complexes with asymmetric 2 2-iminopyridine ligands: toward decoupling steric and electronic factors in electrocatalytic CO2 reduction

Article
Accepted Version

It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1021/acs.inorgchem.6b01477

Publisher: American Chemical Society

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
Manganese Tricarbonyl Complexes with Asymmetric 2-Iminopyridine Ligands: Toward Decoupling Steric and Electronic Factors in Electrocatalytic CO₂ Reduction

Steven J. P. Spall, † Theo Keane, † Joanne Tory, † Dean C. Cocker, † Harry Adams, † Hannah Fowler, † Anthony J. H. M. Meijer, † František Hartl, †* and Julia A. Weinstein*‡

Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.
Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.

Supporting Information

ABSTRACT: Manganese tricarbonyl bromide complexes incorporating IP (2-(phenylimino)pyridine) derivatives, [MnBr(CO)₃(IP)], are demonstrated as a new group of catalysts for CO₂ reduction, which represent the first example of utilization of (phenylimino)pyridine ligands on manganese centers for this purpose. The key feature is the asymmetric structure of the redox-noninnocent ligand that permits independent tuning of its steric and electronic properties. The α-diimine ligands and five new Mn(I) compounds have been synthesized, isolated in high yields, and fully characterized, including X-ray crystallography. Their electrochemical and electrocatalytic behavior was investigated using cyclic voltammetry and UV-vis-IR spectroelectrochemistry within an OTTLE cell. Mechanistic investigations under an inert atmosphere have revealed differences in the nature of the reduction products as a function of steric bulk of the ligand. The direct ECE (electrochemical—chemical—electrochemical) formation of a five-coordinate anion [Mn(CO)₃(IP)]⁻, a product of two-electron reduction of the parent complex, is observed in the case of the bulky DIPIMP (2-(((2,6-disopropylphenyl)imino)methyl)pyridine), TBIMP (2-(((2-tert-butylphenyl)imino)methyl)pyridine), and TBIPE (2-(((2-tert-butylphenyl)imino)ethyl)pyridine) derivatives. This process is replaced for the least sterically demanding IP ligand in [MnBr(CO)₃(IP)] (2-((phenylimino)methyl)pyridine) by the stepwise formation of such a monoanion via an ECEC(E) mechanism involving also the intermediate Mn—Mn dimer [Mn(CO)₃(IP)]₂. The complex [MnBr(CO)₃(IPIMP)] (2-(((2-disopropylphenyl)imino)methyl)pyridine), which carries a moderately electron donating, moderately bulky IP ligand, shows an intermediate behavior where both the five-coordinate anion and its dimeric precursor are jointly detected on the time scale of the spectroelectrochemical experiments. Under an atmosphere of CO₂ the studied complexes, except for the DIPIMP derivative, rapidly coordinate CO₂ forming stable bicarbonate intermediates, with no dimer being observed. Such behavior indicates that the CO₂ binding is outcompeting another pathway: viz., the dimerization reaction between the five-coordinate anion and the neutral parent complex. The bicarbonate intermediate species undergo reduction at more negative potentials (ca. −2.2 V vs Fc/Fc⁰), recovering [Mn(CO)₃(IP)]⁻ and triggering the catalytic production of CO.

Received: June 22, 2016

DOI: 10.1021/acs.inorgchem.6b01477

© XXXX American Chemical Society
five-coordinate radical $[\text{Re(CO)}_3(\text{Bu-bpy})]^*$ by an additional
15–20 cm$^{-1}$ shift.

Two mechanisms have been proposed$^{10,14–18}$ for the
ultimate reduction of $[\text{Mn(CO)}_3(\alpha\text{-dime})]_2$, in the presence
of CO$_2$, which can be referred to as the anionic and the
oxidative addition19 pathways. The anionic pathway involves
reduction of the dimer $[\text{Mn(CO)}_3(\alpha\text{-dime})]_2$ at a potential
more negative than that of the parent complex, generating the
five-coordinate anion $[\text{Mn(CO)}_3(\alpha\text{-dime})]^-$, to which CO$_2$
coordinates and is catalytically reduced in the presence of a
Brensted acid (the source of H$^+$). The anionic pathway is
broadly similar to the two-electron pathway observed for Re
dimers.20,21 In contrast, the uncommon second pathway
identified using pulsed EPR studies19 involves coordination of
CO$_2$ to the dimer $[\text{Mn(CO)}_3(2,2$-$\text{bpy})]_2$ in the presence of a
Brensted acid in a concerted oxidative addition step. This
process is shown to generate a low-spin MnII–COOH complex,
from which CO is subsequently released.

Since the catalytic CO$_2$ reduction with the use of
$[\text{MnX(CO)}_3(\alpha\text{-dime})]_2$ ($\alpha\text{-dime} = \text{R-bpy}; X = \text{halide or}
$ pseudohalide) has been shown to proceed in many cases via a
dimerization step, immobilization of the catalyst12,19 or
sterically hindered groups at bpy may have a profound effect on the catalytic activity.23 Indeed, it has
recently been shown that the use of bipyridines incorporating
bulky groups in the 6,6'-positions24,25 (or another bulkier
heterocyclic ligand26) largely inhibits dimerization in the
catalytic cycle. The result is the formation of the stable five-
coordinate anion via the two-electron transfer (ECE) at the first
rational wave. However, coordination of CO$_2$ to the five-
coordinate anion produces a stable species which must be
reduced at considerably more negative potentials27 in order for
catalysis to be observed. It has recently been shown that in the
presence of a Lewis acid, Mg$^{2+}$, the catalytic overpotential29
is decreased by approximately 400 mV.

A similar behavior was observed for $[\text{MnBr(CO)}_3(R\text{-DAB})]
$ complexes featuring nonaromatic 1,4-diazabuta-1,3-diene (R-
DAB)3,9,30 ligands. The reduction potentials of the dimers
$[\text{Mn(CO)}_3(R\text{-DAB})]_2$ are almost identical with those of the
parent complexes, implying that the five-coordinate anion is
produced directly upon reduction and reacts readily with CO$_2$
in solution to form a stable bicarbonate complex30 and, as,
with sterically hindered 2,2'-bipyridine ligands,25 a much more
negative potential (below 2 V vs Fc/Fc$^+$) must be applied to
toggle catalytic CO$_2$ reduction. Functionalization of the
α-dime with a sterically bulky group such as Bu should also modify the electronic properties of the ligand. In particular, this
change should affect the energy of the LUMO, the reduction
potential, and catalytic activity.$^{23–33}$

Introducing steric bulk23,25 to prevent unwanted reactions of the
catalytic species, including dimerization as either Mn–Mn9
or C$(\text{imino})–C$(\text{imino})$ bound species,21 while at the same
time reducing the risk of increased overpotential is a
challenging task. Molecular designs that allow for steric and
electronic effects to be decoupled are required.

In this paper we have investigated a family of tricarbonyl
manganese complexes featuring asymmetric α-dime ligands,17
iminopyridines (IP)21,23,34,35 which combine an accessible
$\text{C}==\text{N}==$ imino bond of the diazabuta-1,3-diene
DAB^hybrid of 2,2'-bipyridine ligands and nonaromatic R-DAB
ligands. Each of the parts is important: for instance, a Mn(I)
complex with Ph-DAB demonstrates formation of five-
coordinate anions, with the steric bulk of the ligand preventing
dimerization, but does not act as a catalyst for CO$_2$ reduction
due to insufficiently negative reduction potential.8

Introduction of the pyridine moiety allows one to reach the
required reduction potentials, while the Ph group attached to the
C==N fragment can be decorated with sterically demanding
substituents, ensuring steric bulk while only slightly affecting the
electronic properties. As the phenyl moiety lies out of plane
with the conjugated α-dime (because of steric effects), the π
electrons of the phenyl substituent are decoupled from the
metallacycle formed by the metal center and the α-dime.

Therefore, functionalization of the phenyl ring in the R$_1$ and R$_2$
positions with large sterically hindering groups (that also have a +1 effect) will have only very minimal effects on the electronics
of the active site of the molecule (vide infra). These ligands offer an opportunity to separate steric and electronic effects in a
chelating α-dime ligand to a certain extent. Thus, the only possibility arises of a systematic variation of the steric hindrance
by changing R$_1$ and R$_2$ groups, while the R group strongly
influences the electronics (but could also hinder the C==N bond).

These ligands are readily accessible via simple synthetic
routes, which are suitable for the purpose of comparatively
independent alteration of steric and electronic effects (Chart 1).

Chart 1. General Structure of the Complexes with the
Asymmetric α-Dime Ligands ($2R_1\text{-}6R_2\text{-phenyl})(\text{R-}
imino)$pyridine9

``Numbers given in parentheses correspond to the Mn complexes. When $R = H$, the ligands will be derivatives of $[(\text{phenylimino})$-
$\text{methyl}]\text{pyridine}$: IMP ($R_1,2 = H$), IPIMP ($R_1 = \text{H}, R_2 = \text{H}$), and
DIPIMP ($R_1,2 = \text{Pr}$). TBIMP ($R_1 = \text{Bu, R}_2 = \text{H}$), and $\text{R}_2 = \text{Pr}, R_1 = \text{H})$, and
DIPIMP ($R_1,2 = \text{Pr}$). TBIMP ($R_1 = \text{Bu, R}_2 = \text{H}$). R = CH$_3$, gives
TBIPE ([(tert-butylphenyl)iminoo]ethy)pyridine.

The potential of such ligands$^{34–38}$ has been convincingly
illustrated by the recent work on a Re tricarbonyl complex with
$2-[(\text{2-cyclohexyl-1-methyl})\text{mimino}]\text{pyridine}$ 30 (both the
one-electron-reduced parent complex and the neutral five-
coordinate Re(0) species were detected), and $\text{Mo pyridine-
monomiodides}$. 54

Herein we report a new series of manganese-based catalysts
for CO$_2$ reduction. We will show that a change in the structure
of the ligands within the same series affects the efficiency of the
process and the relative distribution of the intermediate species, demonstrative of the versatile and tunable nature of these types of
catalysts.

EXPERIMENTAL SECTION

All solvents were supplied by VWR and used as received. The
compounds were purchased from either Sigma-Aldrich or Strem
Chemicals and, unless stated, used as received. Tetrahydrofuran
hexafluorophosphate, [Bu$_4$N][PF$_6$], was recrystallized from hot
ethyl alcohol and dried overnight in a vacuum oven before use in the
234 (s, 1H), 2.91 (s, 1H), 1.34 (d, J = 8.41 Hz, 1H), 7.99 (d, J = 7.2 Hz, 1H), 7.61 (t, J = 6.2 Hz, 1H), 5.77 (d, J = 2.4 Hz, 1H), 7.4 Hz, 1H), 7.30 (t, 1H), 1.43 (s, 1H). HRMS (TOF-ESI, +ve): m/z: 235 (M + Na+) calcd for C13H8N2O3NaBrMn 978.9774, found 978.9789.

\[\text{MnBr(CO)}_7(\text{TBIEP}) \] (5). \[\text{MnBr(CO)}_7(\text{TBIEP}) \] (0.8 mmol, 0.22 g) was combined with TBIEP (0.8 mmol, 0.2 g) and refluxed under aerobic conditions for 4 h. The product was formed in quantitative yield. \[\text{H NMR (400 MHz, CDCl}_3\] : \[\delta \] 9.27 (d, \[J \] = 4.3 Hz, 1H), 7.85 (d, \[J \] = 7.7 Hz, 1H), 7.28 (d, \[J \] = 6.1 Hz, 1H), 7.65–7.54 (m, 2H), 7.34–7.27 (m, 2H), 2.39 (s, 3H), 1.39 (s, 8H). HRMS (TOF-ESI, +ve): m/z (M + Na+) calcd for C13H8N2O3NaBrMn 492.9935, found 492.9934.

\[\text{MnBr(CO)}_7(\text{bppy}) \] (6). This compound was prepared following the literature procedure; \[\text{analytical data are in agreement with the literature data.} \[\text{MnBr(CO)}_7(\text{bppy}) \] (1.28 mmol, 0.35 g) was combined with 2,2'-bipyridine (1.28 mmol, 0.2 g) in diethyl ether (20 mL) and refluxed under aerobic conditions for 4 h. The product was formed in 80% yield. \[\text{H NMR (500 MHz, CDCl}_3\] : \[\delta \] 9.27 (d, \[J \] = 4.3 Hz, 1H), 7.85 (d, \[J \] = 7.7 Hz, 1H), 7.28 (d, \[J \] = 6.1 Hz, 1H), 7.65–7.54 (m, 2H), 7.34–7.27 (m, 2H), 2.39 (s, 3H), 1.39 (s, 8H). HRMS (TOF-ESI, +ve): m/z (M + Na+) calcd for C13H8N2O3NaBrMn 496.8991, found 496.8985.

Cyclic Voltammetry. Cyclic voltammetry was performed using a Princeton Applied Research VersaSTAT3 potentiostat on 2 mM 1–6 in Grubbs dried HPLC-grade acetonitrile containing 2 × 10⁻³ M \[\text{[Bu4N][PF}_6 \] as supporting electrolyte. A glassy-carbon working electrode (surface area 0.07 cm², polished on alumina and paper) and a Pt-wire counter electrode were used with a 0.1 M KCl Ag/AgCl reference electrode.

The solutions were deoxygenated by bubbling thoroughly with bottled \[\text{N}_2 \] (BOC), and the \[\text{N}_2 \] atmosphere was maintained over the samples during the experiment. To test for catalytic current in the presence of \[\text{CO}_2 \], the samples were bubbled thoroughly with bottled \[\text{CO}_2 \] (BOC) and cyclic voltammograms (CVs) were recorded under an atmosphere of \[\text{CO}_2 \] (some residual water might be present in the \[\text{CO}_2 \] used to saturate the samples). Water was then added (0.3–6 mL of the solution of each sample) to test the effects of Bronsted acid. Ferrocene was added as the internal standard at the end of all experiments.

Spectroelectrochemistry. Infrared spectroelectrochemistry was performed using an EmStat3 or EmStat3+ potentiostat (PalmSonic, 200, Houten, The Netherlands). The solution of 4 mM complex in the presence of 3 × 10⁻⁴ M \[\text{[Bu4N][PF}_6 \] in dry acetonitrile was analyzed using an optically transparent thin-layer electrochemical (OTTLE) cell equipped with Pt minigrid working and auxiliary electrodes, an Ag–AgCl reference electrode, and a Pt-wire counter electrode. Samples were prepared under an argon atmosphere; for electrocatalytic measurements, the solutions were bubbled with \[\text{CO}_2 \] on a frit (24–25 minutes) to saturation under normal pressure. Parallel IR and UV–vis spectral monitoring during the spectroelectrochemical experiment was performed on a Bruker Vertex 70v FT-IR spectrometer or PerkinElmer Spectrum 1 and a Scinco S-3100 spectrophotometer, respectively. Thin-layer CVs were recorded in the course of the experiment.

Gas Chromatography Linked to Electrolysis. Bulk electrolysis was performed on a 0.17 mM solution of each of the complexes in a 60 mL solution of acetonitrile/water (9/1 v/v). The cell setup consisted of a Pt-mesh working electrode, a Pt-rod counter electrode, and an Ag-wire pseudoreference electrode in a 0.1 M KCl solution. The potential of the \[\text{Fc/Fc}^+ \] recorded in this setup using a glassy-carbon 3 mm diameter electrode was +0.350 V vs Ag wire. Hence, in order to reach the potential necessary for the \[\text{CO}_2 \] reduction as estimated from the CV data, the potential was held at ~1.9 V vs Ag wire for all samples: i.e., ~2.25 V vs \text{Fc/Fc}^+.

Prior to electrolysis, a CV was recorded in the bulk electrolysis cell using a glassy-carbon working electrode. Gas samples (100 μL) were withdrawn from the head space at regular intervals and analyzed.
RESULTS AND DISCUSSION

X-ray Crystallography. The crystal structures of the complexes [MnBr(CO)$_3$](α-diamine)] (α-diamine = TBIEP, IMP, IPIMP, DIPIMP) are shown in Figure 1, and selected related [MnBr(CO)$_3$(α-diamine)] species reported in the literature. The X-ray data are in good agreement with the results obtained through DFT calculations. As predicted by DFT, the pyridine and phenyl rings lie approximately orthogonally to one another (dihedral angles between the corresponding planes are MnTBIEP 84.5°, MnIPIMP 83.64°, MnDIPIMP 78°), resulting in little orbital overlap between these two moieties, with the exception of MnIMP, where the two ring systems were significantly less orthogonal (56.54°).

The crystal structures have revealed significant steric hindrance between the substituents R = Me and R$_1$ = Bu in MnTBIEP, which inhibits rotation of the Ph ring and confers conformational rigidity. Rotation of the Ph ring in MnDIPIMP is also inhibited by the two Pr groups and hence also has conformational rigidity. In contrast, MnIMP and MnIPIMP exhibit much smaller steric hindrance, facilitating the rotation of the phenyl ring.

Computational Investigations of Molecular Structures and Frontier Orbitals by DFT. The optimized geometries of the studied complexes with frontier orbitals overlaid as calculated by DFT are displayed in Table 1. As anticipated, the phenyl group lies out of the plane of the chelating diimine. The HOMO is localized predominantly over the axial Br–Mn–C(O) bonds with almost no contribution from the phenyl moiety. The LUMO resides largely on the imine, pyridyl, and metal center, with minimal contribution from the C1–C2 and C1–C6 σ bonds of the phenyl groups. In the case of MnIMP, due to the lack of substitution at R$_1$ and R$_2$, the phenyl moiety is less sterically hindered and thus is positioned closer to the plane of the imino-pyridine fragment, resulting in a small degree of involvement of the phenyl σ system in the low-energy unoccupied orbitals. This trend continues in the other low-energy unoccupied orbitals (see Figures SI1–SI10 in the Supporting Information).

The energies of the HOMO in all complexes are within 0.02 eV of each other, and all compounds in the IMP subset of complexes have a LUMO that lies within 0.03 eV of those of the other complexes. In contrast, MnTBIEP shows a difference in LUMO energy of +0.19 eV in comparison with IPIMP. This larger difference in LUMO energy comes as result of methylation at the R position. In contrast, adding two isopropyl groups at the R$_1$ and R$_2$ positions resulted in an energy difference of just 0.02 eV between MnIMP and MnDIPIMP. The results of the calculations on the trends in the energies of HOMO/LUMO are in full agreement with the experimentally determined redox potentials (see below). These results imply that an almost complete separation between the steric and the electronic effects in the context of few-electron reductions can indeed be achieved in this series of complexes. Changing the R$_1$ group will strongly affect the energy of the LUMO while also having some impact on the steric properties at the carbon of the imino C==N bond, while changing the R$_1$ or R$_2$ groups should have considerable effects on the steric hindrance of the molecule (protecting the Mn and imino-N centers) but hardly affect its electronic properties.

The experimental and calculated carbonyl vibrational frequencies of the studied complexes are shown in Table 2. The calculated frequencies are in good agreement with the experimental values. Some systematic discrepancies are apparent: the high-energy A’(1) mode tends to be underestimated by ≈10 cm$^{-1}$, the A’ mode tends to have a lower deviation of only ≈2 cm$^{-1}$, and the low-energy A’(2) mode tends to be overestimated by ≈10 cm$^{-1}$. It is clear that attachment of the methyl group as R increases the electron density on the metal center and thus also the Mn to CO σ back-bonding, as evidenced by the smaller values of ν(CO) for...
MnTBIEP in comparison to the IMP subseries (complexes 1–4). However, substitution at R1 and R2 has only a slight effect on the frequencies. It should be noted that the magnitude of these effects is small (<10 cm\(^{-1}\)) and that it is beyond the scope of this computational work to unravel the various factors affecting changes in CO stretching frequencies.

The results of DFT calculations (Table 2) of IR spectra for the parent Br complexes \([\text{MnBr(CO)}_3(\alpha\text{-diimine})] (1–5)\) and the corresponding \([\text{Mn(CO)}_3(H_2O)(\alpha\text{-diimine})]^+\) (cationic aquo complexes) match the experimental data well. We therefore use the calculated \(\nu(CO)\) wavenumbers for the hydrolyzed aquo and reduced (dimer and anion) species to aid the analysis of the IR spectra and product assignment in the course of the corresponding cathodic IR-SEC experiments (vide infra).

Adding electron-donating groups (\(^{i}\)Pr, \(^{t}\)Bu) to the phenyl ring of the IMP subseries does not have a large effect on the \(\nu(CO)\) frequency, the band positions being virtually unchanged.

Table 1. Frontier Orbitals of the Complexes 1–5 and the Corresponding Five-Coordinate Anions Calculated at the B3LYP/SDD+6-311G(d,p)/IEPPCM Level

<table>
<thead>
<tr>
<th>HOMO</th>
<th>LUMO</th>
<th>HOMO</th>
<th>LUMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parent Complex</td>
<td>Five-coordinate anion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnIMP</td>
<td>MnIMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\epsilon = -6.31) eV</td>
<td>(\epsilon = -2.84) eV</td>
<td>(\epsilon = -3.67) eV</td>
<td>(\epsilon = -1.18) eV</td>
</tr>
<tr>
<td>MnIPIMP</td>
<td>MnIPIMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\epsilon = -6.33) eV</td>
<td>(\epsilon = -2.81) eV</td>
<td>(\epsilon = -3.70) eV</td>
<td>(\epsilon = -1.01) eV</td>
</tr>
<tr>
<td>MnDIIMP</td>
<td>MnDIIMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\epsilon = -6.31) eV</td>
<td>(\epsilon = -2.83) eV</td>
<td>(\epsilon = -3.67) eV</td>
<td>(\epsilon = -0.99) eV</td>
</tr>
<tr>
<td>MnTBIMP</td>
<td>MnTBIMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\epsilon = -6.36) eV</td>
<td>(\epsilon = -2.80) eV</td>
<td>(\epsilon = -3.64) eV</td>
<td>(\epsilon = -1.02) eV</td>
</tr>
<tr>
<td>MnTBIEP</td>
<td>MnTBIEP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aIsovalue of 0.04 (e bohr\(^{-3}\))^{1/2}.
The UV–vis absorption spectra (Figure 2) are consistent with the nature of the frontier orbitals obtained from the calculated data. The lowest energy absorption band for the complexes of the IMP subseries 1–4 occurs at approximately the same ca. 500 nm position. In contrast MnTBIEP (5) exhibits an absorption band with a maximum at a shorter wavelength, 460 nm, due to electron donation from the Me5 group which destabilizes the LUMO.

Cyclic Voltammetry. Electrochemical studies showed significant differences between the cathodic path of MnTBIEP (5) and those of the IMP subseries (1–4).

Under an N2 atmosphere, [MnBr(CO)3(TBIEP)] shows a single reduction wave at $E_{pc} = -1.53$ V and an intense anodic wave at $E_{pa} = -1.3$ V observed on the reverse anodic scan. This behavior is similar to that of [MnBr(CO)3(Pr-DAB)] (Pr-DAB = 1,4-diisopropyl-1,4-diazabuta-1,3-diene), which is reduced by an ECE mechanism. The initial one-electron reduction results in dissociation of the bromide to form a five-coordinate radical, [Mn(CO)3(TBIEP)], which is concomitantly reduced to the five-coordinate anion [Mn(CO)3(TBIEP)]− (reoxidized at -1.3 V) at the potential required for the reduction of [MnBr(CO)3(TBIEP)]. A small anodic wave at -0.6 V is characteristic of oxidation of [Mn(CO)3(TBIEP)]−, formed in the course of the anodic path of the five-coordinate anion, and indicates that dimerization can still occur with R = CH3. The dimer could also be produced in a reaction of [Mn(CO)3(TBIEP)]− with neutral [MnBr(CO)3(TBIEP)] on the cathodic scan, but the absence of a catholic wave for reduction of [Mn(CO)3(TBIEP)]2 indicates that its reduction potential is too close to that of [MnBr(CO)3(TBIEP)] for a separate reduction wave to be observed.

The CV traces of MnIMP obtained under a N2 atmosphere show three cathodic reduction peaks at $E_{pc} = -1.28$, -1.41, and -1.54 V and a strong anodic peak at $E_{pa} = -1.24$ V. The first reduction at -1.28 V can be assigned to the cationic [Mn(CO)3(H2O)(IMP)]+; it is likely that the peak at -1.41 V is due to remaining nonhydrolyzed [Mn(CO)3(IMP)] or a solvent adduct, while the -1.54 V wave corresponds to the reduction of the dimeric species (see also the IR spectroelectrochemical section below). The five-coordinate anion [Mn(CO)3(IMP)]− is probably the reduction product at all three different cathodic waves (the parent complex [MnBr(CO)3(IMP)], aquo complex, and the IMPMn−MnIMP)

Table 2. Experimentally Obtained and Calculated Frequencies of Carbonyl Stretching Vibrations, ν(CO), of the Mn Complexes in Their Neutral Form (1–5) and Transient One-Electron-Reduced Form, as well as Five-Coordinate Anion, a Cationic Aqua Complex, and an Mn–Mn Bound Dimer

<table>
<thead>
<tr>
<th>species</th>
<th>ν(CO)/cm$^{-1}$</th>
<th>calc</th>
<th>exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MnBr(CO)3(IMP)] (1)</td>
<td>2020, 1943, 1931</td>
<td>2029, 1941, 1926</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(IMP)]</td>
<td>1992, 1906, 1897</td>
<td>not obsd</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(IMP)]2</td>
<td>1906, 1830, 1813</td>
<td>1930, 1826</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(IMP)]</td>
<td>1964, 1819, 1882, 1872, 1868</td>
<td>1994, 1949, 1902, 1875</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(IPIMP)] (2)</td>
<td>2020, 1945, 1929</td>
<td>2029, 1943, 1923</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(IPIMP)]</td>
<td>1988, 1905, 1891</td>
<td>not obsd</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(H2O)(IPIMP)]</td>
<td>2044, 1963, 1956</td>
<td>2049, 1959 (br)</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(IPIMP)]2</td>
<td>1905, 1826, 1808</td>
<td>1929, 1824</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(IPIMP)]</td>
<td>1964, 1817, 1890, 1881, 1866, 1860</td>
<td>1981, 1949, 1901, 1882, 1862</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(DIPIMP)] (3)</td>
<td>2019, 1945, 1929</td>
<td>2028, 1944, 1922</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(DIPIMP)]</td>
<td>1985, 1906, 1890</td>
<td>not obsd</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(H2O)(DIPIMP)]</td>
<td>2045, 1964, 1957</td>
<td>2050, 1960 (br)</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(DIPIMP)]2</td>
<td>1903, 1824, 1806</td>
<td>1929, 1829/1822</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(DIPIMP)]</td>
<td>1965, 1819, 1890, 1880, 1860, 1850</td>
<td>not obsd</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(TBIMP)] (4)</td>
<td>2020, 1947, 1925</td>
<td>2029, 1945, 1923</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(TBIMP)]</td>
<td>1988, 1907, 1890</td>
<td>not obsd</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(H2O)(TBIMP)]</td>
<td>1965, 1945, 1956</td>
<td>not obsd</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(TBIMP)]2</td>
<td>1906, 1827, 1807</td>
<td>1928, 1823</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(TBIMP)]</td>
<td>1964, 1816, 1889, 1879, 1862, 1854</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(TBIEP)] (5)</td>
<td>2018, 1944, 1921</td>
<td>2028, 1943, 1917</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)3(TBIEP)]</td>
<td>1980, 1904, 1883</td>
<td>not obsd</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(H2O)(TBIEP)]2</td>
<td>2042, 1962, 1950</td>
<td>2048, 1960, 1954</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(TBIEP)]</td>
<td>1897, 1819, 1798</td>
<td>1922, 1814 (br)</td>
<td></td>
</tr>
<tr>
<td>[Mn(CO)3(TBIEP)]</td>
<td>1958, 1909, 1880, 1870, 1850, 1841</td>
<td>not obsd</td>
<td></td>
</tr>
</tbody>
</table>

"In acetonitrile at 293 K. Positions are approximate, as the parent CO stretching vibrations obscure those of the catonic aqua complex."
dimer), as evidenced by its anodic wave at $E_{p,a} = -1.24$ V on the reverse anodic scan (accompanied by the dimer oxidation above -0.5 V).

Over time a smaller cathodic wave emerges at $E_{p,c} = -1.35$ V, due to the aquo-coordinated cationic complex forming via hydrolysis of the parent Br complex (see Figures SI11 and SI12 in the Supporting Information). Under an atmosphere of CO$_2$, the anodic wave of [Mn(CO)$_3$(TBIEP)]$^-$ at -1.3 V disappears, and the profile of the CV also changes (Figure 3), with a broad cathodic wave at -1.35 V.

Inorganic Chemistry

Figure 3. Cyclic voltammograms of 1 mM MnTBIEP (top panel) and MnTBIMP (bottom panel) in acetonitrile with 0.2 M [Bu$_4$N][PF$_6$] as supporting electrolyte, under a N$_2$ atmosphere (black), CO$_2$ atmosphere (red), and CO$_2$ with 4.7% added water (blue) at a scan rate of 0.1 V s$^{-1}$.

CO$_2$ and water are required for the current enhancement to be observed.

Under a CO$_2$ atmosphere, no anodic wave corresponding to reoxidation of the five-coordinate anion is observed for the least sterically hindered [Mn(CO)$_3$(IMP)]$^-$ (Figure 4) or for the monosubstituted complexes 2 and 4, a behavior indicative of a rapid reaction of the anion with CO$_2$. A diminished but clear anodic wave of [Mn(CO)$_3$(TBIEP)]$^-$ can be observed under a CO$_2$ vs a N$_2$ atmosphere (Figure 3), suggesting that [Mn(CO)$_3$(TBIEP)]$^-$ associates with CO$_2$ less efficiently. While, similarly to MnIPIMP, no anodic wave corresponding to [Mn(CO)$_3$(TBIMP)]$^-$ reoxidation under a CO$_2$ atmosphere could be observed, indicating that CO$_2$ association is rapid, the overall current enhancement for this complex is comparatively low, indicating lower efficiency at reducing CO$_2$ perhaps due to the bicarbonate intermediate somewhat preventing the recovery of the five-coordinate catalytic species.

Under N$_2$, reduction of [MnBr(CO)$_3$(IPIMP)]$^-$ is seen at $E_{p,c} = -1.49$ V, accompanied by a wave at $E_{p,c} = -1.29$ V, assigned to the cationic aqua complex [Mn(CO)$_3$(H$_2$O)(IPIMP)]$^+$ (Figure 5). As discussed above, upon addition of CO$_2$, the oxidation wave of the anion [Mn(CO)$_3$(IPIMP)]$^-$ is not observed, indicating a rapid reaction between the five-coordinate anion.

Figure 4. Cyclic voltammograms of 1 mM MnMP in acetonitrile with 0.2 M [Bu$_4$N][PF$_6$] at a scan rate of 0.1 V s$^{-1}$, under an atmosphere of N$_2$ (black), CO$_2$ (red), and CO$_2$ with 4.7% H$_2$O (blue).

Figure 5. Cyclic voltammograms of 1 mM MnIPIMP in acetonitrile with 0.2 M [Bu$_4$N][PF$_6$] at a scan rate of 0.1 V s$^{-1}$, under an atmosphere of N$_2$ (black), CO$_2$ (red), and CO$_2$ with 4.7% H$_2$O (blue).
and CO₂. Some current enhancement at −2.26 V is observed upon saturation with CO₂, which is enhanced greatly upon the addition of 0.3 mL of water (the current enhancement corresponds to the cathodic wave of the bicarbonate complex, identified in the IR spectra (vide infra); some catalysis occurs due to hydrolysis caused for example by residual water in the electrolyte or in the CO₂).

CV of MnTBIMP (Figure 3, bottom panel) is similar to that of MnDIPIMP and MnTBIEP with a strong cathodic wave at −1.45 V. At ca. −2.28 V current enhancements ascribed to CO₂ reduction can be observed under CO₂ and CO₂ with added H₂O, though the \(\tau \text{cal} / \tau \text{p} \) values (Table S1 in the Supporting Information) are somewhat lower in comparison to the other complexes studied here. Importantly, the anodic wave of the five-coordinate anion (vide infra) is not detected for MnIPIMP and MnTBIMP but is clearly seen for slower reacting MnTBIEP and MnDIPIMP anions.

MnDIPIMP shows significant differences in the CV traces in comparison to the other complexes of the IMP subseries (Figure 6). Similarly to the IMP and IPIMP complexes, a formation of an aqua cation complex \(([\text{Mn(CO)}_3(\text{H}_2\text{O})]^-) \) is observed in solution. However, upon saturation with CO₂ no additional processes (intermediate bicarbonate complex reduction) or current enhancement below −2 V is observed and the anodic peak due to oxidation of \([\text{Mn(CO)}_3(\text{DIPIMP})]^- \) does not fully disappear. This suggests that the reduced complex is less prone to interact with CO₂, as would be expected due to the increased steric hindrance and structural rigidity of the complex arising from the two \(\text{Pr} \) substituents at the N-phenyl rings.

IR and UV–Vis Spectroelectrochemistry under an Inert Atmosphere. IR spectroscopy\(^{20} \) is an ideal tool to monitor the cathodic processes in the studied complexes, due to presence of the carbonyl ligands as strong IR reporters. Table 2 gives the key experimental and calculated vibrational frequencies for the starting complexes and several relevant intermediate and dimer species. IR spectroelectrochemistry (IR-SEC) was used to probe the intermediates produced upon reduction and to monitor their presence during CO₂ reduction.

IR spectra of MnTBIEP (Figure 7) show, upon the first reduction, depletion of the parent \(\nu(\text{CO}) \) bands, with new bands growing in at 1922 and 1898 cm\(^{-1} \) and a broad feature at 1814 cm\(^{-1} \). The bands at 1922 and 1814 cm\(^{-1} \) can be assigned to the five-coordinate anion \([\text{Mn(CO)}_3(\text{TBIEP})]^- \), an assignment supported by DFT calculations. The band at 1898 cm\(^{-1} \) which grows in after the five-coordinate anion begins to form, could tentatively be attributed to a decomposition product.

UV–vis spectroelectrochemistry (Figure S13 in the Supporting Information) supports this notion, as only a band at ca. 570 nm has been detected, which corresponds to the five-coordinate anion. Differently from the MnIMP and MnIPIMP complexes (see below), there is no indication of dimer \(([\text{Mn(CO)}_3(\text{TBIEP})]^-)_2 \) formation during the reduction of MnTBIEP on the time scale of the experiments performed.

MnTBIMP mirrors the behavior of MnTBIEP with the bands at 2029, 1945, and 1823 cm\(^{-1} \) corresponding to the parent complex being replaced concertedly with bands at 1928 and 1923 cm\(^{-1} \) corresponding to the five-coordinate anion, with no intermediate species being observed. This would suggest that the direct formation of the five-coordinate anion is due to the steric demands of the \(\text{Bu} \) group, since the mono-\(\text{Pr} \) derivative \(2 \) does exhibit dimer formation (Table 1).

The results of the IR-SEC study of MnIMP are shown in Figure 8. The first reduction of MnIMP in CH₃CN under an Ar atmosphere is accompanied by depletion of the parent IR bands.
Inorganic Chemistry

Figure 8. IR spectral changes accompanying in situ reduction of MnIMP in Ar-saturated acetonitrile/0.2 M [Bu4N][PF6] within an OTTLE cell. The parent complex [MnBr(CO)3(IPIMP)] (P, black line), and aquo cation [Mn(CO)3(H2O)(IMP)]+ (H, additional features in the red spectrum) are reduced to the dimer [MnBr(CO)3(IPIMP)]2 (D, green line) followed by reduction of the dimer to the five-coordinate anion [Mn(CO)3(IPIMP)]2− (A, blue line). The intermediate spectrum (red line) recorded between those of the parent complex and the dimer also shows the features of the aquo complex.

At 2029, 2041, and 1926 cm⁻¹. Simultaneously, the growth of new bands at 1994, 1902, and 1875 cm⁻¹ is seen, which are characteristic of the Mn–Mn dimer.8,9,13,30 [Mn(CO)3(IPIMP)]2. Additionally, a peak at 2051 cm⁻¹ grows in initially, which is assigned to the intermediate aqua cation. Further reduction of the dimer leads to formation of broad absorption bands at 1826 and 1930 cm⁻¹, once the formation of the dimer species is complete. These features are characteristic of the formation of the five-coordinate anion8,9,13 [Mn(CO)3(IPIMP)]−. UV–vis spectroelectrochemistry performed in parallel with the IR-SEC experiment confirms the presence of both of these species (Figure SI14 in the Supporting Information) via the broad absorption band at ca. 800 nm (assigned to the five-coordinate anion).8 All complexes in the IMP subseries exhibited a small transient peak at ca. 2050 cm⁻¹ upon reduction. This is assigned to the aquo complex [Mn(CO)3(H2O)(IMP)]+.

Differently from MnIMP, MnIPIMP showed concurrent formation of the dimer and the five-coordinate anion upon reduction of the parent complex (Figure 9, top). The introduction of the isopropyl substituent at the phenyl ring leads to the observation of a small amount of the five-coordinate anion [Mn(CO)3(IPIMP)]− (absorbing at 1929 and 1824 cm⁻¹), which grows in alongside peaks indicative of dimer formation (1881, 1949, 1901, 1882, and 1862 cm⁻¹). Importantly, the IR absorption bands, corresponding to both the dimer and the five-coordinate anion, grew in simultaneously. UV–vis spectroelectrochemistry confirmed the presence of both dimer and five-coordinate species in this case, as is evident from Figure SI13 in the Supporting Information).

In contrast, only the five-coordinate anion is detected already from the onset of the reduction of MnDIPIMP under the experimental conditions used. In this case, there is no evidence for the dimer formation during the reduction of the parent complex. As shown in Figure 9 (bottom), an intense peak at 1823 cm⁻¹, assigned to the five-coordinate anion, grew in, followed closely by smaller peaks at 2007 and 1899 cm⁻¹. The second peak assigned to the five-coordinate anion at 1929 cm⁻¹ was masked by the absorption of the parent complex at the beginning of the reduction process. We tentatively assign the peaks at 2007/1899 cm⁻¹ to the solvent-coordinated radical species [Mn(CO)3(MeCN)(DIPIMP)]+, in analogy with [Re(CO)3(PrCN)(Pr-PyCa)]+ (Pr-PyCa = (isopropylimino)-pyridine; PrCN = butyronitrile) which shows ν(CO) bands at 2005 and 1885 (br) cm⁻¹. Further, since the anodic wave of the dimer oxidation is not observed in the CV of MnDIPIMP, but a 1e reduced radical species is observed in IR-SEC, it is evident that the DIPIMP ligand prevents dimerization.

MnTBIMP shows behavior intermediate to that of MnTBIEP and MnIPIMP: similarly to MnTBIEP, the Bu substituent prevent dimer formation upon reduction. However, 659 differently from MnTBIEP, and similar to MnIPIMP, a rapid reaction with CO2 takes place, which in the case of MnTBIEP is considerably slowed by the R = Me group. It is important to note that if Mn–Mn dimer is reduced at the same or even less negative potentials than that of the parent complex, it will not be detected in the studies. Thus, the comments above 665
regarding the absence of dimer formation only relate to the Br complexes studied here. Substituting Br with a different group, which would lead to the parent complex being reduced at less negative potentials, may permit detection of these species. Five-coordinate complex formation appears to correlate with a less negative first reduction potential (see Table 3). A comparable correlation was found for Mn-R-DAB complexes and sterically hindered 2,2′-bipyridines already reported in the literature. These complexes also exhibit less negative first reduction potentials in comparison to their less sterically hindered counterparts and form five-coordinate anions directly upon reduction.8,25

Table 3. Cathodic Potentials (V, vs Fc/Fc⁺) of the Parent Complexes [MnBr(CO)₃(IP)] (1 mM, Acetonitrile, 0.2 M [Bu₄N][PF₆]) and Corresponding Cationic Mn Aquo Derivatives Formed in Situ by Partial Hydrolysis

<table>
<thead>
<tr>
<th>Complex</th>
<th>Epc kcal/mol</th>
<th>Catalytic Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>[MnBr(CO)₃(IP)]</td>
<td>−1.41, −1.54<sup>a</sup></td>
<td>−2.21</td>
</tr>
<tr>
<td>[Mn(CO)₃(H₂O)(IMP)]<sup>b</sup></td>
<td>−1.28</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)₃(IPIMP)]<sup>b</sup></td>
<td>−1.49</td>
<td>−2.26</td>
</tr>
<tr>
<td>[Mn(CO)₃(H₂O)(IPIMP)]<sup>b</sup></td>
<td>−1.29</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)₃(DIPIMP)]<sup>b</sup></td>
<td>−1.44</td>
<td>−2.16</td>
</tr>
<tr>
<td>[Mn(CO)₃(H₂O)(DIPIMP)]<sup>b</sup></td>
<td>−1.23</td>
<td></td>
</tr>
<tr>
<td>[MnBr(CO)₃(TBIMP)]<sup>b</sup></td>
<td>−1.45</td>
<td>−2.28</td>
</tr>
<tr>
<td>[Mn(CO)₃(H₂O)(TBIMP)]<sup>b</sup></td>
<td>−1.53</td>
<td>−2.18</td>
</tr>
<tr>
<td>[Mn(CO)₃(H₂O)(TBIEP)]<sup>b</sup></td>
<td>−1.35</td>
<td></td>
</tr>
</tbody>
</table>

^aThis process probably corresponds to a reduction of the dimer. Largely coinciding with the reduction of a bicarbonate complex (see the spectroelectrochemical section).

Figure 10. IR spectral changes accompanying in situ reduction of MnIM ([(MnBr(CO)₃(IP))] in CO₂-saturated acetonitrile/0.2 M [Bu₄N][PF₆] within an OTTLE cell: (P) [MnBr(CO)₃(IP)]; (B) [Mn(CO)₃(IP)(η¹-O2COH)]; (C) [Mn(CO)₃]; (H) [Mn(CO)₃(H₂O)(IMP)]; (F and S) free bicarbonate (OCO₂H⁻) and subordinate formate (OCHO⁻) accompanying the catalytic reduction of CO₂ to CO.

Figure 11. IR spectral changes accompanying in situ reduction of MnIPIMP ([(MnBr(CO)₃(IPIMP))] in CO₂-saturated acetonitrile/0.2 M [Bu₄N][PF₆] within an OTTLE cell: (P) [MnBr(CO)₃(IPIMP)]; (A) [Mn(CO)₃(IPIMP)]; (B) [Mn(CO)₃(IPIMP)(η¹-O2COH)]; (C) [Mn(CO)₃]; (H) [Mn(CO)₃(H₂O)(IPIMP)]; (F and S) free bicarbonate (OCO₂H⁻) and subordinate formate (OCHO⁻) accompanying the catalytic reduction of CO₂ to CO.

Inorganic Chemistry

DOI: 10.1021/acs.inorgchem.6b01477

Inorg. Chem. XXX, XXX, XXX

The electrocatalytic reduction of CO₂ under a CO₂ atmosphere is vastly different from that under a N₂ or Ar atmosphere. The electrocatalytic behavior of CO₂ is largely controlled by the steric hindrance of the active imino C=N bond. MnIMP and MnIPIMP are relatively unhindered, and the catalytic behaviors are almost identical. The initial reduction of parent and/or the cationic aqua complex results in the formation of the two-electron-reduced five-coordinate anion that reacts efficiently with CO₂; no dimer is observed during the reduction of MnIMP (Figure 10) or MnIPIMP (Figure 11). The catalytic process at the initial cathodic wave is, however, inhibited by the rapid formation of a stable bicarbonate complex, absorbing at 2036, 1940, 1924, and 1671 cm⁻¹ for the IPIMP species, in line with the reports for sterically hindered Mₙ-mesityl-bipyridine 25 complexes and Mn-R-DAB complexes. A further negative potential shift of ca. 0.7 V is needed to reduce the bicarbonate complex, resulting in the recovery of the five-coordinate anion that triggers the catalytic conversion of CO₂.

For the unhindered IMP and IPIMP ligands the five-coordinate anion reacts rapidly and is not observed in the IR spectra on this time scale (for IMP) and only at a low concentration (for IPIMP). The production of CO and the solution layer results in the displacement of the α-dimine ligand in the five-coordinate anion, forming the pentacarbonyl species [Mn(CO)₅]− clearly seen in the IR spectra via the growth of bands at 1897 and 1865 cm⁻¹ (species C in Figures 10–13). Remarkably, in these two cases only a comparatively small amount of free bicarbonate or free formate (1685, 1638, and 1604 cm⁻¹ for the IPIMP species) relative to [Mn(CO)₃]− is observed, marking the high catalytic efficiency toward CO₂ production. Upon reduction of the more C=N hindered DIPIMP complex, the five-coordinate anion formed does not react with CO₂ efficiently and a metastable population of the anionic five-coordinate MnDIPIMP species [Mn(CO)₃(DIPIMP)]⁻ is detected even under a high excess of CO₂. Interestingly, and differently from the other complexes in the Mn-IP series, the formation of a bicarbonate complex is only detected at the potential corresponding to the reduction of CO₂-associated species at around −2 V vs Fc/Fc⁺, while on prior coordination of CO₂ to the five-coordinate anion at the parent MnDIPIMP cathodic wave no bicarbonate ligand signature is detected. At the catalytic potential where the bicarbonate complex is...
reduced, the conversion of CO2 to CO is also inefficient. A high
concentration of the five-coordinate anion is still seen, con-
verting slowly to [Mn(CO)3]− when the concentration of
CO increases; at the same time the production of free
bicarbonate (and free formate) is much higher in comparison
to the MnIMP and MnIPIMP cases, marking the low catalytic
efficiency toward CO production. Notably, the lower CO-
stretching band of [Mn(CO)3(DIPIMP)]− becomes shifted
from its standard position (1829/1822 cm−1) to lower energy
(ca. 1810 cm−1) at the advanced stage of the catalytic
conversion. This shift may indicate the presence of an
observable adduct of the five-coordinate anion, most likely
with CO2 or formate (over the Mn−N=C bond). In this
case it is interesting to note that the related Re-IP complex37
forms the carbonate complex in two 1e-reduction steps, via a
direct coordination to the Re center, without C=N being
directly involved.

In the case of MnTBIEP the imino C=N bond is hindered
both at the carbon atom via the methyl group and by the tert-
butyl group on the phenyl moiety. There are similarities with
but also differences from the hindered DIPIMP complex, which
does not have a hindering group at the C atom of the imino
C=N moiety. Upon reduction of the parent complex in CO2-
saturated acetonitrile the five-coordinate anion [Mn-(CO)3(TBIEP)]− coordinates CO2, forming the bicarbonate
complex readily (similar to IMP and IPIMP) with the
characteristic IR absorption band at 1673 cm−1.30
A small amount of the five-coordinate anion [Mn-(CO)3(TBIEP)]− is observed in the initial step. Lowering the
potential to around −1.5 V vs Fc/Fc+ results in catalytic
conversion of the bicarbonate complex; however, similar to
MnDIPIMP this conversion is not efficient in comparison with
MnIMP and MnIPIMP. This is shown via the slower growth
of [Mn(CO)3]− in comparison to IPIMP and the greater
quantities of free bicarbonate produced. As with MnDIPIMP
the five-coordinate anion "adduct" form is observed with the
lower energy CO-stretching band shifted to a lower wave-
number (from 1814 to 1803 cm−1). Thus, hindering the imine
C atom does not affect adduct formation between CO2 and
[Mn(CO)3(TBIEP)]−.

However, at the negative potentials where the bicarbonate
complex is reduced (recovering the catalytic five-coordinate
anion) the hindrance provided by the methyl and tert-butyl
groups also negatively affects the catalytic formation of CO2 to
CO (as evidenced by large amounts of free bicarbonate and slow formation of [Mn(CO)3]− at lower CO concentration.). It is not very clear whether this greater hindrance is due directly
to the presence of the methyl group on the C position or whether this is due to the tert-butyl group inhibiting rotation of
the phenyl moiety and preventing the five-coordinate anion
from adopting a more suitable (pyramidal) geometry for CO2
association.

Again, MnTBIMP behaves in a fashion similar to that of
MnTBIEP. Upon reduction the parent complex rapidly
associates CO2 forming the bicarbonate complex; as the
reduction potential is lowered further, the bicarbonate complex is reduced, forming CO which is able to displace the TBIMP
and forming [Mn(CO)3]−. One important difference is that
significantly less (if any) five-coordinate anion is observed in
the presence of CO2 than was the case with both MnTBIEP
and MnTBIMP.
and MnDIPIMP. This suggests that 'Bu is not as sterically demanding as two 'Pr groups in these systems, as CO₂ is still able to coordinate.

Estimation of Electrocatalytic Activity toward CO Production using Gas Chromatography. The CO concentration as a function of time in the course of controlled potential electrolysis estimated by GC analysis of the headspace of the electrolysis cell shows a gradual buildup of CO in the course of the electrolysis (Figure S19 in the Supporting Information). A comparison with the performance of [MnBr₃(CO)₃(bpy)] catalyst investigated under identical conditions (see Figure S19) shows that the efficiency of CO production for the new catalysts 1–5 is comparable to that of [MnBr₃(CO)₃(bpy)], with the least sterically hindered MnIMP complex being somewhat more efficient. Due to the large volumes used in the experiment, considerable secondary processes occur during bulk electrolysis, manifested in the loss of the initial intense yellow-red color of the solution as the reaction progressed, which was concomitant with an increase in current toward the end of the electrolysis. These deviations from an ideal behavior suggest that, as CO₂ is depleted in solution, competing catalyst degradation pathways begin to occur, precluding reliable estimates of efficiencies.

Estimation of efficiency from the CV data was done by the relative i_cat/i_p values (Table S1 in the Supporting Information) following the method described in refs 4 and 7. Comparing the current values detected in the CV at −2.24 V (vs Fc/Fc⁺) recorded under a CO₂ and N₂ atmosphere in acetonitrile/water also shows that the performances of 1–5 are comparable to one another and are comparable to that of [Mn(CO)₅(bpy)]Br, at 30–60% efficiency. It is important that the most sterically protected complexes, MnDIPIMP and MnTBIIEP, seem to be performing better as far as i_cat/i_p values are concerned but that the least sterically hindered complex, MnIMP, is the most efficient in the series. These observations are different from the observation of MnTBIIMP producing more CO than [MnBr(bpy)(CO)₃Br] in the bulk electrolysis/GC experiments. While these data can only be considered in relative terms, they do show the potential of these complexes to act as a test bed for optimizing steric vs electronic effects in CO₂ reduction, whereby the thermodynamic factors, the rate of CO₂ coordination, and the rate of decomposition of catalyst precursor species need to be balanced.

The main transformation pathways of 1–5 upon reduction under an inert atmosphere and under an atmosphere of CO₂ are summarized schematically in Figure 14.

CONCLUSIONS

A series of Mn(II) tricarbonyl electrocatalysts for CO₂ reduction which employ, for the first time, asymmetric α-dimine ligands, imino-pyridines, has been developed, and their catalytic activity has been confirmed and evaluated in detail.

We have demonstrated through conventional and thin-layer cyclic voltammetry, UV−vis and IR spectroscopy, and DFT computational analysis the π decoupling of the phenyl from the Mn(pyridine-CCN) metallacycle. The practical effect of this feature is the ability to disentangle steric and electronic effects of the α-dimine ligand on the catalytic properties. Until now, introduction of sterically bulky groups, which are also typically electron donating, was coming at the price of an increased overpotential required for CO₂ reduction. The use of an asymmetric α-dimine has allowed us to probe the effect of adding ever greater sterically demanding groups without much change in the catalytic potential. We have demonstrated that a systematic increase in the steric hindrance of the R₁ and R₂ groups in the IMP subseries results in the switch of the nature of the first reduction product detected on the time scale of the experiment under an inert gas atmosphere, from a dimer to a five-coordinate anion, at a very similar reduction potential. In the absence of sterically hindering groups on the phenyl ring, MnIMP, a dimer is formed, while increasing the steric hindrance by adding 'Pr groups to the R₁ and R₂ positions (MnDIPIMP) resulted in direct formation of the five-coordinate anion, in line with prior observations for similar sterically hindered ligands. MnTBIMP (in which case the dimer may be reduced at the parent cathodic wave due to slightly negatively shifted reduction potential vs that for MnIMP) exhibited behavior intermediate to that of MnIMP and MnDIPIMP with both the dimer and the five-coordinate anion observed to be formed concurrently. MnTBIIMP and MnTBIIEP both formed the five-coordinate anion directly upon reduction of the parent complex.

Under a CO₂ atmosphere, all of the complexes reduce CO₂ to CO. The buildup of CO in the thin-layer spectroelecrochemical cell resulted in the displacement of the α-dimine ligand, forming [Mn(CO)₅]−. The complex containing the most sterically demanding ligand, DIPIMP, is as anticipated least susceptible to α-dimine displacement with CO₂ forming exclusively the five-coordinate anion upon the first reduction; it also has the least propensity to coordinate CO₂, resulting in a considerable buildup of the concentration of the five-coordinate anion. An intermediate formation of the bicarbonate is also likely, as a band at 1686 cm⁻¹ is present at intermediate times. Of particular interest is that the least sterically hindered complex, MnIMP, seemed to form a CO₂-associated complex directly upon the first reduction, with no significant formation of the dimer being observed on the time scale of the experiment. This behavior is similar to that reported for the symmetric nonaromatic Mn-R-DAB (R = alkyl) compounds.

The formation of a stable bicarbonate complex, either through the coordination to the metal center or via the imino C=N bond, leads to the need for increased overpotential. From that point of view, the steric hindering (protection) of the metal center/the imino C=N bond in the Mn(IP) complexes is advantageous, as it disfavors the Mn−Mn dimerization (when...
MnIMP is compared with MnDIPIMP. However, such steric crowding also slows the catalytic conversion of CO₂ to CO at the negative overpotentials, as can be seen in the GC data and from the \(i_{\text{cat}}/i_0 \) values. A difference in the reactivity of MnTBIMP and MnTBIEP, where no dimer formation has been detected for either of the complexes in the IR-SEC experiments but where MnTBIEP exhibits slower CO₂ conversion due to \(R = \text{CH}_3 \), alters the HOMO–LUMO gap in comparison to the IMP series as well as introduces additional steric bulk, further supporting the notion that it is possible to separate steric and electronic factors to a large extent. Balancing these factors by careful ligand design may lead to the optimal solution.

The new family of CO₂ reduction catalysts presents an exciting platform for versatile and relatively independent tuning of steric and electronic properties, offering a far greater tunability in comparison to catalysts with aromatic bpy-based or nonaromatic R-DAB-based ligands and abundant options to refine and optimize Mn tricarbonyl CO₂ reduction catalysts.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the [ACS Publications website](https://doi.org/10.1021/acs.inorg-chem.6b01477).

- Calculated frontier orbitals from HOMO-3 to LUMO+3 for all studied complexes, complete CV measurements, calculated frontier orbitals from HOMO-3 to LUMO+3 spectra of the new complexes (PDF)
- Crystallographic data (CIF)
- Crystallographic data (CIF)

AUTHOR INFORMATION

Corresponding Authors

- *E-mail for F.H.: F.Hartl@reading.ac.uk.
- *E-mail for J.A.W.: Julia.Weinstein@sheffield.ac.uk.

ORCID

- Anthony J. H. M. Meijer: 0000-0003-4803-3488
- Julia A. Weinstein: 0000-0001-6883-072X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful to E. J. Carrington, T. M. Roseveare, and C. M. Kiker for assistance in interpreting the X-ray diffraction data, Drs. A. Haynes and S. Parker for discussions, and G. Chandrakumar for experimental assistance. Support of the University of Sheffield and its SURE scheme, Shine DTC, the University of Reading (Project D14-015), the EPSRC, and the RSC Undergraduate Bursary (T.K. and H.F.) is gratefully acknowledged.

REFERENCES

(9) Rossenaa, B. D.; Hartl, F.; Stuifkens, D. J.; Amatore, C. *Maisonhaute, E.; Verpeau, J.-N. Electrochemical and IR/UV-Vis Spectroelectrochemical Studies of fac-[Mn(X)(CO)₃(PR-DAB)]^0 (X = Br, Me, Bz; n = +1, X = THF, MeCN, nPrCN, P(OMe)₃; iPr-DAB = 1,4-Disopropyl-1,4-diaza-1,3-butadiene) at Variable Temperatures: Relation between Electrochemical and Photochemical Generation of [Mn(CO)₃(i-α-diimine)]^+*. *Organometallics* 1997, *16*, 4675–4685.

(17) Riplinger, C.; Sampson, M. D.; Rittmann, A. M.; Kubiac, C. P.; Carter, E. A. Mechanistic Contrasts between Manganese and Ruthenium

1071 Design of a Catalytic Active Site for Electrochemical CO2 Reduction. Differences in CO2 Reduction.

1069 Mn, Re, Complexes: Ligands Isoelectronic to Bipyridyl Show Spectroscopy, and Electrochemistry of (Δ).

1067 Potential. Bipyrimidine Catalyst Predicted To Reduce CO2 at Lower Overpotential.

1063 Bulky Bipyridine Ligands: Utilizing Lewis Acids To Promote Carbon Dioxide: Eliminating Dimerization and Altering Catalysis.

1059 Production by an Earth-Abundant Manganese Bipyridine Catalyst.

1054 Organometallics and Photocatalytic Substitution of X Halide): Formation of Mn2(CO)6(−) in the Electrocatalytic Reduction of Carbon Dioxide by a Manganese Bipyridyl Derivative.

