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Abstract  15 

Captive / domestic animals are often described as inactive, with the implicit or explicit 16 

implication that this high level of inactivity is a welfare problem. Conversely, not being 17 

inactive enough may also indicate or cause poor welfare. In humans, too much inactivity can 18 

certainly be associated with either negative or positive affective states. In non-human 19 

animals, however, the affective states associated with elevated or suppressed levels of 20 

inactivity are still not well understood. 21 

Part of the complexity is due to the fact that there are many different forms of inactivity, 22 

each likely associated with very different affective states. This paper has two aims. One is to 23 

identify specific forms of inactivity that can be used as indicators of specific affective states 24 

in animals. The other is to identify issues that need to be resolved before we could validly use 25 

the remaining, not yet validated forms of inactivity as indicators of affective state.  26 

We briefly discuss how inactivity is defined and assessed in the literature, and then how 27 

inactivity in its various forms relates to affective (either negative or positive) states in 28 

animals, basing our reasoning on linguistic reports of affective states collected from humans 29 

displaying inactivity phenotypically similar to that displayed by animals in similar situations, 30 

and, when possible, on pharmacological validation. Specific forms of inactivity expressed in 31 

response to perceived threats (freezing, tonic immobility, and hiding) appear to be, to date, 32 

the best-validated indicators of specific affective states in animals. We also identify a number 33 

of specific forms of inactivity likely to reflect either negative (associated with ill-heath, 34 

boredom-like, and depression-like conditions), or positive states (e.g. ‘sun-basking’, post-35 

consummatory inactivity), although further research is warranted before we could use those 36 

forms as indicators of the affective states. We further discuss the relationship between 37 

increased inactivity and affective states by presenting misleading situations likely to yield 38 

wrong conclusions. We conclude that more attention should be paid to inactivity in animal 39 
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welfare studies: specific forms of inactivity identified in this paper are, or have the potential 40 

to be, useful indicators of affective (welfare) states in animals. 41 

 42 

Key words: inactivity; affective states; indicator; validation; animal welfare; fear  43 
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1. Introduction  44 

Captive or domestic animals are often described as inactive, with the implicit (e.g. 45 

Broom, 1988), or explicit implication that this high level of inactivity is a welfare problem 46 

(e.g. Zanella et al., 1996; McPhee and Carlstead, 2010). Conversely, not being inactive 47 

enough, for instance when external demands require increased efforts to cope with challenges 48 

and when severely sleep deprived, may also indicate or cause poor welfare; it can have 49 

dramatic adverse consequences for organisms (e.g. Ferrara and De Gennaro, 2001; Maslach 50 

et al., 2001). However, the affective states -- our main focus with regards to welfare
1
 -- 51 

associated with these elevated or suppressed levels of inactivity are still not well understood 52 

in non-human animals (henceforth ‘animals’). This is in part because inactivity has rarely 53 

been the focus of behavioural studies and is often considered simply a default state rather 54 

than a true ‘behaviour’ (see e.g. Lima et al., 2005; Levitis et al., 2009). 55 

In humans, too much inactivity can be associated with negative affective states (e.g. 56 

psychological distress, Muhsen et al., 2010). In animals, too, inactivity is elevated (and 57 

activity decreased) in a variety of situations where welfare is believed to be poor. In an 58 

extreme example, monkeys separated from their mothers after birth and raised alone in bare 59 

wire cages ‘sit in their home cages and stare fixedly into space’ (Harlow and Harlow, 1962). 60 

Juveniles raised in total isolation until 8 months of age needed as long as 12
 
to 27 weeks to 61 

begin to move at all, when placed with social companions in a room designed to trigger play 62 

(Harlow and Harlow, 1962; see Konrad and Bagshaw, 1970 for similar results in cats). Male 63 

rats exposed to social defeat become more inactive and less exploratory in novel 64 

environments than non-defeated controls (Meerlo et al., 1996a; Meerlo et al., 1996b), while 65 

buffalo cows housed in restrictive, high stocking density conditions spend more time in 66 

                                                        
1 Defining animal welfare is a complex issue, on which not everyone agrees (see e.g. Fraser,’s 3 circles 2008). Measures 

related to affect have however often been raised as relevant measures for assessing animal welfare; we, following e.g. 

Duncan, 2005, are principally concerned about this aspect of animal welfare.  
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inactive ‘idling’ than their counterparts with free access to a large outdoor yard with wallows 67 

and grazing opportunities (Tripaldi et al., 2004).  68 

However, inactivity is also elevated in a variety of situations where welfare is self-69 

reported (in humans, e.g. when receiving a gentle massage, Goats, 1994), or believed, to be 70 

good. Animals are often inactive when in familiar, safe environments where all immediate 71 

needs are met (e.g. Cockram, 2004; Wells, 2005; Nowak, 2006). Meanwhile, frustration of 72 

motivations to perform specific activities (deprivation: cf. Dawkins, 1988) tends to increase 73 

locomotor activity and to induce stereotypic behaviour, escape attempts and other ‘restless’ 74 

behaviour, thus likely reducing time spent inactive (e.g. migratory birds when caged: 75 

Mewaldt and Rose, 1960; laying hens unable to nest: Duncan, 1970; mink blocked from 76 

swimming water: Vinke et al., 2005; feed-restricted calves: Vieira et al., 2008, mink: Bildsoe 77 

et al., 1991; Hansen and Moller, 2008, horses: Benhajali et al., 2008 and rats: Prescott, 1970).  78 

As illustrated in the examples above, the relationship between inactivity and welfare states 79 

is far from straightforward. Part of this complexity is due to the fact that inactivity is not a 80 

homogeneous category: there are many different forms, expressed in different contexts, and 81 

each likely associated with very different affective states. This paper therefore has two aims. 82 

One is to identify specific forms of inactivity that can be used as indicators of specific 83 

affective states in animals. The second is, for those specific forms of inactivity that are 84 

currently not validated as indicators, to identify issues that need to be resolved before we 85 

could validly use them as indicators of affective state. It is, however, not our goal here to 86 

provide an exhaustive list of specific examples of inactivity being associated with affective 87 

states. Instead, we intend to illustrate a rationale and to discuss further research suggestions to 88 

achieve a better understanding of the relationship between inactivity and affective states. 89 

Neither is our goal to argue that inactivity should be considered as the sole and/or ‘gold 90 

standard’ indicator of affective states in animals, but rather to highlight the potential it has, 91 
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when considered in its specific forms together with contextual information, to help infer 92 

animals’ affective states. This would be valuable in a wide range of studies, such as those 93 

assessing the impact of housing, management, and other procedures on affective states, and to 94 

provide practical recommendations for eliciting positive affective states in domestic and 95 

captive animals. 96 

In animals, linguistic self-reports on specific affective states, i.e. the ‘gold standard’ 97 

method to capture conscious affective experiences, are obviously not attainable (discussed in 98 

e.g. Mendl et al., 2010). Behaviours are thus the only attainable, albeit indirect, measure of 99 

putative affective states associated with a given situation. We argue that a partial solution to 100 

this problem could be to rely on our own species’ experiences (providing face validity and, 101 

for some of the states, cf. 3.2.2., etiological validity, e.g. Belzung and Lemoine, 2011). 102 

Indeed, acknowledging that we cannot be sure what an inactive dog's, rat’s or any other 103 

animal’s affective experiences are, we can still make reasonable assumptions if animals’ 104 

behavioural patterns in avoided (hence putatively perceived as aversive) situations are similar 105 

to those reported by humans feeling e.g. fearful or depressed in similarly aversive situations 106 

(e.g. Mendl et al., 2010). For instance, both a rat exposed to a cat (predator) (Dielenberg and 107 

McGregor, 1999), and someone frightened by a stranger entering his/her home late at night 108 

(Blanchard et al., 2001), might stay still in a location where s/he is protected behind 109 

something. We would argue that the hiding rat is in such a case likely to feel afraid of the 110 

perceived threat just as the motionless hiding person does. Following the same rationale, 111 

animals’ behavioural patterns that are expressed in preferred or positive situations and are 112 

similar to those exhibited by humans in similar situations where they report feeling 113 

positively-valenced states, are likely to reflect positive affective states. For instance, lying in 114 

the sun, which does have a hedonic component in humans (e.g. Dhaenen, 1996), is likely to 115 

also be pleasurable in a diurnal rodent such as a striped mouse that chooses to lie down in the 116 
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sun when risks of predation are low (Schradin et al., 2007). Beyond analogies with humans 117 

self-reporting their feelings, additional evidence to support inferences regarding the affective 118 

valence of inactive animals’ states can also come from pharmacological corroboration, e.g. 119 

testing that a specific form of inactivity is reduced by anxiolytics and/or increased by 120 

anxiogenics if it is believed to reflect fear. This provides evidence of construct validity and, 121 

in cases where a range of treatments was tested, discriminant validity (see e.g. Cronbach and 122 

Meehl, 1955). In this review, we briefly discuss how inactivity is defined and assessed in the 123 

literature, and then discuss how it relates to affective (welfare) states. In humans, affective 124 

states can be categorized in terms of two fundamental underlying dimensions: the valence – 125 

i.e. whether the experience is perceived as negative or positive, punishing or rewarding, 126 

unpleasant or pleasant– and the reported activation – i.e. high or low arousal (e.g. Russell and 127 

Barrett, 1999). Theoretical and empirical studies (reviewed in Mendl et al., 2010) suggest that 128 

negative high-arousal affective states (e.g. feeling fearful) are principally associated with 129 

perceiving and reacting to threats or dangers, while negative low-arousal states (e.g. feeling 130 

sad) are likely to be associated with experiences of loss or lack of reward, and may promote 131 

low activity and energy conservation when resources are lacking. Positive high-arousal 132 

affective states (e.g. excitement) are likely to be associated with appetitive motivational 133 

states, and function to facilitate seeking and obtaining rewards; while positive low-arousal 134 

affective states (e.g. calmness) are instead expected to be associated with low levels of 135 

experienced threat, perhaps facilitating the expression of maintenance activities. In this paper, 136 

we rely on this framework in order to categorize affective states, and those specific forms of 137 

inactivity associated with such states. This classification of specific forms of inactivity 138 

displayed by animals will be supported by linguistic self-reports collected in humans 139 

displaying phenotypically similar inactivity in similar situations, and, when possible, by 140 

pharmacological validation.  141 
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 142 

2. How is inactivity defined and measured?  143 

Although inactivity may seem fairly straightforward to define, there is some variation in 144 

exactly what the term encompasses. In some cases, the hypotheses under test relate to specific 145 

forms of inactivity (e.g. in rats: sleeping, or lying non-alert with both eyes closed: Abou-146 

Ismail et al., 2008; freezing, a complete absence of visible movement except breathing: 147 

Fanselow, 1982), and so only those forms are assessed. However, in other cases, its 148 

operational definition seems to be a by-product of the methods used to assess activity. This 149 

usually occurs when inactivity is not the main focus of the study but is measured simply as a 150 

part of the time budget or to control for ‘activity’ levels because they influence the variable of 151 

interest. When it is studied in free-living animals, activity is usually assessed using radio-152 

tracking or similar technology, and so any time not in locomotion is called inactivity. Some 153 

studies of captive animals similarly equate ‘activity’ with locomotion. Laboratory animal 154 

research, for example, often infers activity levels from proxy measures such as the number of 155 

entries into closed arms (and therefore locomotion) in the elevated plus maze, a test of 156 

anxiety (e.g. Louvart et al., 2005), while some agricultural studies use pedometers (e.g. 157 

O'Callaghan et al., 2003). Therefore, inactivity in those studies would include time spent 158 

stationary but performing purposeful movements such as grooming. However, in applied 159 

ethology research using video or live observation, any movement is typically considered 160 

activity, even if the animal remains in one place; for example, kicking (e.g. Rushen et al., 161 

2001) and eating (e.g. Rochlitz et al., 1998; Burrell and Altman, 2006) are not categorized as 162 

inactive. Thus, the most common definition of inactivity is being relatively motionless, and 163 

although it is rarely stated explicitly, this means no movement with an apparent function (e.g. 164 

grazing or chewing a bite of food) but would include other slight movements (e.g. turning the 165 

head or shifting positions). Finally, research on anticipatory behaviour sometimes discusses 166 
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hyperactivity or decreases in activity during anticipation, but actually measures the number of 167 

behavioural transitions rather than total amount of time spent moving or stationary (e.g. van 168 

den Bos et al., 2003). Studies using any of these definitions of inactivity will be discussed 169 

here. 170 

 171 

3. Increased inactivity / decreased activity as a sign of poor affective states 172 

Increased inactivity likely to be associated with negative affective states will be 173 

considered here, distinguishing specific forms of inactivity expressed in response to a 174 

perceived threat (likely to be associated with negative high-arousal affective states, Mendl et 175 

al., 2010, cf. Introduction) from those expressed in situations where threat levels but also 176 

chances of getting rewards are low (likely to be associated with negative low-arousal 177 

affective states). 178 

 179 

3.1. Increased inactivity / decreased activity displayed in response to a perceived threat  180 

Inactivity that may occur in response to a perceived (frightening) threat stimulus will be 181 

presented here, targeting more specifically the freezing, tonic immobility and hiding 182 

responses.  183 

 184 

Freezing (sometimes also termed attentive immobility) is a common response in the face 185 

of an immediate (perceived) threat in various species, where an individual becomes abruptly 186 

motionless, monitoring a perceived source of danger (reviewed by Boissy, 1995). A 187 

‘freezing-like’ state, characterised by increased immobility and rigidity (quantified using a 188 

force platform) and a reduced heart rate (also termed ‘fear bradycardia’), has been described 189 

in humans. This state has been observed in healthy people viewing pictures of mutilation 190 

(that they self-rated as negative in valence and high in arousal) compared to neutral or 191 
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positively rated pictures (Azevedo et al., 2005; Facchinetti et al., 2006), as well as in patients 192 

diagnosed with panic disorders when seeing either pictures of mutilation or images that were 193 

anxiogenic due to their pathologies (e.g. crowded areas for agoraphobic patients), compared 194 

to neutral pictures (Lopes et al., 2009).  195 

In animals, freezing is used to quantify fearfulness in many behavioural tests (see e.g. 196 

Bouton and Bolles, 1980; Forkman et al., 2007). It has been particularly well-described in 197 

rodents, on which we will focus here, and can be operationally defined as ‘the absence of all 198 

visible movement of the body and vibrissae, except for movements necessitated by 199 

respiration’ (Fanselow, 1982). The description can also include (species-specific) postural 200 

elements, such as a ‘characteristic immobile, crouching posture’ in rats, and autonomic 201 

changes, i.e. a decreased heart rate (similarly to the ‘fear bradychardia’ recorded in freezing 202 

humans) and an increased respiratory rate (Fanselow, 1984). Freezing can be induced by 203 

exposing rats to a predator odour (e.g. Wallace and Rosen, 2000; Knox et al., 2012), as well 204 

as to conditioned stimuli or contexts paired with aversive experiences (electric shocks: e.g. 205 

Fanselow, 1984; Richmond et al., 1998; Luyten et al., 2011; carbon dioxide inducing 206 

dyspnoeic suffocation: Mongeluzi et al., 2003). The more intense the aversive stimuli are, the 207 

longer the rats remain frozen (Fanselow and Helmstetter, 1988; Wallace and Rosen, 2000; 208 

Mongeluzi et al., 2003; Santos et al., 2005, but see Leaton and Borszcz, 1985 for non-209 

monotonic effects). Freezing is ‘not a simple suppression of activity’ (Fanselow, 1984) but a 210 

highly aroused state (Bracha, 2004): rats’ percentage of time spent freezing when exposed to 211 

a conditioned stimulus previously paired with electric shock was positively correlated with 212 

the amplitude of their acoustic startle response in the presence of that conditioned stimulus 213 

(Leaton and Borszcz, 1985). Interestingly, neither food deprivation (an aversive experience 214 

but not assumed to induce ‘fear’, Maren and Fanselow, 1998; Heiderstadt et al., 2000), nor 215 

exposure to smells unrelated to predation (e.g. butyric acid, banana and pear odours, Wallace 216 
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and Rosen, 2000; Knox et al., 2012) induce freezing responses. Moreover, in rats where the 217 

risk of infanticide by unrelated adult males ends around weaning, exposure to a sexually 218 

experienced, unrelated male rat induces freezing in young rats only before they reach a 219 

natural weaning age (around 26 d), whereas exposure to a cat odour (a predation risk relevant 220 

during all life stages) induces the freezing response in rats before and after weaning age 221 

(Wiedenmayer and Barr, 2001). Additional evidence that the freezing response is associated 222 

with negative valence in rodents comes from pharmacological corroboration: in rats, while 223 

freezing in response to a cat exposure was gradually suppressed over repeated daily exposure 224 

(Farook et al., 2004), administration of anxiogenic drugs restores the freezing behaviour. 225 

Conversely, the administration of anxiolytic drugs (e.g. midazolam, diazepam) reduces the 226 

duration of rats’ place-conditioned freezing response (Fanselow and Helmstetter, 1988; 227 

Verleye and Gillardin, 2004; Santos et al., 2005).  228 

 229 

Another specific form of inactivity also displayed in response to a threat in various species 230 

is tonic immobility (TI) (e.g. Gallup et al., 1971b). In humans, ‘TI-like’ states are 231 

characterised by a temporary behavioural state of motor inhibition, associated with tremors, 232 

eye closure, increased breathing, and coldness, and have been reported to occur in response to 233 

situations involving intense fear and physical restraint such as interpersonal trauma (sexual 234 

assault, torture, armed robbery)
2
 (Galliano et al., 1993; Abrams et al., 2009). Although such 235 

studies are non-experimental in nature (and therefore results may not be generalised to any 236 

human population), TI-like responses appear to be far from uncommon. For example, across 237 

several studies reviewed in Galliano et al. (1993), from 12% to 50% of the studied victims of 238 

rape/sexual assaults were ‘paralyzed’ motionless and did not resist their attackers in any way. 239 

Displaying TI-like responses during traumatic episodes has also been reported to positively 240 

                                                        
2 Although less studied, intense fear associated with accident-related trauma and the unexpected death of a loved one have 

also been reported to sometimes induce a TI-like state in humans despite not involving physical restraint.  
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correlate with longer-term psychological impairments such as depression, anxiety and Post-241 

Traumatic Stress Disorder (Abrams et al., 2009; Volchan et al., 2011). In laboratory studies,  242 

‘standing still (paralyzed with fear)’ is one of the defensive strategies subjects predicted they 243 

would display in response to threat scenarios involving nearby threat stimuli and 244 

inescapability of the threat/situation, such as ‘Late at night you are alone in an elevator. 245 

When it stops and the doors open, a rough looking stranger gets in fast to attack you, 246 

blocking your exit’ (Blanchard et al., 2001; Shuhama et al., 2008). 247 

In animals, TI has been reported in several taxa (see e.g. Forkman et al., 2007), and is 248 

particularly well-described in birds, where it has been defined as a ‘reversible state of 249 

(‘catatonic-like’) profound motor inactivity following brief exposure to physical restraint 250 

(e.g. 15s), which may last from a few seconds to over several hours’ (e.g. Gallup et al., 251 

1971b). It is also characterised by a suppression of vocalisation, as well as TI-specific (not 252 

observed in freezing) muscle tremors in the extremities and intermittent eye closures. As for 253 

freezing, physiological correlates include bradycardia and increased respiratory rate, as well 254 

as a TI-specific (not reported in freezing) decrease in body temperature (e.g. Gallup et al., 255 

1971b; Nash et al., 1976). TI is an aroused state: electroencephalographic activity in animals 256 

displaying TI has been reported to be often the same as that of waking animals (e.g. in 257 

rabbits: Klemm, 1966; in opossum Didelphis virginiana: Barratt, 1965, review in Gallup, 258 

1974; Whishaw et al., 1982). A ‘TI-like’ response has also been described in certain domestic 259 

goats, known as ‘fainting’ goats becoming ‘perfectly rigid when suddenly surprised or 260 

frightened’ (Lush, 1930). This response is caused by a hereditary genetic disorder (congenital 261 

myotonia, Clark, 1939), although physiological correlates of this state have not been 262 

investigated. In birds (chicks unless otherwise specified), a variety of aversive manipulations 263 

before TI induction increase the TI duration and/or propensity of the bird to display the TI 264 

state, including exposure to electric shocks or to conditioned stimulus signalling shocks 265 
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(Gallup et al., 1970; Gallup, 1973), rough handling (bird inverted for 30s: laying hens and 266 

broilers, Jones, 1992), and exposure to loud noise (Gallup et al., 1970). While freezing in 267 

rodents appears to be a risk-assessment behaviour to a (perceived) distant threat (Blanchard et 268 

al., 2011), TI happens following physical restraint, and has been suggested to be an anti-269 

predation response even after the animal has been captured. Such ‘death-feigning’ might 270 

induce the predator to loosen its hold (Gilman et al., 1950; Engel and Schmale, 1972; 271 

Sargeant and Eberhardt, 1975; see Thompson et al., 1981 for evidence TI can deter 272 

predators). This response seems specific to fear-inducing situations: food-depriving chickens, 273 

which is aversive but not likely frightening, does not increase these animals’ TI duration 274 

(Gallup and Williamson, 1972). Additional evidence supporting the negative valence and 275 

high arousal of the TI response in birds comes from pharmacological validation: in chicks, 276 

pre-TI-induction administration of adrenaline (Braud and Ginsburg, 1973) and corticosterone 277 

(Jones et al., 1988) increases the TI duration and/or the propensity of birds to display TI, 278 

while a pre-TI-induction tranquilizer injection reduces the duration of the TI response (Gallup 279 

et al., 1971a).  280 

 281 

Another -- perhaps less species-specific -- form of inactivity that can be displayed in 282 

response to a perceived threat is hiding. In humans, hiding (protecting oneself behind 283 

something) is one of the defensive strategies chosen by subjects in laboratory studies in 284 

response to fearful threat scenarios such as ‘Late at night… you are sleeping alone in your 285 

bed. You suddenly wake up feeling that you heard a suspicious noise’. Not surprisingly, the 286 

presence of a place of concealment or protection in the scenario promoted the hiding choice; 287 

so did distant (rather than close) threat stimuli (Blanchard et al., 2001; Shuhama et al., 2008).   288 

In animals, hiding can be defined operationally using location (provided that there are 289 

locations suitable for hiding in the environment): hiding animals are ‘remaining stationary 290 
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and out of sight or camouflaged using any kind of shelter or visual barrier’ (Meagher et al., 291 

2013). In rodents, exposure to a predator or to its odour initially induces a hiding
 
response 292 

(e.g. rats exposed to a worn cat collar: Dielenberg and McGregor, 1999; mice repeatedly 293 

exposed to a rat moving around on top of their cages: Dalm et al., 2009). In laboratory cats, 294 

exposure to complex stressors (involving unpredictable mildly aversive procedures) increases 295 

time spent awake/alert and attempting to hide, and suppresses active exploratory and play 296 

behaviour (Carlstead et al., 1993b). Translocation to novel environments also induces hiding 297 

in felids (leopard cats: Carlstead et al., 1993a; quarantined domestic cats: Rochlitz et al., 298 

1998). There is also pharmacological evidence to help infer the negative valence and high 299 

arousal of the hiding response: in rats, anxiolytic administration (the benzodiazepine drug 300 

midazolam) reverses rats’ hiding response to a worn cat collar (Dielenberg and McGregor, 301 

1999), and increases the proportion of time spent exploring in open arms in an elevated plus 302 

maze, while anxiogenic substances (e.g. caffeine) increase the time spent hiding in the closed 303 

arms of the maze (Pellow et al., 1985).  304 

 305 

Freezing, TI and hiding are specific forms of inactivity expressed in response to a 306 

(perceived) actual or potential threat, both in humans and in animals. In both, they are 307 

reduced by anxiolytics and increased by anxiogenic drugs. Freezing, TI and hiding therefore 308 

appear to be valid indicators of a negative, highly aroused affective state, and to date, our best 309 

examples that specific forms of inactivity can be used as trustworthy indicators of specific 310 

affective states (in this case, ‘fear-like’ states) in animals. 311 

 312 

3.2. Increased inactivity / decreased activity likely to be associated with negative 313 

low-arousal affective states 314 
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Increased inactivity expressed in situations where both threat levels and chances of getting 315 

rewards are low (likely to be associated with low arousal negative affective states: Mendl et 316 

al., 2010, see Introduction) will be discussed here, specifically targeting  sickness, 317 

depression-like, and boredom-like conditions.   318 

 319 

3.2.1. Inactivity and ill-health 320 

Lethargy (i.e. a state of decreased mental activity, characterised by sluggishness, 321 

drowsiness, inactivity, and reduced alertness, APA, 2013) is a well-established component of 322 

sickness behaviour, which is the ‘coordinate set of subjective, behavioural and physiological 323 

changes that develop in sick individuals during the course of an infection’ (Dantzer, 2004). 324 

‘Sick individuals are somewhat depressed and lethargic’ and ‘show little interest in their 325 

surroundings and stop eating and drinking’ (Dantzer, 2004). Reduced activity here is 326 

considered a strategy of energy conservation in order to allow the full development of a fever 327 

(which is associated with and plays a critical role in recovery from many pathogenic 328 

infections), and so has an eventual benefit. However, this inactivity is very likely linked with 329 

negative affective states, as it is ‘very often accompanied by pain’ (Dantzer, 2004), and in 330 

humans, a transient depressive state has been reported to occur as an infectious episode 331 

develops (Aubert, 1999). Sickness behaviour is common to many mammalian species (Hart, 332 

1988; Maes et al., 2012): ‘lethargy’, ‘listlessness and disinterest in social interactions with the 333 

environment’, ‘behavioural inhibition’, and ‘reduction of locomotor activity, exploration and 334 

grooming’ have also been observed in sick animals. For instance, rats challenged with 335 

bacterial and viral mimetics show decreased voluntary running wheel activity and, broadly, 336 

less movement in their home cage (Hopwood et al., 2009). The general decrease in 337 

behavioural activities in sick animals has been shown to reflect changes in motivational state 338 

rather than a simple consequence of weakness: for example, if pups are removed from the 339 
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nest of lactating mice whose behavioural activity is depressed by LPS injection, the sick 340 

mothers interrupt their sickness behaviour to bring the pups back to the nest, then return to 341 

inactive recuperative behaviour (Aubert, 1999). As in humans, lethargy in sick animals is 342 

likely to be associated with negative affect, such as pain (e.g. in dogs: Wiseman et al., 2001).  343 

Perhaps more broadly, ill-health in humans (including not only infectious sickness but e.g. 344 

injury, post-operative conditions, and chronic back disorders) reduces both voluntary (e.g. 345 

work, recreational) and obligatory (e.g. self-care) activities (e.g. Tait et al., 1990). It seems to 346 

have the same effect in animals: poor health conditions can increase the proportion of time 347 

spent awake but lying down (e.g. postoperative pain in rabbits: Leach et al., 2009 and horses: 348 

Pritchett et al., 2003; ear notching and tagging in piglets: Leslie et al., 2010; lameness in 349 

dairy cattle: Chapinal et al., 2010; Calderon and Cook, 2011 and in broilers: Weeks et al., 350 

2000), whereas analgesia reduces time lying down in lame animals (e.g. dairy cattle: Schulz 351 

et al., 2011; Offinger et al., 2013). Adult zebrafish (Danio rerio) injected with acetic acid (a 352 

noxious chemical stimulus) display decreased swimming activity (Correia et al., 2011; but 353 

see Steenbergen and Bardine, 2014 for an opposite effect on zebrafish larvae water-exposed 354 

to acetic acid). High activity of a shoal could thus indicate that its members are healthy, and 355 

joining it could be beneficial for fitness (e.g. active fish can be quicker to find food patches 356 

and more confusing for predators), which might be part of the reason that, although shoaling 357 

zebrafish usually prefer to join larger shoals, this preference can be shifted to a smaller shoal 358 

if its members are comparatively more active than the fishes in the larger shoal (Pritchard et 359 

al., 2001). 360 

Poor health conditions associated with negative affective states such as pain, appear to 361 

increase inactivity, both in humans and in animals, in each of which they are reduced by 362 

analgesic drugs. Such inactivity is therefore likely to be associated with negative affective 363 

states. Poor health-induced inactivity is, however, less specifically described (i.e. overall 364 
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increased inactivity / decreased activity) than, for example, those forms of inactivity 365 

displayed in response to a perceived threat. The presence of signs of ill-health (e.g. fever, 366 

injury) and/or knowledge of specific contexts in which inactivity increases (e.g. post-surgery) 367 

therefore appears crucial to infer the affective state associated with such inactivity. 368 

 369 

3.2.2. Inactivity and depression-like states 370 

In humans, clinical depression -- by which we mean ‘major depressive disorder’ or 371 

experiencing ‘depressive episodes’, to encompass DSM-V (Diagnostic Manual of Mental 372 

Disorders fifth edition, American Psychiatric Association [APA], 2013) and ICD-10 373 

(International Statistical Classification of Diseases and Related Health Problems, World 374 

Health Organisation [WHO], 1994) terminologies -- is a common mental illness diagnosed by 375 

the co-occurrence of several affective, cognitive and behavioural symptoms. These include a 376 

‘depressed (low, sad) mood most of the day, nearly every day, as indicated by either 377 

subjective report (e.g. feels sad, empty, hopeless) or observation made by others (e.g. appears 378 

tearful)’ (APA, 2013, P160). A common trigger is chronic stress, such as that arising from 379 

aversive life events or chronic pain or illness (Blackburn-Munro and Blackburn-Munro, 380 

2001; Siegrist, 2008; Hammen et al., 2009; APA, 2013). Cognitive changes can be associated 381 

with depression and may act as mediators in some subjects, being hypothesised to contribute 382 

to the onset and/or maintenance of the disease (Beck, 1967; Gotlib and Krasnoperova, 1998). 383 

One such change, ‘learned helplessness’, is proposed to occur ‘when highly desired outcomes 384 

are believed improbable or highly aversive outcomes are believed probable, and the 385 

individual comes to expect that no response in his repertoire will change their likelihood’ 386 

(Abramson et al., 1978).  387 

With respect to inactivity, a low, sad mood may induce increased inactivity even in 388 

healthy people. For instance, Rucker and Petty (2004) showed that inducing sadness in 389 
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consumers in a laboratory setting yields a preference for an advertised product promoting 390 

passivity (a vacation resort framed as a place to relax and rest), while inducing anger yields a 391 

preference for a product promoting activity (a vacation resort framed as a place to enjoy 392 

sports and activity). Accordingly, clinically depressed patients have been reported to be more 393 

inactive -- by which we mean here a decrease in a variety of daily activities -- than their non-394 

depressed counterparts. This includes ‘not doing fun activities or chores that need to be 395 

accomplished’ (Knowles, 1981), and reported difficulties initiating or completing social and 396 

non-social activities (Baker et al., 1971; Schelde, 1998; APA, 2013). Reduced physical 397 

activity (both mild, such as walking and gardening, and more vigorous, such as playing 398 

sports) has been associated with clinical depression (Seime and Vickers, 2006; Lindwall et 399 

al., 2011), while – cautiously
3
 - increased exercise has been reported in several reviews or 400 

meta-analyses to improve depressed mood and/or anxiety (e.g. Byrne and Byrne, 1993; Dunn 401 

et al., 2001; Seime and Vickers, 2006; Davis and Dimidjian, 2012).  402 

Could inactive animals, or at least those displaying (certain forms of) inactivity (in certain 403 

contexts), be experiencing ‘depression-like’ states?
4
 Presumably yes: dogs and cats (e.g. Fox, 404 

1968, p. 357) and elephants (Mason and Veasey, 2010) have anecdotally been suggested to 405 

become highly inactive when deprived of their owners or after the loss of a social companion, 406 

as have apes housed long-term in barren environments in laboratories or zoos (e.g. Engel, 407 

2002, p174; Brune et al., 2006), and socially deprived monkeys (e.g. Harlow and Harlow, 408 

1962; Harlow and Suomi, 1974; Suomi et al., 1975). Because the aetiology corresponds to 409 

                                                        
3 Due to methodological biases present in one or more of the studies included in the review / meta-analysis, e.g. people are 

not systematically randomly assigned to treatment groups and/or there are potential confounds or no control groups and/or 

the amount of physical activity applied as a treatment is based on patients’ self-reporting (no verification) and/or conclusions 

are expanded from normal subjects to clinical samples. These biases, however, are spread across individual studies, and a 

variety of biological and psychological mechanisms could explain the reported benefit of exercise on mood, cautiously 

suggesting that this commonly report effect might be a ‘trustable’ phenomenon. 
 
4 Discussing in detail whether or not non-humans can become clinically depressed-like - i.e. show states that share the same 

or most of the properties of those described in clinically depressed patients -- would go beyond the scope of this paper. 

However, even if the quality and quantity of current evidence are not yet sufficient to conclude this with certainty, both 

circumstantial and experimental evidence have led several authors (including us) to hypothesise that depression-like states 
occur in other animals as well (see e.g. Ferdowsian et al. 2011; Hennessy et al., 2014; Fureix et al., 2015).  
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theories of human depression emphasizing aversive life events and chronic stress as a 410 

common trigger, such inactivity is likely to be associated with negative affect.  411 

Moreover, the cognitive feature of learned helplessness has also been shown in animals, 412 

and is a phenomenon typically accompanied by an overall decrease in activity (see e.g. 413 

Mineka and Hendersen, 1985). Indeed, although the term learned helplessness referred 414 

initially to a deficit in avoidance learning induced by repeated exposure to uncontrollable 415 

shock (reviewed by e.g. Maier and Seligman, 1976), the meaning of the label has now been 416 

expanded; it is sometimes applied to any ‘passive’ behaviour (i.e. quiescence or the absence 417 

of active responses to stress, such as escape attempts; cf. Oxford English Dictionary, 2005) 418 

that appears to result from exposure to uncontrollable stressors (Maier, 1984; see also 419 

Wemelsfelder, 1990; Carlstead, 1996). For instance, sheep moved from pasture to 420 

inescapable indoor crates (Fordham et al., 1991) and laboratory rodents placed in an 421 

inescapable container filled with water (known as the Porsolt Test, reviewed in e.g. Deussing, 422 

2006), both begin by reacting to the situation with agitation, but end up displaying inactivity 423 

and unresponsiveness. According to the above-mentioned expanded definition, this eventual 424 

response would reflect learned helplessness. Again, because the aetiology corresponds to 425 

cognitive theories of human depression (Beck, 1967; Abramson et al., 1978; Gotlib and 426 

Krasnoperova, 1998), this inactivity is believed to be a depression-like behaviour, and 427 

therefore associated with a negative affective state. In mice and rats that ‘cease struggling and 428 

remain floating motionless in the water, making only movements necessary to keep their head 429 

above water’ (Porsolt et al., 1977) in the Porsolt test, additional support comes from the fact 430 

that this specific form of inactivity is both amplified by stressors and alleviated by 431 

antidepressants (Porsolt et al., 1977; Cryan et al., 2002; Matthews et al., 2005; Deussing, 432 

2006; McArthur and Borsini, 2006). It also co-varies with other depression-like symptoms, 433 

such as anhedonia (Strekalova et al., 2004), i.e. the loss of pleasure, a key feature of human 434 
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clinical depression (APA, 2013). The hypothesis that the term learned helplessness might also 435 

be applicable to captive animals that seem very passive or inactive in their home environment 436 

is also supported by findings that animals reared in socially isolated and/or barren cages are 437 

more vulnerable to developing learned helplessness in avoidance learning paradigms than 438 

those reared in more socially and physically complex, and presumably controllable, 439 

environments are (Seligman, 1972; Chourbaji et al., 2005). 440 

Finally, Fureix and colleagues (2012, 2015) recently described long-lasting inactive 441 

‘withdrawn’ states in certain riding horses, characterised by bouts of unresponsiveness, 442 

remaining motionless with unblinking eyes with an apparently fixed gaze (reminiscent of the 443 

reduced responsiveness and reduced interactivity of some depressed human patients) and 444 

anhedonia. These states also correlate with stereotypic behaviour (a possible marker of 445 

current, but also past exposure to stressors). While the aetiology of this specific form of 446 

inactivity is currently unknown, its association with key features of human clinical depression 447 

makes it likely to be associated with negative affect. 448 

Do these findings demonstrate with certainty that these inactive animals are clinically 449 

depressed, in the same way as depressed patients showing decreased variety in their daily 450 

activities? The quality and quantity of current evidence are not yet sufficient to conclude this. 451 

Moreover, while some forms of inactivity are highly specific (‘floating’ in rodents, 452 

‘withdrawn’ states in horses), others are not (e.g. passivity when exposed to inescapable, 453 

uncontrollable stressors). However, that inactivity appears in contexts similar to those that 454 

trigger the appearance of clinical depression in humans, or co-varies with key symptoms of 455 

this pathology (e.g. anhedonia) is sufficiently consistent with the hypothesis to make 456 

additional research into these topics, including how this inactivity would be modulated by 457 

anti-depressant drug treatments, very worthwhile. 458 

 459 
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3.2.3. Inactivity and boredom 460 

Boredom is a negative affective state induced by monotony or lower-than-optimal levels 461 

of stimulation. In addition to self-report, this definitional link to negative affect is supported 462 

by evidence of high motivation to avoid the state; for example, boredom-prone people show a 463 

preference for activities that are perceived as risky and therefore frightening to most people, 464 

but that increase stimulation levels, such as bungee-jumping (Michel et al., 1997). Self-465 

reports, however, are key to identifying boredom and situations that induce it (Harris, 2000).  466 

In humans, lethargy is a common symptom (see e.g. Inglis, 1983), although this is often 467 

seen following a period of sensation-seeking (Taylor and Cohen, 1972; Inglis, 1983; cf. 468 

Berlyne, 1960 for an alternative possible time course) and thus in some cases, restlessness 469 

may be seen rather than inactivity (reviewed by Kirkden, 2000). Imposed inactivity can also 470 

be a cause of boredom (Berlyne, 1960; Heaman and Gupton, 1998). Most theoretical 471 

discussion categorizes boredom as a state of under-arousal (e.g Fiske and Maddi, 1961; 472 

Stevenson, 1983; Mikulas and Vodanovich, 1993) given its association with low stimulation, 473 

although Berlyne (1960) postulated that prolonged monotony can lead to increases in arousal; 474 

others have similarly considered boredom simply as a state of ‘non-optimal’ arousal 475 

(Eastwood et al., 2012). While there is some evidence from humans that arousal may 476 

sometimes be elevated during boredom (e.g. EEG data from subjects exposed to sensory 477 

deprivation after sleeping as much as possible: Berlyne, 1960), other studies have found 478 

decreasing arousal over time when engaged in a boring task (e.g. Pattyn et al., 2008). Also 479 

supporting the association with under-arousal, and thus supporting its inclusion in this section 480 

of our discussion, methods of avoiding boredom are likely to increase arousal: these include 481 

consumption of recreational drugs (Samuels and Samuels, 1974), which commonly include 482 

stimulants (Boys et al., 2001), and participation in thrill-seeking activities, as previously 483 

mentioned. 484 
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Due to the dependence on self-reported affect for identifying boredom in humans, this 485 

state has been subject to little empirical investigation in animals, where self-report is 486 

impossible and thus affect cannot be assessed directly. However, captive animals commonly 487 

face monotonous environments, often less complex or lower in stimulation than those in 488 

which their ancestors evolved (in some cases, even those they experienced themselves early 489 

in life). For this reason, theory suggests that they would also find such situations aversive. 490 

For example, McFarland (1989) proposed that when captive animals’ immediate physical 491 

needs are met but they cannot pursue other activities that would occupy their time in the wild 492 

such as reproduction or mating, they are left in a state of ‘limbo’ and are likely to suffer 493 

because most species will not have evolved methods of coping with such a situation. Veissier 494 

et al. (2009) also argue that since sheep are sensitive to the same features of stimuli that 495 

induce boredom in humans, they are potentially capable of experiencing it; the same 496 

argument could be applied to many species. Inactivity is generally accepted as a common 497 

consequence of housing in relatively barren cages or enclosures and interpreted as a sign of 498 

poor welfare (DeMonte and LePape, 1997), which many people attribute to boredom (e.g. 499 

Stevenson, 1983; Woodgush and Beilharz, 1983). Conversely, increasing activity or 500 

behavioural diversity through provision of opportunities to interact with stimuli is assumed to 501 

improve welfare (e.g. pigs: Woodgush and Beilharz, 1983; chimpanzees: Celli et al., 2003; 502 

dogs: Wells, 2004). Sometimes this assumption has been supported by improvements in other 503 

welfare indicators (e.g. Paquette and Prescott, 1988) or by animals’ preference for the 504 

enrichment (e.g. Rozek et al., 2010). 505 

Both the use of the term ‘boredom’ in animals and its relationship to inactivity still need 506 

validation, however. To provide a starting point for this work, Meagher and Mason (2012) 507 

proposed an operational definition based on motivation to obtain stimulation, which should 508 

be a universal symptom. The validity of this operational definition was supported by the fact 509 
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that this motivation was elevated in captive mink housed in non-enriched cages, predicted to 510 

experience more boredom-like states. Thus, compared to mink housed in a preferred (Dallaire 511 

et al., 2012) and more stimulus-rich environment, the mink behaved as bored humans would. 512 

This method of assessment relied on measuring activity when given an opportunity to avoid 513 

boredom rather than directly assessing inactivity in the hypothesized boredom-inducing 514 

situation, because the latter might vary with time and between individuals (as in humans), 515 

among other reasons. However, the study also identified a tentative link between the apparent 516 

boredom and a specific subtype of inactivity when undisturbed in the home cage (lying down 517 

with the eyes open). Future work could use self-administration of stimulants to further 518 

validate the concept of boredom in barren-housed animals and its association with inactivity, 519 

predicting that very inactive individuals in non-enriched cages would be most likely to self-520 

stimulate. At least until such work has been carried out for a given species, inactivity should 521 

be used as an indicator of boredom with extreme caution: although high levels of inactivity in 522 

monotonous environments may well be associated with boredom, the alternative response of 523 

restlessness would make this indicator prone to false negatives (see also 5.1.), in which an 524 

environment that is in fact boring does not increase group-level or even individual-level 525 

inactivity levels. 526 

 527 

4. Increased inactivity / decreased activity as a sign of good affective states 528 

Increased inactivity or decreased activity likely to be associated with positive affective 529 

states will now be discussed, again distinguishing inactivity likely to be associated with high 530 

and low-arousal positive states. 531 

 532 

 533 
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4.1. Increased inactivity / decreased activity likely to be associated with positive 534 

highly-aroused affective states 535 

As stated in the Introduction, positive, highly-aroused affective states are likely to be 536 

associated with appetitive motivational states, and function to facilitate seeking and obtaining 537 

rewards (Mendl et al., 2010). Being inactive in order to favour reward acquisition sounds 538 

intuitively unlikely to happen, and examples are rare even in humans, with perhaps the 539 

exception of yogi meditation, which has been self-reported by meditators to be a highly-540 

aroused pleasant state (Cahn and Polich, 2006). Chess players close to winning a game and 541 

focused on choosing the best strategy could also perhaps experience a highly-aroused and 542 

pleasant motionless state; this is likely one example of what Csikszentmihalyi (1975; 1990) 543 

termed a “flow” state. Flow states involve being concentrated on a task that is achievable but 544 

sufficiently challenging to require focused attention and skill, and are self-reported as being 545 

enjoyable, at least in retrospect (reviewed in Csikszentmihalyi 1990). However, although the 546 

absence of evidence is not a proof of absence, one may reasonably doubt that animals 547 

practice meditation or play chess. An animal example in this category might be cats 548 

‘stalking’: adults stalking prey (Wise, 1974) and kittens playing (Bateson and Young, 1981) 549 

temporarily restrain any movement and stay perfectly motionless. Cats have been considered 550 

to become ‘hypoactive’ while anticipating food rewards, displaying reduced behavioural 551 

transitions between the offset of a conditioned stimulus and the onset of an unconditioned 552 

stimulus in a Pavlovian conditioning paradigm (van den Bos et al., 2003). According to the 553 

authors, this might be expected as ‘they [cats] normally employ a ‘sit-and-wait’ tactic while 554 

close to their prey’. Bouts of immobility while stalking could therefore tentatively be seen as 555 

a (cat-specific) form of inactivity that would favour reward acquisition, but the affective 556 

state(s) associated with such a behaviour are clearly not validated yet (see e.g. Bassett and 557 



 25 

Buchanan-Smith, 2007 for evidence that opposite affective states are sometimes associated 558 

with anticipation). 559 

 560 

4.2. Increased inactivity / decreased activity likely to be associated with positive 561 

low-arousal affective states  562 

Increased inactivity expressed in situations with low levels of experienced threat, and that 563 

facilitates the expression of maintenance, consolidation and recovery (cf. Introduction) will 564 

be discussed here, targeting more specifically ‘sun-basking’ and post-consummatory 565 

inactivity. Note that resting will be discussed later (see part 5.4.).     566 

 567 

4.2.1. ‘Sun-basking’ inactivity  568 

In humans, UV exposure activates known reward centres in the brain (Harrington and 569 

colleagues 2012, cited in Fell et al., 2014), and lying in the sun or, in other words, ‘sun-570 

basking’, has hedonic properties (Dhaenen, 1996; Loas et al., 2000); it might even turn into 571 

an addictive behaviour (Fell et al., 2014). According to Balcombe (2009), ‘animals’ lives 572 

afford them the opportunity to experience a wealth of other pleasures beyond the realms of 573 

food, sex and touch, such as basking in the sun or seeking shade’. Supplying captive wombats 574 

(Lasiorhinus latifrons) with feed and olfactory items (so-called enrichments, but note that 575 

such items did not reduce the time spent displaying stereotypic behaviours in this study) tends 576 

to increase the time animals spent awake in lateral recumbency in direct sunlight, or in the 577 

authors’ terms, ’sun-basking‘ (Hogan et al., 2010). Moreover, evolutionary perspectives 578 

predict that behaviours that help maintain homeostasis and promote evolutionary fitness are 579 

likely to often produce rewarding sensations (Cabanac, 1971; Fraser and Duncan, 1998). 580 

Tawny frogmouths (Padargus strigoides; Kortner and Geiser, 1999) and diurnal striped mice 581 

(Rhabdomys pumilio; Schradin et al., 2007) do chose to stand motionless or lie awake in 582 
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direct sunlight in cold conditions, a so-called ‘sun-basking’ behaviour that presumably helps 583 

maintain homeostasis by facilitating passive thermoregulation and removes the aversive 584 

feeling of coldness. Similarly, poikilothermic animals actively chose to sun-bask until their 585 

body temperatures reach their preferred body levels (e.g. in turtle Pseudemys Scripta, 586 

Crawford et al., 1983; in Nile crocodile Crocodylus niloticus, Downs et al., 2008; in blue 587 

spiny lizard Sceloporus cyanogeny, Garrick, 1979). Interestingly, Fell et al. (2014) have 588 

recently shown that chronic low doses of UV exposure elevate laboratory mice plasma levels 589 

of β-endorphin, an endogenous opioid known to play a role in reinforcement. While one may 590 

question the biological relevance of UV exposure in a nocturnal animal, these results 591 

nevertheless suggest that sun-basking could have biologically relevant rewarding properties 592 

in diurnal rodent species, such as the above-mentioned striped mouse (Schradin et al., 2007). 593 

Thus, although the evidence is not yet conclusive, additional empirical tests of the hypothesis 594 

that sun-basking is pleasurable in animals, as in humans, seem very worthwhile (e.g. in 595 

domestic cats, anecdotally reported by their owners to lie down in certain areas at the time of 596 

the day these areas are sunny: Fureix, personal observation).  597 

 598 

4.2.2. Post-consummatory inactivity  599 

Post-consummatory inactivity, such as inactivity immediately expressed post-copulation, 600 

is likely to be associated with satisfaction and to be pleasurable. In humans, experiencing 601 

sexual arousal to orgasm usually produces a pleasant calming effect of sexual satisfaction 602 

(Graber et al., 1985; Levin, 2007), and partners frequently remain relatively inactive during 603 

the post-coital time (e.g. remaining awake and cuddling with the partner, or falling asleep, 604 

Hughes and Kruger, 2011). Remaining inactive close to their mates after copulation has also 605 

been reported in animals. For instance, in horses, immediately following ejaculation, the 606 

stallion’s body relaxes, and its head droops beside the mare’s neck for a few seconds, after 607 
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which the stallion dismounts and commonly stands quietly behind the mare, often relaxed and 608 

inactive (Waring, 2003, P168). Rams similarly usually remain standing quietly beside the 609 

female with their heads down slightly shortly after ejaculation and dismounting (Pepelko and 610 

Clegg, 1965), while some mink remain motionless, as if sunk in deep stupor, for a period of 611 

time after mating (Diez-Leon, 2014, personal communication). Mating mice generally fall 612 

over onto their sides for 5-10 seconds immediately post-ejaculation whilst still coupled, with 613 

open eyes and apparent unresponsiveness to sensory stimuli (e.g. being touched with a finger) 614 

(Brennan, 2015, personal communication). Following evolutionary predictions (e.g. Cabanac, 615 

1971; Fraser and Duncan, 1998) and by analogy with humans (Graber et al., 1985; Levin, 616 

2007), sexual interaction and orgasm are typically likely to be pleasurable (see also Dixson, 617 

2010, P392-393), at least in healthy male mammals (in which ejaculation can be observed). 618 

Due to its very close temporal relationship with the sexual interaction, one may reasonably 619 

hypothesize that this post-copulation inactivity in animals (or, at least, in male mammals) has, 620 

just as in humans, a pleasant ‘calming’ affective component (see 4.2.3 and discussion for 621 

further research suggestions).  622 

Inactivity expressed in postprandial contexts could also be associated with positive 623 

affective states. Postprandial inactivity is likely to be associated with satiety, i.e. in humans 624 

the feeling of ‘fullness’ following a feeding episode (Benelam, 2009; Harrold et al., 2012), 625 

and has been observed in a number of animal species (rats: e.g. Richter, 1922; Antin et al., 626 

1975; Willner et al., 1990; Rodgers et al., 2010; northern harriers Circus cyaneus: Temeles, 627 

1989; sows: Zonderland et al., 2004; dogs: Bosch et al., 2009; cats: Fara and colleagues 1969, 628 

cited in Orr et al., 1997). Further evidence that postprandial inactivity in animals is likely to 629 

be associated with satiety comes from pharmacological studies: cholecystokinin
5
 630 

administration, which in humans increases the feeling of fullness and reduces food 631 

                                                        
5 a group of peptides localized in the gut in mammals 
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consumption (e.g. Stacher et al., 1979; Crawley et al., 1982; Stacher et al., 1982; Sam et al., 632 

2012), also reduces food consumption in animals (rats, mice, sheep, pigs, monkeys, reviewed 633 

in Crawley et al., 1982), and induces inactivity (rats: e.g. Antin et al., 1975; mice: Crawley et 634 

al., 1981; rhesus monkeys: Falasco et al., 1979). In calves, being able to suck on a teat 635 

increases the tendency to rest after milk consumption (Veissier et al., 2002), and this may be 636 

mediated in part by cholecystokinin, which increases in response to such sucking (De Passillé 637 

et al., 1993).  638 

Satiety can increase inactivity in humans as well (e.g. napping after lunch, Zammit et al., 639 

1992; Vela-Bueno et al., 2008), although the causal relationship remains debated (review in 640 

Campbell, 1992), making it difficult to use evidence regarding affective states during satiety-641 

induced inactivity in humans. Nevertheless, because satiated humans self-report positive 642 

affective states, such as satisfaction and relaxation (Panksepp, 2005; Boelsma et al., 2010; 643 

Seehuus et al., 2013), one may reasonably hypothesize that postprandial inactivity in animals 644 

has a positive affective component just as humans experience after eating. This suggestion is 645 

supported by the finding that, in laying hen chicks, denying access to the part of a pen 646 

designed to accommodate postprandial inactivity results in a more negative affective state 647 

than in a baseline situation (where chicks have free access to that area), as evidenced by a 648 

more ‘pessimistic-like’ response in a judgment bias paradigm (Seehuus et al., 2013).  649 

With respect to satiation, i.e. the processes that bring episodes of eating behaviour to an 650 

end (Benelam, 2009; Harrold et al., 2012), ingesting food is typically considered activity in 651 

applied ethology research (see section 2); satiation therefore appears unlikely to involve 652 

inactivity in most species, including humans. However, rumination, which has the primary 653 

function of facilitating clearance of digesta from the rumen by reduction of particle size, is 654 

most frequently expressed when the animals are motionless lying down (Wagnon, 1963; 655 

Kilgour, 2012; Schirmann et al., 2012). As such, it could be seen as a (ruminant-specific) 656 
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satiation-induced specific form of inactivity. In humans, satiation is associated with positive 657 

affective states, such as feelings of liking and satisfaction (e.g. Benelam, 2009; Seehuus et al., 658 

2013), and lying down ruminating has been suggested to be ‘a sign of relaxation in cattle’ 659 

(Phillips, 2002, from Espejo and Endres, 2007) and a sign that cows are ‘at ease’ (Bristow 660 

and Holmes, 2007). Rumination also appears to decrease when animals are exposed to 661 

aversive situations, such as social stressors (regrouping) and home-pen novelty (Schirmann et 662 

al., 2011), disturbance by flies (presumably associated with discomfort: Wagnon, 1963, p47) 663 

and ruminal acidosis (presumably associated with pain, lactating dairy cows: DeVries et al., 664 

2009).  665 

 666 

4.2.3. Inactivity and positive affective states: further research suggestions 667 

Being inactive in order to favour reward acquisition is likely rare, with perhaps the only 668 

direct evidence coming from humans during yogi meditation, as discussed above. Our other 669 

suggested example, bouts of immobility while stalking in cats, is clearly not validated as an 670 

indicator of positive affective states in animals. Potentially more fruitful as affective state 671 

indicators are specific forms of inactivity reported in humans and expressed in animals when 672 

threat levels are low, such as sun-basking and post-consummatory inactivity. All of these still 673 

need validation, however. Further work could investigate to what extent acute stressors or 674 

chronically aversive environments would decrease such inactivity (and the opposite for 675 

preferred environments), how these forms of inactivity would be modulated by 676 

pharmacological manipulations inducing either negative or positive affective states, and, 677 

more specifically, whether the putatively positive affective state associated with postprandial 678 

inactivity would be lessened in force-fed animals (see Faure et al., 2001 for evidence that 679 

force-feeding might be perceived as aversive in ducks). Further research is also warranted 680 

into other forms of inactivity likely to be pleasurable in humans, such as being passively 681 
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rocked and breast-feeding, which could perhaps find equivalents in animals choosing to go 682 

and float in the water and in lactating females.  683 

 684 

5. Misinterpreting inactivity as an indicator of affective state 685 

We will further discuss the relationship between increased inactivity and affective states 686 

by presenting misleading situations prone to yield wrong conclusions. First, we will describe 687 

some examples of ‘false negatives’ (i.e. those cases where the animal’s affective state is 688 

likely to be either poor or good but the animal is not inactive), and ‘false positives’ (i.e. those 689 

cases where the animal is inactive, eliciting interpretations about its affective state, while the 690 

animal actually does not experience the presumed affective state). We will then discuss 691 

specific forms of inactivity which appear to be not necessarily linked to an actual affective 692 

state, but instead to a lack of emotion, and how the methodologies used to assess inactivity 693 

could yield different interpretations with regards to its associated affective states, discussing 694 

in detail the case of resting.  695 

 696 

5.1. The risk of wrong conclusions: some examples of ‘false negatives’ 697 

As discussed above (sections 3 and 4), specific forms of inactivity and/or overall decreases 698 

in activity in many contexts are likely to be associated with specific affective states; as such, 699 

an inactive animal in a similar situation is  believed to be in a more intense (negative or 700 

positive) affective state than its comparatively more active counterparts. Assuming this 701 

systematically would nevertheless sometimes yield incorrect conclusions; in some situations, 702 

animals are likely to experience the specific (negative or positive) affective states of interest, 703 

but do not display increased inactivity.  704 

Inactivity can sometimes be one of two (or more) alternative responses – driven by 705 

individual characteristics – to the same situation, which both indicate a similarly (in this 706 



 31 

example) negative affective state. For instance, while individuals can respond to situations 707 

involving a (perceived) threat by freezing or hiding, they can also display active reactions, 708 

such as fleeing or even attacking (Boissy, 1995; Blanchard et al., 2011). In red deer, the 709 

response strategies to a perceived threat differ according to age: juveniles employ a hiding 710 

strategy, and freeze in response to threat, but as they age, they begin fleeing from some 711 

threats instead (Espmark and Langvatn, 1985). This does not mean we should conclude that 712 

adult red deer are not afraid of the perceived threat from which they are fleeing only because 713 

they are not displaying inactive responses. More generally, personality can determine the 714 

form of an individual’s response, including whether they become inactive or not. For 715 

example, speed of exploration of a novel environment is considered to reflect a personality 716 

trait in birds, and individuals with different exploratory phenotypes also differ in the degree 717 

to which they become inactive after social defeat (reviewed by Groothuis and Carere 2007). 718 

Van Reenen et al. (2005) thus suggest that their failure to find a correlation between open 719 

field locomotion and other measures of response to novelty might be explained by the 720 

presence of different coping styles, such that some calves responded to the open field with 721 

escape attempts, but others with immobility, novelty being nevertheless perceived as 722 

frightening in both cases. Moreover, an individual’s experience is likely to influence its stress 723 

responses: for example, captive-born individuals may be more likely to respond actively to a 724 

sub-optimal captive environment, developing stereotypic behaviour, while wild-caught 725 

individuals may be more likely to respond by hiding (e.g. Jones et al., 2011; Camus et al., 726 

2013). Despite these differences, individuals displaying both response types are likely to 727 

suffer from their sub-optimal life conditions.  728 

Inactivity can also be one of two (or more) alternative responses – dependent this time on 729 

situational characteristics - to different situations associated with a similar (in this example 730 

negative) affective state. For instance, Cooper et al. (1996) showed that voles responded to an 731 
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unfamiliar sound by freezing if in an enriched environment where cover was available, but 732 

otherwise responded actively, by running or digging; in such a case, there is no good reason 733 

to conclude that running or digging animals are not afraid of the unfamiliar sound simply 734 

because they do not freeze. Moreover, while ill-health (including painful) conditions increase 735 

inactivity in a number of species, including humans (see 3.2.a.), both increased and decreased 736 

sleep are used by caregivers as behavioural signs of pain in non-verbal cognitively impaired 737 

children (McGrath et al., 1998), and animals sometimes also display active behaviours in 738 

response to ill-health conditions. For instance, in mice experiencing scrotal approach 739 

vasectomy, Leach et al. (2012) observed higher frequencies of pain behaviours (e.g. circle, 740 

flinch, stagger, twitch and writhe) and higher Mouse Grimace Scale (MGS) scores in the 741 

animals receiving a saline solution post-operatively, compared to pre-surgery periods and to 742 

mice receiving post-operative analgesia (meloxicam, bupivacaine). Mice without post-743 

operative analgesia are likely to experience pain; however, none of the inactive behaviours 744 

recorded in the study (e.g. ‘stand’ and ‘sleep’) differed pre- vs. post-surgery, nor between 745 

treatment groups. One may hypothesize that at least some of the active pain-related 746 

behaviours might allow animals to cope better with pain induced by the surgery than being 747 

inactive. Although this hypothesis remains to be tested in the context of that study, focusing 748 

only on the absence of increased inactivity here would lead to the conclusion that the mice 749 

experiencing scrotal approach vasectomy without post-operative analgesia do not suffer, 750 

which is contradicted by the displayed pain behaviours and MGS scores. Another example 751 

comes from a study on Pekin ducks (Anas platyrhynchos), in which animals were provided 752 

with environmental options allowing them to actively attempt to cope with the situation. 753 

When injected either with saline solution or pathogen-associated molecular patterns, saline-754 

injected ducks exhibited pronounced anorexia strongly correlated with a fever response, but 755 

none of the treatments significantly affected the level of animals’ activity, measured by 756 
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activity loggers surgically inserted into the abdominal cavity (Marais et al., 2013). According 757 

to the authors, sick ducks might have actively attempted to lower their body temperature 758 

during the defervescent phase of fever by getting in and out of the bathing tub provided. This 759 

behaviour, which the authors had previously observed in ducks given pyrogens, would have 760 

contributed to the amount of activity logged on the days when ducks were given pathogen-761 

associated molecular patterns.  762 

 763 

5.2. The risk of wrong conclusions: some examples of ‘false positives’ 764 

Erroneous interpretations might also come from those cases of ‘false positives’, where an 765 

animal is inactive, raising interpretations about its affective state, while the animal’s actual 766 

affective state does not differ, or even goes the opposite direction, from the affective state of 767 

its comparatively more active counterparts. For instance, if animals are afraid or motivated to 768 

hide but unable to do so because no appropriate camouflaged hiding places are available, 769 

their welfare is not likely to be better than if they were hiding (e.g. leopard cats: Carlstead et 770 

al., 1993a; Wielebnowski et al., 2002; mink: Nimon and Broom, 1999; shelter cats: Kry and 771 

Casey, 2007). Or, in other words, if animals are afraid or motivated to hide and able to do so 772 

because the cage provides them with a hiding place, there is no good reason to conclude that 773 

because they are inactive, their welfare is worse than the welfare of their counterparts who 774 

are in the same situation but prevented from hiding. Similarly, successful environmental 775 

enrichment often decreases inactivity in a wide range of species (e.g. Anna et al., 2002; 776 

Koistinen et al., 2009; Rozek et al., 2010), with the exceptions to this rule being types of 777 

physical enrichment that would primarily be expected to increase comfort or perceived 778 

safety, such as shelters (Wurbel et al., 1998a; Tilly et al., 2010); it would be absurd to 779 

conclude that providing animals with shelters decreases their welfare.  780 
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While the examples above highlight cases of false positives when inactivity is expected to 781 

be associated with negative affective states, false positives can also happen when inactivity is 782 

expected to be associated with positive affective states. For instance, Mason and Latham 783 

(2004) found in a meta-analysis that stereotypic behaviours are more prevalent in populations 784 

living in sub-optimal conditions than in populations kept under more welfare-friendly 785 

conditions, but also that, more often than not, within populations where stereotypic behaviour 786 

was prevalent, individuals that did not stereotype, or had relatively low levels of stereotypy, 787 

had poorer welfare than those that with high levels, according to a variety of welfare 788 

measures. Since non-stereotypic individuals are likely to be the most inactive individuals 789 

within a population (e.g. Bildsoe et al., 1990; Wurbel et al., 1998b), this may indicate that at 790 

an individual level, inactive responses to stressful conditions are actually more often 791 

associated with poor welfare than with good welfare. 792 

 793 

5.3. The risk of wrong conclusions: cases where inactivity is linked to a lack of 794 

emotion 795 

While the examples above discuss specific forms of inactivity which are likely to be 796 

associated with (either negative or positive) affective states, some forms of inactivity appear 797 

to be not necessarily linked to an actual affective state but instead a lack of emotion. For 798 

instance, disorders of reduced motivation such as apathy, defined as ‘a state of diminished 799 

motivation in the presence of normal consciousness, attention, cognitive capacity, and mood’ 800 

(Marin and Wilkosz, 2005)
6
 involve decreased activity. In Marin and Wilkozs’ words (our 801 

emphasis), ‘patients with diminished motivation all show diminished activity’; however 802 

they are also ‘emotionally indifferent… or display restricted responses to important life 803 

events’. Another example is a ‘deconstructed state’ observed in the pre-suicidal phase and in 804 

                                                        
6 Apathy is not the only disorder of diminished motivation, but identifying the two other common disorders (abulia and 

akinetic mutism) relies on speech; therefore those states are not currently possible to operationalise in non-humans and of 

less interest here. 
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socially excluded individuals, defined as a ‘defensive state of cognitive deconstruction that 805 

avoids meaningful thought, emotions and self-awareness, and is characterized by lethargy 806 

and passivity and alerted time flow’ (cited from Twenge et al., 2003, emphasis ours). In 807 

animals, Engel and Schmale (1972) described a broad category of stress-induced forms of 808 

inactivity that include decreased responsiveness to the environment, can persist over a long 809 

period of time, and are believed to be adaptive because they reduce predation risk and allow 810 

the conservation of significant amounts of energy; they called this category conservation-811 

withdrawal (C-W). The actual valence of the affective state associated with C-W, if any, is 812 

still debated, with some authors describing it as an ‘affectively neutral’ state (Weiner and 813 

Lovitt, 1979).  814 

While these forms of inactivity have (or, in the case of C-W, could have) no affective 815 

component at the time they are displayed, it seems worth noting that they all appear in 816 

negatively valenced contexts, and in humans, often yield situations from which individuals 817 

are likely to suffer, such as conflicts with relatives due to family burden. Therefore, even 818 

though these specific forms of inactivity cannot be considered as indicators of the 819 

individual’s actual affective state, they should nevertheless be taken as a sign of exposure to 820 

suboptimal environments, and potential poor welfare.  821 

 822 

5.4. Different methodologies, different conclusions?  823 

As previously highlighted (section 2), there is some variation in the literature in exactly 824 

what the term ‘inactivity’ encompasses. While how inactivity is assessed depends on one’s 825 

perspective and hypotheses under test, methodological variation in terms of how behaviour is 826 

categorized as inactive versus active is likely to yield some diversity in the effects observed 827 

in terms of welfare states associated to inactivity. For instance, relying only on pedometers, 828 

radio-tracking or similar technology -- where any time not in locomotion is called inactivity – 829 
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would not discriminate e.g. a motionless healthy animal sun-basking (likely to experience 830 

positive affective states, see 4.2.1) from an animal awake but inactive due to injury (likely to 831 

experience negative affective states, see 3.2.1.).  832 

A detailed example of how methodological variations in defining inactivity could 833 

influence its interpretation in terms of associated affective states comes from resting. Resting 834 

can be seen as a post-consummatory (of various activities) behaviour, and is often considered 835 

to reflect positive affective states. Indeed, safe, comfortable contexts promote rest (e.g. larger 836 

home stalls in horses: Raabymagle and Ladewig, 2006). Preferred situations often decrease 837 

signs of poor welfare and increase time resting (enriched cages, in rats: Abou-Ismail and 838 

Mahboub, 2011; and in mice: Tilly et al., 2010; bedding types that are preferred when the 839 

animals are given a choice of stalls in horses: Hunter and Houpt, 1989; Mills et al., 2000; 840 

Pedersen et al., 2004; Werhahn et al., 2010). So does providing a more naturalistic social 841 

environment in horses by introducing adult conspecifics in groups of sub-adults (Bourjade et 842 

al., 2008). Moreover, a variety of stressors, such as chronic exposure to mild unpredictable 843 

stressors (rats: Cheeta et al., 1997), exposure to an aggressive dominant conspecific (male 844 

tree shrews Tupaia belangeri: Fuchs and Flugge, 2002) and social isolation (rats: Hurst et al., 845 

1999), decrease the time the animals spend resting over hours or days. Rats exposed to sleep 846 

disturbance (husbandry procedures performed during the non-active light phase) not 847 

surprisingly sleep less, spending more time awake non-active and show higher indicators of 848 

physiological stress and reduced welfare than do their conspecifics experiencing husbandry 849 

procedures during their active dark phase (Abou-Ismail et al., 2008). Moreover, while 850 

provoking sexual (positive) interactions during the inactive phase only briefly suppresses 851 

sleep in male mice, aversive social conflict induces 12h long-lasting sleep disturbances 852 

(Meerlo and Turek, 2001). Resting is therefore commonly interpreted as a sign that animals 853 

are relaxed and experience positive affective states.  854 
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However, in a number of animal studies, resting and sleeping are merged together in the 855 

behavioural repertoire, defined by the animal displaying a species-specific posture (usually 856 

lying down, but sometimes also sitting or even standing still) with eyes partially or fully 857 

closed (e.g. in rats: Hurst et al., 1999; Abou-Ismail et al., 2007; 2008; in rabbits: Zeidner et 858 

al., 1983; in birds: Campbell and Tobler, 1984; in horses: Waring, 2003). This is because 859 

measuring sleep, a restorative behaviour ‘not distinguished by movement’ (Carlson, 2012, 860 

p289) and which ‘can be defined behaviourally by the normal suspension of consciousness 861 

and electrophysiologically by specific brain wave criteria’ (Purves et al., 2007, p 707) 862 

requires performing invasive and/or technically challenging (in animals) measurements, i.e. 863 

electroencephalographic (EEG) measurement together with electromyographic (EMG) 864 

signals. Following the rationale that the longer a bout of inactivity, the more likely it is to be 865 

sleep, some authors have investigated duration of inactivity as a way to estimate sleep in mice 866 

(Pack et al., 2007). While inactivity-defined sleep (in that study being motionless for ≥ 40s) 867 

and EEG-EMG defined sleep did show good convergence in mice (Pack et al., 2007), using 868 

such a duration-of-inactivity-only criterion to estimate sleep appears however to be prone to 869 

yield false positives. It would not discriminate, for instance, a healthy animal sleeping from 870 

an animal awake but inactive due to pain (see part 3). While EEG-EMG therefore appear to 871 

remain the ‘gold standard’ methods to measure sleep, using such techniques is however often 872 

too challenging (practically) to perform in most of the farm, zoo and companion animal 873 

species, and therefore cannot be applied in a vast number of studies in applied ethology 874 

research.  875 

Despite (realistically good) reasons to do so, merging sleep and rest in the animals’ 876 

behavioural repertoire could have significant implications with respect to the welfare states 877 

associated to this inactivity. Indeed, in humans, neither sleep quantity nor its quality appear to 878 
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be trustworthy indicators of affective states. For instance, insomnia
7
 (APA, 2013) can be 879 

caused either by negative feelings such as stress or pain (Purves et al., 2007, p728; Carlson, 880 

2012, p298), or by ‘excited anticipation of a pleasurable event’ (Carlson, 2012, p298). Sleep 881 

disturbance is also a prominent symptom of clinical depression (estimated to affect up to 90% 882 

of those with depression, Paterson et al., 2009), but either insomnia or hypersomnia can be 883 

observed (e.g. APA, 2013; WHO, 1994; Maurice-Tison et al., 1998; Henn and Vollmayr, 884 

2005), with some depressed people even self-reporting mixed insomnia/hypersomnia 885 

symptoms (Paterson et al., 2009). Similarly, both insomnia and hypersomnia are part of the 886 

diagnostic symptoms under ICD-10 for withdrawal states from stimulants, with people 887 

experiencing such states also self-reporting negative emotions such as ‘depressed mood’, and 888 

‘decreased contentedness / well-being’ (Juliano and Griffiths, 2004). It is also worth noting 889 

that sleep manipulations yield quite erratic effects on people’s mood. In healthy people, acute 890 

and short-term sleep deprivation usually worsens mood (e.g. Weinger and Ancoli-Israel, 891 

2002; Drury et al., 2012), but extending sleep (e.g. by 2 or 3h per night beyond its habitual 892 

duration) has been reported to worsen mood, to improve mood or to induce no mood change 893 

(David et al., 1991; Ferrara and De Gennaro, 2001). Moreover, while sleep deprivation in 894 

healthy people usually worsens mood, it is usually followed by a short-term mood 895 

improvement in depressed patients (Benedetti and Colombo, 2011).  896 

Thus, while a number of studies in animals do support the view that ‘resting’ is likely to 897 

be associated with positive affective state (enhanced in preferred / positive contexts, reduced 898 

in aversive conditions), it seems worth nothing that, in the majority of these studies, the 899 

relative proportion of the observed inactivity that is ‘simply’ resting cannot be disentangled 900 

from that ‘purely’ sleeping due to methodological challenges. As human studies show that 901 

sleep is clearly not a trustworthy indicator of the affective state (its duration and quality can 902 

                                                        
7 ‘subjective complaint of difficulty falling asleep or staying asleep, or poor sleep quality’, DSM-V p823 
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be modified in either direction under either positive or negative affective states), the 903 

interpretation of the ‘resting + sleeping’ behaviour in animals in terms of its associated 904 

affective state might not be so straightforward. 905 

 906 

 907 

6. Further research directions 908 

Can inactivity -- in its various forms – be a useful indicator of specific affective states in 909 

animals? We think it can, based on analogies with humans self-reporting their feelings while 910 

displaying specific forms of inactivity phenotypically similar to those displayed by animals in 911 

similar situations (summarised in Table 1). Most of the specific forms we discussed in this 912 

paper still need further refinement and validation before they could be used in this way, 913 

however.  914 

While some forms are unambiguously specific behaviours (e.g. freezing in rodents, 915 

‘withdrawn’ states in horses) or operationally definable (e.g. with regards to location or other 916 

activities such as immediately post-mating) (see column 4 in Table 1), others are less 917 

specifically described, such as overall increased inactivity / decreased activity in inactive ill 918 

animals or individuals displaying signs of learned helplessness. Reassuringly, contextual 919 

information probably favours correct recognition of the associated affective state: an 920 

unmedicated animal being inactive post-surgery or displaying signs of ill-health (e.g. fever, 921 

injury) is likely to experience the aversive affective component of ill-health conditions, while 922 

exposure to inescapable, uncontrollable stressors is unlikely to induce positive feelings. 923 

Given such contextual knowledge, inactivity may be useful as an indicator of intensity of the 924 

affective state. Effort should nevertheless be made in the future to define these specific forms 925 

of inactivity more precisely if relevant to hypothesis under test (e.g. by adding fine postural 926 

descriptions) (cf. also 5.4.).  927 
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Further work could also investigate how those specific forms of inactivity that are 928 

currently not pharmacologically validated (see Table 1, last column) would be modulated by 929 

giving the animals drugs inducing either negative or positive affective states. This is provided 930 

that such drugs have already been validated as inducing the affective state of interest for the 931 

tested species, and are known not to induce sedative side effects (risk of circular reasoning 932 

otherwise). Such validation would be of primary interest for any forms, but particularly for 933 

those few forms observed in animals which are obviously not (food rumination) or not 934 

systematically (satiety-induced inactivity) displayed by people, making it difficult in these 935 

few cases to use humans-based evidence to infer the associated affective states in animals.  936 

Beyond this, future validation work could investigate to what extent acute stressors and 937 

chronically aversive environments increase those specific forms of inactivity believed to 938 

reflect negative affective states (with the opposite being the case for preferred environments), 939 

to provide a starting point for discriminating between forms of inactivity reflecting short- 940 

and/or long-term affective states. It could also investigate the co-variation of a specific form 941 

of inactivity with evolutionary fitness (following evolutionary perspectives that predict that 942 

individuals are likely to avoid aversive sensations and pursue rewarding sensations that 943 

respectively decrease and promote evolutionary fitness, Cabanac, 1971; Fraser and Duncan, 944 

1998); and could investigate whether a specific form of inactivity co-varies with other 945 

welfare indicators, provided these are previously-validated indicators of the specific affective 946 

state under test (for instance excluding cortisol levels, reported to either increase or decrease 947 

in chronically stressed individuals as well as to increase in some positive situations, e.g. in 948 

humans: Miller et al., 2007, in animals: Rushen, 1991; Mormede et al., 2007).  949 

  950 
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Table 1. Specific forms of inactivity and their association with specific affective states.951 



 42 

Name Valence Arousal Specific form of 
inactivity, defined 

operationally 

Expressed in response to: In humans this 
situation (or 

similar) has been 
reported to be: 

Humans display a 
phenotypically 

similar inactivity: 

Pharmacological 
evidence? 

Freezing Negative 

 

High Yes (Perceived) actual or 
potential threat 

Aversive Yes Yes (enhanced by 
anxiogenics, reduced 

by anxiolytics) 

Tonic immobility Negative 

 

High Yes (Perceived) actual or 
potential threat 

Aversive Yes Yes (enhanced by 
anxiogenics, reduced 

by anxiolytics) 

Hiding Negative 

 

High Yes (provided 
hiding 

opportunities) 

(Perceived) actual or 
potential threat 

Aversive Yes Yes (enhanced by 
anxiogenics, reduced 

by anxiolytics) 

Ill-health inactivity  Negative 

 

Low No (decreased 
activity) 

Illness, injury Aversive Yes Yes (reduced by 
analgesics) 

Learned helplessness 
related ‘floating in 
despair’ (laboratory 
rodents) 

Negative 

 

? Yes Porsolt (forced swim) test Aversive N/A (specific testing 
conditions in rodents 
are not transferable 

to humans) 

Yes (reduced by 
antidepressants) 

Learned helplessness 
related overall passivity 

Negative 

 

Low No (decreased 
activity) 

Inescapable / uncontrollable 
aversive environments 

Aversive Yes ? 

Depression-like 
‘withdrawn’ state (horses) 

Negative 

 

Low Yes ? N/A No phenotypically 
exactly similar form 

? 

Boredom-like lying down 
with eyes open (mink) 

Negative 

 

Low (but 
debated) 

Yes Barren, impoverished 
environments 

Aversive Yes, but restlessness 
may also be seen 

? 

Standing/lying in the sun Positive Low Yes (provided 
chose shaded / 

sunny areas) 

Sunny area Positive Yes Yes (induces a β-
endorphin release) 

Post-copulation inactivity Positive Low Yes (timing mating) Immediately after mating Positive Yes ? 

Satiety-related inactivity  Positive Low Yes (timing eating) Post-prandial Positive Unsure ? 

Rumination (cattle) Positive Low Yes Post food consumption  N/A N/A ? 

Stillness when stalking 
(cats) 

Positive High Yes Predation, play ? ? ? 
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Conclusions  952 

Should more attention be paid to inactivity in behavioural and animal welfare studies?  953 

Considering subtypes of inactivity, we think it should. First, as discussed in this paper, some 954 

specific forms of inactivity (e.g. displayed in response to a perceived threat) are useful 955 

indicators of poor welfare states. A number of others forms have, acknowledging that further 956 

refinement and validation are still needed, the potential to indicate either negative or positive 957 

affective states in animals. This makes additional research into this topic very worthwhile. 958 

Moreover, even when inactivity does not result from poor welfare, levels of inactivity that are 959 

too high or too low can directly or indirectly induce poorer affective states, raising welfare 960 

concerns. For example, in group-housed hens, inactive hens are more likely to be victims of 961 

feather pecking, and thus suffer due to high inactivity levels (Riber and Forkman, 2007). 962 

Meanwhile, retaining adaptive forms of inactivity is still essential: in reintroduction 963 

programmes for endangered species, individuals that have not been active enough to learn 964 

appropriate skills before being reintroduced into the wild are likely to have poor welfare once 965 

released, since they may be unable to attain sufficient food or find shelter, and may be at 966 

higher risk of injury (McPhee, 2004).  967 

Using inactivity as an indicator of affective states in animals does require a number of 968 

changes in the way we often view inactivity in behavioural and animal welfare studies, 969 

however. As discussed throughout this paper, inactivity is not a homogeneous category of 970 

behaviour: there are many different, context- (and sometimes species-) specific forms. 971 

Merging these specific forms into a single broad category certainly can yield erroneous 972 

interpretations with regards to the associated affective states, by e.g. not discriminating a 973 

healthy animals resting from an animal inactive due to ill-health conditions. Prior to data 974 

collection, ethograms should include precise descriptions (e.g. by adding fine postural 975 

descriptions) of any specific form(s) of inactivity relevant to hypotheses under test. A clear 976 
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description of which contexts trigger (or conversely, decrease) specific form(s) of inactivity 977 

is also crucial, as it is the first, essential, step towards inferring its putatively associated 978 

affective state(s). Additional justifications should be provided before inferring putative 979 

affective states associated with inactivity in animals. Bringing human and animal studies 980 

together to rely on analogies with humans self-reporting their feelings is one of the possible 981 

justifications; so are pharmacological approaches, which strengthen construct validity. 982 

Further research suggestions mentioned in this paper would certainly deepen our 983 

understanding of what inactivity can reveal about affective states in non-human animals, 984 

providing new ways of assessing treatment effects and a better understanding of the 985 

implications of personality differences.  986 
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