Ageing alters the impact of nutrition on immune function

It is advisable to refer to the publisher's version if you intend to cite from the work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1017/S0029665116000781

Publisher: Cambridge University Press

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement.

www.reading.ac.uk/centaur

CentAUR
Central Archive at the University of Reading
Reading’s research outputs online
Ageing alters the impact of nutrition on immune function

Parveen Yaqoob
Department of Food and Nutritional Sciences, School of Chemistry, Food & Pharmacy, The University of Reading, Reading RG6 6AP, UK

Immunosenescence during ageing is a major challenge which weakens the ability of older individuals to respond to infection or vaccination. There has been much interest in dietary strategies to improve immunity in older people, but there is an assumption that modulation of the immune response in older people will be based on the same principles as for younger adults. Recent evidence suggests that ageing fundamentally alters the impact of nutrition on immune function. As a result, interpretation of data from studies investigating the impact of diet on immune function is highly dependent on subject age. Study design is critically important when investigating the efficacy of dietary components, and most studies involving older people include rigorous inclusion/exclusion criteria based on medical history, laboratory tests, general health status and often nutritional status. However, immunological status is rarely accounted for, but can vary significantly, even amongst healthy older people. There are several clear examples of age-related changes in immune cell composition, phenotype and/or function, which can directly alter the outcome of an intervention. This review uses two case studies to illustrate how the effects of n-3 PUFA and probiotics differ markedly in young vs. older subjects. Evidence from both suggests that baseline differences in immunosenescence influence the outcome of an intervention, highlighting the need for detailed immunological characterisation of subjects prior to interventions. Finally, future work elucidating alterations in metabolic regulation within cells of the immune system as a result of ageing may be important in understanding the impact of diet on immune function in older people.

Abbreviation: AMPK, AMP-activated protein kinase.
Corresponding author: P. Yaqoob, fax +44 118 931 0800, email P.Yaqoob@reading.ac.uk

Nutritional status has a profound influence on resistance to infection, which is exemplified by the vicious cycle between undernutrition and infection in developing countries\(^{(1)}\). However, vulnerable groups in developed countries are also at risk of age- or disease-related malnutrition, which can impact on the immune response to infection and to vaccination. Thus, while decreased immune function due to malnutrition primarily affects children in developing countries, in the developed world, it is mainly a problem for older people\(^{(2)}\). By 2050, approximately 25% of the population will be older than 65 years\(^{(3)}\) and the impact of this on public health is a major global challenge. However, decreased immune function as a result of malnutrition should not be confused with immunosenescence; an obvious difference is that malnutrition and, to some extent its consequences, are treatable. Immunosenescence is irreversible and describes the biological ageing of the immune system, which is associated with a progressive decline in both innate and adaptive immunity, poor response to vaccination and increased prevalence of cancer, infections and autoimmune and chronic diseases. While nutritional interventions may delay this process, the evidence for this remains controversial, particularly in terms of the nature and potency of immunomodulatory activity and of translation into a corresponding change in clinical outcome\(^{(4,5)}\). Furthermore, there is a fundamental lack of understanding as to how immunosenescence alters the
response of cells of the immune system to dietary components. Most studies examining the effects of diet on immune function fail to adequately characterise target populations in terms of nutritional status, health status, genetic background and few, if any, characterise them in terms of the immunological status. This review focuses on two case studies, which demonstrate that failure to account for immunosenesence can significantly influence the outcome of a nutritional intervention. It also explores proposed mechanisms by which age ing alters metabolic regulation of immune cells and whether metabolic pathways could be targeted for immunoregulation.

Case study: T-flipper alters the immune response to n-3 PUFA

Fatty acids play diverse roles in all cells, serving as an important source of energy, as structural components of cell membranes, signalling molecules, bioactive mediators and regulators of gene expression. Human immune cell phospholipids contain about 1% EPA and 2-5% DHA in addition to 20% arachidonic acid (6,7). As the long-chain n-3 PUFA content of the diet increases, lympho
cyte arachidonic acid decreases in a curvilinear fashion. In human studies, dietary n-3 PUFA never exceeds 3% of total energy, whereas in animal studies, intake is often considerably higher, and this is thought to explain the discrepancies that exist between animal and human studies investigating the immunomodulatory effects of n-3 PUFA (7). As a result, it remains unclear to what extent and at what dose n-3 PUFA have immunomodu
tory effects in human subjects. Nevertheless, the literature suggests that fish oil has a greater impact on immune function in elderly compared with young subjects (8-10) and that this may be related to the fact that older subjects appear to incorporate EPA into plasma and peripheral blood mononuclear cells more readily than younger subjects (11) (Fig. 1). EPA resulted in a dose-dependent increase in neutrophil respiratory burst in older, but not younger subjects (11). However, prostaglandin E2 production by peripheral blood mononuclear cells was decreased in both groups and phagocytosis and cytokine production were not affected in either group (11). This highlights the fact that age is likely to be an important factor when considering the impact of n-3 PUFA on immunity, not only because of the influence of immunosenesence, but also because immune cells from older subjects appear to be more responsive to the availability of n-3 PUFA. Recent work suggests that the cholesterol content of T lymphocytes from healthy elderly subjects is higher than that of young subjects, and that membrane fluidity is subsequently decreased (12). Furthermore, the coalescence of lipid rafts at the site of T cell receptor engagement is impaired in elderly subjects (12,13). The impact of ageing on lipid raft composition and function appears to be most evident in the CD4+ T cell population and affects cytokine sig
nalling (13,14). Thus, the greater responsiveness of T cell membranes to n-3 PUFA in older subjects could result in alteration of lipid raft structure, and subsequently of cell function, effects which are absent in younger subjects.

Case study: age alters the immune response to probiotics

Influenza is a major cause of death in older people and while vaccination offers a prophylactic solution for preventing infection and associated complications, immunosenesence significantly impairs vaccine efficacy (15). Potential adjuvants and dietary strategies to improve the immune response to influenza vaccines are therefore of interest, particularly in older people. Emerging evidence suggests that the resident gut microbiota plays an influential role in shaping antiviral defences and modulating the outcome of viral infections through inflammasome-mediated cytokine release (16). Antibiotic-treated mice have reduced levels of IL-1β...
secretion in the lung during influenza infection, supporting the suggestion that gut-resident bacteria are involved in regulating cytokine production\(^{16}\). It has been speculated that gut microbes release low levels of pattern recognition receptor ligands, which provide signals for inflammasome-mediated cytokine release (for example, in the lung during influenza infection). These in turn regulate the activity of respiratory dendritic cells during activation of adaptive immunity against the virus\(^{16}\), and together, this forms the basis for the hypothesis that pre- and probiotics may modulate responses to infection or vaccination.

Trials investigating the use of probiotics in prevention of common respiratory illnesses have produced mixed results\(^{17}\), although a recent systematic review concluded that they significantly reduce episodes of acute upper respiratory tract infection and antibiotic usage in infants and young to middle-aged adults\(^{18}\). Response to vaccination is increasingly being used as a surrogate for the response to infection\(^{19}\). The majority of studies investigating the impact of probiotics on responses to vaccination have been conducted in healthy adults, and some show borderline effects of probiotics on serum or salivary IgA titres, although the clinical relevance is not clear\(^{20}\). Studies in infants and in elderly subjects, particularly those examining the response to influenza vaccination, are very limited, as are studies on the effects of prebiotics on immune function\(^{21}\) and vaccination\(^{20}\). Since ageing is associated with reduced biodiversity and compromised stability of the gut microbiota\(^{22}\), as well as immunosenescence, older individuals may derive particular benefit from intervention with pre- and/or probiotics.

Previous studies investigating the effects of probiotics on the response to vaccination have mainly focused on antibody production. While some studies have reported a modest effect of probiotics on the antibody response to vaccination in adults, trials in older subjects are largely inconsistent and data are limited\(^{20}\). In a recent study (the PRIMAGE (Probiotics, Immunity and Ageing) trial), we demonstrated that while there was marked impairment of the antibody response to influenza vaccination in older subjects, intervention with a novel symbiotic, *Bifidobacterium longum* bv. *infantis* CCUG 52486 combined with gluco-oligosaccharide (*B. longum* + GI-OS) failed to reverse this impairment\(^{23}\). Although there is general consensus that ageing impairs the response to influenza vaccination\(^{24}\), there are very few robust studies specifically comparing responses of young and older subjects, and there are no other studies directly comparing the efficacy of pre- and probiotics on the immune response of young and older subjects to vaccination. In the PRIMAGE trial, the response of the young and older subjects to the intervention differed to some degree. In older subjects consuming the symbiotic, there was a trend for reduced seroconversion to the Brisbane subunit of the vaccine, whereas in the young subjects, there were trends for enhanced production of vaccine-specific IgM and, to some extent, IgG\(^{23}\). Increased production of vaccine-specific IgM and IgG following intervention with probiotics has been reported in several other studies\(^{25-29}\). The possibility that there is a differential immune response to probiotics in young v. older subjects has also been demonstrated in *in vitro* studies. You and Yaqoob\(^{30}\) demonstrated that peripheral blood mononuclear cells from older subjects (60–85 years) were more responsive to the immunoregulatory effects (IL-10 induction) of two strains of bifidobacteria than young subjects (18–30 years), whereas peripheral blood mononuclear cells from young subjects were more responsive to the immunostimulatory effects (IL-12 induction) of two strains of lactobacilli. Further studies demonstrated that probiotics increased the responsiveness of dendritic cells in older subjects to a greater degree than young subjects, but this was not sufficient to overcome the impact of immunosenescence in a mixed leucocyte reaction\(^{31}\). The choice of probiotic, particularly for older individuals, is a matter of debate and it has been suggested that “successfully aged” donors of probiotic strains might survive better in an older host and achieve a more suitable equilibrium with the resident microbiota\(^{32}\). *B. longum* bv. *infantis* CCUG 52486 is an example of a strain present in particularly healthy subjects aged >90 years\(^{33}\). It has subsequently been demonstrated to have particular ecological fitness and anti-pathogenic effects *in vitro*\(^{34}\) and, as described earlier, immunomodulatory effects, which are strongly influenced by the age of the host\(^{30,31}\).

Further immunological characterisation in the PRIMAGE trial revealed that B and T cell profiles differed markedly between young and older subjects, and that vaccination increased numbers of specific memory subsets in young subjects, but failed to do so in older subjects (S Enani, A Przemska-Kosicka, CE Childs et al., unpublished results). A key finding was the observation that there was a greater degree of immunosenescence at baseline in older subjects randomised to the symbiotic, which occurred entirely by chance, but could explain the particularly poor response of these subjects to the vaccination\(^{23}\). T cells are particularly susceptible to senescence, resulting in loss of CD28; repeated antigenic exposure, for example to cytomegalovirus, is suggested to play a major role in this\(^{35,36}\). Latent infection with cytomegalovirus has been demonstrated to result in a poor response to infection and vaccination\(^{36}\). In the PRIMAGE trial, not only did older subjects randomised to the symbiotic have a significantly higher number of senescent (CD28− CD57+) helper T cells at baseline compared with those randomised to the placebo, they also had significantly higher plasma levels of anti-cytomegalovirus IgG and a greater tendency for cytomegalovirus seropositivity. Moreover, higher numbers of CD28− CD57+ helper T cells were associated with failure to seroconvert to the Brisbane subunit of the vaccine, strongly suggesting that the subjects randomised to the symbiotic were already at a significant disadvantage in terms of likely ability to respond to the vaccine compared with those randomised to the placebo and that differences in immunosenescence between the randomised groups at baseline may have influenced the outcome of the intervention (Fig. 2). Future work therefore needs to consider prospective randomisation of subjects based on robust immunological markers; this is challenging given the wide range of potential markers and uncertainty regarding their predictive value.
Ageing alters metabolic regulation of T cells

Over the past few decades, our understanding of T cell activation has extended to exploration of integration between canonical T cell signalling pathways and metabolic signalling programmes(37), and it has been proposed that immunosenescence is linked to alterations or defects in that integration(38). Although several transcription factors and serine/threonine kinases are central to the integration of immunological and metabolic pathways(37), the energy sensor, AMPK, is of particular interest in the context of ageing. AMPK is a central regulator of metabolic stress and is activated by an increase in the AMP:ATP ratio, as well as by T cell receptor engagement. In fact, it has been suggested that AMPK activation in response to antigen anticipates ATP depletion even in the presence of adequate nutrients(23). In AMPK-deficient T cells, metabolic stress due to glucose deprivation induces enhanced cell death. Senescent T cells demonstrate spontaneous phosphorylation- and therefore activation- of AMP(38). However, contrary to expectation, senescent cells did not contain low levels of ATP(38). Instead, it is suggested that AMPK activation triggered by glucose deprivation results in activation of the p38 pathway, which leads to DNA damage and immunosenescence(38). Conversely, AMPK silencing restores proliferation(37). This is a previously unrecognised mode of activation for p38 in T cells and the first demonstration of a pathway which integrates low nutrient sensing with DNA damage and senescence. The observation that nutrient deprivation triggers pathways linked with immunosenescence seems to contradict the widely held belief that energy restriction enhances lifespan, but data on energy restriction and infections is not clear cut and this remains an important area for future work.

Transcription factors and signalling proteins involved in regulatory and metabolic pathways represent novel targets for immune modulation. Indeed, it has been suggested that targeting AMPK and mechanistic target of rapamycin may be a strategy for suppressing immune responses and treating inflammatory diseases(37). However, the suggestion that this may allow more selective regulation of immune responses than ubiquitous signalling pathways should be interpreted with caution as there is no clear reason to believe that this is the case.

Conclusion

Ageing alters the immune response to dietary interventions; specific examples described in this review demonstrate that young and older subjects respond differently to interventions involving dietary fatty acids and probiotics. It is critical that baseline differences in immunosenescence in dietary studies involving older subjects are accounted for as they can directly influence the outcome of the intervention. Ageing also alters metabolic regulation of T cells; elucidation of alterations in metabolic regulation in ageing T cells may prove to be important in understanding the impact of diet on immune function in older people.

Acknowledgements

The author acknowledges Agnieszka Przemska-Kosicka, Caroline Childs, Sumia Enani, Catherine Maidens, Honglin Dong, Jialou You and Iman Bin Dayel, who contributed to some of the work described in this review.

Financial Support

Some of the work described in this review was supported by a grant (BB/H00470X/1) from the Biotechnology and Biological Sciences Research Council Diet and Health Research Industry Club (BBSRC-DRINC).

Conflicts of Interest

None.

Authorship

P. Y. is the sole author of this paper.

References

