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Abstract Consider the supremal functional

E∞(u, A) := ‖L (·, u, Du)‖L∞(A), A ⊆ �, (1)

applied to W 1,∞ maps u : � ⊆ R −→ R
N , N ≥ 1. Under certain assumptions on L , we

prove for any given boundary data the existence of a map which is:

(i) a vectorial Absolute Minimiser of (1) in the sense of Aronsson,
(ii) a generalised solution to the ODE system associated to (1) as the analogue of the Euler-

Lagrange equations,
(iii) a limit of minimisers of the respective L p functionals as p → ∞ for any q ≥ 1 in the

strong W 1,q topology and
(iv) partially C2 on � off an exceptional compact nowhere dense set.

Our method is based on L p approximations and stable a priori partial regularity estimates.
For item ii) we utilise the recently proposed by the author notion of D-solutions in order to
characterise the limit as a generalised solution. Our results are motivated from and apply to
Data Assimilation in Meteorology.
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1 Introduction

Calculus of Variations in L∞ has a long history and was pioneered by Aronsson in the
1960s [4–8]. In the vector case and in one spatial dimension, the basic object of study is the
functional

E∞(u, A) := ∥
∥L (·, u, Du)

∥
∥
L∞(A)

, u : � ⊆ R −→ R
N , A ⊆ �. (1.1)

Here u ∈ W 1,∞
loc (�,RN ), N ≥ 1, � is an open interval, A is measurable and L ∈ C2

(

� ×
R

N ×R
N
)

is a function which we call Lagrangian and whose arguments will be denoted by
(x, η, P). Aronsson who studied the case N = 1 was the first to note the locality problems
associated to this functional. By introducing the appropriate minimality notion in L∞, among
other things proved the equivalence between the so-called Absolute Minimisers and solutions
of the analogue of the Euler-Lagrange equation which is associated to the functional under
C2 smoothness hypotheses. The minimality notion of Aronsson adapted to the vector case
of (1.1) is

E∞(u,�′) ≤ E∞(u + φ,�′), ∀ �′ � �, φ ∈ W 1,∞
0 (�′,RN ). (1.2)

The higher dimensional scalar analogue when u : � ⊆ R
n → R is a real function has

also attracted considerable attention by the community and by now there is a vast literature,
for instance see Crandall [18], Barron-Evans-Jensen [9], and for a pedagogical introduction
see [31] and references therein. In particular, the Crandall-Ishii-Lions theory of Viscosity
solutions proved to be an indispensable tool in order to study the equations in L∞ which
are non-divergence, highly nonlinear and degenerate. Even in the simplest case where the
Lagrangian is the Euclidean norm, i.e.L (P) = |P|2, in general the solutions are non-smooth
and the corresponding PDE which is called ∞-Laplacian for smooth functions reads

�∞u := Du ⊗ Du : D2u =
n
∑

i, j=1

Di u D j u D2
i j u = 0. (1.3)

However, until the early 2010s, the theory was essentially restricted to the scalar case
N = 1. A most notable exception is the early vectorial contributions of Barron–Jensen–
Wang [10,11]. Therein the authors among other far-reaching results studied the weak* lower
semicontinuity of general supremal functionals and proved under certain assumptions the
existence of Absolute Minimisers in the “rank-1” cases, i.e. when either n = 1 or N = 1.

In a series of recent papers [32–40], the author has initiated the systematic study of
the vector-valued case, which except for its intrinsic mathematical interest, appears to be
important for many real-world applications (see also the joint contributions with Abugirda,
Croce, Pisante and Pryer [1,19,43,44]). In particular, the complete PDE system arising in L∞
was derived and studied in [32]. The results in the aforementioned papers include in particular
the study of the analytic properties of classical solutions to the fundamental equations and
their connection to the supremal functional. In the case of

E∞(u, A) = ∥
∥|Du|2∥∥L∞(A)

, u : � ⊆ R
n −→ R

N , A ⊆ �, (1.4)

(where |Du| denotes the Euclidean norm of the gradient onRN×n), the respective ∞-Laplace
system written for smooth maps is

�∞u :=
(

Du ⊗ Du + |Du|2[[Du]]⊥⊗ I
)

: D2u = 0. (1.5)
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In (1.5), [[Du(x)]]⊥ denotes the orthogonal projection on the orthogonal complement of the
range of the linear map Du(x) : Rn −→ R

N and in index form reads

N
∑

β=1

n
∑

i, j=1

(

Di uα D j uβ + |Du|2[[Du]]⊥αβ δi j

)

D2
i j uβ = 0, α = 1, ..., N ,

where [[A]]⊥ = ProjR(A)⊥ . An extra difficulty of (1.5) which is not present in the scalar
case of (1.3) is that the coefficients may be discontinuous along interfaces even for C∞
solutions because the term involving [Du]⊥ measures the dimension of the tangent space of
u(�) ⊆ R

N (see [32,33] and the numerical experiments in [43]). This is a general vectorial
phenomenon studied in some detail in [34]. The appropriate minimality notion allowing to
connect (1.5) to the functional (1.4) has been established in [35]. It is a remarkable fact that
when the rank of the gradient is greater than one, i.e. for maps u : � ⊆ R

n −→ R
N such

that min{n, N } ≥ 2, Absolute Minimimality for (1.4) is neither necessary nor sufficient for
solvability of (1.5) and the correct notion of ∞-Minimal maps is intrinsically different (see
[35]). In the case of the supremal functional (1.1), the associated equations written for smooth
maps u : � ⊆ R −→ R

N read

F∞
(·, u, Du, D2u

) = 0, on �, (1.6)

where

F∞(x, η, P, X) :=
[

LP (x, η, P) ⊗ LP (x, η, P)

+ L (x, η, P)[[LP (x, η, P)]]⊥LPP (x, η, P)
]

X

+
(

Lη(x, η, P) · P + Lx (x, η, P)
)

LP (x, η, P)

+ L (x, η, P)[[LP (x, η, P)]]⊥
(

LPη(x, η, P)P

+ LPx (x, η, P) − Lη(x, η, P)
)

. (1.7)

In (1.7), the notation of subscripts denotes derivatives with respect to the respective variables
and [[LP (x, η, P)]]⊥ is the orthogonal projection

[[LP (x, η, P)]]⊥ := I − sgn
(

LP (x, η, P)
)⊗ sgn

(

LP (x, η, P)
)

. (1.8)

The system (1.6)–(1.8) is a 2nd order ODE system which is quasilinear, non-divergence,
non-monotone and with discontinuous coefficients. Even in the scalar case of N = 1 in
which F∞ simplifies to

F∞(x, η, P, X) = (

LP (x, η, P)
)2
X +

(

Lη(x, η, P)P + Lx (x, η, P)
)

LP (x, η, P)

it is known since the work of Aronsson that in general does not have solutions any more
regular than at best C1(�,RN ) and their “weak” interpretation is an issue. Let us also note
that, also inspired by Aronsson’s work, Sheffield-Smart [52] made a vectorial breakthrough
relevant to (1.5) and (1.4) which was simultaneous to [32]. They studied smooth vector-
valued optimal Lipschitz extensions of functions, deriving a different more singular version
of ∞-Laplacian than (1.5), corresponding to (1.4) but when the matrix norm of Du is the
nonsmooth operator norm on R

N×n .
In this paper we study the functional (1.1), the associated nonlinear system (1.6)–(1.8) and

their connection. Our main result establishes for any given endpoint data on � the existence
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of a vectorial Absolute Minimiser u∞ ∈ W 1,∞
b (�,RN ) of (1.1) which also is a generalised

solution to (1.6)–(1.8) in a certain new sense to be made precise below. We moreover glean
extra information about u∞; it a partially C2 map off a singular compact set and also is a
limit of minimisers of the respective Lm functionals

Em(u,�) :=
∫

�

L (·, u, Du)m, u : � ⊆ R −→ R
N , (1.9)

in the strong W 1,q topology as m → ∞ for any q ≥ 1. Our results have been motivated
from and apply to variational Data Assimilation in the form used in the Earth Sciences and
in particular Weather Forecasting. Below we discuss the essential idea of our new notion of
generalised solution, our assumptions, state our main result and also draw connections to
Data Assimilation.

Motivated in part by the nonlinear systems arising in L∞, in the very recent paper [39] the
author proposed a new theory of generalised solutions which applies to fully nonlinear PDE
systems. In addition, this theory allows to interpret merely measurable general mappings
u : � ⊆ R

n −→ R
N as solutions of PDE systems which may even be defined by discon-

tinuous nonlinearities and can be of any order. Our approach is duality-free and bypasses
the insufficiency of the standard duality ideas to apply to even linear non-divergence equa-
tions with rough coefficients. The standing idea of the use of integration-by-parts in order
to pass derivatives to test functions is replaced by a probabilistic description of the limiting
behaviour of the difference quotients. This builds on the use of Young measures valued into
compact tori, which is the compactification of the space wherein the derivatives are valued.
Background material on Young measures can be found e.g. in [16,23,27,28,47,48,55], but
for the convenience of the reader we recall herein the rudimentary properties we actually
utilise.

The essential idea of our new notion of solution for the case needed in this paper can be
briefly motivated as follows. Assume that u : � ⊆ R −→ R

N is a strong a.e. solution of the
system

F(·, u, Du, D2u
) = 0, on �, (1.10)

in W 2,∞
loc (�,RN ). We need a notion of solution which makes sense even if u is merely

W 1,∞
loc (�,RN ). To this end we rewrite the above statement that u is a strong solution in the

following unconventional fashion

sup
X∈supp(δD2u(x))

∣
∣
∣F
(

x, u(x), Du(x), X
)∣
∣
∣ = 0, a.e. x ∈ �. (1.11)

That is, we change from the classical viewpoint that the 2nd derivative is a map D2u : � ⊆
R −→ R

N valued in R
N to that it is a probability valued map given by the Dirac mass at

D2u:

δD2u : � ⊆ R −→ P(RN ), x 
−→ δD2u(x).

Obviously, “supp” denotes the support of the probability measure. Similarly, if D1,h stands
for the difference quotient operator, it can be shown that we may rewrite the definition of
D2u as

δD1,hDu
∗−−⇀ δD2u, as h → 0. (1.12)

The weak* convergence above is meant in the so-called Young measures into R
N , that is the

probability-valued maps ϑ : � ⊆ R −→ P(RN ) which are weakly* measurable (for details
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see the Appendix, particularly Lemma 4.5). The rationale behind the reformulation (1.11)-
(1.12) is that we may allow more general probability-valued maps arising as “diffuse” 2nd
derivatives for maps classically differentiable only once. The latter of course may no longer
be the concentration measure-valued maps δD2u . This is indeed possible if we augment RN

and replace it by its 1-point compactification R
N ∪ {∞}. By considering Young measures

valued into spheres, we obtain the necessary compactness and the maps (δD1,hDu)h �=0 always
have subsequential weak* limits

δD1,hi Du
∗−−⇀ D2u, as hi → 0

in the space of sphere-valued Young measures � ⊆ R −→ P
(

R
N ∪ {∞}) (even when u is

merely once differentiable). The above ideas motivate the notion of D-solutions and diffuse
derivatives in the special case of W 1,∞ solutions to (1.10) (see Definitions 4.6 and 4.7) and
will be taken as principal in this work. Notwithstanding, D-solutions do not play an essential
role until later in the paper, hence we give the formal definitions in the Appendix.

As a first application of this new approach, in the paper [39] among other things we proved
existence of D-solutions to the Dirichlet problem for (1.5) when n = N . Further results in
the context of D-solutions have been established in [40–42], including certain uniqueness
assertions. Herein we focus on (1.1) and (1.6)–(1.8). This is a non-trivial task even in the 1D
case. In fact, it is not possible to work in the generality of (1.1), (1.6)–(1.8) without structural
conditions on L . The most important restriction is that the Lagrangian has to be radial in P .
This means that L can be written as

L (x, η, P) = H

(

x, η,
1

2
|P − V (x, η)|2

)

. (1.13)

for some mappings H : �×R
N ×[0,∞) −→ R and V : �×R

N −→ R
N . This condition

is justified by the results of [34] since as we proved therein it is both necessary and sufficient
for the ODE system to be degenerate elliptic. The extra bonus is that then the coefficients of
(1.7) match and become continuous. This is a special occurrence due to the 1D nature of the
problem and can not happen when n ≥ 2. Anyhow, under the assumption (1.13), (1.7) after
a rescaling becomes

F∞(x, η, P, X) = ∣
∣P − V (x, η)

∣
∣
2
Hp

(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣
2
)2 [

X − Vη(x, η)P

− Vx (x, η)
]

+ (

P − V (x, η)
)

Hp

(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣2
)

�
[

Hx

(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣2
)

+ P · Hη

(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣2
)]

(1.14)

− Hp

(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣
2
)(

∣
∣P − V (x, η)

∣
∣
2
I

− (

P − V (x, η)
)⊗ (

P − V (x, η)
)
)[

Hη

(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣
2
)

− (

P − V (x, η)
)�

Vη(x, η)Hp

(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣2
)]

.
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The naturalness of our structural assumption (1.13) is also justified by Lagrangian models
arising in variational Data assimilation which we describe briefly after the statement of our
main result.

Theorem 1.1 Let � ⊆ R be a bounded open interval and let also

H : � × R
N × [0,∞) −→ [1,∞), V : � × R

N −→ R
N ,

be given maps with N ∈ N. We suppose that
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H isC2up to the boundary,
C(|η|) ≥ Hp(x, η, p) ≥ c0,

2Hpp(x, η, p)p + Hp(x, η, p) ≥ c0,∣
∣Hx (x, η, p)

∣
∣ + ∣

∣Hη(x, η, p)
∣
∣ ≤ C(|η|)(1 + p),

∣
∣Hpp(x, η, p)

∣
∣ + ∣

∣Hpη(x, η, p)
∣
∣ + ∣

∣Hpx (x, η, p)
∣
∣ ≤ C(|η|)(1 + pM ),

(1.15)

and also
{

V is C1up to the boundary,
∣
∣V (x, η)

∣
∣ ≤ (1/c0)(1 + |η|α),

(1.16)

for some constants c0, α ∈ (0, 1), some M ∈ N, some positive continuous increasing function
C ∈ C0([0,∞)) and all (x, η, p) ∈ � × R

N × [0,∞). Then, for any affine map b : R −→
R

N , there exists a map u∞ ∈ W 1,∞
b (�,RN ) with the following properties:

1. u∞ is a vectorial Absolute Minimiser of the functional

E∞(u, A) = ess sup
x∈A

H

(

x, u(x),
1

2

∣
∣Du(x) − V (x, u(x))

∣
∣2
)

, (1.17)

that is it satisfies (1.2).
2. u∞ is a D-solution (see Definitions 4.6 and 4.7) of the system

F∞
(·, u, Du, D2u

) = 0, on �, (1.18)

where F∞ is given by (1.14).
3. u∞ is a subsequential limit as m → ∞ in the strong W 1,q(�,RN ) topology of C2

minimisers {um}∞m=2 of the functionals

Em(u, A) =
∫

A
H

(

x, u(x),
1

2

∣
∣Du(x) − V (x, u(x))

∣
∣
2
)m

dx, (1.19)

where each um minimises over the respective space W 1,2m
b (�,RN ), for any q ∈ [1,∞).

(4) There is an open subset �∞ ⊆ � such that u∞ ∈ C2(�∞,RN ). Moreover,

�\�∞ = ∂
({

Du∞ = V (·, u∞)
})

and hence �\�∞ is compact and nowhere dense in �.

Item (4) above is a partial regularity assertion which differs from more classical results
in that the singular set �\�∞ is a relatively compact nowhere dense set (a topological
boundary) but not necessarily a Lebesgue nullset. This is a new type of partial regularity
which seems to arise in L∞. Item (3) indicates the fashion in which u∞ is obtained, namely
via the well-established method of Lm approximations of L∞ problems as m → ∞, but also
includes a non-trivial fact, the strong convergence of the Lm minimisers um together with
their first derivatives to u∞. Note that Theorem 1.1 above does not state that (1) implies (2),

123



Absolutely minimising generalised solutions to the equations of… Page 7 of 25  15 

but instead that there is an object u∞ which satisfies both. In order to obtain solely (1), the
hypotheses (1.15)–(1.16) can be relaxed substantially (accordingly, see the paper [1]), but
since herein we are interested in the satisfaction of the equations as well we do not tackle this
problem separately. Finally, due to the dependence of L on the lower order terms (x, u(x)),
the Absolutely Minimising D-solution u∞ is not in general unique, as shown by the example
L (x, P) = sin2 x + |P|2 of Yu [56] even when n = N = 1 and V ≡ 0. Uniqueness is
a most delicate question already in the scalar case (see [30,46]). Let us also recall that (1)
above has been obtained in [10] but under different hypotheses on L which in particular
require L (x, η, 0) = 0 and V ≡ 0, a fact incompatible with “additive” Lagrangians like
those arising in Data Assimilation which we describe right next.

The motivation to study the present 1D vectorial L∞ variational problem comes from Data
Assimilation models arising in the Earth Sciences and especially in Meteorology. More pre-
cisely, following the terminology of [12], we are inspired by a continuous time generalisation
of what is known as weakly constrained four-dimensional variational assimilation (4D-Var)
in the geosciences. For more details we refer e.g. to [3,13,17,22,26,45,49–51,53,56].

Let us describe briefly the model in pure mathematical terms. Let V : � × R
N −→ R

N

be a time-dependent vector field describing the law of motion of a body moving along a
trajectory defined by the solution u : � ⊆ R −→ R

N of Du = V (·, u) (e.g. Newtonian
forces, finite-dimensional Galerkin approximation of the Euler equations, etc.). Let also
k : � ⊆ R −→ R

M be some partial “measurements” in continuous time along the trajectory
and K : R

N −→ R
M be a submersion which corresponds to some component of the

trajectory we are able to measure, for example some projection. Then, we wish to find a u
which should satisfy the law of motion and also be compatible with the measurements along
the trajectory:

Du(t) = V
(

t, u(t)
)

& K (u(t)) = k(t), t ∈ �.

However, this problem is in general overdetermined (due to errors in the measurements, etc.)
since we impose a pointwise constraint to the solution of the system. In standard variational
Data Assimilation (see [12,14]), one instead seeks for approximate solutions by minimising
the “error” integral functional E1 given by (1.9) for m = 1 and with Lagrangian given by

L (x, η, P) := 1 + 1

2

∣
∣k(x) − K (η)

∣
∣2 + 1

2

∣
∣P − V (x, η)

∣
∣2 (1.20)

which describes the “error”. But if instead we choose to use the respective supremal functional
(1.1) with L as in (1.20), large “spikes” of the deviation from the actual solution with small
area are from the outset excluded. For the Lagrangian (1.20), the equations (1.6)–(1.14)
arising in Data Assimilation read

∣
∣Du − V (·, u)

∣
∣
2
(

D2u − Vη(·, u) − Vx (·, u)
)

− [[Du − V (·, u)]]⊥

�
((

K (u) − k
)�

Kη(u) − (

W u
)�

Vη(·, u)
)

−
[

Kη(u) : (K (u) − k
)

⊗ Du + (

K (u) − k
) · kx

](

Du − V (·, u)
) = 0 (1.21)

Our main result applies in particular to (1.20)–(1.21). Although the L∞ equations are more
complicated than the respective L2 Euler-Lagrange equations, evidence obtained in [15]
suggests that they provide more accurate models.
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2 The fundamental equations arising in L∞

Basics Our notation is either standard (as e.g. in [24,25]) or self-explanatory. For example,
the Lebesgue measure on R will be denoted by | · |, the characteristic function of the set A
by χA, the standard Sobolev and L p spaces of maps u : R ⊇ � −→ R

N by L p(�,RN ),
Wm,p(�,RN ), etc. We will also follow the standard practice that while deriving estimates,
universal constants may change from line to line but will be denoted by the same letter.
N ∈ N will always be the dimension of the range of our candidate solutions u : R ⊇ � −→
R

N . Unless indicated otherwise, Greek indices α, β, γ, . . . will run in {1, . . . , N } and the
summation convention will be employed in products of repeated indices. The standard basis
on R

N will be denoted by {e1, . . . , eN } and hence for the map u with components uα we will
write u(x) = uα(x)eα . The norm symbol | · | will always indicate the Euclidean one and the
respective inner product will be denoted by “·”. Given ξ ∈ R

N , we define for later use the
following orthogonal projections of RN :

[[ξ ]]‖ := sgn(ξ) ⊗ sgn(ξ), [[ξ ]]⊥ := I − sgn(ξ) ⊗ sgn(ξ). (2.1)

Here “sgn” stands for the sign function: sgn(ξ) := ξ/|ξ | when ξ �= 0 and sgn(0) := 0.
The equations We begin by deriving formally the fundamental equations (1.6)–(1.8) and in
particular (1.14) associated to L∞ variational problems for (1.1). The formal derivation of
(1.6)–(1.8) has been performed in [32], but we include it here because it provides insights
of the method of proof which makes the foregoing calculations rigorous. We obtain the L∞
equations in the limit of the Euler-Lagrange equations related to the Lm integral functional
(1.9) as m → ∞. Here we suppose that m ≥ 2. The Euler-Lagrange equation of (1.9) is the
ODE system

D
(

L m−1(·, u, Du)LP (·, u, Du)
)

= L m−1(·, u, Du)Lη(·, u, Du). (2.2)

By distributing derivatives and normalising, (2.2) gives

D
(

L (·, u, Du)
)

LP (·, u, Du) + L (·, u, Du)

m − 1

(

D
(

LP (·, u, Du)
)− Lη(·, u, Du)

)

= 0.

(2.3)

Then, by employing (2.1) applied to ξ = LP (·, u, Du) we expand the term in the bracket of
(2.3) and obtain

D
(

L (·, u, Du)
)

LP (·, u, Du)

+ L (·, u, Du)

m − 1
[[LP (·, u, Du)]]‖

(

D
(

LP (·, u, Du)
)− Lη(·, u, Du)

)

= − L (·, u, Du)

m − 1
[[LP (·, u, Du)]]⊥

(

D
(

LP (·, u, Du)
)− Lη(·, u, Du)

)

. (2.4)

By mutual orthogonality of the projections in (2.1), the left and right hand side of (2.4) are
normal to each other. Hence, they both vanish and we may split the system to two components.
We renormalise the second half of (2.4) by multiplying by m − 1 to obtain

D
(

L (·, u, Du)
)

LP (·, u, Du)

+ L (·, u, Du)

m − 1
[[LP (·, u, Du)]]‖

(

D
(

LP (·, u, Du)
)− Lη(·, u, Du)

)

= 0,

L (·, u, Du)[[LP (·, u, Du)]]⊥
(

D
(

LP (·, u, Du)
)− Lη(·, u, Du)

)

= 0. (2.5)
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As m → ∞, we obtain the complete ODE system in L∞ which after an expansion of
derivatives and summation of the systems becomes (1.6)–(1.8).
The degenerate elliptic case of the equations in L∞ Unfortunately, as we have already
explained it is not in general possible to go much further without imposing the structural
condition (1.13) on the hamiltonian L . The problem is that the system fails to be degenerate
elliptic in the sense needed for existence. In particular, the coefficient of (1.6)–(1.8) may
be discontinuous at points where LP (·, u, Du) = 0. Assumption (1.13) forces the matrices
[[LP ]]⊥ and LPP to commute and also makes the coefficients continuous by allowing them
to match after a rescaling.

We now formally derive (1.14) and also the Euler-Lagrange equations of the Lm functional
(1.19) in the expanded form in which it will be used later, under the assumptions (1.15)–
(1.16). There is no loss of generality in assuming H ≥ 1 since if it is bounded below,
we can always add a positive constant to H and the equations remain the same because
additive constants commute with the supremal functional (and this constant also regularises
the minimisers of the respective Lm functional). In order to derive the equations, we first
differentiate (1.13) and for the sake of brevity we suppress the argument (x, η, P) of L
and

(

x, η, 1
2 |P − V (x, η)|2) of H and their respective derivatives. Recall now that (2.5)

comprises the Euler-Lagrange equations of (1.9) in expanded form. Since by assumption
Hp > 0, we have the identities

[[Hp
(

P − V (x, η)
)]]‖ = [[P − V (x, η)]]‖, [[Hp

(

P − V (x, η)
)]]⊥ = [[P − V (x, η)]]⊥.

(2.6)

By grouping terms, setting

W u := Du − V (·, u) (2.7)

and omitting the argument (·, u, 1
2 |W u|2), after a calculation we obtain a system for the

parallel component. Similarly, by the identity (2.6) and since H > 0, we obtain a system
for the orthogonal component. In view of the identities (2.1), these systems can be matched
and the mutually orthogonal coefficients [[W u]]‖ and [[W u]]⊥ add to the identity. Indeed, we
obtain

[
H
(

Hp + Hpp|W u|2)[W u]‖
m − 1

+ (Hp)
2|W u|2 I

]

D
(

W u
)+ H [[W u]]‖

m − 1

�
(

− Hη + Hp(W u)�Vη(·, u) + (

Hpη · u + Hpx
)

(W u)

)

+Hp

(

Hx+Hη · Du
)

W u−Hp|W u|2[[W u]]⊥
(

Hη−Hp(W u)�Vη(·, u)
)

=0. (2.8)

The ODE system (2.8) is the Euler-Lagrange equation of the functional (1.19) in expanded
form where for sake of brevity we have defined (2.7) and suppressed the dependence on the
arguments (·, u, 1

2 |W u|2) of H ,Hp,Hη,Hx and Hpp,Hpη,Hpx . We also note that the
coefficients which are of order O

( 1
m−1

)

are discontinuous, but this causes no problems since
the terms involving these will be annihilated as m → ∞. By letting m → ∞ we obtain (1.6)
with F∞ given by (1.14) and W u by (2.7). We finally rewrite the equations in a form which
is more malleable for our proofs later. By setting

F∞(·, u, Du) := − Hp

(

Hx + Hη · Du
)

W u

+ (Hp)
2|W u|2[[W u]]⊥

(

Hη − Hp(W u)�Vη(·, u)
)

, (2.9)
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f ∞(·, u, Du) := − H [[W u]]‖
(

− Hη + Hp(W u)�Vη(·, u)

+ (

Hpη · u + Hpx
)

W u
)

, (2.10)

A∞(·, u, Du) := H
(

Hp + Hpp|W u|2)[[W u]]‖, (2.11)

(2.8) can be written as
[
A∞(·, u, Du)

m − 1
+ H 2

p

(

·, u,
1

2
|W u|2

)

|W u|2I

]

D
(

W u
) = F∞(·, u, Du) + f ∞(·, u, Du)

m − 1
(2.12)

and (1.6) as

H 2
p

(

·, u,
1

2
|W u|2

)

|W u|2 D
(

W u
) = F∞(·, u, Du) (2.13)

where F∞, f ∞, A∞ are given by (2.9)-(2.11) and W u by (2.7).

3 Existence of vectorial Absolute Minimisers

In this section we establish item (1) of our main result Theorem 1.1 by proving existence of
a mapping u∞ ∈ W 1,∞

b (�,RN ) which satisfies (1.2) for (1.17).

Lemma 3.1 (Existence of minimisers and convergence) Let H ,V ,� satisfy the assump-
tions of Theorem 1.1. Then, for any affine mapping b : R −→ R

N and any m ∈ N, the
functional (1.19) has a minimiser um over the space W 1,2m

b (�,RN ). Moreover, we have the
estimate

‖u‖W 1,2m (�) ≤ C
(

Em(u,�)
1

2m + max
∂�

|b| + 1
)

(3.1)

for any u ∈ W 1,2m
b (�,RN ), where C > 0 depends only on the assumptions and the length

of �. In addition, there is a subsequence (mk)
∞
1 and u∞ ∈ W 1,∞

b (�,RN ) such that for any
q ≥ 1

{

um −−→ u∞, in C0(�,RN ),

Dum −−⇀ Du∞, in Lq(�,RN ),

as mk → ∞, and also

‖u∞‖W 1,∞(�) ≤ C. (3.2)

Finally, for any A ⊆ �measurablewith |A| > 0, we have the lower semicontinuity inequality

E∞(u∞, A) ≤ lim inf
m→∞ Em(um, A)

1
m . (3.3)

Proof of Lemma 3.1 Step 1We begin with some elementary inequalities we use in the sequel.
For any t ≥ 0, 0 < α < 1 and ε > 0, Young’s inequality gives

tα ≤ εt +
(α

ε

) α
1−α

(1 − α). (3.4)
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Moreover, for any P, V ∈ R
N and 0 < δ < 1, we also have

(1 − δ)|P|2 ≤ |P − V |2 + 1

δ
|V |2. (3.5)

Finally, for any u ∈ W 1,2m(�,RN ), we have the following Poincaré inequality whose con-
stant is uniform in m ∈ N:

‖u‖L2m (�) ≤ 2(|�| + 1)
(

‖Du‖L2m (�) + max
∂�

|u|
)

. (3.6)

Indeed, in order to see (3.6), suppose u is smooth and since
∣
∣u(x) − u(y)

∣
∣ ≤ ∫

�
|Du|, for

y ∈ ∂� by Hölder inequality we have

|u(x)|2m ≤
(∫

�

|Du| + max
∂�

|u|
)2m

≤ 22m−1

[(∫

�

|Du|
)2m

+ max
∂�

|u|2m
]

≤ (2(|�| + 1))2m−1
[∫

�

|Du|2m + max
∂�

|u|2m
]

,

which leads to (3.6).
Step 2 We now show that the functional Em is weakly lower semicontinuous in
W 1,2m(�,RN ). Indeed, by setting

H(x, η, P) := H
(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣2
)m

, (3.7)

we have for the hessian with respect to P that (we suppress again the arguments of H and
its derivatives)

HPP =mH m−2
[

H Hp I +
(

H Hpp + (m − 1)(Hp)
2
)

�
(

P − V (·, u)
)⊗ (

P − V (·, u)
)]

.

By (1.15) and since the projection [P − V (·, u)]‖ satisfies the matrix inequality [P −
V (·, u)]‖ ≤ I , we obtain

HPP ≥ mH m−2
[

H Hp I + H Hpp
(

P − V (·, u)
)⊗ (

P − V (·, u)
)]

≥ mH m−1
(

Hp I + (c0 − Hp)
[

P − V (·, u)
]�) (3.8)

≥ m
(

Hp I + (c0 − Hp)
[

P − V (·, u)
]�)

giving HPP ≥ mc0 I . The conclusion now follows by standard lower semicontinuity results
(e.g. [20,29]).
Step 3 Now we derive the energy estimate which guarantees the coercivity of Em . By our
assumptions on H , there is a p̂ ∈ [0, p] such that

H (x, η, p) = Hp(x, η, p̂)p + H (x, η, 0) ≥ c0 p + 1.

Hence, by using (3.5) the above gives

H
(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣2
)

≥ c0

2
(1 − δ)|P|2 − c0

2δ
|V (x, η)|2. (3.9)
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Then, by (1.16) and (3.4)–(3.5), for σ > 0 small we have

H
(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣
2
)

≥ c0

2
(1 − δ)|P|2 − 1

2c0δ
(1 + |η|α)2

≥ c0

2
(1 − δ)|P|2 − σ

c0δ
|η|2 − C(δ, σ, α),

where C(δ, σ, α) denotes a constant depending only on the numbers δ, σ, α. We now select
δ := 1/2, σ := 2c0ε > 0 to find

H
(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣2
)

≥ c0

4
|P|2 − ε|η|2 − C(ε, α).

Hence, for any m ∈ N by the Hölder inequality and the above estimate, we have

1

3m−1

(c0

4

)m |P|2m ≤ H
(

x, η,
1

2

∣
∣P − V (x, η)

∣
∣
2
)m + εm |η|2m + C(ε, α)2m .

Consequently, for any u ∈ W 1,2m
b (�,RN ), by integrating over � and by utilising (3.6) and

(1.19), we deduce

3
( c0

12

)m
∫

�

|Du|2m ≤ Em(u,�) + εm
∫

�

|u|2m + C(ε, α)2m |�|
≤ Em(u,�) + C(ε, α)2m |�|

+ εm
(

2(|�| + 1)
)2m

{

max
∂�

|b|2m +
∫

�

|Du|2m
}

.

Hence, we have obtained the estimate
{( c0

12

)m − (

4(|�| + 1)2ε
)m
} ∫

�

|Du|2m ≤ Em(u,�) + C2m
(

max
∂�

|b|2m + 1
)

where C above depends on ε, α,�. By choosing ε := c0/
(

3 25(|�| + 1)2), we get

{
c0

12

(

1 − 1

2m

) 1
m
}m ∫

�

|Du|2m ≤ Em(u,�) + C2m
(

max
∂�

|b|2m + 1
)

and since limm→∞
(

1 − 2−m
)1/m = 1, the desired estimate (3.1) ensues.

Step 4 We show existence of minimisers and convergence by using ideas of [10]. We have
the a priori energy bounds (recall the notation (2.7))

inf
{

Em(·,�)
1

2m :W 1,2m
b (�,RN )

}

≤ |�| 1
2m

∥
∥
∥H

(

·, b, |W b|2/2
)∥
∥
∥

1
2

L∞(�)

and Em(v,�) ≥ 0, for any v ∈ W 1,2m
b (�,RN ). Hence, by standard results (see e.g. [20,29]),

there exists a minimiser um of the functional Em in W 1,2m
b (�,RN ). Moreover, by (3.1) and

(3.11) we have the bound

‖um‖W 1,2m (�) ≤ C

(

sup
�

H
(

·, b, |W b|2/2
)1

2 + max
∂�

|b| + 1

)

. (3.10)

Let C(�, b) denote the right hand side of (3.10). Then, for any q ∈ [2,m], we have

‖um‖W 1,2q (�) ≤ |�| 1
2q − 1

2m ‖um‖W 1,2m (�) ≤ |�| 1
2r − 1

2m C(�, b). (3.11)
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Hence, for any q ≥ 1 fixed, the sequence (um)∞1 is bounded in W 1,2q
b (�,RN ). As such,

there exists u∞ ∈ ∩∞
q=1W

1,2q
b (�,RN ) satisfying um −−⇀ u∞ in W 1,2q

b (�,RN ) along a
subsequence mk → ∞. By letting m → ∞ in (3.11) along the subsequence, the weak lower

semicontinuity of the L2q(�,RN ) norm implies ‖u∞‖W 1,2q (�) ≤ |�| 1
2q C(�, b). By letting

now q → ∞, we derive the desired bound for u∞.
Step 5 We finally show (3.3) by using ideas of [10]. Fix A ⊆ � a measurable set with |A| > 0.
By recalling that um −−⇀ u∞ as m → ∞ along a subsequence in Lq(A,RN ) for any q ≥ 1,
by weak lower semicontinuity we have

E∞(u∞, A) = lim
q→∞ Eq(u

∞, A)
1
q

≤ lim inf
q→∞

(

lim inf
m→∞ Eq(u

m, A)
1
q

)

≤ lim inf
q→∞

(

lim inf
m→∞ |A| 1

q − 1
m Em(um, A)

1
m

)

.

The lemma ensues. ��
Now we are ready to establish the existence of Absolute Minimisers.

Proof of (1) of Theorem 1.1 We continue from the proof of the previous lemma. Fix �′ � �.
Since �′ is a countable disjoint union of intervals, it suffices to assume that �′ = (a, b) � �.
We fix φ ∈ W 1,∞

0

(

(a, b),RN
)

and set ψ∞ := u∞ + φ. Hence, in order to show that u∞ is
an Absolute Minimiser of (1.17) over � it suffices to show that

E∞
(

u∞, (a, b)
) ≤ E∞

(

ψ∞, (a, b)
)

.

Note also that u∞(a) = ψ∞(a) and u∞(b) = ψ∞(b). We now fix 0 < γ, δ < (b − a)/3
and define the following map:

ψm,γ,δ(x) :=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
(a + γ ) − x

γ

)

um(a) +
(
x − a

γ

)

ψ∞(a + γ ), x ∈ (a, a + γ ),

ψ∞(x), x ∈ (a + γ, b − δ),
(
b − x

δ

)

ψ∞(b − δ) +
(
x − (b − δ)

δ

)

um(b), x ∈ (b − δ, b),

where m ∈ N ∪ {∞}. Then, we have ψm,γ,δ ∈ W 1,∞
um

(

(a, b),RN
)

and

Dψm,γ,δ(x) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

ψ∞(a + γ ) − um(a)

γ
, on (a, a + γ )

Dψ∞, on (a + γ, b − δ)
ψ∞(b − δ) − um(b)

−δ
, on (b − δ, b)

Note now that

ψm,γ,δ −→ ψ∞,γ,δ in W 1,∞((a, b),RN ), as m → ∞. (3.12)

Indeed, since obviously ψm,γ,δ −→ ψ∞,γ,δ in L∞((a, b),RN
)

, it suffices to note that for
a.e. x ∈ (a, b)
∣
∣
∣Dψm,γ,δ(x) − Dψ∞,γ,δ(x)

∣
∣
∣ = χ(a,a+γ )

|u∞(a) − um(a)|
γ

+ χ(b−δ,b)
|u∞(b) − um(b)|

δ

≤
(

1

γ
+ 1

δ

)

‖um − u∞‖L∞(�)
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and hence ‖Dψm,γ,δ − Dψ∞,γ,δ‖L∞(�) −→ 0 as m → ∞, along a subsequence. Since for
each m ∈ N um is a minimiser of (1.19) over W 1,2m

b (�,RN ), by recalling that ψm,γ,δ = um

at {a, b}, minimality and Hölder inequality give

Em
(

um, (a, b)
) 1
m ≤ Em

(

ψm,γ,δ, (a, b)
) 1
m

≤ (b − a)
1
m E∞

(

ψm,γ,δ, (a, b)
)

. (3.13)

On the other hand, since ψm,γ,δ = ψ∞ on (a + γ, b − δ), we have

E∞
(

ψm,γ,δ, (a, b)
) ≤ max

{

E∞
(

ψm,γ,δ, (a, a + γ )
)

, E∞
(

ψ∞, (a, b)
)

,

E∞
(

ψm,γ,δ, (b − δ, b)
)}

. (3.14)

By combining (3.12)–(3.14) and (3.3) for A = (a, b), we get along a subsequence (mi )
∞
1

that

E∞
(

u∞, (a, b)
) ≤ lim inf

i→∞

(

max
{

E∞
(

ψmi ,γ,δ, (a, a + γ )
)

, E∞
(

ψ∞, (a, b)
)

,

E∞
(

ψmi ,γ,δ, (b − δ, b)
)})

≤ max
{

E∞
(

ψ∞,(a, b)
)

, E∞
(

ψ∞,γ,δ, (a, a + γ )
)

,

E∞
(

ψ∞,γ,δ, (b − δ, b)
)})

.

Further, since Dψ∞,γ,δ ≡ D1,γ ψ∞(a) on (a, a + γ ) and Dψ∞,γ,δ ≡ D1,−δψ∞(b) on
(b − δ, b), we have

E∞
(

ψ∞,γ,δ, (a, a + γ )
) = max[a,a+γ ]L

(

·, ψ∞,γ,δ, D1,γ ψ∞(a)
)

(3.15)

and similarly for x = b. By (3.15), we see that it suffices to show that there exist infinitesimal
sequences (γi )

∞
i=1 and (δi )

∞
i=1 such that

E∞
(

ψ∞, (a, b)
) ≥ max

{

lim sup
i→∞

max[a,a+γi ]
L
(

·, ψ∞,γi ,δi , D1,γi ψ∞(a)
)

,

lim sup
i→∞

max[b−δi ,b]
L
(

·, ψ∞,γi ,δi , D1,−δi ψ∞(b)
)}

. (3.16)

The rest of the proof is devoted to establishing (3.16) and this will complete the proof. We
illustrate the idea of the proof of (3.16) by assuming first that Dψ∞ exists on [a, b]. In this
special case, we have

E∞
(

ψ∞, (a, b)
) = sup

[a,b]
L
(

·, ψ∞, Dψ∞)

≥ max
{

L
(

a, ψ∞(a), Dψ∞(a)
)

, L
(

b, ψ∞(b), Dψ∞(b)
)}

.

Further, since D1,γ ψ∞(a) −→ Dψ∞(a) and D1,−δψ∞(b) −→ Dψ∞(b) as γ, δ → 0,
whilst

max
a≤x≤a+γ

∣
∣
∣ψ

∞,γ,δ(x) − ψ∞(a)

∣
∣
∣ −→ 0, as γ → 0 (3.17)

we obtain

lim
γ→0

max[a,a+γ ]L
(

·, ψ∞,γ,δ, D1,γ ψ∞(a)
)

= L
(

a, ψ∞(a), Dψ∞(a)
)

,
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and similarly for x = b. By putting these together we are led to (3.16). Now we return
to the general case. Fix u ∈ W 1,∞(�,RN ), x ∈ [a, b] and ε > 0 and set Aε(x) :=
[x − ε, x + ε] ∩ [a, b]. Then, we claim that there is an increasing modulus of continuity
ω ∈ C0(0,∞) with ω(0+) = 0 such that

E (u, Aε(x)) ≥ ess sup
y∈Aε(x)

L (x, u(x), Du(y)) − ω(ε). (3.18)

In order to see (3.18), note that for a.e. y ∈ Aε(x) we have |x − y| ≤ ε and hence by the
continuity of L and the essential boundedness of Du, there is an ω such that

∣
∣
∣L
(

x, u(x), Du(y)
)

− L
(

y, u(y), Du(y)
)∣
∣
∣ ≤ ω(ε),

for a.e. y ∈ Aε(x). Hence, (3.18) ensues. Now we claim that

sup
Aε(x)

(

lim sup
t→0

1

2

∣
∣
∣D1,t u − V (·, u)

∣
∣
∣

2
)

≤ ess sup
Aε(x)

1

2

∣
∣
∣Du − V (·, u)

∣
∣
∣

2
. (3.19)

In order to see (3.19), it suffices to apply the inequality

∣
∣
∣
∣

v(y + t) − v(y)

t

∣
∣
∣
∣

≤ ess sup
Aε(x)

|Dv|, y, y + t ∈ Aε(x), t �= 0,

to the Lipschitz map v(y) := u(y) − ∫ y
a V (t, u(t)) dt and note the identities

Dv(y) = Du(y) − V (y, u(y)), a.e. y ∈ Aε(x),

D1,tv(y) = D1,t u(y) − 1

t

∫ y+t

y
V (t, u(t)) dt

= D1,t u(y) − V (y, u(y)) + o(1), as t → 0, y ∈ Aε(x).

Hence, (3.19) holds true. Now, we combine (1.13), (3.18) and (3.19) together with (1.15) to
find for fixed u ∈ W 1,∞(�,RN ), x ∈ [a, b] and ε > 0 small that

E∞
(

u, (a, b)
) ≥ E∞

(

u, Aε(x)
)

≥ ess sup
y∈Aε(x)

H

(

x, u(x),
1

2

∣
∣Du − V (y, u(y))

∣
∣
2
)

− ω(ε)

= H

(

x, u(x), ess sup
y∈Aε(x)

1

2

∣
∣Du(y) − V (y, u(y))

∣
∣2

)

− ω(ε)

≥ H

(

x, u(x), sup
y∈Aε(x)

[

lim sup
t→0

1

2

∣
∣D1,t u(y) − V (y, u(y))

∣
∣
2
])

− ω(ε)

= sup
y∈Aε(x)

[

lim sup
t→0

H

(

x, u(x),
1

2

∣
∣D1,t u(y) − V (y, u(y))

∣
∣
2
)]

− ω(ε)

≥ lim sup
t→0

H

(

x, u(x),
1

2

∣
∣D1,t u(x) − V (x, u(x))

∣
∣2
)

− ω(ε)

and by letting ε → 0, we get
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E∞
(

u, (a, b)
) ≥ lim sup

t→0
H

(

x, u(x),
1

2

∣
∣D1,t u(x) − V (x, u(x))

∣
∣
2
)

, (3.20)

for any fixed u ∈ W 1,∞(�,RN ) and x ∈ [a, b]. Note now that since
∣
∣D1,t u(x)

∣
∣ ≤

‖Du‖L∞(�) for x ∈ (a, b), t �= 0, for any infinitesimal sequence (ti (x))∞i=1 there is a
subsequence denoted again by the same symbol such that

the limit lim
i→∞ D1,ti (x)u(x) exists in R

N . (3.21)

By (3.20)–(3.21) and the continuity of H we find that

E∞
(

u, (a, b)
) ≥ lim sup

i→∞
H

(

x, u(x),
1

2

∣
∣D1,ti (x)u(x) − V (x, u(x))

∣
∣2
)

= H

(

x, u(x),
1

2

∣
∣
∣ lim
i→∞ D1,ti (x)u(x) − V (x, u(x))

∣
∣
∣

2
)

. (3.22)

Now we apply (3.22) to u = ψ∞ and x = a, b to infer that there exist sequences (γi )
∞
i=1

and (δi )
∞
i=1 such that

the limits lim
i→∞ D1,γi ψ∞(a) and lim

i→∞ D1,−δi ψ∞(b) exist in R
N (3.23)

and also

E∞
(

ψ∞, (a, b)
) ≥ max

{

H

(

a, ψ∞(a),
1

2

∣
∣
∣ lim
i→∞ D1,γi ψ∞(a) − V (a, ψ∞(a))

∣
∣
∣

2
)

,

H

(

b, ψ∞(b),
1

2

∣
∣
∣ lim
i→∞ D1,−δi ψ∞(b) − V (b, ψ∞(b))

∣
∣
∣

2
)}

.

(3.24)

On the other hand, by (3.15), (3.17) and (3.23), for γ = γi and δ = δi we have

lim
i→∞ E∞

(

ψ∞,γi ,δi , (a, a + γi )
) = lim

i→∞ max[a,a+γi ]
L
(

·, ψ∞,γi ,δi , D1,γi ψ∞(a)
)

= H

(

a, ψ∞(a),
1

2

∣
∣
∣ lim
i→∞ D1,γi ψ∞(a)− V (a, ψ∞(a))

∣
∣
∣

2
)

(3.25)

and similarly for x = b. By putting together (3.24)-(3.25) we see that (3.16) ensues and so
does item (1) of Theorem 1.1. ��

4 Existence ofD-solutions to the equations in L∞

In this section we establish items (2)–(4) of Theorem 1.1. We begin by showing that the
minimisers obtained in the previous section actually are weak solutions of the respective
Euler-Lagrange equations.

Lemma 4.1 (Weak solutions of the Lm equations) LetH ,V ,�, b satisfy the assumptions of
Theorem 1.1 and let (um)∞1 be the sequence of minimisers constructed in Lemma 3.1. Then,

each um is a weak solution in W 1,2m
b (�,RN ) of the Euler-Lagrange equations of (1.19) on

�:
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D

(

H m−1
(

·, u,
1

2

∣
∣W u

∣
∣
2
)

Hp

(

·, u,
1

2

∣
∣W u

∣
∣
2
)

W u

)

= H m−1
(

·, u,
1

2

∣
∣W u

∣
∣2
)

Hp

(

·, u,
1

2

∣
∣W u

∣
∣2
)

�
(

Hη

(

·, u,
1

2

∣
∣W u

∣
∣2
)

− Hp

(

·, u,
1

2

∣
∣W u

∣
∣2
)

(W u)�Vη(·, u)

)

, (4.1)

where W u is given by (2.7).

Proof of Lemma 4.1 Let H be given by (3.7) and note that the ODE system (4.1) can be
written compactly as

D
(

HP (·, u, Du)
) = Hη(·, u, Du). (4.2)

By (1.15) and (1.16), one easily obtains the bounds
∣
∣HP (x, η, P)

∣
∣ ≤ C(|η|)(1 + |P|2m−1), (4.3)

∣
∣Hη(x, η, P)

∣
∣ ≤ C(|η|)(1 + |P|2m). (4.4)

By standard results (see e.g. [20]), (4.3)–(4.4) imply that the functional is Gateaux differen-
tiable on W 1,2m

b (�,RN ) and the lemma follows. ��

Now we show that the weak solutions um of the respective Euler-Lagrange equations
actually are smooth solutions. This will imply that the formal calculations of the previous
section in the derivation of (2.8) make rigorous sense.

Lemma 4.2 (C2 regularity) Let (um)∞1 be the sequence of minimisers of Lemma 4.2. Then,
each um is a classical solution in C2(�,RN ) of the Euler-Lagrange equation (4.1), and
hence of the expanded form (2.8) of the same equation.

Proof of Lemma 4.2 Fix m ≥ 2 and let us drop the superscripts and denote um by just u. The
first step is to prove higher local integrability and then bound the difference quotients of Du
in L2

loc(�,RN ). Let us fix q ∈ N and ζ ∈ C∞
c (�) with 0 ≤ ζ ≤ 1. By recalling (2.7), we

set:

φ(x) := ζ(x)
∫ x

inf �

ζ(t)
∣
∣W u(t)

∣
∣qW u(t) dt, x ∈ �. (4.5)

Then, φ ∈ W 1,1
c (�,RN ) and

Dφ(x) = ζ 2(x)
∣
∣W u(x)

∣
∣qW u(x) + Dζ(x)

∫ x

inf �

ζ(t)
∣
∣W u(t)

∣
∣qW u(t) dt,

for a.e. x ∈ �. Suppose now that q ≤ 2m − 1. Then, since Du ∈ L2m(�,RN ), we have that
φ ∈ W 1,2m

c (�,RN ). By inserting the test function φ in the weak formulation of the system
(4.2) (i.e. (4.1)) and by suppressing again the arguments for the sake of brevity, we have

∫

�

{

H m−1HpW u ·
[

ζ 2|W u|qW u + Dζ

∫

inf �

ζ |W u|q(W u)

]}

+
∫

�

{

H m−1Hp

(

Hη − Hp(W u)�Vη(·, u)
)

·
[

ζ

∫

inf �

ζ |W u|qW u

]}

= 0.
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By (1.15)–(1.16), we have Hp ≥ c0 and 2h ≥ c0|W u|2. By using the bounds (4.3), (4.4)
(where H is given by (3.7)), that ζ ≤ 1 and the elementary inequalities

∫ x

inf �

| f | ≤
∫

�

| f |, x ∈ �, f ∈ L1(�) , t2m−1 ≤ t2m + 1, t ≥ 0,

we have
∫

�

ζ 2|W u|2m+q ≤ C

(∫

�

ζ |W u|q+1
){∫

�

|Dζ |
(

H m−1Hp |W u|
)

+

+
∫

�

ζ
(

H m−1Hp

∣
∣
∣Hη − Hp(W u)�Vη(·, u)

∣
∣
∣

) }

≤ C
(‖u‖L∞(�)

)
(∫

�

ζ |W u|q+1
)

�
∫

�

{

|Dζ |
(

1 + |W u|2m−1
)

+ ζ
(

1 + |W u|2m
)}

.

Hence, we have obtained
∫

�

ζ 2|W u|2m+q ≤ C
(‖u‖L∞(�)

)
(∫

�

ζ |W u|q+1
)∫

�

1 + |W u|2m . (4.6)

In view (4.6), by taking q + 1 = 2m we have W u ∈ L4m−1
loc (�,RN ). Hence, we can

iterate and choose q + 1 = 4m − 1 to find that φ ∈ W 1,4m−1
c (�,RN ) which makes it

admissible and we can repeat the process. Hence, by applying the estimate again we infer
that W u ∈ L6m−2

loc (�,RN ). By induction, the estimate holds for all integers of the form
q = (2m − 1)k, k ∈ N and we obtain that W u ∈ ⋂∞

r=1 L
r
loc(�,RN ). In view of (2.7) and

since u ∈ C0(�,RN ), we conclude that Du ∈ ∩∞
r=1L

r
loc(�,RN ). The final step is to prove

that D1,tDu is bounded in L2
loc. The idea is classical and consists of using as test functions in

the weak formulation φ = −D1,−t (ζ 2D1,t )u where ζ ∈ C∞
c (R), so we refrain from giving

the details. The lemma follows. ��
Now we may prove the remaining assertions of our main result.

Proof of items (2)–(4) of Theorem 1.1 In view of Lemmas 3.1, 4.1, 4.2, let (um)∞1 denote
the sequence of minimisers in C0(�,RN ) ∩ C2(�,RN ) of the functionals (1.19) over the
spaces W 1,2m

b (�,RN ). Then, along a subsequence
{

um −−→ u∞, in C0(�,RN ),

Dum −−⇀ Du∞, in Lq(�,RN ), for all q ≥ 1,
(4.7)

as m → ∞, and the limit satisfies u∞ ∈ W 1,∞
b (�,RN ). Moreover, each um is a classical

solution of the system (2.8), or equivalently of (2.12) with f ∞, F∞, A∞ given by (2.9)–
(2.11). The goal is to show that the limit map u∞ is a D-solution of the system (1.6) with
F∞ given by (1.14) (or equivalently (2.13)) and also that u∞ = b on ∂�. We begin by
observing that the boundary condition is satisfied as a result of the uniform convergence on
�. Moreover, by recalling (2.7) and by multiplying (2.12) with D

(

W um
)

, we obtain
{
A∞(·, um, Dum)

m − 1
+ H 2

p

(

·, u,
1

2

∣
∣W um

∣
∣2
)∣
∣W um

∣
∣2 I

}

: D
(

W um
)

⊗ D
(

W um
) =

(
f ∞(·, um, Dum)

m − 1
+ F∞(·, um, Dum)

)

· D
(

W um
)
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≤
∣
∣
∣
∣

f ∞(·, um, Dum)

m − 1
+ F∞(·, um, Dum)

∣
∣
∣
∣

∣
∣D
(

W um
)∣
∣. (4.8)

By (1.15) we have Hp ≥ c0. In addition, by (2.11) the matrix map A∞ is non-negative.
Hence (4.8) gives the estimate

∣
∣
∣

∣
∣W um

∣
∣2D

(

W um
)
∣
∣
∣ ≤ 1

c2
0

∣
∣
∣
∣

f ∞(·, um, Dum)

m − 1
+ F∞(·, um, Dum)

∣
∣
∣
∣
. (4.9)

By using the elementary inequality
∣
∣D
(| f |3)∣∣ ≤ 3

∣
∣| f |2D f

∣
∣, which holds for f ∈

C1(�,RN ), (4.9) gives the estimate
∣
∣
∣D
(|W um |3)

∣
∣
∣ ≤ 3

c2
0

∣
∣
∣
∣

f ∞(·, um, Dum)

m − 1
+ F∞(·, um, Dum)

∣
∣
∣
∣
. (4.10)

By (4.10), (4.7) and the form of the right hand side given by (2.9), (2.10), we have that the
sequence

vm := |W um |3 = ∣
∣Dum − V (·, um)

∣
∣
3 (4.11)

is bounded in W 1,q(�), for any q ≥ 1. Hence, by the compactness of the imbedding
W 1,q(�) � C0(�), there is a continuous non-negative function v∞ such that vm −→ v∞
in C0(�) along perhaps a further subsequence as m → ∞. We claim that

|W u∞|3 = ∣
∣Du∞ − V (·, u∞)

∣
∣
3 ≤ v∞, a.e. on �. (4.12)

Indeed, by (4.7) and the weak lower semi-continuity of the L3 norm, for every x ∈ � and
r > 0 fixed we have that

1

2r

∫ x+r

x−r

∣
∣W u∞∣∣3 ≤ lim inf

m→∞
1

2r

∫ x+r

x−r

∣
∣W um

∣
∣
3 = 1

2r

∫ x+r

x−r
v∞. (4.13)

By passing to the limit as r → 0 in (4.13), the Lebesgue differentiation theorem implies that
the inequality (4.12) is valid a.e. on �. We now set �∞ := {

x ∈ � : v∞(x) > 0
}

. By the
continuity of v∞, �∞ is open in �, the set �\�∞ is closed in � and �\�∞ = {

x ∈ � :
v∞(x) = 0

}

. By (4.12), we have
∣
∣W u∞∣∣ = 0, a.e. on �\�∞. (4.14)

On the other hand, since vm −→ v∞ in C0(�), for any U � �∞, there is a σ0 > 0 and an
m(U ) ∈ N such that for all m ≥ m(U ), we have vm ≥ σ0 on U and by (4.11)

|W um | ≥ (σ0)
2
3 , on U. (4.15)

By (4.15), (4.13) and (4.10), we have
∣
∣
∣D
(

W um
)
∣
∣
∣ ≤ 3

(c0)2(σ0)
2
3

∣
∣
∣
∣

f ∞(·, um, Dum)

m − 1
+ F∞(·, um, Dum)

∣
∣
∣
∣
, on �′. (4.16)

By (4.16) and (4.7), D2um is bounded in Lq
loc(�

∞,RN ). Hence, we have that
⎧

⎨

⎩

um −→ u∞, in C0(�∞,RN ),

Dum −→ Du∞, in Lq
loc(�

∞,RN ), for all q ≥ 1,

D2um −−⇀ D2u∞, in Lq
loc(�

∞,RN ), for all q ≥ 1.

Thus, by passing to the limit in the ODE system (2.8) as m → ∞ along a subsequence, we
have that the restriction of u∞ over the open set �∞ is a strong a.e. solution of (2.13) on
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�∞. By bootstrapping in the equation, we have that actually u∞ ∈ C2(�∞,RN ). On the
other hand, we have that |W u∞| = 0, a.e. on �\�∞. Hence, if the set �\�∞ has non-trivial
topological interior, by differentiating the relation Du∞ = V (·, u∞) we have that D2u∞
exists a.e. on the interior of the open set �\�∞ and by bootstrapping again we see that
u∞ ∈ C2

(

int(�\�∞),RN
)

. Putting the above together, we have that D2u∞ exists and is
continuous on the open set �∞ defined in the statement of the theorem which is the union
of �∞ and of the interior of �\�∞: u∞ ∈ C2(�∞,RN ) and �∞ = �∞ ∪ int (�\�∞).
We now show that u∞ is a D-solution of (2.13) on � (Definitions 4.6–4.7). Let D1,hi Du∞
be the first difference quotients of Du∞ along a sequence hi → 0 as i → ∞ and let D2u∞
be a diffuse 2nd derivative of u∞ arising from the subsequential weak* convergence of the
difference quotients, that is

δ
D

1,hi j Du∞
∗−−⇀ D2u∞, in Y

(

�,RN ),

as j → ∞, in the space of Young measures from � ⊆ R into the 1-point compactification
R

N = R
N ∪{∞}. By the regularity of u∞ on �∞, the restriction of any diffuse 2nd derivative

on �∞ is the Dirac mass at the second derivatives:

D2u∞(x) = δD2u∞(x), for a.e. x ∈ �∞. (4.17)

Hence, u∞ isD-solution on �∞, since it is a strong solution on this subdomain. Consequently,
for a.e. x ∈ �∞ ⊆ � and any X ∈ supp∗

(D2u∞(x)
)

we have

H 2
p

(

x, u∞(x),
1

2

∣
∣W u∞(x)

∣
∣
2
)∣
∣W u∞(x)

∣
∣
2
[

X − D
(

V (·, u∞)
)

(x)
]

= F∞(x, u∞(x), Du∞(x)
)

. (4.18)

Thus, u∞ is a D-solution of (1.6) with F∞ given by (1.14) (i.e. (2.13)). On the other hand,
since

∣
∣W u∞∣∣ = 0, a.e. on �\�∞, for a.e. x ∈ �\�∞ and any X ∈ supp∗

(D2u∞(x)
)

we
have we have

H 2
p

(

x, u∞(x),
1

2

∣
∣W u∞(x)

∣
∣
2
)∣
∣W u∞(x)

∣
∣
2
[

X − D
(

W (·, u∞)(x)
]

= 0. (4.19)

Also, by (2.9) we see that the right hand side of (2.13) essentially vanishes on �\�∞ as
well:

F∞(·, u∞, Du∞) = 0, a.e. on �\�∞. (4.20)

By putting (4.18), (4.19), (4.20) together, we conclude that u∞ is indeed a D-solution of
the Dirichlet problem for the fundamental equations in L∞, which is also a weak sequential
limit of minimisers of the respective Lm functionals as m → ∞ in the W 1,q topology for any
q ≥ 1. In order to conclude it remains to establish the strong convergence of the derivatives
of the sequence of minimisers um to u∞. On the open set �∞ we have Dum −→ Du∞ in
Lq

loc(�
∞,RN ) and hence up to a further subsequence we have Dum(x) −→ Du∞(x) for

a.e. x ∈ �∞ as m → ∞. On the closed set �\�∞, we have
∫

�\�∞

∣
∣Dum − Du∞∣∣3 ≤ 9

(∫

�\�∞

∣
∣Dum − V (·, um)

∣
∣
3

+
∫

�\�∞

∣
∣V (·, um) − V (·, u∞)

∣
∣
3

+
∫

�\�∞

∣
∣V (·, u∞) − Du∞∣∣3

)

,
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for any q ∈ N. Since vm −→ v∞ = 0 as m → ∞ in C0
(

�\�∞,RN
)

and also um −→ u∞
in C0

(

�,RN
)

, we have that Dum −→ Du∞ in L3(�\�∞,RN ) along a subsequence as
m → ∞. Conclusively, Dum(x) −→ Du∞(x), for a.e. x ∈ � as m → ∞ along a sequence
and also ‖Dum‖Lq (�) ≤ C(q), for a constant depending on q ∈ N. Hence, if E ⊆ � is
measurable, we have the equi-integrability estimate

‖Dum‖Lq (E) ≤ ‖Dum‖Lq+1(E)|E | 1
q(q+1) ≤ C(q + 1)|E | 1

q(q+1) .

The conclusion of strong convergence now follows from the above and the Vitali convergence
theorem. Theorem 1.1 has been established. ��
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Appendix: Young measures and D-solutions

Let E ⊆ R be a (Lebesgue) measurable set and consider the Alexandroff 1-point compact-
ification of the space R

N , that is RN := R
N ∪ {∞}. Its topology will be the standard one

which makes it isometric to the N -sphere (via the stereographic projection which identifies
{∞} with the north pole). The space R

N is considered equipped with the metric topology
induced by the embedding into its compactification R

N but balls, distances, etc. will be taken
with respect to its usual metric.

Definition 4.3 (Young Measures into the 1-point compactification of R
N ) The space of

Young Measures E ⊆ R −→ R
N is denoted by Y

(

E,RN
)

and is the set of probability-
valued maps R ⊇ E � x 
−→ ϑ(x) ∈ P

(

R
N
)

which are measurable in the following
sense: for any fixed open set U ⊆ R

N , E � x 
−→ [ϑ(x)](U ) ∈ R is measurable. This is
called weak* measurability.

The setY (E,RN ) is a subset of the unit sphere of the space L∞
w∗(E,M(RN )). This Banach

space consists of weakly* measurable maps valued in the signed Radon measures: E � x 
−→
ϑ(x) ∈ M(

R
N
)

. The norm of the space is ‖ϑ‖L∞
w∗ (E,M(RN )) = ess supx∈E

∥
∥ϑ(x)

∥
∥
(

R
N
)

where “‖ · ‖(RN
)

” is the total variation. For more details about this and relevant spaces we
refer e.g. to [28] (and references therein). Hence, the Young Measures are the subset of the
unit sphere which consists of probability-valued weakly* measurable maps. It can be shown
(see e.g. [28]) that L∞

w∗
(

E,M(

R
N
))

is the dual space of the L1 space of measurable maps
valued in the (separable) spaceC0

(

R
N
)

of real continuous functions overRN , in the standard
Bochner sense:

(

L1(E,C0(
R

N ))
)∗ = L∞

w∗
(

E,M(

R
N )).

The elements of this space are certain Carathéodory functions � : E ×R
N −→ R endowed

with ‖�‖L1(E,C0(RN )) = ∫

E

∥
∥�(x, ·)∥∥C0(RN )

dx . The space L1
(

E,C0
(

R
N
))

is separable
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and the duality pairing

〈·, ·〉 : L∞
w∗
(

E,M(

R
N ))× L1(E,C0(

R
N )) −→ R

is given by

〈ϑ,�〉 :=
∫

E

∫

RN
�(x, X) d[ϑ(x)](X) dx .

The unit ball of L∞
w∗
(

E,M(

R
N
))

is sequentially weakly* compact. Hence, for any bounded
sequence (ϑm)∞1 ⊆ L∞

w∗
(

E,M(

R
N
))

, there is a limit map ϑ and a subsequence ofm’s along
which ϑm ∗−−⇀ ϑ as m → ∞.

Remark 4.4 (Properties of Y (E,RN )) The set of Young measures is convex and by the com-
pactness of RN , it can be proved that it is sequentially weakly* compact in L∞

w∗
(

E,M(

R
N
))

(see e.g. [16,27]). This property is essential in our setting. Moreover, the space of measurable
maps v : E ⊆ R −→ R

N can be (nonlinearly) embedded into Y
(

E,RN
)

by v 
−→ δv ,
(δv)(x) := δv(x), x ∈ E .

The following lemma is a small variant of a standard result about Young measures but it
plays an important role in our setting (for the proof see [16,27,39,55]).

Lemma 4.5 Let vm, v∞ : E ⊆ R −→ R
N be measurable maps, m ∈ N. Then, up to the

passage to subsequences, the following equivalence holds true as m → ∞: vm −→ v∞ a.e.
on E iff δvm

∗−−⇀ δv∞ in Y
(

E,RN
)

.

Now we give the main definitions of our notion of solution only in the special case which is
needed in this paper. For the general case and applications we refer to [39–42] and [19,43,44].

Definition 4.6 (Diffuse 2nd derivatives) Suppose that u : � ⊆ R −→ R
N is in

W 1,∞
loc (�,RN ). For any h �= 0, we consider the difference quotients of the derivative

D1,hDu = 1

h

(

Du(· + h) − Du
)

: � ⊆ R −→ R
N

and Du is understood as being extended by zero onR\�. We define the diffuse 2nd derivatives
of u as the subsequential limits D2u of δD1,hDu in the space of Young measures from � into
R

N along infinitesimal sequences (hi )∞1 ⊆ R\{0}:
δ

D
1,hi j Du

∗−−⇀D2u, in Y
(

�,RN ), as i → ∞.

The weak* compactness of Y
(

�,RN
)

implies that every u ∈ W 1,∞
loc (�,RN ) possesses

diffuse 2nd derivatives, in particular at least one for every choice of (hi )∞1 . For our notion of
generalised solution, let us first introduce the following notation: if ϑ is a probability measure
on R

N , we define its reduced support as

supp∗(ϑ) := supp(ϑ)\{∞} ⊆ R
N .

Definition 4.7 (D-solutions of 2nd order ODE systems) Let F : (R ⊇ �) × R
N × R

N ×
R

N −→ R
N be a Borel measurable map with � open. Consider the ODE

F(·, u, Du, D2u
) = 0, on �. (4.21)
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We say that a map u : R ⊇ � −→ R
N in W 1,∞

loc (�,RN ) is a D-solution of (4.21) when for
any diffuse 2nd derivative D2u ∈ Y

(

�,RN
)

we have

sup
X∈supp∗(D2u(x))

∣
∣
∣F
(

x, u(x), Du(x), X
)∣
∣
∣ = 0, a.e. x ∈ �. (4.22)

In general diffuse derivatives may not be unique for non-differentiable maps. Moreover,
(4.22) is trivially satisfied at certain points at which it may happen that D2u(x) = δ{∞}
and hence supp∗(D2u(x)) = ∅ (see also the examples in [39,41,42]). It is an immediate
consequence of Lemma 4.5 that diffuse derivatives are compatible with classical derivatives,
in the sense that if u is twice differentiable a.e. on �, then the diffuse 2nd derivative D2u
is unique in the sense that D2u = δD2u a.e. on �. The converse is true as well if D2u is
interpreted in the sense of Ambrosio-Malý as “derivative in measure” (see [2,39]). As a
direct consequence we have that D-solutions are compatible with a.e. twice differentiable
strong solutions.
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