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Abstract 

In the UK, buildings contribute around one third of the energy-related greenhouse gas 

emissions. Space heating and cooling systems are among the biggest power 

consumers in buildings. Thus, improvement of energy efficient of HVAC systems 

will play a significant role in achieving the UK carbon reduction target. 

This research aims to develop a novel Building Energy Management System (BEMS) 

to reduce the energy consumption of the HVAC system while fulfilling occupants’ 

thermal comfort requirements. The proposed system not only considers the occupants’ 

adaptations when making decisions on the set temperature, but also influences 

occupants’ behaviours by providing them with suggestions that help eliminate 

unnecessary heating and cooling.  

Multi-agent technologies are applied to design the BEMS’s architecture. The 

Epistemic-Deontic-Axiologic (EDA) agent model is applied to develop the structure 

of the agents inside the system. The EDA-based agents select their optimal action 

plan by considering the occupants’ thermal sensations, their behavioural adaptations 

and the energy consumption of the HVAC system. Each aspect is represented by its 

relevant objective function. Newly-developed personal thermal sensation models and 

group-of-people-based thermal sensation models generated by support vector 

machine based algorithms are applied as objective functions to evaluate the occupants’ 

thermal sensations. Equations calculating heating and cooling loads are used to 

represent energy consumption objectives. Complexities of adaptive behaviours and 

confidence of association rules between behaviours and thermal sensations are used 

to build objective functions of behavioural adaptations. In order to make decisions by 

considering the above objectives, novel multi-objective decision-making algorithms 

are developed to help the BEMS system make optimal decisions on HVAC set 

temperature and suggestions to the occupants. Simulation results prove that the 

newly-developed BEMS can help the HVAC system reduce energy consumption by 

up to 10% while fulfilling the occupants’ thermal comfort requirements. 



 

1 

 

Chapter 1 : Introduction 

 Background and Research Question 

Global warming has become one of the international issues that the world is facing. 

Scientists have proved this is caused by greenhouse gas emissions (Houghton et al., 

1990). To help solve this problem, the United Nations (UN) passed the United 

Nations Framework Convention on Climate Change (UNFCCC), which proposed 

tackling the global warming problem by stabilising the greenhouse gas level in the 

atmosphere (United Nations, 1992). A document published in 2003 shows that the 

UK government planned to decrease CO2 emissions by 60% by 2050 on the basis of 

the emissions level in 1990 (DTI, 2003). The later Climate Change Act passed by the 

UK parliament in 2008 set the rule that greenhouse gas emissions should be at least 

80% less than the emissions level in 1990 (HM Government, 2008). The Chinese 

government aims to reduce the carbon emission per unit of gross domestic product 

(GDP) by 40% to 45% before the year 2020 on the basis of the emission level in 2005 

(Wang et al., 2011a, Yi et al., 2011). 

Buildings have been regarded as one of the major carbon emission sources due to 

their high levels of energy consumption. It has been reported that, globally, more than 

30% of total energy is consumed by buildings and consequently they account for one 

third of energy-related greenhouse gas emissions (Urge-Vorsatz et al., 2013). The UK 

government reported that 37% of emissions were produced from heating and 

powering homes and buildings in 2009 and, in the same report, it is recommended 

that the emissions from buildings should be around zero by 2050 (HM Government, 

2011). In 2015, buildings still contributed 33% of UK greenhouse gas emissions 

(Committee on Climate Change, 2016). In all developed countries, building energy 

usage accounts for 20% to 40% of total energy consumption (Perez-Lombard et al., 

2008). It has been suggested that a 50% to 90% reduction of building energy 

consumption should be targeted in the next three decades (Arens et al., 2010). Thus, 

cutting energy consumption in buildings is a feasible way to decrease carbon 

emissions caused by them.  

Space heating and cooling systems are among the biggest power consumers in 

buildings (Wu and Noy, 2010).  The Heating, Ventilation and Air-conditioning 
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(HVAC) system contributes around 50% energy consumption in non-domestic 

buildings (Perez-Lombard et al., 2008). In the UK, 60% of household energy 

consumption can be attributed to space heating (Palmer and Cooper, 2013).  

Consequently, efficient control of the HVAC systems in buildings is crucial for 

energy saving and reaching the 80% greenhouse gas emission reduction target.  

On the other hand, providing a comfortable environment is one of the primary 

purposes of HVAC systems which should not be ignored (Atthajariyakul and 

Leephakpreeda, 2005). However, such a purpose is not always in accord with the 

energy saving goal because maintaining the built environment within a comfortable 

zone is usually energy-consuming. How to deal with the challenge of fulfilling 

occupants’ thermal comfort requirements while achieving energy saving remains a 

question.   

It has been revealed that inappropriate operation of HVAC systems may result in 89% 

more energy consumption in some built environments (Hong, 2014).  Therefore, it is 

reasonable to control the operation of HVAC systems to avoid unnecessary energy 

wastage. In modern buildings, the HVAC system can be managed by the Building 

Energy Management System (BEMS). The energy management system was first 

developed in the 1970s to monitor and control the operation of HVAC systems. Its 

control range was later extended to other services such as lighting and alarm systems 

(Levermore, 2000). Thus the system controls the service plants to provide a 

comfortable built environment for occupants. Hence, improving the performance of 

the energy management system is an effective way to promote the energy efficiency 

of the HVAC system as well as guaranteeing the occupants’ comfort.   

In order to choose the appropriate settings for the HVAC system, the BEMS needs to 

understand the thermal comfort requirements from the occupants to whom the HVAC 

system provides services. The term ‘appropriate settings’ refers to the targeted 

environmental conditions generated by the decision-making algorithm in the BEMS 

system. The relationship between this algorithm and the actuator of the HVAC system 

is shown in Fig 1.1. The details of how the actuator operates the HVAC hardware to 

make the indoor environment reach the target, is beyond the scope of this research. 
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Figure 1.1. Relationship between the Decision-making Algorithm, the Settings of 

the HVAC system and the Actuator of the HVAC System 

The comfort zone is defined by the models and indices proposed by international 

standards which are used for the ‘evaluation of moderate thermal environment’ 

(ISO7730, 2005, ANSI/ASHRAE55-2010, 2010).  It has been pointed out that these 

models and indices in some circumstances do not accurately estimate the thermal 

sensation of an occupant (Gao and Keshav, 2013, Zhao et al., 2014) or a particular 

group of people’s actual mean vote (AMV) in a certain built environment in real time 

(Yang et al., 2015). This may cause BEMS to overshoot the settings of the HVAC 

system, which leads to extra and unnecessary energy consumption while decreasing 

the comfort level of the occupants. In some situations, a 1℃ room temperature 

difference will cause 10% energy consumption variation for the HVAC system 

(Humphreys and Hancock, 2007). One potential solution is that the BEMS system 

makes decisions for the HVAC system according to occupants’ sensation feedback 

(Moreno et al., 2014) (Erickson and Cerpa, 2012); (Jazizadeh et al., 2014). But how 

to process and utilise the collected information remains a problem. Once the BEMS 

understands the needs of the occupants, how to apply the information to decide the 

HVAC system’s settings is another question. 

Besides the HVAC system, the impact of the HVAC system’s end-users should not 

be ignored. It is sometimes difficult for an energy management system to decide a set 

point that will satisfy all the occupants because the algorithm in the system only aims 
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to predict the thermal sensation level in general, regardless of individual differences. 

To further increase the occupants’ thermal comfort level, the solution can be to 

improve the interaction between the occupants, their personal devices and the BEMS 

to affect occupants’ actions.  This solution is based on the adaptive comfort theory: 

people are not just passively affected by the ambient environment, but actively restore 

their comfort conditions (Nicol and Humphreys, 2002). In other words, occupants’ 

adaptive behaviours will also change their thermal conditions. Moreover, the 

occupants’ behaviour sometimes directly affects the operation of HVAC systems and 

their energy consumption. Therefore, people’s adaptive behaviours have an effect on 

both their thermal comfort and energy consumption. So, potentially, it is possible to 

provide personalised services, such as suggestions to an individual occupant on 

reactions to their ambient environment in an appropriate way to achieve their thermal 

comfort sensation, without causing energy wastage. Again, because of individual 

differences, the suggestions to every occupant should be personalised. How the 

BEMS decides and provides such suggestions is another question worth looking into. 

Finally, it can be found that other than a pure HVAC controller, the BEMS system 

needs to provide personalised services to all occupants. It collects information from 

the environment and feedback from occupants, then it feeds forward decisions based 

on this information to the HVAC system and the occupants. It has already been 

revealed that the controller in BEMS can be regarded as an agent (Dounis and 

Caraiscos, 2009), so agent-based technologies can be adapted into the BEMS system 

development. This research needs to solve the problem concerning how to develop a 

BEMS, which fits the requirements by using agent-based technologies.  

It can be concluded that, in order to reach the energy-saving and the thermal comfort 

targets, it is reasonable to build up a novel energy management system, which is able 

to understand the real-time thermal comfort requirements of occupants in the built 

environment and provide personalised suggestion services to increase the thermal 

comfort level of each individual who feels uncomfortable.  

To build such a system, the following research questions need to be answered.    

 How can the energy management system understand occupants’ real-time 

thermal comfort needs in a real building environment?  
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 How can the energy management system further eliminate the energy wastage 

of the HVAC system by using information from the occupants and the 

environment?  

 How can the energy management system increase the thermal satisfaction 

level of occupants whilst avoiding energy wastage by improving the 

interaction between the buildings and the occupants?  

 How to develop an energy management system to take care of the operation 

of the HVAC system whilst simultaneously addressing the thermal comfort 

issues of all the occupants?  

 Aims and Objectives of the Research 

As discussed in the background section, in order to reach the carbon emission 

reduction objective, it is important to reduce the energy consumption of the HVAC 

system in buildings. But at the same time, the HVAC system needs to provide a 

thermally comfortable environment for occupants. Developing a novel energy 

management system is an effective way to hit both targets, so the main aim of this 

research is to develop an energy management system to minimise the energy 

consumption of the HVAC system while satisfying the thermal comfort requirements 

of the occupants. Such an energy management system fulfils the aim of this research 

by applying the following method: It chooses the optimal set points for the HVAC 

plants and it also has the ability to interact with the end-users to provide personalised 

suggestions on adaptive behaviours. Being guided by the suggestions, each individual 

can obtain their thermal comfort requirements. The research questions arising from 

the application of these methods are also demonstrated in the last section. The 

problems pointed out in the questions can be solved if the developed energy 

management system obtains the following abilities:  

1. Sensing the current environmental conditions in real time   

2. Collecting personal factors and occupants’ responses to the current thermal 

conditions 

3. Learning occupants’ thermal comfort preferences 

4. Identifying occupants’ adaptive behaviour patterns 

5. Calculating the desired set points for the built environment 
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6. Providing personalised suggestions to the occupants 

As shown later in the Literature Review and Research Methodology Chapter, the first 

and second functions can be realised by the sensor, monitor and human-machine 

interface hardware, which are not the main focuses of this research. The objectives of 

this research are as follows: 

1. To develop the architecture and identifying the key components, especially 

the software components, of the energy management system. 

2. To develop a modelling method for the system to dynamically predict the 

personal thermal comfort level for each occupant. 

3. To find a method to estimate the thermal sensation level of a group of 

occupants in the same built environment in real time.       

4. To develop a method to numerically analyse and evaluate occupants’ 

behavioural adaptations. 

5. To develop optimal decision-making algorithms for the system to decide the 

set point for the HVAC system. 

6. To develop an optimal decision-making algorithm for the system to provide 

personalised suggestions for the occupants. 

7. To integrate the developed models and the decision-making algorithm 

together into the energy management system architecture and evaluate its 

performance.   

 Applied Research Approaches  

In general, the literature review, the experimental method, the questionnaire survey, 

the statistical analysis, the modelling method and the simulation method are applied 

in this research to solve the research questions.  

The literature review identifies the gap between the existing BEMS research and the 

BEMS proposed in this research. It also highlights the potential ways to improve the 

existing BEMS.   

In order to enable the BEMS to learn the thermal preferences and behavioural habits 

of the occupants, both experimental and questionnaire survey research methods were 

conducted. The experimental field studies were carried out to collect data in real built 
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environments. These studies collected the environmental data from an air-conditioned 

built environment. The surveys were used to gather the information about the 

occupants’ personal factors as well as their thermal sensations.    

The collected data were processed by modelling methods from machine learning and 

statistical analysis methods from data-mining. The generated model and analysis 

outcomes allow the system to understand the thermal comfort needs of the occupants 

and provide the foundations of the decision-making process.  

Finally, the simulation method was applied to test the operation process of the 

developed BEMS and its performance on energy saving and maintaining a thermally-

comfortable environment.  

 Thesis Structure  

The first chapter is this introduction chapter. Following the introduction chapter, the 

second chapter is the literature review and research methodology chapter in which a 

comprehensive literature review of the existing building energy management system 

research is performed. The software and hardware components of the energy 

management systems are reviewed and their functions summarised. Then the research 

methodologies for system development, the data collection and data process are 

discussed.  

In the third chapter, the architecture of the multi-agent energy management system is 

developed. The detailed structures of the personal agent and the local agent are also 

designed. The chapter realises research objective one.   

The fourth chapter develops personal thermal sensation models. The support vector 

machine algorithm is applied as the modelling method to generate the models. This 

part of the research fulfils research objective two. 

The fifth chapter uses a method based on the personal thermal sensation model and 

another method based on the support vector machine to develop models to evaluate 

the thermal sensation level for all the occupants in a built environment. The research 

concerning objective three is finished in this chapter. 

The sixth chapter generates the decision-making algorithms for the personal agent 

and the local agent in both open-plan and single-occupancy offices. These algorithms 
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are developed particularly for the decision-making process in the proposed energy 

management system. Objectives five and six are realised in this chapter. 

The seventh chapter firstly builds models to simulate the needed cooling and heating 

loads for an air-conditioned built environment. Then the chapter proposes ways to 

numerically evaluate how the suggested reactions fit an occupant’s usual behaviour 

patterns. The chapter integrates the models and algorithms developed in previous 

chapters and above into the agents in the building energy management system. The 

abilities and the performances of the building energy management system are tested 

in both single-occupancy and open-plan offices. The chapter completes objectives 

four and seven. 

The eighth chapter concludes the research findings and suggests future research 

directions. 

The structure of this thesis is illustrated in Fig 1.2
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Figure 1.2 The Structure of the Thesis
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 Output of the Research 

In summary, the innovations made by this research are: 

 A novel, multi-agent, BEMS system with agents developed using newly-

developed rational agents (Chapter 3).    

 A new modelling method to develop the personal thermal sensation models 

utilising feedback from the occupants (Chapter 4). 

 A new modelling method to develop the model estimating the thermal comfort 

level for a group of people using their feedback (Chapter 5). 

 The decision-making algorithms and decision-making process in the new 

BEMS to make decisions on settings for the HVAC system and personalised 

suggestions for the occupants (Chapter 6). 

 Methods to numerically analyse and process the behavioural adaptations 

(Chapter 7). 
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Chapter 2 : Literature Review and Research Methodology  

 Literature Review 

2.1.1 Building Energy Management Systems 

The building energy management system (BEMS) ‘is a computer-controlled system 

that may be used to monitor and control a building’s power systems including lighting, 

heating, ventilating and air conditioning’ (Thorpe, 2014). The early version of such 

systems was introduced into builds in the 1970s to control and monitor the operation 

of HVAC systems, then the system continued to be upgraded with the advance of  

electronic technologies and computer science (Levermore, 2000).  The objectives of 

energy management include optimising energy usage as well as decreasing 

greenhouse gas emissions (Capehart et al., 2008). The system works with HVAC 

plants to provide a comfortable environment for the occupants.  Because of this, in 

recent years, the system has been regarded as a key component of intelligent buildings, 

which consider ‘environmental and social needs, and occupants’ well-

being’(Clements-Croome, 2014).   

The BEMS is found to be a part of the building automation system (BAS), and its 

functions overlap with the so-called energy management system (EMS), building 

automation and control system (BACS) and building management system (BMS) 

(Capehart et al., 2008, Clements-Croome, 2013). For consistency, in this research, 

the name Building Energy Management System (BEMS) is used.  

A traditional BEMS is introduced in Levermore (2000). The system consists of one 

central station and multiple outstations. The function of the outstation is to control 

plants using the input from the switch and sensors. For HVAC plants, the control 

target is defined by a fixed set point represented by an operative temperature. The 

central station is responsible for running the user software and storing the data about 

the plants and the buildings for the administrator of the system.  

The Building Research Establishment (BRE) developed a BEMS which is used to 

control the operation of the heating system called ‘Building Research Expert Building 

Automation System’ (BREXBAS) (Ashworth and Hogg, 2000, Gilmore, 1989). This 
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system is a knowledge-based system, or so-called expert system, which is able to 

make certain decisions such as determining if the current environment is acceptable 

and analyses the reason for any current problem (Levermore, 2000). One outstanding 

point of this system is that it is able to interact with its users about its decisions and 

advice via a user interface. It has been pointed out that such a system depends on its 

programmer to pre-set the knowledge into the system and the information provided 

needs to be interoperated by a professional person such as an experienced energy 

manager (Scott et al., 1988).    

The examples above indicate that these BEMS do not take energy consumption as 

well as real time occupants’ comfort needs into account when controlling the HVAC 

plants. Abilities of these BEMSs were restricted by their designed function and the 

technologies they applied. To achieve the goal of energy efficiency and occupant 

thermal comfort, researchers propose models of new BEMS systems with more 

functional modules, which are aided by advanced technologies.  

Computer technologies, telecommunications and information technologies are 

applied to upgrade the ability of the BEMS. (Doukas et al., 2007). Based on this idea, 

in the same literature, a structure of a new BEMS is proposed. Being improved by the 

suggested technologies, the BEMS integrates a decision making support to achieve a 

comfortable building environment and efficient energy consumption. In detail, the 

system contains the following components: indoor and outdoor sensor systems, 

controllers, decision unit and database. The sensor systems are used to monitor the 

real time environmental conditions. The decision making model considers 

requirements from users in the built environment as well as pre-set rules to make 

decisions for the controller. By applying the decision support model, the BEMS 

should be able to reduce the energy consumption.   

Another BEMS model constructed by a smart sensor system, an optimum decision 

making system and an intelligent control system (SMODIC) is illustrated in Yao and 

Zheng (2010). Having been upgraded from the previous BEMS models, the system’s 

decision making relies on accurately estimating occupants’ comfort requirements by 

acquiring their physiological, psychological and behaviour patterns and co-operating 

with real time environmental data such as temperature, humidity and air velocity. This 

needed information is collected by sensor networks and human machine interfaces. 
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With all the information needed, the optimum decision module provides optimised 

control decisions to the control system to accomplish the best power consumption 

result. Furthermore, the system is also designed to provide occupants with adaptive 

behaviour advice in order for them to feel comfortable in their building environment.   

These proposed BEMSs provide insight into some of the key elements of the BEMS, 

including the theoretical basis, the subsystems structure, the input and output of the 

main system and subsystems and their functions. The insight provides guidance for 

the BEMS development in this research. Concluded from previous research, an ideal 

BEMS system should include the following components:  

 Sensor Networks  

 Human Machine interface    

 Decision Making Module  

 Actuator  

 Data Storage. 

By utilising the hardware and software components listed above, the BEMS should 

realise the following functions: 

1. Sensing the current environmental conditions in real time   

2. Collecting personal factors and occupants’ responses to the current thermal 

condition 

3. Learning occupants’ thermal comfort preferences 

4. Identifying occupants’ adaptive behaviour patterns 

5. Calculating the desired set points for the built environment 

6. Providing personalised suggestions to the occupants. 

Existing attempts to develop the software and hardware components in the BEMS 

and realise the functions mentioned above are illustrated in the next few sections. 

2.1.2 Data collection and Storage Technologies for BEMS 

There have been a number of research focuses on effectively collecting information 

in buildings using advanced sensor technologies. Smart sensor systems are an 

important subsystem of a building management system to acquire information. 

Technology developments in the areas of microprocessors, and sensor devices enable 
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sensor networks to have strong information detection and collection abilities. 

Therefore, sensor networks are applied in many research areas including farming and 

agriculture etc. (Priyanandhan, 2012, Yu et al., 2013) and have been proven to be 

ideal for environmental information collection such as temperature monitoring, noise 

detection and target tracing (Veerasingam et al., 2009, Bell and Galatioto, 2013, Dai 

et al., 2013). These functions and abilities are in high demand by building energy 

management systems. There are many research outcomes in application sensor 

networks inside buildings. For the indoor environment, it is necessary to use wireless 

communication technologies to realise the communication between the sensors and 

other parts of the BEMS. Therefore, the wireless sensor nodes are applied. These 

nodes can be based on technologies such as WiFi (IEEE 802.11) or Zigbee (IEEE 

802.15.4) standard defined by IEEE (Erol-Kantarci and Mouftah, 2010). For example, 

a wireless sensor network based on the Zigbee standard are recommended to be 

applied in an energy management system in Wang and Wang (2010). The system is 

developed to audit energy consumption of home appliances. The sensor network 

comprises a base station and multiple remote sensors. The remote sensors collect the 

information from the field then transmit it to the base station, which then forwards 

the data from the sensors to the main server of BEMS. Based on the test result, the 

data transmission distance can be as long as 50 meters. Shen et al. (2011) applied 

Extensible Markup Language (XML) formatted data to solve the connectivity 

problem between the environmental sensors and the air-conditioner controller. This 

constructs a heterogeneous system in which different components use different 

communication standards. The research settled the problem of how these components 

communicate with each other. Fortino et al. (2012) suggest a building management 

framework which integrates a network of heterogeneous networks containing 

wireless sensors as well as actuators. The research demonstrates a very detailed 

layered design of the network system for both base station and sensor node sides. 

Supported by the wireless sensor network, the building management framework is 

claimed to be able to monitor buildings and control the equipment inside (Fortino et 

al., 2012).  

Other sets of research not only apply the sensor network in the BEMS, but also use 

personal devices as well as databases to further extend the abilities of the system.  

Personal devices can be employed as media-rich interfaces among users, environment 
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control systems and wireless sensor networks. Clements-Croome (1990) suggests a 

Sense Diary system to take care of the occupants’ well-being in energy efficient 

buildings. It is proposed that the system utilises the WSN to collect environmental 

information. Occupants’ reactions to the ambient environment are also collected and 

saved by the system. In the system, mobile phones, personal digital assistants (PDA), 

PCs and TVs are recommended as media to communicate with the occupants (Mao 

et al., 2007). Mineno et al. (2010) developed an adaptive home/building energy 

management system (A-HEM/BEMS). In the research, the sensor network applies 

both the power line communication (PLC) technology and wireless communication 

following the Zigbee standard to solve the communication problem caused by 

distances, obstacles and so on. In a prototype system, the sensor network aims to 

collect and transmit the information about temperature, humidity, illumination and 

energy consumption. The PostgreSQL is used to realise the integrated database. 

Mobile phones and webpages are used to display the information from the system. 

Similarly, the energy management system proposed in Anastasi et al. (2011) also 

employed the WSN, the human-machine interface and the database technologies. In 

this research, WiSensys sensors are applied to fulfil monitoring requirements while 

the database is being developed by MySQL in the server of the system. Webpages on 

PCs and interfaces on mobile phones are responsible for the interaction between the 

system and end users. There are abundant suggestions for realising sensor networks, 

the human-machine interfaces and the databases in the building energy management 

systems. Therefore, in this research I will not peruse this in depth.   

2.1.3 The Control of HVAC System in BEMS 

A number of efforts have been made to develop technologies to control the HVAC 

system. Calvino et al. (2004) propose a fuzzy proportional–integral–derivative (PID) 

controller to control HVAC plants. Instead of using a set temperature, this research 

directly applies PMV value as a control target. A neural network controller is 

proposed to control the HVAC system (Argiriou et al., 2004). The artificial neural 

network (ANN) module in the controller is developed from the feed forward back 

propagation method. ANN technology is also proposed to be used by a model based 

control method (Marvuglia et al., 2014). In the control method, fixed room air 

temperatures in summer and winter are used as control targets for the fuzzy logic 
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control unit.  A similar control system applied in a hospital is also suggested by 

Papantoniou et al. (2015). The system applied the fuzzy controller aided by a 

temperature predicting model developed by ANN. Web-based technologies are 

introduced into the system. The web page interfaces are responsible for interaction 

between users and system. Default settings are fixed indoor air temperatures, but they 

can be overridden by the users.   

From the review above, it can be found that technologies such as PID, Fuzzy Logic 

and ANN are suggested for applications of the controllers/actuators so that either the 

controllers or the actuators will guide the HVAC plants to meet the set target. On the 

other hand, the methods used by the BEMS to decide the set point of the HVAC is 

still under discussion. Some existing systems work with fixed set points and settled 

schedules. Other systems may adaptively change their set points calculated by a 

thermal comfort model such as Predict Mean Vote (PMV). The question has been 

raised:  whether the fixed set point or the thermal comfort model reflect the true 

thermal comfort needs for the group of people that the BEMS provides services to.  

Furthermore, it is still uncertain how the existing systems deal with individual 

differences in thermal comfort. In order to provide personalised services, the BEMS 

should be able to make decisions for each localised environment and individual 

occupant. The question built up on the previous one is how controllers in the BEMS 

provide personalised service to every user in the built environment. This complex 

problem may potentially be solved by agent technologies and multi-agent systems, 

which are reviewed in the next section.  

2.1.4 Applications of Agent based Technologies in the Built Environment 

Agent based technologies have been widely applied in the building management and 

control related research field. The intelligent room developed by the MIT artificial 

intelligence lab is realised by embedding multiple agents into a built environment 

(Brooks et al., 1997).  With the help of the agents, the intelligent room gains abilities 

such as speech recognition and machine-occupant interaction in the room etc. The 

agents used in this intelligent room project are not particularly developed for energy 

management, but researchers on this project prove that the complex tasks of 

intelligent building control is better conducted by distributed multiple software agents, 
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not a central controller (Coen, 1997). This research shows the complex problem 

solving ability of the multi-agent system in the building management area.     

Sharples et al. (1999) proposed a multi-agent system, which is called ‘Essex IB Model’ 

used inside intelligent buildings. This has been developed to provide assistance to 

elderly and disabled people. The structure of the agent system is arranged in a 

distributed way so that one agent is installed per room and all agents are connected 

via a network.  Agents applied in the system are room controller agents based on 

‘embedded agent’ technology. These agents are hardware entities with embedded 

micro-processors. In general, it is claimed that the system provides a real-time control 

response on the basis of information continuously learned from the environment and 

individual occupants rather than using models developed in advance (Hagras et al., 

2003b).  In this case, the system has the ability to deal with the situation the system 

developer did not programme into the system in advance. It is also claimed that 

functions of the agent include taking care of occupants’ comfort and energy saving. 

Later research (Hagras et al., 2003a) indicates that for the embedded agents, the 

decision making criteria including occupants’ thermal comfort preferences can be 

learnt by the fuzzy logic method supported by a genetic algorithm. This method is 

from earlier mobile robot research (Hagras et al., 2000). A similar fuzzy logic based 

method can also be found in the agent based application in Wang et al. (2006). The 

multi-agent system with hardware agents is applied in the intelligent building’s 

control system, which is called iDorm (Hagras et al., 2004). However, for the 

embedded agents, some researchers have pointed out that they might not be  suitable 

for a complicated agent platform due to the limit of hardware abilities (Liu et al., 

2008).     

A multi-agent system used for deciding the settings of indoor thermostats is illustrated 

in van Breemen and de Vries (2001).  In the research, the control problem is regarded 

as complex, and divided into several sub-problems. In this case, each sub-problem is 

solved by a controller and the agent is used to support the process of autonomous 

decision making of a controller. A fixed comfort zone with temperature ranges is used 

to define if a user is comfortable or not. It is claimed that such a system is able to 

avoid overshooting by automatically deciding the settings of the thermostats.  
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Mo (2002) also suggests considering the individual differences in the agent 

development process, particularly in illumination and thermal comfort aspects. A case 

study of an illumination control agent is given in the research. Differing from previous 

research, the multi-agent system contains several categories of agents arranged into 

different levels. There are ‘occupant agents’ which aim to serve individual occupants, 

while higher level agents such as ‘operator agents’ focus on the general performances 

of the buildings. A similar agent hierarchy is applied in later developed multi-agent 

building management systems. This research also suggests that the agent’s decision 

making algorithm considers a trade-off among the different comfort aspects and the 

energy consumption but how to measure the occupants’ comfort level is not clearly 

indicated in this research.  

Davidsson and Boman (2005) also proposed a control system for office buildings 

aided by a multi-agent system. The objective of the system is to save energy and 

improve occupants’ thermal comfort. The system applies power lines as 

communication links between agents and electrical devices such as actuators for 

lighting and heating. The multi-agent system is also a decentralised system integrated 

by different types of agents. It contains personal comfort agents for personal 

preference, room agents for deciding indoor environmental data and environmental 

parameter agents to control indoor environment (Davidsson and Boman, 1998) 

(Davidsson and Boman, 2000). However, personal interests such as the preferred 

temperature is a fixed figure (22 C ̊) and it is assumed that at 22 C ̊ the thermal comfort 

satisfaction rate is 100%. This assumption does not correspond with indoor 

environmental standards such as ASHRAE and ISO7730 or to the adaptive comfort 

theory.  

A multi-agent framework for energy management control is established in 

Rutishauser et al. (2005). This framework proposes the use of a fuzzy logic controller 

to manipulate the service plants. Setting decisions are made by fuzzy logic rules, 

which are generated by an unsupervised online learning method. The research 

encounters difficulties in testing learning results of comfortable rules with the real 

thermal comfort data from the occupants because of restrictions brought by the online 

learning method itself.  
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A Multi-agent system for Building Control (MASBO) has been proposed and 

discussed in several research articles (Qiao et al., 2006, Yong et al., 2007, Liu et al., 

2008, Liu et al., 2011). This system contains four kinds of agents: the personal agent, 

the central agent, the local agent, and the monitor and control agent. By applying 

these agents, the system aims to adaptively change control instructions based on 

human behaviour and ambient environment changes in order to save energy and meet 

occupants’ well-being (Liu et al., 2008). The MASBO research provides theoretical 

guidance on how to develop an agent working for building energy management. It is 

illustrated that the developed agent should have common properties including: 

‘reactivity, pro-activeness, social ability and persistence’ which is defined in 

Wooldridge (2009) and Qiao et al. (2006). Moreover, an EDA (epistemic, deontic, 

axiologic) (Filipe and Brito, 2005) agent model is suggested to define the structure of 

an agent in the building energy management system (Qiao et al., 2006, Liu et al., 

2011). In a MASBO based system, to generate the occupants’ personal profiles, the 

system firstly develops a pre-defined fixed profile for general occupants, then adds 

personal preference values into the range for each occupant (Yong et al., 2007). The 

MASBO implies the pervasive informatics theory regarding  buildings to have 

complex signs to improve the interaction between the building and occupants (Liu et 

al., 2011). The prototype design of this system is described in detail in Liu et al. (2011) 

but the performance of the system needs to be further investigated.   

Dounis and Caraiscos (2007) developed fuzzy controller-agents (FCAs) to control the 

indoor environment, which is based on ‘3-D fuzzy comfort sets’. The controller takes 

into account both occupants’ comfort and energy saving. The system contains two 

types of agents: master agents and slave agents. The master agent is responsible for 

calculating the set point of the controllers while the slave agent works to avoid the 

conflict among FCAs (Dounis and Caraiscos, 2008).  For occupants, thermal comfort, 

illumination comfort and air-quality are considered and represented by 3-D fuzzy 

comfort sets (Dounis et al., 2011). The occupants’ preference in this research is 

derived from the PMV index.     

Wu and Noy (2010) also suggested a multi-agent based system to reconcile the 

occupants’ well-being and energy consumption in the domestic area. The proposed 

prototype system model is integrated with a wireless sensor actuator network (WSAN) 

to collect environmental information. Personal agents are suggested to play an 
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important role in helping the system to fulfil individual requirements. Personal agents 

estimate people’s preferences and behaviours on the basis of the occupants’ profiles, 

generated from both environmental and personal information.  

Rogers et al. (2011) propose a home energy management agent to optimise the use of 

the heating system on behalf of the householder. Their research developed a model 

which predicts the thermal property of the target house.  The agent considers the 

comfort, carbon emissions and cost of energy to make control decisions. Feedback 

from the system sent to the occupants contains the cost and carbon emission 

information. 

Yang and Wang (2013b) present a multi-agent system with their own design of agents’ 

algorithms and case studies. The system is also designed to solve conflicts between 

saving energy and obtaining occupants’ satisfaction. Similar to the multi-agent 

system proposed in Qiao et al. (2006), the system in Yang and Wang (2013b) also 

incorporates personal agents, local agents and central agents. The central agent 

controls the local agents who play a significant role as they make decisions for the 

energy management system. The personal agent is responsible for communicating 

with the occupants. A Gaussian function is used to express the occupants’ thermal 

comfort.  In another paper, authors claim that occupants’ behaviour in adjusting the 

set point of HVAC helped to generate the thermal comfort function (Yang and Wang, 

2012a). If the occupants do not actively change the temperature setting, the set point 

is regarded as the preferred temperature. However, it does not provide a quantitative 

mathematical derivation or test why the thermal comfort feelings follow such a 

function. Other research indicates more case studies on how the control agent 

organises the power distribution for different zones in a built environment (Yang and 

Wang, 2013a). Earlier research discusses how the local agent makes control decisions 

(Yang and Wang, 2012b). The agents are developed for and verified by specific case 

studies, the general structures of components inside the central, local and personal 

agents are not fully discussed.   

A number of research projects have attempted to further extend the ability of multi-

agent based building energy management systems by introducing the energy resource 

side management into the function list of the system (Simoes and Bhattarai, 2011) 

(Rogers et al., 2012) (Mokhtar et al., 2013) (Mokhtar et al., 2014). The multi-agent 
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energy management system is considered to work with a smart grid (Rogers et al., 

2012). It is demonstrated that the electronic grid can be controlled by an electronic 

agent working with heating/cooling agents and comfort agents (Simoes and Bhattarai, 

2011). Alternatively, other renewable sources of power can be managed by a source 

agent (Mokhtar et al., 2013) (Mokhtar et al., 2014). However, in the above research, 

the thermal comfort levels of every occupant are represented by one fixed model or 

even one unchanged set point. The individual differences of occupants are not 

considered.  

It can be concluded from the existing literature that the key characteristics of BEMS 

include:  

 Application of multi-agent technologies 

 Consideration of both thermal comfort and energy consumption  

 Consideration of individual thermal preference differences 

 Provision of  feedback to occupants 

 Consideration of adaptive behaviours in the decision making process. 

Table 2.1 summarises the features of the reviewed agent modules. 

Table 2.1 the Properties of the Existing Agents in Building Management Research 

Area 

Paper Applicat

ion of 

multi- 

agent 

technolo

gy 

Consideratio

n of both 

thermal 

comfort and 

energy 

consumption 

Consideratio

n of  

individual 

thermal 

preference 

differences 

Provision 

of  

feedback 

to 

occupants 

Consideratio

n of  

adaptive 

behaviours 

in the 

decision 

making 

process 

(Brooks et 

al., 1997) 
     

(Coen, 

1997) 
     

(Davidsson 

and Boman, 

1998) 

     

(Sharples et 

al., 1999) 
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(Davidsson 

and Boman, 

2000). 

     

(van 

Breemen 

and de 

Vries, 

2001) 

     

(Mo, 2002)      

(Hagras et 

al., 2003a) 
     

(Hagras et 

al., 2003b) 
     

(Hagras et 

al., 2004) 
     

(Rutishause

r et al., 

2005). 

     

(Davidsson 

and Boman, 

2005) 

     

(Qiao et al., 

2006) 
     

(Yong et 

al., 2007) 
     

(Dounis and 

Caraiscos, 

2007) 

     

(Liu et al., 

2008) 
     

(Dounis and 

Caraiscos, 

2008)  

     

(Wu and 

Noy, 2010) 
     

(Liu et al., 

2011) 
     

(Dounis et 

al., 2011) 
     

(Rogers et 

al., 2011) 
     

(Simoes and 

Bhattarai, 

2011) 

     

(Yang and 

Wang, 

2012a) 

     

(Rogers et 

al., 2012) 
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(Mokhtar et 

al., 2013) 
     

(Yang and 

Wang, 

2013b) 

     

(Mokhtar et 

al., 2014) 
     

 

The table illustrates a number of researchers from building management research 

areas who propose that multi-agent technologies should be applied by the 

management system. Energy savings and thermal comfort are two key elements that 

should be considered in the BEM research that were not popularly considered in early 

research before 2000.  To realise human-centralised control, feedback is suggested to 

be collected from occupants. However, the information provided from the system 

only contains the environmental information from the sensors and the current decided 

settings. Very few systems tend to provide advisory information on the energy 

management system. In some of the research, the users’ profiles and comfort models 

are developed to support the agents’ decision making process. But the accuracy of 

such profiles and models needs to be verified and improved. Few researchers have 

tried to involve the behavioural adaptations in the decision making process and use 

them as effective ways of changing the thermal condition for individuals. Moreover, 

personal behavioural pattern differences are not considered by the agents in the 

research shown in the above table, so personalised suggestions based on personal 

preferences and personal behaviour patterns cannot be performed by these agents.  

In conclusion, research into building energy management systems has provided 

scholars with a lot of interest. A novel BEMS still needs to be developed to have all 

six functions including: sensing environmental parameters in real time, collecting 

occupants’ personal factors and their thermal feelings, learning occupants’ thermal 

comfort preferences, identifying occupants’ adaptive behaviour patterns, calculating 

the desired set points for the built environment and providing the personalised 

suggestions to the occupants. 

Through a comprehensive literature review, it is concluded that the following four 

functions of the BEMS are still under investigation: learning occupants’ thermal 

comfort preferences, identifying occupants’ adaptive behaviour patterns, calculating 

the desired set points for the built environment and providing the personalised 
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suggestions to the occupants. There is a need to develop personal thermal models and 

models to estimate all individuals’ thermal sensation levels in order to learn the 

occupants’ thermal comfort preferences. The developed models need to be verified 

and new decision making algorithms are needed to aid the BEMS to make multiple 

decisions for different HVAC systems and individual people. Finally, on the system 

level, agent technologies should be applied to integrate all the software and hardware 

resources in the BEMS, in order that it can be constructed under multi-agent 

architecture.   

 Research Methodology  

2.2.1 Research Design  

In general, research and design of a novel BEMS falls into to the realm of design 

science research. Design science research focuses on creating innovative artefacts for 

solving problems in the real world (Simon, 1996). Therefore design science 

methodologies are applied in this research. Based on the design process model 

proposed in Takeda et al. (1990), the research process and relevant research 

approaches are arranged as the following sequence: firstly a literature review was 

carried out to identify gaps between the existing BEMS research and the BEMS 

proposed in this research, then aspects that needed to be improved or re-developed 

were considered. The literature review of the BEMS is already illustrated in the last 

section.  

Subsequently the research entered the development stage, which involved the whole 

system structure design, the development of thermal sensation models, the 

development of behavioural adaptation assessment algorithms and the development 

of decision making algorithms. Further literature reviews in each sub-area were 

carried out to illustrate ways of solving the development problems. In order to develop 

thermal comfort models and behavioural adaptation assessment algorithms, 

occupants’ preferences on thermal comfort and behavioural adaptations needed to be 

investigated first. In this case, quantitative research approaches were selected to 

perform the investigation, and were based on three reasons: 1. Occupants thermal 

sensations are suggested to be collected by the ASHRAE seven-point sensation scale; 

2. the relevant environmental and personal conditions are represented in quantitative 
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ways; 3. The decision making algorithms need objectives such as thermal comfort 

and behavioural adaptation to be inputted in numerical formats. In detail, an 

experimental field study and questionnaire survey were applied as ways to collect 

data regarding thermal comfort and behaviours, which were all common methods 

applied by previous research and international standards (Liu et al., 2012) (Beizaee 

et al., 2012) (Li et al., 2012) (Indraganti et al., 2013, ISO7730, 2005, 

ANSI/ASHRAE55-2010, 2010). Because people’s personal preferences were 

considered by the BEMS, a longitudinal experiment and questionnaire survey were 

carried out in an air-conditioned environment. The collected data were the primary 

data, which were processed by both the modelling algorithms and the statistical 

analysis method. To further test the validation of the newly generated modelling 

method, both primary data and secondary data were used. The secondary data were 

collected in a controlled environment and they do not contain information regarding 

occupants’ behaviour. Therefore, the secondary data were only processed by the 

modelling method.  

Following the development stage, the novel BEMS were tested in a simulated built 

environment. Simulation approaches were utilised to generate the building model. 

Multiple case studies were carried out to test the functionality of the BEMS and its 

energy saving performances. 

The following sections illustrate the procedure of the longitudinal experiment and 

questionnaire survey, and software and hardware platforms for data process, system 

development and test. The realisation of the system structure development, modelling, 

statistical analysis method and simulation algorithm are discussed in detail in the rest 

of the thesis.            

 

2.2.2 Experiment and Data Collection 

The models and algorithms used to describe the occupants’ thermal feelings and their 

behaviours are still under development. These models and algorithms should be 

developed from environmental data and data from occupants. In this research, both 

primary data and secondary data were used for modelling. The secondary data were 

from an international database. They were collected from an experiment carried out 
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in China. The primary data were collected from experiments carried out in the 

University of Reading in the UK. The experiment built environments are air-

conditioned and the detail of the experiment processes and data collections are 

described in the following sections.  

2.2.3 Experiments and Data Collection in Chongqing 

A series of experiments were carried out in Chongqing, China from 2008 to 2010 to 

collect the data concerning the subjects’ thermal feelings in a controlled environment. 

A recent publication (Yang et al., 2015) describes the details of the experiments. The 

experimental indoor environment was supplied by a heating, ventilation and air 

conditioning (HVAC) system. During each experiment, the environmental condition 

settings were different. The parameters including the globe temperature, air 

temperature, relative humidity and air velocity were recorded by a thermal comfort 

monitoring station assembled in accordance with the standard ISO 7726-2001(2001).  

The locations of sensors were 0.6 m above the ground beside the subject. The 

specifications of the sensors are listed in Table 2.2. Photos of the experiment are 

shown in Fig 2.1 

  

Figure 2.1Photos of the Experiment in Chongqing, China (Yang et al., 2015) 

Twenty-one healthy people aged between 20-30 years old were involved in the series 

of experiments. All of them had stayed in Chongqing city for more than two years. 

One person did not complete the experiment. Each experiment session lasted for 90 

minutes for one person. In the first 20 minutes, no data were recorded to enable the 

subject to become accustomed to the exposed indoor environment, then, his/her 

thermal comfort sensation was recorded by using a questionnaire survey at 10 min 

intervals. In the questionnaire, the thermal sensation was measured by the ASHRAE 
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seven-point thermal sensation scale:  cold, cool, slightly cool, neutral, slightly warm, 

warm and hot (ANSI/ASHRAE55-2010, 2010). The ambient environmental 

parameters were collected every 10 minutes whilst the questionnaire surveys were 

being completed. During the experiment period, all the subjects were wearing clothes 

with the same insulation level (0.26 CLO) and were doing work with the same activity 

level (1.2 MET). The settings of the environmental parameters are illustrated in Table 

2.3. All 20 subjects attended up to ten 90-minute experiment sessions.  A total of 1199 

sets of valid data from these 20 subjects were collected, and have been used for the 

development and verification of models. The detailed numbers of data sets collected 

from each subject are depicted in Fig. 2.2. After each experiment, the collected 

environmental parameters, personal information and the thermal sensation data were 

stored in a database for further process and analysis.    

Table 2.2 Specification of the sensors used in experiments in China (Yang et al., 

2015) 

Sensor Air 

Temperature 

Relative humidity Air velocity Black-bulb 

temperature 

Valid Range −25–150 °C 0– 100% RH 0.01–20 m/s −10–100 °C 

Accuracy  ±0.1 °C ±2% (15–40%) RH 

±1% (40–70%) RH 

±0.5% (70–98%) RH 

±0.05 m/s(0–

0.5 m/s) 

±0.1 m/s(0.5–

1.5 m/s) 

4%(>1.5 m/s) 

±0.15 °C 

 

 

Table 2.3 Range of environmental parameters in the controlled environment 

Environmental 

Parameters 

Minimum Value  Maximum Value 

𝑻𝒈   24.94 ℃ 29.58℃ 

𝑻𝒂  26.07℃ 30.04℃ 

𝑹𝑯 41.5% 80.1% 

𝑽𝒂   0.11m/s 0.17m/s 

 



 

28 

 

 

 

Figure 2.2 Number of data sets collected from each subject and time of experiments 

in Chongqing 

2.2.4 Experiments and Data Collections in Reading 

2.2.4.1 General Information about Experiment in Reading  

The primary data collection includes physical environmental data, personal factors 

and occupants’ thermal sensation and behavioural data. The experiments were carried 

out in the University of Reading between the year 2014 and 2015. These experiments 

were approved by the School of Construction Management and Engineering’s 

(SCME) Research Ethics Committee. These experiments were carried out in air-

conditioned spaces.   

2.2.4.2 The Introduction of the Air-Conditioned Environment 

The air-conditioned environment is located in the Henley Business School (HBS) 

building on Whiteknights campus, University of Reading. The exterior of the building 

is illustrated in Fig. 2.3. 
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Figure 2.3 the HBS building 

As shown in Fig 2.3, it is a four storey building. Inside the building, there are 

classrooms, meeting rooms, offices and rest areas. The major experimental area is 

located in the ground floor of the building. The occupants of this area are 

administration staff, academic staff and PhD students. Three open plan office areas 

with air conditioning were selected as the experimental areas as all the occupants who 

agreed to take part in the experiment were located in these areas. The air conditioning 

system operates in these areas from 9:00 to 17:00 all year around except at weekends 

and university closure days. The recommended set temperature was 23 degrees 

centigrade for all these areas.   

2.2.4.3 The Instruments Used to Collect the Environmental Information 

Based on previous research, there are four environmental factors which affect the 

occupants’ thermal comfort. They are air temperature, relative humidity, mean radiant 

temperature and air velocity. In this experiment, air temperature, relative humidity 

and air velocity are directly measured. The mean radiant temperature was derived by 

measured globe temperature. The air temperature and relative humidity were 
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collected by the sensors installed in the environment. The air velocity and the globe 

temperature were measured by hand-held equipment.     

Two types of sensors were used to collect the air temperature and humidity in this 

research. The first type was: EL-GFX-2+ high accuracy temperature and humidity 

data logger provided by LASCARE, and the second type was Tinytag ULTRA2 from 

Gemini Data Loggers.   

 

                  

              EL-GFX-2+ Data Logger                 Tinytag ULTRA2 data logger 

Figure 2.4 Air Temperature and Humidity Sensor 
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                                     HT30                            testo 405-v1 

Figure 2.5 Globe Temperature and Air Velocity meters 

Globe temperature and the air velocity values were measured by two hand-held 

instruments. The globe temperature was measured by HT30 provided by EXTECH 

Instruments. The testo 405-v1 was used to measure the air movement in the 

experimental environment.  The specifications of the sensors and instruments are 

illustrated in Table 2.4. All of the sensors and instruments were new and were 

calibrated by the manufacturers.   

Table 2.4 the Specification of the Instruments and Dataloggers 

Sensor Valid Range Accuracy  Vender  

EL-GFX-2+ -30°C to +80°C 

0% to 100% RH 

±0.2 ℃  

± 1.8% 

LASCAR electronics 

Tinytag 

ULTRA2 

-25°C to +85°C 

0% to 95% RH 

±0.35 °C 

±3.0% RH at 25°C 

Gemini Data Loggers 

HT30 0°C to +80°C ±2 ℃ EXTECH Instruments  

testo 405 V1 0 m/s to 5 m/s ±0.1m/s testo 
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2.2.4.4 Software Used to Download the Data 

The data recorded by the data loggers were retrieved by using the software provided 

by the vendors. The data log in the EL-GFX-2+ was read by the software Easylog 

USB. The Tinytag Explore 4.6 was used to download the data in the Tinytag UTRA2 

sensors. The user interfaces of the software are shown in Fig 2.6 and Fig 2.7.   

 

Figure 2.6 The User Interface of Easylog USB 
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Figure 2.7 The User Interface of Tinytag Explore 4.6 

 

2.2.4.5 Questionnaire Survey 

The questionnaire survey was conducted throughout the experimental period to 

collect data from the subjects from October 2014 until August 2015. Two types of 

questionnaires were used during the experiment: a general questionnaire and an 

activity logger. The purpose of the survey was to collect the subjects’ personal factors 

including clothing insulation levels and activity levels, subjects’ sensations in the 

ambient environment and their reactions to the environment. The design of the 

questions in the questionnaires followed the current international standards: 

(ISO7730, 2005, ANSI/ASHRAE55-2010, 2010) and referred to previous research 

(Liu et al., 2012) (Beizaee et al., 2012) (Li et al., 2012) (Indraganti et al., 2013), and 

my consultation with psychologist Marylin J. Williams.  

The general questionnaire firstly asked about the subjects’ current activity levels and 

their clothes. The data on clothes were used to derive the clothing insulation level of 

occupants. The CLO values of different types of clothes were obtained from the 
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international standards and the published works mentioned above. The effects of 

office chairs were also considered. Then the occupants were asked to feedback their 

current sensations concerning their indoor environment, especially their thermal 

sensations. The thermal sensations were represented by the ASHRAE seven-point 

thermal sensation scale. In the following section, the subjects were required to report 

their actions in the previous two hours, which they used to change their thermal 

sensations. Some information related to their thermal feelings such as how long they 

stayed in the built environment and what they sensed about the air movement were 

also collected. Finally, the occupants were asked what their thermal expectations were. 

If they wanted to change their ambient thermal environment, they were asked to state 

the methods they were going to use. The data logger focused on occupants’ 

behavioural adaptations. The data logger questionnaire was constructed on an hourly 

basis. Every hour during the working period, a subject who agreed to fill in the logger 

was asked to provide feedback. This feedback included his/her thermal sensation and 

thermal expectation at that time. The subject also needed to provide information on 

the status of the facilities such as an air-conditioning system. Correspondingly, he/she 

also needed to report any behavioural adaptation over the previous hour. Samples of 

questionnaires and data loggers are attached in the appendix.     

2.2.4.6 The Experiment Procedure in Reading 

The experiment and data collection in the air-conditioned environment in the UK took 

place from October 2014 to August 2015. Site surveys had been conducted prior to 

the beginning of the experiment. The purpose of these was to collect the necessary 

information to design the questionnaire as well as to decide where to install the 

sensors. During the site survey, some basic physical information about the experiment 

area was collected. Occupants’ commonly used adaptive behaviours relating to 

thermal comfort were observed during a site survey in the experiment area. All this 

information was used to generate relevant questions in the questionnaire.  

Letters were sent to all the potential candidates in the environment to explain the 

purpose and scope of the experiment as required. All subjects were volunteers who 

were ordinary healthy people working in office areas. Consent forms were signed by 

all the subjects, which were required by the SCME’s Research Ethics Committee. 
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Functions of the sensors and contents of the questionnaires were explained in detail 

to all of the subjects and other occupants in the experimental area.  

By recruiting the subjects for the experiment, the experimental areas in each building 

were chosen, and three areas in the air-conditioned environment were selected. The 

experimental areas were labelled as: ACzone 1, ACzone2, and ACzone3. Once the 

experiment formally began, questionnaire surveys were conducted twice a day, two 

days a week in each zone, except when the researcher was off campus or when the 

university was closed. While the subjects were filling in the questionnaires, their 

ambient environmental conditions were recorded by sensors and hand-held meters. 

All of the environmental data were collected at points around 0.6m (at the waist level) 

above ground close to the occupants. The collected environmental data and personal 

factors followed the specification of the class II data defined in Brager and de Dear 

(1998), which is suitable to analyse the subjects’ comfort influenced by environment 

as well as their behavioural  responses.  If a subject agreed to fill in an activity data 

logger, the logger questionnaire would be given to the subject in advance. The subject 

completed the questionnaire during working hours when he or she was inside the 

experimental environment, then the completed logs were collected by the researcher. 

In total, twelve subjects agreed to attend the experiment, but only six of them finished 

it. A total number of 247 effective samples were collected from these six subjects. 

Fig. 2.8 shows the total number of effective samples collected from each subject. 

 

Figure 2.8 Number of samples collected from each subject in Reading 
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Figure 2.9 Experimental Data Collection in Reading 

2.2.5 The Data Process and System Development Platform  

The rest of the thesis introduces the system architecture design, agents’ components 

structure design, agents’ components’ development, simulation and case studies for 

system performance test. For agents’ components’ development, the primary data and 

secondary data are processed by modelling methods and statistical analysis. All these 

developed models and analysis were realised by a desktop computer. The 

configuration of the computer is: Intel Core2 Duo CPU 2.33G HZ; 4GB memory; 64-

bit Windows 7 operation system. Both the primary data and the secondary data were 

stored in EXCEL sheets generated by Microsoft EXCEL software. The components 

of the agent in the BEMS were programmed by the MATLAB software. The 

programs were stored as *.m format files.  

 Summary  

The first part of this chapter comprehensively reviews the existing research on BEMS. 

Based on the review, it can be found that the personal thermal sensation model and 

models to estimate all individuals’ thermal sensation levels need to be investigated. 

Agent technologies should be applied in the BEMS and the BEMS can be constructed 

under multi-agent architecture. The second half of this chapter illustrates the research 

methodology used in this research in detail. The system and agent development are 
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illustrated in detail in the next chapter. The thermal sensation modelling is in Chapter 

4 and Chapter 5. The decision making algorithm is in Chapter 6. The statistical 

analysis, the simulation and case studies are in Chapter 7.   
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Chapter 3 : A Building Energy Management System Based 

on the Multi-Agent Approach and EDA Agent Model 

  Introduction  

Literature reviews reveal that agent-based technologies have been employed to 

develop energy management systems by a number of researchers. What is an agent? 

The definition of an agent is ‘anything that can be viewed as perceiving its 

environment through sensors and acting upon that environment through actuators’ 

(Russell and Norvig, 2010). More specifically, an agent developed by computer 

hardware and software is ‘a computer system that is situated in some environment 

and that is capable of autonomous action in this environment in order to meet its 

delegated objectives’(Wooldridge, 2009). An environmental controller can be 

regarded as an agent (Weiss, 1999), so it is natural to employ agent-based 

technologies to improve the abilities of the controllers to reach their designed 

objectives. However, from literature reviews, it can be concluded that, although 

various agent-based systems have been developed by different researchers for energy 

management systems, no developed system can realise all the functions required by 

the BEMS in this research. Hence, the development of a new multi-agent BEMS is 

necessary. 

From the whole system point of view, the main purpose of the agent-based energy 

management system is avoiding energy wastage; while maximally fulfilling the 

thermal comfort requirements of every occupant inside the air-conditioned 

environment. As the comfort requirement for one occupant may be different from 

another’s, the whole energy management problem is complex and difficult to solve 

using only one controller or agent. In this case, the developed BEMS should be a 

multi-agent system, which is a system containing more than one agent (Huberman 

and Clearwater, 1995). However, from the review of agent systems in the last chapter, 

there are different agent system architectures proposed in the existing research. How 

to decide on the appropriate system architecture for BEMS in this research remains a 

question. To develop the multi-agent system, the system architecture should be 

confirmed first. 
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Once the BEMS system architecture has been developed, agents inside it need to be 

designed. It has been suggested that agents in the BEMS are intelligent agents, which 

is also a ‘rational agent that realises the best possible solutions in a given situation’ 

(Dounis and Caraiscos, 2009). Research from the artificial intelligence area gives the 

basic properties or abilities an intelligent agent should have (Wooldridge and 

Jennings, 1995):  

 Autonomy: the agent functions without outside guidance. 

 Reactivity: the agent is able to respond to changes in an outside environment. 

 Pro-activeness: not only does the agent passively respond to the 

environmental changes, it actively decides on its actions.  

 Social ability: the agent is able to communicate and co-operate with other 

agents.  

Besides all these properties, Nwana (1996) pointed out that the intelligent agent 

should also have the following abilities: Learning, to be Co-operative and 

Autonomous.  

The concept of the ‘rational agent’ is also from artificial intelligence, which means 

an agent ‘that acts so as to achieve the best outcome or, when there is uncertainty, the 

best expected outcome’ (Russell and Norvig, 2010).  Based on this definition, the 

intelligent agents in the BEMS should be able to make rational decisions based on the 

given information by using the hardware and software components provided by the 

system. Already, a number of researchers have developed software and hardware 

components to realise parts or all of the properties of the intelligent agent (Davidsson 

and Boman, 1998, Sharples et al., 1999, Dounis and Caraiscos, 2008, Yang and Wang, 

2013b). But how to make the agent act rationally in the BEMS by utilising the 

developed software and hardware requires further work.  

In this chapter, the framework of a multi-agent energy management system is 

proposed. Firstly, the system architecture is designed. Two types of agent: the local 

agent and the personal agent, should be involved in the multi-agent system based on 

the system’s requirements. Secondly, the structures of the local agent and the personal 

agent are developed on the basis of the Epistemic-Deontic-Axiologic (EDA) agent 

model. These two types of agent work together to enable the energy management 
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system to meet the design purposes. In each agent component, the necessary software 

or hardware modules are identified to realise the function of the component.  

 Literature Reviews on Agent Structure and Rational 

Agent Development in BEMS 

3.2.1 A Review of Multi-Agent System Architecture 

In general, the architecture of a multi-agent system and functions of the agent inside 

the system depend on the problem the system is designed to solve and the methods 

that can be utilised to obtain a solution. Research from the MIT intelligent room 

project employed different agents to realise different targets in the built environment 

(Coen, 1997). In that system, the agents were connected to each other and worked co-

operatively (Brooks et al., 1997). For energy management control in buildings, each 

embedded room agent developed in Sharples et al. (1999) is responsible for 

controlling one room. They are connected to each other to share information. 

Functionally, all the room agents are the same, as they face the same control target. 

The agents applied in the MASBO system developed by (Liu et al., 2008) have 

different functions. In this system, personal agents serve the occupants; the local 

agent controls the environment and the central agent provides the services, such as 

configuring the whole system. In this case, the function of an agent depends on the 

problems it is facing.  It can also be found that the agents in the BEMS system were 

grouped into different levels by (Dounis and Caraiscos, 2007). In their research, 

master agents take care of general energy efficiency and comfort issues in the building 

while slave agents manage subsystems. Similar to the research from (Liu et al., 2008), 

the system developed by (Yang and Wang, 2013b) also includes personal agents, 

local agents and central agents. The architecture of the agents is arranged in a 

hierarchical way with multiple local agents connected to one central agent while a 

local agent is serving more than one personal agent. The hierarchical architecture is 

defined because the problems are grouped into different levels. Different agents work 

at different levels to solve problems within those levels. It can be concluded that the 

system architecture of the BEMS and the types of agent inside in this research 

depends on the nature of the problem it is facing and the methods the agents use to 

solve the problems. Following the guidance provided in Weiss (1999) and Dounis 

and Caraiscos (2009), in the next few sections the problems within the main research 
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problem is decomposed, first into smaller problems, then a potential problem-solving 

method is allocated to every agent. Finally, the system architecture is designed.  

3.2.2 A Review of Rational Agent Development in BEMS 

Literature suggests developing agents in the BEMS by introducing the Epistemic-

Deontic-Axiologic (EDA) agent model, which is developed from social psychology 

theory (Qiao et al., 2006, Yong et al., 2007, Liu et al., 2008). This means that the 

agent applied in the BEMS is generated by the Epistemic (E) component, the Deontic 

(D) component and the Axiologic (A) components. The general structure of the EDA 

agent model is illustrated in Fig. 3.1. Original definitions of EDA are ‘Axiologic - to 

be disposed in favour or against something in value terms; Epistemic - to adopt a 

degree of belief or disbelief; Deontic - to be disposed to act in some way’ (Stamper 

et al., 2000). Please note that it is assumed that all the software and hardware of the 

BEMS use the same data format, so the input and output information of the agent 

does not need to be interpreted. Therefore, the perceptive interpreting and output 

interpreting components are not discussed in the agent structure.   
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Figure 3.1 Structure of the EDA Agent Model (Liu et al., 2011) 

The EDA model only provides the theoretical framework for the components in an 

intelligent agent. Later research attempts to interpret the framework of components 

in the EDA model in the BEMS context (Liu et al., 2011). In summary, components 

in the EDA model-based agent in a BEMS are defined in the following terms in the 

literature:     

 The E-component represents the facts or knowledge the agent believes, 

including the regulations and occupants’ preferences.  

 The D-component contains the set of available plans and goals.  

 The A-component is an evaluating component. It evaluates the plans in the D-

component and chooses the appropriate plan based on the knowledge in the 

E-component.   

This research clarifies the logic between each component in an agent in the BEMS. 

The ability of the agent that can act rationally depends on the A-component making 

rational decisions. The same literature claims that it focuses on the development of 
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the D-component in an agent. It is still not clear how to realise all the functions 

proposed for the E, D and A components by using the software and hardware 

resources provided in the BEMS. Furthermore, the question of how the agent can 

make decisions following the rational agent definition is not fully answered.  The 

question can be answered by methods from the artificial intelligence research area 

and the control research area. Two methods can be found to realise the rationality of 

the agent. The first one is recommended in Filipe and Fred (2007), which is to make 

a decision in a deductive way, such as following the Condition-Action rules(Winston, 

1992), or, alternatively, to let the expectation of the system be represented by 

objective functions. From the control theory, the value of objective functions are 

maximised to realise the optimal decision-making (Russell and Norvig, 2010). Then, 

the rational agent is realised by maximizing the expectations. Therefore, the A-

component is realised by a decision-making module equipped with the decision-

making algorithms mentioned above. The detail of the decision-making algorithms is 

discussed in Chapter 6. 

In later sections, following the EDA model, the functions components in agents used 

in BEMS are investigated. The software and hardware needed to realise these 

components are decided. How these software and hardware systems operate together 

following the logic of the E, D and A components to decide the rational actions is 

also discussed.  

 The Architecture of the Multi-Agent System 

Literature reviews reveal that in order to decide the architecture of the multi-agent 

system, the problems the system is going to solve need to be analysed first.  

The problem decomposition method helps to determine the categories of the agents 

applied in the whole system. The main object in this research can be sub-divided into 

three sub-objects:  

1. Avoiding the energy wastage of the HVAC system.  

2. Avoiding the energy wastage of personal conditioning appliances (if such 

instruments are available). 

3. Enabling each occupant to acquire a thermally comfortable feeling in the 

controlled environment. 



 

44 

 

It is clear that the problems can be categorised into two types. The first type of 

problem is regarding the HVAC system and the solution to it will affect the whole 

built environment under investigation and the second type concerns a single occupant. 

Based on the review, the agent responsible for the operation of the HVAC system is 

called the local agent. Agents interacting with the end-users are called personal agents. 

The Introduction Chapter indicates that the methods used by the agents to affect the 

indoor environment and end-users are: 

1. Sending the optimal settings of the HVAC system to the actuator. 

2. Making personalised suggestions to the occupants, if necessary. 

Thus, the first method is utilised by the local agents. The local agent decides set points 

and then sends them to the HVAC actuator directly. The suggestions need to be 

passed to the occupants by personal agents via human/machine interfaces. On the 

basis of the definitions of types and functions of agents, their positions in the whole 

system architecture can be defined. The architecture of the multi-agent-based energy 

management system is illustrated in Fig. 3.2. In the system, the local agent and the 

personal agents cooperate with human-machine interfaces, sensor network systems 

and the actuator of the indoor HVAC system.  

In this research, the energy management system is assumed to provide services in two 

scenarios: a single occupancy office and an open-plan office. The proposed personal 

agent and the local agent are able to realise the management targets in these two 

environments. Every personal agent is responsible for one occupant. Higher-level 

agents suggested by other research, such as central agents, which are used to control 

a whole building or even multiple buildings are not considered here. The development 

of the components inside the personal agents and local agents are introduced in detail 

in section 3.4.  
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Figure 3.2 The Architecture of the Multi-Agent System 

 Development of the Local Agent and Personal Agent  

3.4.1 Abilities Needed by the Agents in the BEMS 

The literature review concluded that agents in the BEMS should be rational agents. 

The existing literature only theoretically defined the abilities or properties of an agent. 

The EDA agent model provides the theoretical framework of an EDA agent, but the 

EDA model defined components need to be developed in the context of BEMS. The 

key logic of the EDA-based agent is that it makes decisions using the decision-making 

module in the A-component-based on the action plans in the D-component and 

knowledge provided by the E-component. In this case, to define the functions of each 

component, the aim of the decisions needs to be clarified first, and then the needed 

information from the E-component can be defined. The decisions from the system 

have three aspects: deciding the settings for the HVAC system; deciding the 

suggestion for actions of the occupants, if necessary and deciding the best way to 

present the personalised suggestions from the system to the occupants. The settings 



 

46 

 

of the HVAC system are decided by the thermal sensations of the occupants and the 

ambient environment information, the energy consumption of the HVAC and 

occupants’ personal factors. This requires the system to have the following functions: 

detecting the real-time environmental conditions; gathering the personal factors and 

thermal sensations and learning the occupants’ thermal comfort preferences. 

Personalised suggestions should be made by considering the occupant’s personal 

thermal sensations and personal behaviour patterns. This requires the agents to have 

abilities to: learn the occupants’ adaptive behaviour patterns, estimate the energy 

consumption in the built environment, save the collected learnt information and then 

to make rational decisions.    

The environmental information is from the sensor network. The personal information, 

including personal factors and personal thermal sensations, is collected by human-

machine interfaces and then saved in a database. It has already been pointed out that 

these technical details of these parts of the system are not the main focus of this 

research. Action plans in the D-component includes the settings of the HVAC system, 

the adaptive behaviours available and the possible ways of making suggestions for 

the occupants. The E-components should have abilities to learn the occupants’ 

thermal preferences and their commonly-used behavioural adaptations. It also 

provides a method to evaluate the energy consumption of the HVAC system.  

In the next section, the desired outcomes of local agents and personal agents in both 

single-occupancy and open-plan offices are illustrated. Then the functions of the 

components in each agent can be defined.  

3.4.2 Functions of Local agents and Personal Agents in an Open-plan Office 

As depicted by Fig. 3.2, in an open-plan office with multiple occupants, the local 

agent decides the HVAC settings. To make such a decision, the D-component in the 

local agent needs to provide the plans regarding the different settings of the HVAC. 

The E-component in the local agent needs to provide the information regarding the 

real-time environmental conditions from the sensors, the method for estimating the 

energy consumption and the method to evaluate the thermal sensation level.  The A-

component inside the local agent makes decisions by using the information from the 

D- and E-components. 
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If a certain occupant is not satisfied with the current environment settings, his/her 

personal agent will help the occupant to re-gain his/her neutral feelings by deciding 

the best adaptive reaction. The decision is based on the occupant’s thermal sensation 

and the environmental information from the local agent. In this case, the E-component 

in the personal agent receives the environmental information from the local agent, 

then provides the information with the personal thermal sensation evaluation method 

to the A-component. The A-component makes decisions based on the information 

and method from the E-component and action plans from the D-component.   

If a personalised suggestion from the personal agent is also needed, the decision is 

made from the suggestion plans in the D-component, the decision on the occupant’s 

actions and his/her commonly-used behavioural adaptations in the E-component.   

3.4.3 Functions of Local agents and Personal Agents in a Single Occupancy 

Office 

In a single occupancy office, the number of occupant personal agents, ‘n’ in Fig. 3.2, 

is equal to one. Because there is only one occupant, the thermal sensation assessment 

method used by the local agent is the one that estimates the thermal sensation of this 

particular occupant. In this case, the local agent can decide both the set points of the 

HVAC system and any necessary behavioural adaptations. To make such decisions, 

the A-component needs the E-component to provide ambient environmental 

information, the occupant’s personal information and the methods for evaluating 

thermal comfort, energy consumption and behavioural adaptation. The E-component 

needs to collect the information about environmental conditions and the thermal 

comfort evaluation method from the personal agent. The D-component in the agent 

provides the potential plans for the HVAC settings and behavioural adaptations.     

However, the suggested actions may not be those the occupant uses most, so the 

personalised suggestions need to be decided by the personal agent. The A-component 

in the personal agent needs a method to evaluate the behavioural actions from the E-

component. The E-component is also responsible for recording the personal 

information, such as the occupants’ clothing and activity levels, to help the system 

understand their personal thermal sensation preferences as well as the personal 

patterns of behavioural adaptation. Similar to the personal agent in the open-plan 
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office, the D-component provides the suggestion plans for the A-component to make 

decisions. As shown in Fig. 3.2, personal agents interact with the occupants whom 

they are serving via human-machine interfaces.  

In order to realise the functions of the agents and the components, the agent system 

needs to employ a set of software and hardware modules. These modules and the 

relationship between them are discussed in the next section.   

3.4.4 The Local Agent and Personal Agent based on the EDA model  

As discussed above, the functions of both local and personal agents are different when 

the energy management system faces different environmental scenarios. However, 

the agent structure remains the same when facing different scenarios. Agents only 

need to replace some of the supporting software modules used in the E-, D- and A- 

components to deal with different situations.  

The local agent developed by the EDA agent model is illustrated by Fig. 3.3. The 

knowledge base (E-component) of the agent is constructed using algorithms to 

generate the methods which evaluate thermal comfort, energy consumption and 

behavioural adaptations; the real-time information from the sensor network and 

human-machine interfaces and the stored information from the local database. The 

decision-making module (A-component) chooses the action plan from the set of 

available plans (D-component). In a personal occupancy office, the plan contains the 

HVAC system settings and the reaction suggestions. The thermal sensation model 

used is the personal thermal sensation model. In an open-plan office, the plan only 

contains the settings within the HVAC system. The thermal model evaluation method 

aims to reconcile all the thermal preferences from people in the environment. The 

local agent makes decisions by considering not only the occupants’ thermal 

preferences but also their adaptive behaviours.  

 



 

49 

 

 

Figure 3.3 Structure of the Local Agent 

The personal agent developed by the EDA agent model is illustrated by Fig. 3.4. 

Similar to the local agent, the knowledge of the personal agent (E-component) is also 

acquired from the sensor network, database and the modelling algorithm. It also 

receives the decision information from the local agent. In the single occupancy offices, 

because the behavioural adaptation is already decided by the local agent, the decision-

making module (A-component) only needs to decide how the suggestions from the 

system should be provided to the occupant. In open-plan offices, the local agent is 

only responsible for making decisions about HVAC set points. In this case, if the 

thermal condition of an end-user needs to be improved, the personal agent will use 

the settings information from the local agent, the personal comfort model, 

environmental information and personal factors to evaluate the best action he/she can 

take. The decision is then sent in an appropriate personalised way to the end-user.  

The decision-making process is different from the one used in the single occupancy 

scenario. Here, the personal agents not only play an assistant role for the multi-agent-

based energy management system as information collectors, and recording/passing 

channels, but in this research, the personal agent needs to also make decisions. 
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Figure 3.4 Structure of the Personal Agent 

Please note that in an energy management system, once the HVAC settings are 

confirmed, the relevant information is sent to the actuator to operate the HVAC 

system. The operation of the actuator and the HVAC hardware is outside the scope 

of this research.  

 Summary: 

In this chapter, the architecture of a multi-agent energy-management system is 

developed.  The architecture is defined by the nature of the problem the system is 

going to solve. In the multi-agent system, the structures of the local agent and personal 

agent are also designed. The functions of these two types of agent are discussed in 

detail. The agent-building process follows the EDA agent model.  By applying the 

agent model, components of the energy management system are arranged in a regular 

way. If serving a different user or facing a different environment, the relevant agents 

only need to update the software or hardware modules inside the component without 

changing the whole structure of the agent. The developed agents can work 

autonomously without guidance from end-users. The agents not only react to the 

environmental changes, but they can also make suggestions to occupants, if needed. 

The agents have various learning abilities, about occupants thermal comfort 

preferences for example. The local agents and personal agents work with others to 
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realise the design aims of the system. So the agents in the system are intelligent agents.  

Most importantly, the EDA agent model guarantees the agents’ rationalities. The 

software and hardware modules needed to support the components in the agents are 

also discussed. The remainder of this thesis illustrates how to develop some important 

software modules. The next chapter discusses the algorithm to generate the personal 

thermal sensation model. The model is used as the objective function to evaluate the 

occupants’ personal thermal sensation levels
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Chapter 4 :The Personal Thermal Sensation Model 

4.1 Introduction 

In the introduction chapter and the literature review section, the necessity of utilising 

predictive models integrated in the energy management system to forecast the 

occupants’ feelings to guide the operations of an HVAC system has already been 

indicated. In general, the models enable the HVAC energy management system to 

understand the current thermal comfort needs of every individual to avoid 

mismatching the demand and supply of heating and/or cooling, which causes energy 

wastage. Such models are developed from the occupants’ feedback on the thermal 

conditions (Jazizadeh et al., 2014). 

It has also been demonstrated that two types of thermal sensation models are needed 

by the energy management system to confront different application scenarios. This 

chapter focuses on the development of personal thermal sensation models. They 

function in both single occupancy and open plan offices. The HVAC system in a 

single occupancy office aims to improve the thermal environment around an end-user. 

It has been suggested that applying thermal sensation models to accurately predict 

individuals’ thermal sensations demands is an effective solution to achieve optimal 

control of a personalised environmental control system (Gao and Keshav, 2013). 

Generated personal thermal sensation models directly help the optimal decision-

making algorithm in a local agent to calculate the optimised set points of the HVAC 

or personal conditioning system in a single-occupancy office. 

In an open plan office, personal thermal sensation models can be used to predict the 

real-time individual thermal feelings of an occupant to provide personalised services. 

They can also be used to generate the thermal sensation model for all the occupants 

(Yang and Wang, 2013b, Klein et al., 2012). Again, the models will provide solid 

evidence for the energy management system to decide the optimal indoor thermal 

conditions for the open plan office. How to use the personal thermal sensation models 

to generate such a model is discussed in the next chapter. 

Therefore, an effective modelling algorithm is required by the energy management 

system to generate the personal thermal sensation models. In this chapter, the 
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modelling methods of developing personal thermal sensation models are investigated.  

A novel personal thermal sensation model based on the Support Vector Machine 

(SVM) algorithm is proposed in this research. The proposed modelling method is 

used to generate the personal thermal sensation model by using the data collected in 

China and the UK, and then the performance of each developed model is tested. 

Applications of the developed models is demonstrated in Chapter 7.    

4.2 Related Work 

Thermal sensation prediction is essential to indoor thermal environment design, 

operation and assessment. Methods of prediction have been widely adopted by design 

standards and guides. For example, the widely applied PMV-PPD index has been 

adopted by the ASHREA 55 and ISO 7730 standards (ANSI/ASHRAE55-2010, 2010, 

ISO7730, 2005); the adaptive model using the running mean temperature in the 

EN15251 standard (Comité Européen de Normalisation, 2007) and the aPMV model 

integrated in the ‘Chinese evaluation standard for the indoor thermal environment in 

civil buildings’ (GB/T50785-2012, 2012). However, here is criticism that the thermal 

sensation predictions recommended by the international standards are not suitable to 

be directly applied as individual thermal comfort predictors in many conditions (Gao 

and Keshav, 2013, Zhao et al., 2014). It is argued that these models recommended by 

the standards are developed for the estimation of the average thermal sensation of a 

large number of people under certain conditions, which may not be suitable for the 

situation when significant individual differences of thermal comfort preferences exist 

(Liu et al., 2007). Recently, developing personal thermal sensation modelling has 

attracted many researchers’ interest. Table 4.1 lists the most current published papers 

on the topic and their main characteristics. 
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Table 4.1 Properties of existing thermal sensation models 

Paper Name Modelling 

methods 

Is the model 

accuracy 

testing 

presented in 

the paper? 

Do the inputs of 

the personal 

thermal sensation 

models involve 

all ; ;

and factors ?  

Are outputs of the 

model directly 

compared with the 

real collected TSVs 

with ASHRAE 7 

scales? 

 

(Liu et al., 

2007) 

Neural 

Network 

Evaluatio

n Model 

(NNEM) 

Back 

Propagation 

Neural 

Network 

Yes Yes No 

(Feldmeier 

and 

Paradiso, 

2010) 

N/A Fisher 

Discriminan

t 

No No No 

(Rana et 

al., 2013) 

N/A Support 

Vector 

Regression 

Yes No Yes 

(Gao and 

Keshav, 

2013) 

Predicted 

Personal 

Vote 

(PPV) 

Model 

Least 

Square 

Regression 

Yes Yes Yes 

(Zhao et 

al., 2014) 

Personalis

ed 

Dynamic 

Thermal 

Comfort  

(PDTC) 

Model 

Weighted 

Least 

Square 

Estimation 

Yes Yes Yes 

(Yang and 

Wang, 

2013b) 

N/A N/A No No No 
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From Table 4.1 it can be seen that by applying the Back Propagation (BP) artificial 

neural network algorithm, Liu et al. (2007) developed a personal thermal sensation 

model, namely the Neural Network Evaluation Model (NNEM). The NNEM has four 

input factors: air temperature, air humidity, air velocity and mean radiant temperature; 

and three types of output: cool, comfortable and warm, which were represented 

numerically by 0, 0.5 and 1 respectively. The idea of ANN is originally from 

simulating the way that biological systems process information, and the ANN with n 

input nodes, one hidden layer and k output is shown as a network in Fig. 4.1 (Bishop, 

2006). In the network, 𝑎𝑖 is an input factor and 𝑜𝑗 is an output prediction. The process 

of calculating the output of the ANN is as follows (Russell and Norvig, 2010):  

The value of a hidden layer node ℎ𝑗is: 

ℎ𝑗 = 𝑓1(∑ 𝑎𝑖𝜔𝑖𝑗)𝑛
𝑖=1                                                    (4.1) 

And the output 𝑜𝑗 is: 

𝑜𝑗 = 𝑓2(∑ ℎ𝑖𝑐𝑖𝑗
𝑚
𝑖=1 )                                                    (4.2) 

 

𝑓1 and   𝑓2 are the activation functions which can be defined by the ANN algorithm 

developer.  

 

Figure 4.1 ANN structure 
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The training algorithm of ANN calculates the coefficients such as  𝜔𝑖𝑗 and 𝑐𝑖𝑗 in the 

network by using ‘error backpropagation‘ technology, whose details can be found in 

Haykin (1999).  Liu et al. (2007) used two case studies to evaluate the performance 

of the BP artificial neural network modelling algorithm: in the ‘fixed clothing and 

activity’ case, the model which has been developed accurately predicted the thermal 

sensation in all four test samples from a person; in the ‘variable clothing and activity’ 

case, the accuracy of the model reached 80% when the model was trained by 20 new 

samples. Compared to the ASHRAE 7-scale sensations, this model outputs the 

thermal sensations in less detail.  

Feldmeier and Paradiso (2010) developed a model that applied the Fisher 

Discriminant method to separate different levels of thermal sensation. The algorithm 

was used to generate models to aid a personalised HVAC controller. Similar to the 

research (Liu et al., 2007), the thermal sensation information collected from the 

occupants had only three categories: cold, neutral and warm, then the Fisher 

Discriminant method calculated the decision boundary between the hot and cold 

sensations by utilising ambient temperature and humidity as factors. The detail of the 

Fisher Discriminant  method is introduced in Bishop (2006). Assuming that the Fisher 

Discriminant method is used here to linearly classify a data set which contains two 

classes of data: class one (C1) and class two (C2) and letting the factor vectors 𝒙 and 

𝑦  represent the class label of the data, the decision boundary of the generated 

classifier can be written as: 

𝑦 = 𝝎𝑻𝒙                                                             (4.3) 

The weight vector 𝝎 will be calculated by the following equation: 

𝝎 = 𝑺𝒘
−𝟏(𝑻𝟏 − 𝑻𝟐)                                          (4.4) 

where 𝑻𝟏 is a mean vector of the factor vectors from all class one data samples and 

𝑻𝟐 is a mean vector of the factor vectors from all class two data samples. Matrix  𝑺𝒘 

is a within-class covariance matrix, which is given by: 

𝑺𝒘 = ∑ (𝒙 − 𝑻𝟏)(𝒙 − 𝑻𝟏)𝑻 𝒙∈𝒄𝟏 + ∑ (𝒙 − 𝑻𝟐)(𝒙 − 𝑻𝟐)𝑻 𝒙∈𝒄𝟐                             (4.5) 

Once 𝝎 is calculated, a particular 𝒙𝒊 is submitted into function (4.3), if the outcome 

is𝑦𝑖 > 0, then this data sample belongs to class one, otherwise it is from class two. 
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Feldmeier and Paradiso (2010) found that the different levels of thermal sensations 

are separated by linear decision boundaries and the detailed model predicting 

accuracy is not involved.  

The traditional thermal balance theory and the predictive mean vote (PMV) index 

originally from Fanger’s research (Fanger, 1970) were also applied for the personal 

thermal sensation model development. Gao and Keshav (2013) developed a Predicted 

Personal Vote (PPV) model, which directly integrated the PMV index into the model 

structure. The PPV model assumed that the occupants’ actual thermal sensation vote 

could be calculated from the PMV index by adding on a ‘personal part’. The personal 

part was expressed by a multi-dimensional linear function, whose factors include air 

temperature, mean radiative temperature, air velocity, humidity level, metabolic rate 

and clothing insulation value. The structure of the model functions of PPV can be 

found in function (4.6) (Gao and Keshav, 2013). 

PPV=PMV+C1X1+C2X1+C3X1+C4X4 + C5X5 + C6X6 + C7                                                     (4.6) 

In Function (4.6), X1, X2, X3, X4, X5 and X6 represent air temperature, mean radiative 

temperature, air velocity, relative humidity metabolic rate and clothing insulation 

value respectively. Gao and Keshav (2013) also noticed that if the sample size is small, 

the PPV model in equation (4.6) will be simplified to a function of PMV. For both 

full and simplified formats of the PPV model, the least square regression method was 

used to calculate the coefficients of the model function. However, the effectiveness 

of the modelling method may need further investigation, as in the presented work the 

evaluation process is only expressed by a single case study with 12 training samples 

and eight testing samples.  

Zhao et al. (2014) introduced a Personalised Dynamic Thermal Comfort (PDTC) 

model, which is similar to the PPV model. They also applied a regression method to 

estimate the personal coefficients of the model function. The structure of the model 

functions of PTV are shown in Equation (4.7):  

PTV=E0+ E1X1+ E2X2- E3(X3 +X4)                                           (4.7) 

In Equation (4.7), E1 is the coefficient of water vapour pressure; E2 is the coefficient 

of air temperature and E3 is the coefficient of radiant sensible heat loss from skin and 
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the convective sensible heat loss from skin (Zhao et al., 2014). The clothing insulation 

and activity levels are considered as fixed values in the research. 

Yang and Wang (2013b) proposed that an occupant’s personal thermal comfort level 

can be expressed as a ‘Gaussian Function’ which can be expressed as Function (4.8): 

              CT𝑖 = 𝑒−(𝑡−𝑡𝑚𝑎𝑥𝑖)2/(2𝑑𝑖)2
                                                          (4.8) 

where 𝑡𝑚𝑎𝑥𝑖   means the ‘maximum comfort temperature’ of occupant i and 𝑑𝑖 

indicates the tolerance of discomfort of the same occupant. No detailed example 

provided in the literature explains how to calculate 𝑡𝑚𝑎𝑥𝑖 and  𝑑𝑖 from the collected 

data. Further investigations may be needed to verify why the personal thermal 

sensation follows such a distribution.   

The support vector machine (SVM) algorithm has been utilised in the thermal comfort 

research area. Megri et al. (2005) applied support vector regression (SVR) to develop 

thermal sensation models. They claims that their research shows the potential of using 

the SVM to generate the thermal index of a particular small group of people. Rana et 

al. (2013) applied a similar 𝜖 -SVM regression method to generate the personal 

thermal sensation model and verify the feasibility of using ‘humidex’ as a predictor. 

The inputs of the personal model developed in this research only include temperature 

and humidity, or ‘humidex’, which is calculated from temperature and humidity. 

Megri and Rana both applied the SVM algorithm as a regression tool in their research. 

More background information about the 𝜖-SVM regression method can be found in 

the next chapter. 

Comparing all the research mentioned in this section, a research question has been 

raised as to whether an SVM-based personal thermal comfort model has a better 

performance when it takes into account a complete set of environmental factors that 

affect thermal sensation including temperature, humidity, air velocity and mean 

radiant temperature. In this research, a modelling method aided by C-support Vector 

Classification (C-SVC) (Chang and Lin, 2011) is proposed for generating personal 

thermal sensation models. Being different to the existing thermal comfort modelling 

methods, this new study attempts to solve the personal thermal sensation modelling 

using an algorithm that particularly deals with classification problems. 

Comprehensive boundary decision-making methods are used here rather than directly 
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applying linear boundaries in all cases. The input parameters of the model include the 

well-accepted key factors of the ambient thermal environment affecting thermal 

feelings, which include air temperature, mean radiant temperature, air velocity, 

relative humidity, clothing insulation level and activity level (Fanger, 1970, Olesen, 

2000). The outputs of the generated models are expected to closely match the value 

of the personal thermal sensation vote, which should accord with the ASHRAE seven-

point thermal sensation scale. The format of the original thermal sensation data from 

the questionnaire survey has been retained. A strict evaluation rule is applied: a 

success prediction will only be declared if the prediction value is exactly the same as 

the collected true value.     

4.3 The Modelling Method and Algorithm 

4.1.1 Regarding Personal Thermal Sensation Modelling as a Classification 

Problem 

In this research, the input vectors of the thermal comfort model are the environmental 

parameters and personal factors, while the outputs are thermal sensations. The 

personal thermal sensation model functions to ‘map’ the particular thermal conditions 

with an individual’s thermal sensation. In this case, from a machine-learning 

prospective, the personal thermal sensation modelling issue can be regarded as a 

supervised learning problem (Bishop, 2006, Russell and Norvig, 2010). Moreover, in 

previous research, the occupants’ thermal feelings were collected in the form of 

thermal sensation votes (TSV) based on the ASHRAE seven-point scale thermal 

comfort scheme, i.e. cold (-3), cool (-2), slightly cool (-1), neutral (0), slightly warm 

(1), warm (2) and hot (3) (ANSI/ASHRAE55-2010, 2010). It is logical to maintain 

the model predictions format to remain consistent with the format of the collected real 

data. In this case, the model’s thermal sensation predictions should also be expressed 

using the ASHRAE scale detailed above. That is to say, the values used in a personal 

thermal sensation model are discrete. These discrete data can be regarded as a label 

for the different thermal sensation levels. Therefore, referring to the definitions from 

the machine learning field in Russell and Norvig (2010) and Han et al. (2012), the 

personal thermal sensation modelling problem can be regarded as a classification 

problem. Consequently, C-support Vector Classification (C-SVC) is chosen to 
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support the model generation programming, which is a popular tool in solving 

classification problems.  

4.1.2 The Background of the C- SVC Algorithm  

SVM is a machine-learning algorithm which was developed into different 

formulations, and has been applied in various domains and regarded as an effective 

classification tool (Xi et al., 2007) (Boser et al., 1992, Cortes and Vapnik, 1995, 

Banados and Espinosa, 2014, Novakovic and Veljovic, 2011, Zhao et al., 2008). The 

C-SVC classifier is a separator developed by the C-SVC which is able to categorise 

two types of thermal sensations  (Chang and Lin, 2011). The basic classifier 

generation is illustrated in this section. For machine-learning purposes, the collected 

data are arranged as input and output pairs. Assume the total number of data sets is 𝑁, 

the input-output pairs can be expressed as ( �̅�𝑖  , yi); 𝑖 = 1,2, … 𝑁. The input vector �̅�𝑖  

contains environment parameters and personal factors. The targeted output yi only 

contains one element which is the thermal sensation of the person in the circumstance, 

which is defined by �̅�𝑖  . Let yi = 1 represent the thermal sensation class number one 

and yi = −1 represent thermal sensation class number two. 

All sets of the input and output pairs are divided into training sets and test sets. Let 

the number of training sets be represented by 𝑀. During the training process, only 

training sets are used. The SVM utilises ‘maximum margin hyperplane’ as the 

decision boundary to separate two different classes when solving classification 

problems, and it is the optimal hyperplane that provides the maximum margin 

between the two classes (Witten et al., 2011). The ‘maximum margin hyperplane’ is 

illustrated in Fig. 4.2. Note that this figure only depicts the situation when two classes 

are linearly separable. In Fig. 4.2, nodes expressed by the same symbol (star or 

triangle) belong to the same class. 

The ‘support vectors’ are the vectors closest to the decision hyperplane derived from 

the training set and they define the optimal hyperplane which has the maximum 

margin (Witten et al., 2011). In Fig.4.2, nodes 1, 2 and 3 are selected as support 

vectors. The equation of the optimal hyperplane can be expressed as Equation (4.9) 

(Russell and Norvig, 2010): 

�̅�𝑇�̅� + 𝑏 = 0                                                             (4.9) 
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�̅� and 𝑏 are the weight vector and bias respectively, and �̅� is an input vector. The 

mathematical derivation of the C-SVC problem is briefly demonstrated in Function 

(4.10) to Function (4.16). Further details can be found in the references (Chang and 

Lin, 2011, Bishop, 2006, Cortes and Vapnik, 1995, Haykin, 1999).  

For all the training sets and the maximum-margin hyperplane, the rule represented in 

Function (4.9) must be obeyed by: 

yi(�̅�𝑇�̅�𝑖 + 𝑏) ≥ 1                                                   (4.10) 

 

  

 

 

Figure 4.2 Support vectors and hyperplane 

It has been proven that finding the maximum margin is equivalent to finding the 

minimum of the output of the Function (4.11) (Haykin, 1999): 

𝜃(�̅�) =
1

2
�̅�𝑇 ∙ �̅�                     (4.11) 

Function (4.11) satisfies the constraint: yi(�̅�𝑇�̅�𝑖 + 𝑏) ≥ 1; i=1,2,…M.  

However, in real-world applications, the training data may be noisy. Furthermore, the 

data from the two classes may not be linearly separated. So the ‘soft margin 

hyperplane’ and the ‘kernel trick’ are introduced into the C-SVC algorithm to realise 

the classifiers in these situations.  First, for the soft margin hyperplane, a parameter 

𝜉𝑖  is introduced, then the function to be minimised becomes Function (4.12) (Cortes 

and Vapnik, 1995, Haykin, 1999): 
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min
�̅�,𝑏,𝝃

1

2
ω̅T ∙ ω̅ + C ∑ ξi

M
i=1      (4.12) 

The constraint condition of (4.12) is  yi(�̅�𝑇�̅�𝑖 + 𝑏) ≥ 1 − 𝜉𝑖;  𝜉𝑖 > 0 ; i=1,2,…M, 

and C is a user-defined positive figure.  

This research employed the ‘radial-basis function’ (RBF) kernel (Bishop, 2006) for 

the problem of linearly inseparable cases. The kernel is used to map the input vectors 

from the original feature space into a higher dimensional space where the cases 

become linearly separable and the RBF can be expressed as Function (4.13):  

K(u̅i, u̅j) = e
−

1

2δ2‖u̅i−u̅j‖
2

        (4.13) 

 

The problem of finding the maximum-margin hyperplane becomes solving an 

optimisation problem (Novakovic and Veljovic, 2011), which is expressed in 

Function (4.12) subject to:  

yi(ω̅T∅̅(�̅�𝑖) + 𝑏) ≥ 1 − 𝜉𝑖;               (4.14) 

𝜉𝑖 ≥ 0; 𝑖 = 1,2 … . 𝑀                         (4.15) 

 

∅(�̅�𝑖) is from the kernel function: 

𝐾(�̅�𝑖 , �̅�𝑗) = ∅(�̅�𝑖)𝑇∅(�̅�𝑗)                                   (4.16) 

The minimisation problem of Function (4.12) can be converted into solving the dual 

problem expressed in Function (4.17) to Function (4.20)(Chang and Lin, 2011) 

(Haykin, 1999): 

min
𝒍

  
1

2
∑ ∑ 𝑙𝑖

𝑀
𝑗=1 𝑙𝑗𝑦𝑖𝑦𝑗

𝑀
𝑖=1 𝐾(�̅�𝑖, �̅�𝑗) − ∑ 𝑙𝑖

𝑀
𝑖=1                                 (4.17)                   

subject to:         

∑ 𝑙𝑖
𝑀
𝑖=1 𝑦𝑖 = 0;                        (4.18) 

0 ≤ 𝑙𝑖 ≤ 𝐶, 𝑖 = 1,2 … . 𝑀                (4.19) 
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By finding the optimum solution of Function (4.17) subject to (4.18) and (4.19), let 

𝑙𝑖𝑜  and 𝑏𝑜  be the optimised coefficients, then the decision function G(�̅�) can be 

expressed as: 

G(�̅�) = 𝑠𝑔𝑛(∑ 𝑦𝑖𝑙𝑖𝑜𝐾(u̅𝑖, �̅�)𝑀
1 + 𝑏𝑜)      (1.20) 

If an input vector �̅� is submitted into Function (1.20), which contains environmental 

parameters and personal factors, and G (�̅�) = 1 , this means that the generated 

classifier predicts the thermal sensation of the subject as being in thermal sensation 

class number one under the input circumstance.   

In this research, there are seven levels of thermal sensations that need to be classified 

but the classifier described above can only identify two classes at a time. This multi-

class classification problem is solved by the ‘one against one’ method (Knerr et al., 

1990), and then multiple classifiers are generated all together to create a complete 

thermal sensation model for a subject. In this research, the C-SVC algorithm with the 

‘one against one’ method has been realised by using the LIBSVM MATLAB library 

(Chang and Lin, 2011).  

4.4  Data Process and Model Training for Chinese Data 

In order to test the accuracy of the C-SVC-based model of the reflection and 

prediction of personal sensations, experimental data from a series of experiments 

carried out in Chongqing, China from 2008 to 2010 are used. More details of the data 

can be found in section 2.24. The data used as training data should not be used again 

as test data. Therefore, around 50% of each subject’s data were used to develop the 

model and the remaining 50% were used to verify the accuracy of the model. The real 

numbers of training samples and testing samples of a subject depend on the total 

amount of valid raw data collected from the experiment. The mean radiant 

temperature is calculated using Equation (4.21) where 𝑇𝑔 is the globe temperature 

collected on-site (Ferreira et al., 2012).  

𝑇�̅� = [(𝑇𝑔 + 273)
4

+
1.1∗108𝑉𝑎

0.6

𝜖𝐷0.4 (𝑇𝑔 − 𝑇𝑎)]0.25 − 273                                       (4.21) 
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Figure 4.3 Training process of the personal thermal sensation model 

Fig.4.3 illustrates the input data structure and the model training process. All the data 

should be arranged into input and targeted output pairs to fit the C-SVC algorithm. 

From the figure, it can be seen that the input data required for modelling include: 1) 

ambient environmental parameters such as 𝑻𝒂 , 𝑻𝒓
̅̅ ̅ , 𝑽𝒂 and 𝑹𝑯 and personal data 

such as 𝑴𝑬𝑻 and 𝑪𝒍𝒐; and 2) a subject’s TSV (thermal sensation vote). These data 

are fed into the modelling algorithm based on the C-SVC and modelled thermal 

sensations based on the inputted information are then produced. For a subject, only 

the data collected from the experiments he/she attended were used to develop his/her 

personal thermal sensation model. 

In the development of the modelling algorithm, the LIBSVM library was applied. 

According to the developer of the library, two parameters:  𝐶 𝑎𝑛𝑑 𝛾 , are used to 

control the performance of the C-SVC algorithm. Both C and 𝛾 are user-defined 

parameters and optimal pairing  𝐶  and 𝛾  values will improve the C-SVC model 

quality. The regularisation parameter 𝐶  controls the trade-off between the trained 

models’ complexity and the errors (Xi et al., 2007, Haykin, 1999) while the parameter 

𝛾 determines the parameter 𝛿 in the RBF kernel Function (4.13), which is defined by 

Function (4.22) (Chang and Lin, 2011)  

𝛾 =
1

2𝛿2                                (4.22) 

In this research, these parameters have been optimally selected by a ‘grid-search’ 

method which is recommended by the library developer (Chang and Lin, 2011). It 

was approved as a reliable method in the existing research (Xi et al., 2007). In the 
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‘grid-search’ procedure, a series of 𝐶 and 𝛾 values were first calculated separately. 

Then all the possible combinations of (𝐶, 𝛾) pairs were generated. Based on the 

performance of the modelling program, both the parameters C and 𝛾 were calculated 

by 2𝐴  where A  is from the data range (-4,-3,-2,-1,0,1,2,3,4). The program 

automatically selects one pair of (𝐶, 𝛾) each time and then applies it to train a model. 

The performance of the selected (𝐶, 𝛾) was verified by a cross-validation method, 

which is integrated in the LIBSVM library. A five-fold cross-validation method was 

programmed. During the validation process, the program split the training sets equally 

into five subsets then five rounds of the modelling process were performed for each 

pair of (𝐶, 𝛾). Once a pair was selected, the first round of modelling started. Four 

subsets of data were used to train the model and the remaining part was used to 

validate the performance. The validation result of the model generated in this round 

was then saved. During the next round of modelling for the same pair of (𝐶, 𝛾), the 

program used another subset as validation data set and repeated the training and 

validation process. It then saved the validation result again. The same process would 

be iterated five times until all the subsets had been used once as validation data sets. 

All five saved test results were averaged and the average value was used to represent 

the performance of the modelling program with the selected (𝐶, 𝛾). In the end, the 

selected model was the one developed by the combination of C and 𝛾 giving the best 

validated performance. If more than one (𝐶, 𝛾) pair reached the best performance, the 

program would select the pair that was validated last in the whole validation process. 

Fig.4.4 depicts the performance of different (𝐶, 𝛾) pairs during the model training 

process for subject B. It can be found that multiple (𝐶, 𝛾 ) pairs have the same 

performance with validation results reaching 100% accuracy, so after the training 

process, the chosen (𝐶, 𝛾) pair was (16, 16), which is illustrated as the point Z in 

Fig.4.4.  
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Figure 4.4 Performance of different (𝐶, 𝛾) pairs 

 

Because of the property of the LIBSVM library, the input data of the C-SVC 

algorithm are re-scaled into the range [0,1]. The re-scale method is defined by the 

following equation (Kai-Biao et al., 2014): 

𝑧 = (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛) ∗
𝑦−𝑦𝑚𝑖𝑛

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
+ 𝑦𝑚𝑖𝑛                  (4.23) 

In Equation (4.23), 𝑧 is the re-scaled data while y is the original data. The 𝑧𝑚𝑎𝑥 and 

𝑧𝑚𝑖𝑛 are the target upper and lower limit of the re-scaled data set separately. The 

elements having maximum and minimum values in the original set are represented by 

𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛.    

4.5 Verifications of the Model for Chinese Subjects  

The developed individual thermal sensation model was verified using the test samples. 

In the test samples, the attributes 𝑻𝒂 , 𝑻𝒓
̅̅ ̅ , 𝑽𝒂  , 𝑹𝑯, 𝑴𝑬𝑻 and 𝑪𝒍𝒐 were used as the 

inputs of the personal thermal sensation models. The models’ predictions were 

compared with the actual TSV data collected from the experiment. If, under the same 
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environmental and personal conditions, a model’s prediction was equal to the actual 

TSV data, then the prediction would be regarded as a correct prediction. The 

performance of a model is expressed by the model's prediction accuracy rate, which 

is calculated by Equation (4.24) (Chang and Lin, 2011). 

 

 Prediction Accuracy Rate =    The Number of Correct Predictions / Total Number of Test Samples           (4.24)

        

Fig. 4.5 depicts the results of two series of experiments, which test the performance 

of two individual models for two subjects. The X axis presents the number of the 

experiment while The Y axis shows the TSV values. The crosses in the figure are the 

TSV values predicted by C-SVC-based personal thermal sensation models, and the 

circles represent the actual TSV data collected from the subjects. In the figure, the 

cross covering the circle means the model makes a correct prediction.   
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Figure 4.5 Models predicted TSV vs. subjects’ actual TSV for Chinese Subjects 
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Figure 4.6  Model’s prediction accuracy rates for Chinese Subjects 

Fig. 4.6 shows the accuracy rate of the predicted models for 20 subjects. From the 

figure, it can be seen that the average prediction accuracy is 89.82%. 17 out of 20 

subjects’ individual thermal sensation models have an accuracy rate higher than 80%.   

4.6 Comparison Studies  

In order to further verify the performance of the personal thermal sensation models 

based on the C-SVC algorithm, a comparative study is presented. Using the same sets 

of data, the individuals’ thermal sensations were calculated by using the PMV and C-

SVC methods.  

According to the literature (Rana et al., 2013), if the value of the difference between 

PMV and the occupant’s TSV is less than or equal to 0.5, then the prediction using 

PMV is regarded as accurate. The accuracy rate of PMV prediction was calculated 

according to Equation (4.24). Fig. 4.7 depicts the mean values of the accuracy rate of 

the PMV index and the C-SVC-generated personal thermal sensation models. It can 
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be seen that the average accuracy rate of the personal thermal sensation models 

(89.82%) is significantly higher than that obtained from the PMV model (49.71%).  

 

 

 

Figure 4.7 Mean accuracy of PMV and C-SVC based models 

4.7 The Data Process and Model Training for UK data  

The experiment and data collection in the air-conditioning (AC) environment in the 

UK took place from Oct 2014 to August 2015. The detail of the data collections is 

illustrated in Section 2.2.5. The air temperature and relative humidity values detected 

by the data loggers are shown in Fig 4.8, Fig 4.9 and Fig 4.10. The ‘gap’ within the 

data in Fig 4.8 and Fig 4.9 was caused by the data logger running out of battery during 

periods when the researcher was outside the university such as Christmas holidays. 

During these periods the questionnaire surveys were not conducted, so the experiment 

was unaffected by the batteries drying out. Some statistical outcomes of the 

temperature and humidity values are displayed in Table 4.2. It shows that the air 

temperature range in air-conditioning zones varied from 13.57℃ to 27.16℃. 
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Figure 4.8 Air Temperature and Relative Humidity in ACzone 1 
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Figure 4.9 Air Temperature and Relative Humidity in ACzone 2 
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Figure 4.10 Air Temperature and Relative Humidity in ACzone 3 

 

Table 4.2 the general air temperature and relative humidity condition of the air-

conditioned space 

 ACzone 1 ACzone 2 ACzone 3 

Maximum 

Temperature 

25.7℃ 25.6℃ 

 

27.16℃ 

Minimum 

Temperature  

14.4℃ 

 

15.8℃ 

 

13.57℃ 

Average 

Temperature 

20.74℃ 

 

21.23℃ 

 

21.08℃ 

Maximum 

RH 

69.4% 

 

69.1% 

 

70.9% 

Minimum 

RH 

25.5% 

 

25.6% 

 

15.6% 

Average RH 43.47% 42.85% 

 

39.40% 

 

 

Table 4.3 Measured Environmental Parameters and Personal Factors in air-

conditioned areas 

AC Areas MET CLO Air 

Temperature 

Relative 

Humidity 

Air 

Velocity 

Globe 

Temperature 
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Maximum 

Value 

1.2 1.27 25.8℃ 65.8% 0.23 25.7℃ 

Minimum 

Value 

1 0.47 19.2℃ 17.6% 0.01 20.4℃ 

Average 

Value 

1.03 0.81 22.49℃ 38.2% 0.08 22.87℃ 

 

In total, twelve subjects agreed to attend the experiment. Six of them finished it. A 

total number of 247 effective samples were collected from these six subjects. The 

distribution of thermal sensation votes are depicted in Fig. 4.11. The picture shows 

that, in general, the thermal sensation votes are not balanced in a way that subjects 

tend to feel ‘slightly cool’ or even colder more frequently than they feel ‘slightly 

warm’ or even hotter. By a deep inspection of the data, it can also be found that only 

on a few occasions did the subjects tend to feel ‘warm’, ‘slightly warm’ and ‘cool’. 

In all the samples, only 3.24% of the votes’ values are negative two; 1.62% of votes’ 

values are positive two; and 7.69% of the votes’ values are one. It is interesting to see 

that no one reported that they felt ‘cold’ or ‘hot’ during the entire experimental period. 

On more than half of the occasions (63.56%), the subjects selected ‘neutral’ to 

describe their thermal sensation feelings at that time. The properties of the data cause 

some difficulties when the using the C-SVC algorithm to develop the personal 

thermal sensation models for these subjects. First, the models’ predictions will not 

contain the negative three and positive three as the training samples do not contain 

these two classes of feelings.  The sample sizes for the ‘warm’, ‘slightly warm’ and 

‘cool’ classes for some occupants are too small for the algorithm to develop a model 

which is able to successfully separate these types of feelings. In this case, a simplified 

version of the thermal sensation models is developed. Based on the structure of the 

selected data, the simplified version aims to categorise the thermal sensation into two 

types: the first type of sensation is feeling ‘slightly cold’ or colder; the second type is 

feeling ‘neutral’ or warmer. It is meaningful to develop the simplified model since 

the occupants in the environment rarely feel ‘warm’ or even ‘slightly warm’. The 

outcomes will help the energy management system to make decisions on whether the 

occupants will feel cold or not. The application of this type of model is demonstrated 

in Chapter 7.    
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In order to develop this simplified version of models, the training and testing targets 

in the samples need to be re-arranged. The thermal feelings ‘neutral’, ‘slightly warm’ 

and ‘warm’ are regrouped into one class which is labelled ‘zero’. In contrast, the 

thermal feelings ‘slightly cool’ and ‘cool’ are labelled as ‘negative one’.  

 

 

Figure 4.11 Distribution of the votes from the AC environment in the UK 

Another issue of the data collected in the UK is that for each subject, the average 

sample size (41.17 per subject) is around 18 samples smaller than the average sample 

size of data collected in China (59.95 per subject). Fig. 2.8 shows the total number of 

effective samples collected from each subject. From the experiences learnt from the 

modelling process in China and previous research (Rana et al., 2013), around 30 

training samples are needed to successfully generate the personal thermal sensation 

models. For some subjects, if 30 samples are used as the training sample, less than 

25% of the data are left as testing data. It is difficult to decide the training group and 

testing sample group because of the limit of the total sample size. In this case, the 

leave-one-out cross-validation (LOOCV) method is used to verify the modelling 

ability of the C-SVC algorithm for the UK data.  

The LOOCV method is actually a type of k-fold cross-validation method, which is 

used to estimate the performance of the modelling method (Cawley, 2006). The 

general idea of this method is to leave one sample as the test sample while using the 

rest of the samples as training samples in every interaction of validation, then the 

process will be repeated n times until all of the samples become the test sample once 

and the performance of the modelling method is estimated by the prediction outcomes 
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from all interactions (Russell and Norvig, 2010) (Han et al., 2012). This method is 

applied when the overall number of samples is limited as it maximally utilises the 

available data samples (Hopgood, 2000, Bishop, 2006). When generating the models 

for the decision-making algorithm, all of the effective samples are used as the training 

samples to guarantee that the performances of the generated models are equivalent to 

the validation outcomes.       

Fig 4.12 depicts the performance of the models for subjects AC1, AC2, AC3, AC4, 

and AC5. The statistics of the accuracy rates for these five subjects are recorded in 

Fig.4.13. It should be noted that based on testing outcomes, the modelling algorithm 

gains a better performance when choosing a linear kernel instead of the RBF kernel 

when generating the model for user AC2, so the linear kernel instead of the RBF 

kernel is selected for the subjects. In Fig. 4.13, the average accuracy of the C-SVC 

developed models is 85.71%.  In contrast, the average prediction accuracy of the PMV 

model for these five subjects is 68.9%.  

The situation for subject AC6 is special. During the whole experiment period, the 

reported thermal sensations from the subject are always ‘neutral’. It indicates that this 

subject has a wide range of thermal comfort zones. The accuracy of the developed 

model for the subject is 100% because the training and testing samples all belong to 

one class. It seems that as long as the thermal conditions are within the range of the 

conditions collected from the field study, the subject’s thermal feeling will be neutral. 

This special case is not involved in the performance statistics depicted in Fig 4.13.   
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Figure 4.12 Models predicted TSV vs. subjects’ actual TSV for UK subjects 

 

 

 

 

Figure 4.13  Model’s prediction accuracy rates (UK Data) 

For subjects AC1 and AC3, the experiment results indicate that models outputting 

more detailed results can be developed. The developed models target the occupants’ 

real sensation votes without any simplification. Similar to the data process procedure 
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for the Chinese data, the target output follows the ASHRAE seven-point thermal 

sensation scale. The performance of the developed models is shown in Fig 4.14 and 

Fig 4.15 separately. The validation outcomes indicate that the prediction accuracies 

of the developed models are higher than 70%.    

 

Figure 4.14 Model Predicted Thermal Sensation Level vs. subjects’ actual TSV for 

subjects AC1 (ASHRAE Seven Point-scale) 
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Figure 4.15 Model predicted Thermal Sensation Level vs. subjects’ actual TSV for 

subjects AC3 (ASHRAE Seven Point-scale) 

 

4.8 Summary  

This chapter presents a C-SVC method of modelling personal thermal sensations. The 

modelling method has been verified using the experimental data collected in an 

HVAC-supplied indoor environment with real thermal sensation votes from twenty 

subjects in China and six subjects in the UK. For the Chinese subjects, the developed 

model aimed to directly reflect the thermal sensation level without any simplification 

assumption. The average rate of prediction accuracy of these models is above 89%. 

For UK subjects, because of the data structure, simplified output targets were set; 

however, the model prediction accuracy exceeded 85%. The results of this study 

indicate that the modelling problem can be regarded as a classification problem in the 

context of machine learning. The developed models can realistically reflect the 

occupant’s thermal sensation and expectation. It is argued that people’s thermal 

sensation could vary from season to season; the C-SVC algorithm can be re-
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developed on a seasonal basis in order to fully reflect the dynamic adaptation of 

humans.   

Ideally, the method will be used in an energy management system to control HVAC 

system operations in the built environment. The system embeds the C-SVC algorithm 

to perform personal thermal sensation modelling using the stored data sets and to 

predict thermal sensations. Once the model has been trained and verified, the thermal 

sensation information will be predicted. With the help of the modelling algorithm and 

the developed model, the decision-making scheme of the energy management system 

will be able to calculate the set points for the HVAC system controller while 

providing personalised services to each individual occupant by understanding his/her 

thermal demands. Being guided by detailed thermal information, the energy 

management system may be able to save energy while improving the thermal 

conditions for occupants under certain circumstances. The applications of the C-SVC 

method based models are illustrated in Chapter 7. 
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Chapter 5 : Developing a Thermal Comfort Model for a 

Group of People in an Air-Conditioned Office 

 

  Introduction  

In an open-plan office, the space is usually occupied by a number of people, whose 

thermal sensation could vary from one person to another. The question is how the 

HVAC system can satisfy the majority of the occupants. To solve this issue, there is a 

need to understand the occupants’ thermal expectations and provide the most 

acceptable operational guidance to the system. 

It is commonly accepted that individuals have different thermal sensations and thus 

expectations. The temperature setting in an open-plan office could be challenging as, 

if it is not properly determined, it could lead to individuals’ thermal dissatisfaction 

and energy wastage. Therefore, it is necessary that the BEMS in this research employs 

the thermal sensation models based on a group of people to predict the thermal 

comfort level of a particular group in real-time. A realistic estimation of the actual 

thermal sensations of the group of people is essential to the energy management of 

buildings because, in the context of improving thermal comfort while achieving 

energy efficiency, an incorrect estimation could lead to thermal discomfort and/or 

energy wastage. For example, 1℃ environmental temperature difference may lead to 

10% energy usage variations for HVAC systems (Humphreys and Hancock, 2007). 

However, the modelling method to generate the model for the thermal sensation of a 

group of people is still under investigation.  

The aim of this chapter is to develop a thermal comfort model for a group of people 

that the HVAC system is serving and to provide information to the energy 

management system for an optimal control. In this chapter, the modelling methods, 

which generate the models to help the HVAC system to make decisions on its set 

points are reviewed. Then, the support vector regression (SVR) method is selected to 

generate the model for the thermal sensation of a group of people. The performances 

of models generated by the SVR method are verified by the data collected from the 

experimental studies. 
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 Literature Review  

The ASHRAE 55 and ISO7730 standards adopt the PMV/PPD (predict mean 

vote/predicted percentage dissatisfied) index to define the thermal comfort conditions 

(ANSI/ASHRAE55-2010, 2010, ISO7730, 2005). The PMV index is based on a 

physical heat balance model and its predictions are derived from four environmental 

parameters: air temperature, mean radiant temperature, relative humidity and air 

velocity and two personal parameters: clothing and activity level (Fanger, 1970) 

(Olesen, 2000). The PMV/PPD index has been widely applied to estimate occupants’ 

thermal sensations in order to provide control guidelines for HVAC systems (Calvino 

et al., 2004, Hwang and Shu, 2011, Hornod et al., 2012, Cigler et al., 2012). However, 

a number of researchers revealed that the PMV/PPD index may not accurately reflect 

the occupants’ actual thermal sensations in certain air-conditioned environments (de 

Dear and Fountain, 1995, Karyono, 1995, Humphreys and Nicol, 2002, Indraganti et 

al., 2013 ). This may be caused by the PMV index being unable to consider occupants’ 

adaptions to the environment (Nicol and Humphreys, 2002).    

Besides the physical model, a type of method to generate a thermal sensation model 

for a group of people by first of all understanding the thermal sensation from each 

individual, then estimating the overall thermal comfort level of the whole group of 

people can be calculated from the individuals’ predictions. The simplest model of this 

type assumes all the people in the same environment have the same temperature 

preferences (Davidsson and Boman, 2005). To consider the individual differences, 

the individuals’ thermal comfort levels can be predicted by individual thermal 

comfort models. The research from (Yang and Wang, 2013b) assumes that an 

occupant’s thermal comfort levels can be expressed as a ‘Gaussian Function’ in which 

the mean value is the ‘maximum comfort temperature’. The overall comfort level of 

a group of people is derived from a function that calculates the mean value of the 

weighted sum of all the individual comfort levels. It can be found that this method 

uses zone temperature as the only input factor of the personal comfort models. The 

validation of the model’s predictions is not fully discussed in this paper.  

People’s thermal sensation models can also be directly developed from the 

environmental data, personal data and thermal sensation votes collected from the field 

study without generating individuals’ thermal sensation models first.  A regression-

based modelling method is used to match the input factors, such as environmental 
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factors and personal factors, with the thermal sensations, which are the model’s 

outputs. One research study concluded that regression modelling methods are based 

on the black box theory (Kariminia et al., 2016), which is specified in Yao et al. (2009). 

The regression-algorithm-based modelling scheme tends to propose the structure of 

the thermal comfort model equations with undefined coefficients first, then it uses the 

regression method to decide the coefficients’ values (de Dear and Brager, 1998) 

(McCartney and Nicol, 2002, Yao et al., 2009, Singh et al., 2011, Yang et al., 2015, 

Harimi et al., 2015). The models generated by these researchers are all used to 

estimate the thermal sensation of a large number of people, not for a particular group 

of people. 

Modelling methods based on machine learning are also applied for the development 

of a thermal comfort model for a group of people. The Extreme Learning Machine 

(ELM) is used to develop models to predict the thermal sensations of outdoor subjects 

(Kariminia et al., 2016). For indoor naturally-ventilated environments, an Artificial 

Neural Network (ANN) is suggested to develop people’s thermal sensation models 

(Li et al., 2012). It is interesting to see that ANN and support vector regression (SVR) 

have also been applied to developed models to approximate PMV values in a built 

environment (Megri et al., 2005, Ferreira et al., 2012, Castilla et al., 2013). In these 

studies, PMV values are regarded as people’s true thermal sensation levels. It has 

been discussed that PMV sometimes may not accurately assess people’s thermal 

sensations, but the above research proves that by using a group of people’s thermal 

sensation vote values to replace the PMV values, the machine learning algorithm is 

technically able to generate the model for the thermal sensation of this group of people. 

Compared to the traditional regression method, machine-learning-based algorithms 

do not need to formulate the model function in advance.  

From the review, it can be found that there are two types of method potentially able 

to generate a model for the thermal sensation of a group of people. The first method 

is applying the personal thermal sensation models. Then, the mean thermal sensation 

votes are calculated from the outcomes of the predictions from the personal thermal 

sensation models. The second method applies the modelling method based on 

machine learning technologies.  

In this chapter, both the methods are used to develop a model for the thermal sensation 

of a group of people. In the first method, the personal thermal sensation models have 

been introduced in Chapter 4. In the second method, the SVR algorithm is applied to 
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generate the model. The models are generated and tested using the data collected from 

the experimental studies. 

 Research Method 

5.3.1 Group-of-People-based Thermal Sensation Model Developed using 

Personal Thermal Sensation Models 

This section introduces the method which generates the model for the thermal 

sensation of a group of people from personal thermal sensation models. For brevity, 

this modelling method is called the personal-model-based method. Fig. 5.1 is the 

diagram which illustrates the modelling process for this method. Assuming that n 

subjects in the built environment are labelled from AC1 to ACn. The developed 

personal thermal sensation model for subject ACi is represented by ‘Personal Thermal 

Sensation Model ACi’, i= 1,2,…n. The input parameters include four environmental 

parameters and two personal factors.  

 

Figure 5.1 The Prediction Process of the Model Developed by Method One 

It is assumed that all occupants’ thermal sensations are equally important. Let PACi 

represent the output of the personal thermal sensation model ACi. The predicted 

actual mean vote (AMV) can be expressed as: 

                                                     𝐴𝑀𝑉 =
1

𝑛
∑ 𝑃𝐴𝐶𝑖n

i=1                 (5.1) 
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5.3.2 The Group-of-People-based Thermal Sensation Model Based on the 

SVR Algorithm 

5.3.2.1 SVR Algorithm 

The second method directly derives the thermal sensation model based on the SVR 

algorithm from the real thermal sensation votes of a group of people along with 

personal factors and environmental data collected from the field study.  SVR is a 

modelling method from machine learning. Differing from the C-SVC method 

introduced in Chapter 4, it is a regression algorithm based on the support vector 

machine, which has been used for developing regression models by a number of 

researchers (Li et al., 2009, Edwards et al., 2012, Jain et al., 2014).  

The introduction of the basic principle of SVR can be found in Vapnik (1999) and 

Haykin (1999), which is included in this section from formula 5.2 to formula 5.16. 

Assuming the total number of data sets is 𝑁, the input-output pairs can be expressed 

as ( �̅�𝑖 , yi); 𝑖 = 1,2, … 𝑁. Let 𝑀 be the total number of training samples. The input 

vector �̅�𝑖    contains environmental parameters and personal factors. The targeted 

output yi only contains one element, which is the thermal sensation value under the 

circumstance, which is defined by �̅�𝑖  .  Let zi  represent the output value of the 

developed regression model when the input vector is �̅�𝑖. By considering the kernel 

function defined in equation (4.16), the relationship between the output and the input 

pair can be expressed as: 

𝑧𝑖 = �̅�𝑇∅(�̅�𝑖) + 𝑏                              (5.2) 

The 𝜖-insensitive loss function 𝐿𝑓𝜖 can be expressed as (Vapnik, 1999): 

𝐿𝑓𝜖(𝑦, 𝑧) = {
            |𝑦 − 𝑧| − 𝜖,   𝑤ℎ𝑒𝑛 |𝑦 − 𝑧| ≥ 𝜖

0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5.3) 

The relationship between 𝑦 − 𝑧 and 𝐿𝑓𝜖 is depicted in Fig. 5.2. Then, the problem the 

regression algorithm needs to solve is minimising the empirical risk ER: 

                                                  𝐸𝑅 = (∑ 𝐿𝑓𝜖(yi, 𝑧𝑖))/𝑀M
i=1                    (5.4) 
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Figure 5.2 𝜖-insensitive loss function (Haykin, 1999) 

The 𝜖 -insensitive loss function can be reformed by introducing positive slack 

variables which are defined as in Xi et al. (2007): 

𝐿𝑓𝜖(𝑦, 𝑧) = 𝜉𝑖 + ξ𝑖
′;                     (5.5) 

{

𝜉𝑖 = zi − yi > 0; ξ𝑖
′ = 0; 𝑤ℎ𝑒𝑛 zi − yi > 𝜖

ξ𝑖
′ = yi − zi > 0; ξ𝑖

′ = 0; 𝑤ℎ𝑒𝑛 yi − zi > 𝜖

𝜉𝑖 = ξ𝑖
′ = 0                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

           (5.6) 

Then the minimising problem can be converted into:  

min
�̅�,𝑏,𝝃,𝝃′

1

2
ω̅T ∙ ω̅ + C ∑ ξ𝑖

M
i=1 + C ∑ ξ𝑖

′M
i=1                    (5.7)  

Subject to is  �̅�𝑇𝜑(�̅�𝑖) + 𝑏 − yi ≤ 𝜖 + 𝜉𝑖              (5.8)    

                           yi − �̅�𝑇𝜑(�̅�𝑖) − 𝑏 ≥ 𝜖 + ξ𝑖
′           (5.9) 

                             𝜉𝑖 ≥ 0;  𝑖 = 1,2, … , 𝑀                       (5.10) 

                            ξ𝑖
′ ≥ 0; 𝑖 = 1,2, … , 𝑀        (5.11) 

C is a positive regularization parameter. By defining the Lagrangian function, the dual 

problem of the regression problem is (Megri et al., 2005, Rana et al., 2013):  

max
𝒍,𝒍′

−
1

2
∑ ∑ (𝑙𝑖 − 𝑙𝑖

′)𝑀
𝑗=1 (𝑙𝑗 − 𝑙𝑗

′)𝑀
𝑖=1 𝐾(�̅�𝑖, �̅�𝑗) − 𝜖 ∑ (𝑙𝑖 + 𝑙𝑖

′) + ∑ yi(𝑙𝑖 − 𝑙𝑖
′)𝑀

𝑖=1
𝑀
𝑖=1      

(5.12)    

Subject to: ∑ (𝑙𝑖 − 𝑙𝑖
′) = 0𝑀

𝑖=1                (5.13)                                                                                                                                                                                            

0 ≤ 𝑙𝑖 ≤ 𝐶, 𝑖 = 1,2, … 𝑀                     (5.14) 
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0 ≤ 𝑙𝑖
′ ≤ 𝐶, 𝑖 = 1,2, … 𝑀                    (5.15)                 

In Formula 5.13, 𝑙𝑖 and  𝑙𝑗
′ are Lagrangian multipliers. Finally, the output regression 

function can be expressed as: 

H(�̅�) = ∑ (−𝑙𝑖𝑜 + 𝑙𝑖𝑜
′ )𝐾(u̅𝑖 , �̅�)𝑀

𝑖=1 + 𝑏𝑜      (5.16)   

In this research, the 𝜖-support vector regression (𝜖-SVR) tool, which is provided by 

the LibSVM library for Matlab software (Chang and Lin, 2011), is used to realise the 

SVR algorithm described above.     

5.3.2.2 The Modelling Process based on SVR 

The modelling process based on method two is illustrated in Fig. 5.3. The inputs of 

the modelling algorithm are environmental factors, personal factors and occupants’ 

thermal sensation votes collected from the field study. The developed MATLAB 

program will automatically collect the input data from the database and input them 

into the modelling algorithm, then save the developed thermal sensation models.  

 

Figure 5.3 The Modelling Process Based on the SVR algorithm 

 

5.3.2.3 SVR-developed Model’s Prediction Process  

The model prediction process of the model developed from modelling method two is 

depicted in Fig. 5.4. Unlike the model developed by method one, the SVR algorithm 

developed a model to directly output the predicted AMV values.  
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Figure 5.4 The Prediction Process of the Model Developed by the SVR algorithm 

 

 Verification of the Developed Models 

5.4.1 Data Used for Training and Testing 

In this section, the performance of both modelling methods is discussed. There are 

two sets of data available for model development: data collected from the 20 subjects 

in the controlled environment in Chongqing, China, and the data collected from the 

six subjects in the air-conditioned office at the University of Reading, UK.  The data 

from China and the UK are named as data set one and data set two for short. The data 

structure and data collection process have already been introduced in Chapter 2.   

 

5.4.2 Thermal Comfort Models Developed from Data Set One 

Firstly, the personal-model-based method is used to develop a thermal comfort model 

from data set one. Section 5.3.1 illustrates that key elements of the method are the 

developed personal thermal comfort models and the personal thermal sensation 

models for 20 Chinese subjects, as discussed in section 4.5. These models have 

already been developed and verified in Chapter 4. The predictions of the developed 

models are processed by the procedure shown in Fig. 5.1. The mean value of all the 

predictions from the personal models is regarded as the outcome of the thermal 

sensation model.   
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In Chapter 4, it is explained that data set one is divided into two parts. The first part 

is the training data, which is used to generate the personal thermal sensation models. 

The second part is used for test purposes. In this chapter, the same testing data can be 

used again to evaluate the performance of the developed group-of-people-based 

thermal sensation models. As the predicted target is the actual mean vote (AMV), the 

bin method is applied here to calculate the value of the actual mean thermal sensation 

vote. The bin method is used for similar purposes in previous research (de Dear and 

Brager, 1998, Yang et al., 2015). The method here is realised by the average of the 

predicted values and the corresponding real sensation values in a range of 0.5 of an 

ASHRAE scale unit. The fit between the average predicted thermal sensation values 

and the AMVs is illustrated in Fig. 5.5.  

LibSVM developers have applied the mean squared error (MSE) to evaluate the 

performance of the developed regression models, which is defined in Chang and Lin 

(2011): 

                                               MSE= 
1

𝑀
∑ (𝑧𝑖 − 𝑎𝑖)

2𝑀
𝑖=1                   (5.17) 

In Equation 5.17, 𝑧𝑖  is the model predicted value and 𝑎𝑖  is the Thermal Sensation 

Votes collected from the experiment. A smaller value of the MSE means a higher 

accuracy rate for the model. 

In this research, the mean square error (MSE) is used to indicate the accuracy of 

models. The MSE of the predictions from the group-of-people-based thermal 

sensation models developed by the personal-model-based algorithm is 0.1149 and it 

is smaller than that obtained by the PMV model which is 0.4126.  This means the 

performance of the generated model is better than the performance of PMV.  
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Figure 5.5 The Fit between AMV and Model-predicted Values (Personal-Model-Based Method, Data 

Set One. Test Data) 

   

Figure 5.6  Model-predicted Values and AMV against PMV (Personal-Model-Based Method, Data 

Set One, Test Data) 

The developed model is further verified following a process similar to the one 

proposed in Schumann et al. (2010). The absolute differences between the binned 

predicted values and the AMV is calculated. It is suggested that the difference 

between the Model-predicted Values and the occupants’ actual mean thermal 

sensation votes should be smaller or equal to 0.25 (Humphreys and Nicol, 2002). Fig. 
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5.6 shows the relationship between the predictions and the actual values. The absolute 

differences between the predictions and the actual mean values are illustrated in Table 

5.1. All of the differences are smaller than 0.25. 

Table 5.1 The Absolute Error of the Predictions (Personal-Model-Based Method, 

Data Set One) 

AMV Point One Two three four Five six 

Absolute Difference 0 0.0062 0.0094 0.0303 0.0323 0.1765 

 

The SVR method is also applied to develop the group people-based thermal sensation 

model. The model training process is illustrated in Section 5.3.2. The model is 

generated by the training data set. The linear kernel, polynomial kernel, radial basis 

function (RBF) kernel and the sigmoid kernel can be chosen to realise Formula 5.2. 

The developed models’ predictions are tested by the test data set. The targeted AMV 

values are also calculated by using the bin method described above. In order to 

compare with the target AMV, the model-predicted results are also binned using the 

same bin method. Fig. 5.7, Fig. 5.9, Fig. 5.11 and Fig. 5.13 show the fit between the 

predictions of SVR-based models with a linear kernel, polynomial kernel, radial basis 

function (RBF) kernel and sigmoid kernel predictions and the AMV values. Fig. 5.8, 

Fig. 5.10, Fig. 5.12 and Fig. 5.14 depict the relationship between the binned predating 

values and the AMV against the PMV. These pictures illustrate that models developed 

from different kernels give different performances.  
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Figure 5.7 The Fit between AMV and Model-Predicted Values (SVR Method with Linear Kernel, 

Data Set One Test Data) 

 

Figure 5.8 AMV and Model-predicted Values aginst PMV (SVR Method with Linear Kernel, Data 

Set One Test Data) 
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Figure 5.9 The Fit between AMV and Model-Predicted Values (SVR Method with Polynomial 

Kernel, Data Set One Test Data) 

 

 

Figure 5.10 AMV and Model-Predicted Values aginst PMV (SVR Method with Polynomial Kernel, 

Data Set One Test Data) 
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Figure 5.11 The Fit between AMV and Model-predicted Values (Method Two with RBF Kernel, 

Data Set One Test Data) 
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Figure 5.12 AMV and Model-predicted Values aginst PMV (Method Two with RBF Kernel, Data 

Set One Test Data) 

 

Figure 5.13 The Fit between AMV and Model-predicted Values (Method Two with Sigmoid Kernel, 

Data Set One Test Data) 
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Figure 5.14 AMV and Model-predicted Values aginst PMV (Method Two with Sigmoid Kernel, 

Data Set One Test Data) 

 

Table 5.2 illustrates MSE values of predictions from the SVR method with four types 

of kernels. Compared with the performance of the PMV index, which has an MSE of 

0.4210, the performances of SVR with a linear kernel and a sigmoid kernel are even 

worse than the performance of PMV. In contrast, the performances of the polynomial 

kernel and RBF kernel are better than that of PMV. It can be found that the RBF 

kernel gives the best testing results among all the kernels. In this case, SVR with RBF 

kernel is selected as the modelling method for data set one when applying method 

two. Table 5.3 illustrates the absolute error of the predictions by using the method. It 

also can be concluded that it is necessary to perform kernel selection before the SVR-

based model is developed.  

Table 5.2 MSE Values of SVR Models with Different Kernels (Data Set One) 

Kernel Name Linear  polynomial RBF sigmoid 

MSE Values 0.4449  0.2851 0.2831 0.4538 
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Table 5.3 The Absolute Error of the Predictions (SVR with RBF Kernel, Data Set One) 

AMV Point One two three four five six 

Absolute Error 0.0336 0.0912 0.0076 0.0038 0.0128 0.0232 

5.4.3 Thermal Comfort Models using Data Set Two 

The testing results from the last section prove that both the personal-model-based 

method and the SVR method are capable of developing thermal sensation models for 

a group of people in the same environment. In this section, only the SVR algorithm 

is used to develop the group-of-people-based thermal sensation model from data set 

two. The main reason is because of the limit of the training samples, the personal 

thermal sensation models developed from data set two, are simplified models. For 

some of the occupants, the personal model only predicts if they are feeling cold or 

not. In this case, being integrated with the personal thermal sensation models, the 

developed group-of-people-based thermal sensation model cannot replicate the 

group’s thermal feelings in warm conditions. As a result, performances presented here 

are only the ones from the models developed by the SVR algorithm by using data set 

two.     

As discussed in the last section, besides the other parameters, the kernel function 

affects the accuracy of the models developed by the SVR algorithm. So, for data set 

two, firstly the performances of the different kernel functions are compared. Similar 

to the process carried out for data set one, half of the data in data set two are used as 

the training sample and the remainder is used as testing samples. The SVR-based 

models are generated with different kernels by using the training data set, then the 

models are tested by the test data set. The predicted outcomes and the collected 

thermal sensation vote data from test samples are processed by the same bin method 

as the one used in section 5.4.2. The performances of all four kernel functions are 

depicted in Fig. 5.15, Fig. 5.16, Fig. 5.17, Fig. 5.18, Fig. 5.19, Fig. 5.20, Fig. 5.21 

and Fig. 5.22. 
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Figure 5.15 The Fit between AMV and Model-predicted Values (SVR Method with Linear Kernel, 

Data Set Two Test Data) 

 

Figure 5.16 AMV and Model-predicted Values aginst PMV (SVR Method with Linear Kernel, Data 

Set Two Test Data) 
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Figure 5.17 The Fit between AMV and Model-predicted Values (SVR Method with Polynomial 

Kernel, Data Set Two Test Data) 

 

 

Figure 5.18 AMV and Model-predicted Values aginst PMV (SVR Method with Polynomial Kernel, 

Data Set Two Test Data) 
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Figure 5.19 The Fit between AMV and Model-predicted Values (SVR Method with RBF Kernel, 

Data Set Two Test Data) 

 

Figure 5.20 AMV and Model-predicted Values aginst PMV (SVR Method with RBF Kernel, Data 

Set Two Test Data) 
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Figure 5.21 The Fit between AMV and Model-predicted Values (SVR method with Sigmoid Kernel, 

Data Set Two Test Data) 

 

 

Figure 5.22 AMV and Model-predicted Values aginst PMV (SVR Method with Sigmoid Kernel, 

Data Set Two Test Data) 
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The MSE of the predicted values from the SVR-developed model based on different 

kernel selections is illustrated in Table 5.4. It can be found that, for data set two, the 

linear kernel gives the best performance. The performance of the RBF kernel is 

located in second place.  

Table 5.4 MSE Values of SVR Models with Different Kernels (training data set from Data Set Two) 

Kernel Name Linear Polynomial RBF Sigmoid 

MSE 0.2827 0.3509 0.2880 0.3104 

 

As stated in Chapter 4, because of a smaller sample size, all of the data are considered 

for using as training samples to guarantee the performance of the developed model. 

The training data from data set two only contains half of the data. The performances 

of the models generated by the training data may not fully reflect the performance of 

the model generated by all the data. Therefore, the LOOCV method is used here to 

verify the performance of the model developed using the entire data set. Because the 

test result already indicates that the Linear kernel and RBF give better performances, 

only the model developed by the Linear and RBF kernel are validated. The 

performances of the developed models are illustrated in Fig. 5.23, Fig. 5.24, Fig. 5.25 

and Fig. 5.26.  
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Figure 5.23 The Fit between AMV and Model-predicted Values (SVR Method with Linear Kernel, 

LOOCV, Data Set Two) 

 

Figure 5.24 AMV and Model-predicted Values aginst PMV (SVR Method with Linear Kernel, 

LOOCV, Data Set Two) 
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Figure 5.25 The Fit between AMV and Model-predicted Values (SVR Method with RBF Kernel, 

LOOCV, Data Set Two) 

 

Figure 5.26 AMV and Model-predicted Values aginst PMV (SVR Method with RBF Kernel, 

LOOCV, Data Set Two) 
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The MSE values of models developed by the linear kernel and the RBF kernel are 

0.3165 and 0.3492 respectively.  The performances of these two kernels indicate that 

the linear kernel has the best performance. The absolute error of the model developed 

by the linear kernel is shown in Table 5.5.  In this case, the SVR algorithm with the 

linear kernel function is chosen to generate the group-of-people-based thermal 

sensation model for the group of people in an air-conditioned environment in UK. 

When generating the model, all of the data collected from the air-conditioned 

environment in the UK are used. 

Table 5.5 The Absolute Error of the Predictions (SVR with Linear Kernel, Data Set Two) 

AMV Point one two three four five 

Absolute Error 0.1160 0.1072 0.0370 0.0059 0.0407 

 

5.4.4 The Thermal Comfort Zone Derived from Data Set Two 

By applying the group of people’s thermal sensation model developed in Section 5.4.3, 

the thermal comfort zone of this group of people is calculated and displayed in Fig. 

5.27.  The assumptions of the environmental conditions and the personal factors are 

shown in Table 5.6.  

 

Table 5.6 The Comfort Zone Conditions 

Air Velocity MET CLO 

0.06 1 1 

 

In Fig. 5.27, the green area is the comfort zone recommended by the ASHRAE 

standard (ANSI/ASHRAE55-2010, 2010). The comfort zone is within the range that 

the PMV is smaller than, or equal to, 0.5 while being bigger than, or equal to, -0.5. A 

similar results can be obtained by using the on-line tool developed by the Centre for 

the Built Environment, University of California Berkeley (Tyler et al., 2013). The red 

area is the thermal comfort zone predicted by the group of peoples’ thermal comfort 

model developed in this research. The boundary on the left-hand side is drawn by the 

environmental conditions that make the average thermal sensation equal to -0.5. The 

right hand boundary is drawn by the temperature and levels that make the mean vote 
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equal to 0.5. The comfort area is drawn within the range of relative humidity between 

60% and 20%, because most of the data collected from the field study are within the 

area. The Fig.5.27 shows that this group of people will accept an operative 

temperature which is lower than the one calculated by the PMV method. 

 

Figure 5.27 The Comfort Zone developed by the PMV model and the SVR 

Developed Model 

 Summary 

In this chapter, the personal-model-based method and the SVR method are used to 

generate the group-of-people-based thermal sensation model. Both the data collected 

in air-conditioned environments in China and the UK are used to generate and test the 

generated model. The test results show the models developed by both methods from 

the data fit the requirement. The results also show that the generated model has a 

better performance than the PMV index. Then, the SVR method is also used to 

generate the group-of-people-based thermal sensation model from the data collected 

in the UK. This generated model is integrated into the BEMS in Chapter 7.
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Chapter 6 : Decision-making Algorithms Based on the 

Lexicographic Method, the ϵ-constraint Method, the 

Grid Search Method and Condition-Action Rules 

 Introduction 

The decision-making algorithm is the key element of the A-component in the EDA 

agent model. It is responsible for the selection of the best action plan stored in the D-

component for the agent in a certain situation, which is defined by the knowledge 

from the E-component during the decision-making process. 

The main goal for the energy management system discussed here is to achieve energy 

efficiency as well as occupant thermal comfort. The potential action plans of an end-

user in the D-component could be compromised by either or both types of following 

action: The first type of action is changing the set points of the HVAC system; The 

second type of action involves providing suggestions to occupants on adaptive 

behaviours besides adjusting the temperature set point in order to satisfy their thermal 

comfort. The decisions are made based on the occupants’ thermal comfort preferences, 

the energy consumption of the HVAC system and the properties of the adaptive 

behaviours themselves, such as the difficulties in performing certain adaptive 

behaviours. This information is provided by the E-component. Once an action plan is 

selected, the system may also need to choose a personalised way to present 

behavioural suggestions to the occupants since the actions suggested may not be the 

most usual behaviours that they perform.  

This chapter firstly reviews the existing decision-making algorithms applied in 

building management systems and identifies their deficiencies. Based on the critical 

analysis of existing decision-making algorithms, novel decision-making algorithms 

for both local and personal agents in the BEMS in open-plan office environments and 

single-occupancy offices are proposed and developed. The chapter reveals that the 

choice of action plans for the HVAC system and the occupants is a multi-criteria 

decision-making problem. The Lexicographic Method, the ϵ-constraint Method and 

the Grid Search Method are used to form the solution methods. When choosing ways 

of making suggestions, the Condition-Action Rules are used to support the decision-
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making process.  

 Literature Review   

In this research, the targeted goal is to satisfy the occupant’s thermal comfort whilst 

achieving energy efficiency by optimised energy management and occupant adaptive 

actions. Therefore, there are three criteria the decision-making algorithm needs to 

consider, namely 1) thermal sensation; 2) energy consumption and 3) adaptive actions. 

This decision-making problem is a multi-criteria decision-making problem (Yao and 

Zheng, 2010, Hamalainen and Mantysaari, 2002). The optimised decision is based on 

the outcome of the applied optimisation algorithm. The process of multi-criteria 

decision-making can be called multi-criteria optimisation or multi-objective 

optimisation (Seo and Sakawa, 1988). Because the criteria are represented by 

objective functions, for consistency, this research use the term multi-objective 

optimisation throughout.  

 

It can be found that three types of multi-objective optimisation method are applied in 

the search related to buildings. The first type of commonly-used method to solve 

multi-objective optimisation problems is to aggregate the different objective 

functions into one objective function, then these problems can be solved by the 

methods which are used to solve single-objective problems (Hopgood, 2000). When 

applying the method in the building energy-management research area, the method is 

sometimes faces objectives of reducing the energy consumption whilst maximising 

the occupants’ thermal comfort satisfaction, which forms a bi-objective problem. 

Different ways are used to aggregate these two objectives together.  It is suggested 

that occupants’ discomfort level should be measured by a ‘discomfort cost’ function, 

whose cost is then added to the energy cost function to create a new function (Mozer, 

1998). In this case, the original bi-objective problem becomes a single-objective 

problem. The solution that gives the minimum value in the total cost function is 

equivalent to the solution to the original bi-objective problem.  Other than directly 

adding objective functions together, the weighted sum method multiplies a weighting 

with each objective function and then adds them together to form a single-objective 

function (Marler and Arora, 2004). It is suggested that the discomfort and energy costs 

should each be weighted prior to being added together (Mo, 2002).  
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May-Ostendorp et al. (2011) generated a single objective function by adding a penalty 

term, which includes the thermal discomfort effects, to the energy consumption 

formula. The authors pointed out that the weight coefficient of the penalty term 

equivalent is 0.05 while the coefficient of energy consumption in their research was 

one. The Particle Swarm Optimization (PSO) is applied to solve the generated single-

objective problem. The weighted sum method is also applied to solve the problem 

with more than two objectives. For instance, the method is used to develop a general 

discomfort function which represents three comfort aspects:  thermal comfort, visual 

comfort and air quality comfort (Wang et al., 2011b). The literature above reveals 

some drawbacks to aggregating objective functions. It is difficult to generalise the 

definition of the ‘discomfort cost’, as different people in different situations may have 

different ‘discomfort cost’ functions. Furthermore, how to decide the weightings of 

the different components in the function formulated using the weighted sum method 

remains a problem. Different weightings lead to different decision outcomes.  

Shaikh et al. (2014) pointed out that another method other than the weighted sum 

method could be used to solve the multi-objective optimisation problem. Instead of 

looking for ways of forming a single-objective function then finding the single 

solution directly, the method aims to find all the ‘trade-offs’ between the objectives 

first. This means the method attempts to search for the Pareto optimality set, which 

are ‘non-dominated solutions’. The Pareto optimality defines ‘a state of affairs in 

which resources are distributed such that it is not possible to improve a single 

individual without also causing at least one other individual to become worse off than 

before the change’ (Boukhadra et al., 2015). It can be found that the Nondominated 

Sorting Genetic Algorithm II (NSGAII) and the multi-objective particle swarm 

optimization (MOPSO) method are applied to find the Pareto optimal solutions, when 

the decision-making algorithm tries to reconcile the conflicting objectives of energy 

saving and fulfilling comfort requirements (Yang and Wang, 2012b, Yu et al., 2015, 

Yang and Wang, 2013b). This method can also be used to solve the problems with 

more than two objective functions. Klein et al. (2012) attempted to search for the 

trade-offs between the thermal comfort objective, the energy saving objectives and 

the scheduling convenience objective. However, it has already been pointed out that 

a multi-objective optimisation problem is not fully solved when the Pareto-optimality 

sets are calculated, as the most preferred solution still needs to be selected from the 

Pareto optimal solutions by using additional information (Doumpos and Grigoroudis, 
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2013, Burke and Kendall, 2005). How to make the final decision to choose one 

preferred solution from the Pareto optimal solutions is still under discussion. 

Therefore, additional efforts may be needed to make the final decision once the 

methods, such as NSGAII, provide outcomes.   

Zhao et al. (2014) used the ‘constrained optimisation formulation’ method to calculate 

the optimal set point in an air-conditioned environment when considering the thermal 

comfort and energy consumption aspects. This is the third type of method in the 

literature. In this research, the main objective function is the energy consumption 

represented by the heating/cooling load whilst the acceptable thermal comfort range 

serves as a constraint. In general, this method converts one objective into a constraint 

to the other objective and then solves the constrained single-objective problem to 

obtain the solution to the original problem. It can be noticed that the local optima 

problem may be faced when solving the transferred problem. The ‘constrained 

optimisation formulation’ method is equivalent to the so-called ϵ-constraint method 

described in the literature (Marler and Arora, 2004, Mavrotas, 2009, Aghaei et al., 

2011). For consistency, the method is named the ϵ-constraint method throughout the 

rest of this thesis. The solutions from the ϵ-constraint method can be regarded as the 

final solutions for the decision-making without further processing, so no further 

efforts are needed. It can be found that the method is also used to settle a multi-

objective decision-making problem with three objectives, which involves thermal 

comfort objectives, air-quality comfort objectives and energy-saving objectives in 

multiple zones (Hurtado et al., 2013). But the application of the method needs further 

discussion, as can be seen in the paper, when facing a multi-objective problem having 

more than two objectives, the weighted sum method is involved to reduce the total 

number of objectives prior to the ϵ-constraint method selecting the function solution. 

Again, the weightings are manually defined. Moreover, when converting objective 

functions into constraints, the numerical boundaries of the constraints also need to be 

manually defined first, then algorithms can be applied to solve the constraint 

optimisation problem. It may be difficult for decision makers to pre-define boundaries 

for some of the objectives.    

In order to overcome drawbacks in the existing multi-objective optimisation methods, 

the Lexicographic method is introduced into decision-making algorithm co-operating 

with the ϵ-constraint method to solve the multi-objective optimisation problem. The 

Lexicographic method does not need to manually define the boundary of the 
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constraints. It is also not necessary to involve the weight coefficient in the calculation 

procedure. The optimisation outcomes can be regarded as final decisions without 

further processing. Therefore, the Lexicographic method is applied when the number 

of objectives needing to be considered in a problem is more than two. The ϵ-constraint 

method is applied when the number of objectives is two and the objectives can be 

transformed into a constraint. The grid search method is applied to solve the 

transferred single-objective problems, as this method is suitable to solve such 

problems and can effectively avoid the local optima problem. The details of these 

methods are illustrated in the next section. 

 

 Development of Decision-making Algorithms 

6.3.1 A Mathematical Description of the Multi-objective Optimisation 

Problem 

The multi-objective optimisation problem can be generally described by function (6.1) 

(Marler and Arora, 2004, Seo and Sakawa, 1988, Hamalainen and Mantysaari, 2002):  

minimize 
𝒙∈𝑆

𝑭(𝒙) = (𝑓1(𝒙), 𝑓1(𝒙), … 𝑓𝑘(𝒙))𝑇                                                         (6.1) 

Subject to: 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1,2, … , m                                                                                    

                     ℎ𝑖(𝒙) = 0, 𝑖 = 1,2, … , n                                                                                      

where 𝒙 is a vector of decision variables.  

 𝑆 is the feasible set of decision variables (also called the feasible decision space). 

𝑓1(𝒙), 𝑓2(𝒙), … 𝑓𝑘(𝒙)  are k objective functions, where k≥2. 𝑔𝑗(𝒙)  and ℎ𝑖(𝒙) 

represent equality and inequality constraints. The symbols ‘m’ and ‘n’ denote the 

numbers of these constraints respectively. 

In general, the objective functions of the energy consumption, thermal comfort and 

behavioural adaptations are expressed as 𝑓𝑒 , 𝑓𝑐  𝑎𝑛𝑑 𝑓𝑏  respectively. Every built 

environment has its own 𝑓𝑒 , 𝑓𝑐 𝑎𝑛𝑑 𝑓𝑏 functions. 

6.3.2 Multi-objective Optimisation Methods      

6.3.2.1 Lexicographic method   

The lexicographic method arranges the objective functions into a sequence and solves 

them one at a time (Stanimirovic, 2012). The word ‘lexicographic’ refers to the way 
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in which words are sequenced in a dictionary (Yoon and Hwang, 1995). The method 

solves the decision-making problem in a sequential manner. In each sequence or 

iteration, the lexicographic method can be described as solving a single objective 

optimisation problem given by formula (6.2) (Marler and Arora, 2004).  

 

minimize 𝑓𝑖(𝒙)
𝒙∈𝑆

                                                                                                      (6.2) 

Subject to 𝑓𝑗(𝒙) ≤  𝑓𝑗(𝒙𝒋
∗) , 𝑗 = 1,2, … , 𝑖 − 1, 𝑖 > 1, 

                   𝑖 = 1,2, … , 𝑘. 

In the upper function, 𝑓𝑗(𝒙𝒋
∗) is the optimal value of the jth objective function 𝑓𝑗 . The 

optimal value of the jth objective function 𝑓𝑗  becomes a constraint of the next 

objective function  𝑓𝑖 . As illustrated in Function (6.1), 𝑘  is the total number of 

objective functions. In every step, if there is only one set of solutions, the solution is 

the final solution.  

6.3.2.2 ϵ-constraint method 

The basic idea of the ϵ-constraint method is leaving one of the objective functions 

and converting the rest of the objectives into constraints (Hamalainen and Mantysaari, 

2002). The boundaries of the constraints are defined by the user, then the method can 

be expressed as function (6.3) (Burke and Kendall, 2005): 

minimize 
𝒙∈𝑆

 𝑓𝑎(𝒙)                                                                                                          (6.3) 

Subject to  𝑓𝑏(𝒙) ≤ 𝜖𝑏   b=1,2,…,k and k≠ 𝑎 

                     𝑔𝑗(𝒙) ≥ 0      j=1,2,…m 

                     ℎ𝑖(𝒙) = 0     i=1,2,…,n 

In function (7.3), it can be found that object function 𝑓𝑏(𝒙) is used as the constraint 

and 𝑓𝑎 as the optimisation object.  

6.3.2.3 The Grid Search Method  

According to the multi-objective problem solutions proposed in sections 6.3.2.1 and 

6.3.2.2, the solutions converted the original problem into one, or a series of, single-

objective optimisation problems. In this research, the grid search method is applied 

to solve the single-objective problems.  

In general, search algorithms can be regarded as problem-solving technologies (Weiss, 
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1999). The grid search method is applied to solve the problem here because of the 

property of the objective functions and their decision values.  The grid search method 

is a type of exhaustive search and the optimisation process is as follows (Zabinsky, 

2003):  

1. First, the feasible decision space is equally discretised. 

2. Then, the grid points are formed over the space. 

3. Finally, the value of the objective function at the points is calculated and the 

optimal solution found.   

In this research, the settings of the HVAC system as well as occupants’ other 

behavioural adaptations form the decision vectors. From a practical point of view, it 

is reasonable to regard the real-life temperature settings of the HVAC system as 

discrete variables. Other adaptive reactions, such as putting on/taking off clothing, 

can also be represented by discrete variables. Then, a discrete, two-dimensional, 

feasible decision space can be created by the decision-making problem itself.  

Therefore, this problem can be solved by the grid search method. One dimension is 

set temperatures of the HVAC system within a certain range as defined by the facility 

manager. The other dimension represents occupants’ activities other than changing 

the settings of the HVAC system. At each grid point, the values of the objective 

function can be calculated. All the points generate a search space. Then, an exhaustive 

grid search is performed to find the optimal solutions for the objectives. 

One of the drawbacks of the exhaustive search method is that if the search space is 

too big, then a complete search is not possible (Burke and Kendall, 2005). However, 

in this research, the possible number of set points and people’s actions are limited. So 

the grid search task can be accomplished by the PC as described in Chapter 2.   

 

 Multi-objective Decision-making Aided by the 

Lexicographic and Grid Search Methods 

Based on the literature, the Lexicographic method has not yet been used to solve 

optimisation problems in the BEMS research. How to use the lexicographic method 

added to the grid search method to solve the optimisation problem in BEMS remains 

a question. A few researchers have suggested that the ϵ-constraint method can be 

applied to solve the multi-objective decision-making problem by converting the 
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original problem into a single-objective decision-making problem. But no research 

solves the converted single-objective optimisation problem by using the grid search 

method. Whether using the lexicographic method to solve the original problem as a 

sequence of single-objective problems, or applying the ϵ-constraint method to transfer 

the original problem depends on the requirements of the particular optimisation tasks. 

Generally speaking, when the number of objectives is larger than two or some 

objectives are difficult to transfer into constraints, the lexicographic method is 

preferred. In this section, the decision-making process supported by the lexicographic 

method with the grid search method is discussed.  

At the beginning of the optimal decision-making process, all the objective functions 

in function (6.1) are generated. The values of these objective functions are calculated 

by the relevant models or algorithms. If the lexicographic method is chosen, all of the 

functions are arranged in a sequence. Each single-objective optimisation problem is 

solved by a grid search in a single step. Then the optimisation result becomes the 

constraint of the next step until all the single decision-making problems are solved. 

During the process, if in a step, the optimisation problem only has one solution, then 

this solution is regarded as the optimal solution and the iteration stops. This process 

is illustrated in Fig. 6.1.  
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Figure 6.1 The Decision-making Process aided by the Lexicographic and Grid 

Search Methods 

 

It can be seen from Fig. 6.1 that in each step, the optimisation outcomes are converted 

into the constraint of the next objective function. As it is aided by the grid search 

method, the transformation process is straightforward. Fig. 6.2 is an example diagram, 

which depicts the transformation process. In the figure, 𝒙1 and 𝒙2 represent the two 

decision variables in a decision vector. Together, these variables format a two-

dimensional feasible decision space. The black dots represent all the possible decision 

variable combinations. The solution must be represented by one of the dots, which 

are scanned by the grid search method. Solutions for objective function one are 

labelled by the rectangular squares. The algorithm converts these solutions into 

constraints by limiting the feasible space to the area labelled by both black dots and 

rectangular squares for objective two. This means that when the grid search method 
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searches for the solutions for objective function two, the search area is the smaller 

area labelled by both icons. There is only one point that fits the requirement of 

objective two, which is labelled by the red triangle. The values of  𝑥1 and 𝑥2 which 

are represented by that point represent the final outcome of the multi-objective 

optimisation process.   

 

 

Figure 6.2 Example Diagram of Changes of Search Area when Applying the 

Lexicographic Method with Grid Search 

 

 Optimisation with the ϵ-constraint and Grid Search 

Methods 

If the ϵ-constraint method is selected as the solution method, the grid search method 

will search for the solution of the transferred single-objective problem subject to the 

constraints. The process is depicted in Fig. 6.3. The process of making all other 

objectives into constraints is explained in Fig. 6.4. In the figure, it is assumed that the 

decision space is a one dimensional space defined by the decision variable 𝒙. All the 

potential solutions are represented by the black dots. There are two objectives that 

need to be optimised. The objective two is converted into constraints and all the 
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potential solutions within the range of constraints are represented by squares. In this 

case, the grid search performed to optimise the objective one only needs to search the 

dots labelled with squares. The final solution is represented by the red triangle.         

The MATLAB software is used in this research to realise the lexicographic, ϵ-

constraint and grid search methods in all the decision-making algorithms.  

 

Figure 6.3 Decision-making Process with the ϵ-constraint Method 

 

 

 

Figure 6.4 Converting the Objective Function into Constraints when Applying the 

ϵ-constraint Method with the Grid Search Method 
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 The Combination of the Lexicographic and the ϵ-

constraint Methods 

Based on the definition of the lexicographic method, it can be seen that when 

converting an objective function into a constraint, the constraint should be defined by 

the optimal solutions of the objective function. This means that only those feature 

vectors that give the maximum or minimum values of the objective function should 

be used to define the feasible feature range for the next objective function. But for the 

ϵ-constraint method, it is not necessary to find the features giving the maximum or 

minimum values of an objective function to form the constraints of the next objective 

function. It only requires the selected features that give the values in a certain 

manually-defined range. The definitions of these methods reveal that the constraint 

converting condition of the ϵ-constraint method is not as strict as that of the 

lexicographic method. In a real-world application, it is not necessary to find optimal 

solutions for all objective functions. For example, when the PMV is used as the 

environment assessment model, sometimes it may be unrealistic to require the 

environment conditions to give an optimal PMV value which is zero. The required 

conditions may be between -0.5 and +0.5 instead. In this case, it is necessary to 

integrate the ϵ-constraint method into the lexicographic method to ‘loosen’ the 

requirement for constraint-converting in the lexicographic method. The new method 

containing both methods inside is illustrated in Fig. 6.5.  From this figure, it can be 

seen that when converting objective function one into the constraints of objective 

function two, the algorithm applies the rule of the ϵ-constraint method. In the 

remainder of the process, the lexicographic method is used. 
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Figure 6.5 the Lexicographic Method with the ϵ-constraint Method 

 A Decision-making Algorithm with Condition-Action 

Rules 

The decision-making algorithms discussed above are able to provide final decisions 

including the action plans from BEMS. However, when facing different end-users, 

ways of giving the action plan information to the users could differ because their 

individual differences. For example, the system may be aware that the action plan 

made does not correspond with user’s usual behaviour. In this case, the information 

provided to the user is different from that given to users who commonly behave using 

the suggested actions. The generation of personalised information can be realised 

using Condition-Action Rules. Here, a set of Condition-Action Rules is developed to 

work with the optimisation method to realise the personal suggestion function. Rules 
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are made according to objectives and occupants’ personal characteristics such as their 

commonly-used actions/habits.  Let DP represents the action plan decided by the 

system, CP represents the most common actions performed by the end-user, SPn 

represents the nth way of personal suggestion (n=1,2,3), and the SPf is the final 

suggestion shown to the end user via the human-machine interface. The pseudo code 

of the Condition-Action Rules is as follows:    

If an action is needed: 

   If  DP=CP, 

       DP= SPf, 

   End if 

   Elseif the energy consumption caused by DP is less than CP  

       SP1=SPf 

   End if 

   Elseif the thermal comfort level provided by DP is higher than CP 

       SP2=SPf 

End if 

Elseif the DP is easier for the user to perform than CP 

   SP3=SPf 

End if 

End if 

 

 

In the above pseudo code, the suggestion SP1 could show the energy consumption 

difference between the DP and CP then let the user decide. SP2 could remind the 

occupant that if CP is selected, he/she may still feel uncomfortable. SP3 could tell the 

occupant that only by performing DP will he/she obtain a feeling of thermal comfort 

and CP may not be necessary. By using the Condition-Action Rules above, a 

reasonable suggestion based on the system decision is presented to occupants by 

considering their individual differences.  

 

 Summary       

In this chapter, decision-making algorithms based on the lexicographic method, the 
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ϵ-constraint method, the grid search method and the condition-action rules are 

developed to decide the settings of the HVAC system, the behavioural adaptations for 

the occupants and the way of presenting the suggestions. Compared to existing 

algorithms, the newly-developed algorithms presented in this chapter do not need 

manually assigned weight coefficients for the objective functions during the decision-

making process. The algorithms are able to deal with the situation when the number 

of objective functions is greater than two. It is also capable of dealing with the 

situation when it is difficult to decide the acceptable range for the value of an 

objective function when converting it into a constraint. By integrating the condition-

action rules, personalised suggestions given to a particular occupant can be realised. 

How the multi-agent BEMS applies these algorithms and the performance of the 

BEMS are illustrated in the next chapter.
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Chapter 7 : Multi-agent BEMS Operation Process and 

Energy Management Performances 

 Introduction  

The multi-agent BEMS system structure with the local agent and personal agents 

based on the EDA agent model has been introduced in Chapter 3. The modelling 

algorithms for the thermal comfort models in the E-component and the decision-

making algorithms in the A-component have already been discussed in Chapters 4 

and 5. The developed models can be used as the objective functions representing the 

occupants’ thermal preferences. They are needed by the decision-making algorithms 

in the A-components in both the personal and local agents. To fully realise agents in 

the BEMS system, methods need to be developed to generate the objective functions 

representing energy consumption and adaptive behaviours.    

In this chapter, the method of developing energy consumption models and the method 

to build the behavioural adaptation evaluation algorithm in the E-component are 

developed. The developed model and algorithm are the objective functions 

representing energy consumption and adaptive behaviours. They are integrated into 

the decision-making algorithm in the A-component when making decisions. The 

action plans in the D-component are also discussed.   

With all developed components, novel decision-making processes in newly-

developed personal agents and local agents can be established. The decisions aim to 

save energy as well as to guarantee the occupants’ thermal comfort by considering the 

effects of their behavioural adaptations. Occupants’ individual differences and 

personal preferences are considered in the decision-making process. 

In the end, the decision-making processes are examined and the energy-saving 

abilities of the multi-agent BEMS are tested.  

 Objective Functions for the Decision-making 

Algorithm  

7.2.1 Objective Function Development for Thermal Comfort  

The optimal decision-making needs an objective function to represent the occupants’ 
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thermal comfort level. In this research, the objective functions concerning thermal 

comfort are represented by the thermal comfort model.  Both personal and group 

thermal sensation models have been developed in Chapters 4 and 5 and applied for 

different types of office.   

The objective functions of energy consumption as well as behavioural adaptations are 

represented by the heating and cooling loads equations and behaviour evaluation 

methods. These models and methods will be discussed in the following sections.  

7.2.2 The Heating and Cooling Load Models of the HVAC System 

The previous research has already revealed that the domestic energy consumption is 

highly related to a building’s heating and cooling loads (Wan et al., 2011). Both 

heating load and cooling load have been used to predict the energy demands of the 

HVAC system (Yao and Steemers, 2005) (Ben-Nakhi and Mahmoud, 2004, Zhao et 

al., 2014).  In this research, beside the thermal comfort and adaptive behaviour aspects, 

the decision-making algorithm attempts find the set temperature of the HVAC system 

cost for minimum energy consumption. But the algorithm does not necessarily know 

the exact value of the energy consumption. It only needs to understand which action 

plan consumes the least amount of energy. The set-points of the HVAC together with 

outdoor climate conditions determine the required heating or cooling loads. Requiring 

higher heating or cooling loads means higher energy consumption. Therefore, without 

loss of generality, predictions of both the heating load and cooling load models are 

used as objective functions to represent the relevant energy consumption of the HVAC 

system in the built environment. The information on cooling and heating loads is 

enough for the decision-making algorithm to make rational decisions.  

7.2.2.1 Cooling Load Model 

The cooling load can be calculated by a load estimation form provided by the Air-

Conditioning and Refrigeration Institute (ARI), and the calculation method is also 

called the ARI method (Brumbaugh, 1983). (Ansari et al., 2005) converted the unit in 

the form into the international system of units and the output cooling load is measured 

in Watts (W). As introduced in this literature, all of the loads caused by transmission, 

infiltration and ventilation are calculated by the indoor/outdoor dry bulb temperature 

difference multiplying factors. Based on the literature, the total cooling load of the 
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air- conditioned built environment can be calculated by the following process (Ansari 

et al., 2005):  

Let the length, width and height of the room be represented by the symbols 𝐿, 𝑊𝑟 

and 𝐻 . The symbols 𝑊𝑤  and 𝐻𝑤  denote the width and height of the window 

respectively. The size of the wall exposed to the outside environment is 𝑊𝑟 ∗ 𝐻. The 

size of the window on the wall is 𝑊𝑤 ∗ 𝐻𝑤.  Let 𝐷𝑇 present the indoor and outdoor 

air temperature difference, then: 

𝐷𝑇 = (𝑡𝑜 − 𝑡𝑖)                                               (7.1) 

where  𝑡𝑜 is the outdoor temperature and 𝑡𝑖 is the indoor temperature.  The symbols 

and the values of the factors used to calculate the sensible cooling loads are listed in 

Table 7.1. The factor selection is based on the physical properties of the built 

environment as specified in section 7.4.   

Table 7.1 The Factors Used to Calculate the Cooling Load (sensible heat only) 

Factor Name Factor Symbol Factor Value Symbol of the 

Relevant 

Cooling Load 

Direct Solar 

Radiation 

Fds 158 𝐿𝑑𝑠 

Window 

Transmission 

Fwt 0.46241+3.025756*DT 𝐿𝑤𝑠 

Walls Fwa 8.3932+1.21465*DT 𝐿𝑤𝑎 

Ceiling Fce 2.82+1.144611*DT 𝐿𝑐𝑒 

 

Cooling load values calculated using the factors listed in Table 7.1 are expressed as 

equations (7.2) to (7.7): 

𝐿𝑑𝑠 = Fds *( 𝑊𝑤 ∗ 𝐻𝑤)*0.85                            (7.2) 

𝐿𝑤𝑠 = Fwt ∗ (𝑊𝑤 ∗ 𝐻𝑤)                                   (7.3) 

𝐿𝑤𝑎 = Fwa ∗ (𝑊𝑟 ∗ 𝐻 − 𝑊𝑤 ∗ 𝐻𝑤)                (7.4) 

𝐿𝑐𝑒 = Fce ∗ ( 𝐿 ∗ 𝑊𝑟)                                        (7.5) 

The total cooling load of the sensible heat 𝐿𝑠 of the room is: 

𝐿𝑠 = 𝐿𝑑𝑠 + 𝐿𝑤𝑠 + 𝐿𝑤𝑎 + 𝐿𝑐𝑒                       (7.6) 

The latent heat allowance 𝐿𝑙𝑠 is given by:  

𝐿𝑙𝑠 = 𝐿𝑠 ∗ 0.3                                                               (7.7) 
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The total heat for the four factors is: 

𝐿𝑎𝑠 = 𝐿𝑠 + 𝐿𝑙𝑠                                                          (7.8) 

Please note that the table in Ansari et al. (2005) did not give the factor for people, 

lights and equipment. The factor values for these three items in Table 7.2 are from 

((McQuiston et al., 2005) (Butcher and Craig, ASHRAE, 2001) (ASHRAE, 2013). 

 

Table 7.2 The Factors Used to Calculate the Cooling Load Caused by People, 

Lights and Equipment 

Factor Name Factor Symbol Factor value Symbol of the 

Relevant Cooling 

Load 

People Fp 115w/ person  𝐿𝑝 

Light Fl 10.5w/m2   𝐿𝑙 

Equipment Ff 10.8w/m2  Lf 

 

Let 𝑛𝑝 represent the number of people in the room, then the heating is shown in: 

𝐿𝑝 = Fp ∗ np                         (7.9) 

𝐿𝑙 = Fl ∗ ( 𝐿 ∗ 𝑊𝑟)              (7.10) 

𝐿𝑓 = Ff ∗ ( 𝐿 ∗ 𝑊𝑟)              (7.11) 

The total heating load is calculated by:  

𝐿 = 𝐿𝑎𝑠 + 𝐿𝑝 + 𝐿𝑙 +  𝐿𝑓                                                                   (7.12)  

7.2.2.2 Heating Load Model 

The energy consumption of the HVAC system is numerically represented by the 

heating load of the built environment when it is working under the heating mode. The 

heating load is equal to the sum of all heat losses (McQuiston et al., 2005). The value 

of total heat losses of the built environment can be estimated by the ‘Average Value 

Method’ which is a simplified method introduced in Brumbaugh (1983). From the 

book, it can be found that the method utilises the indoor and outdoor temperature 

difference and the average value of the important basic factors of buildings to 

calculate the heat losses. The basic factors considered include the wall factor, contents 

factor and glass factor. Based on the introduction in the literature, the calculation 

process of the heat losses of the researched indoor environment can be expressed as 
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follows (Brumbaugh, 1983): 

The values of the three factors are defined in Table 7.3.  It should be noted that the 

area and volume values related to these factors are in English units in this method. 

The output heat losses of the average value method are scaled by British thermal units 

(Btu) per hour where 1kW.h = 3,412Btu. The final result is the total heat loss from 

the environment per hour. However, in the rest of this research, the metric system 

units are applied to measure the length and the space. So, during the calculation, the 

Matlab program automatically transfers the units between the metric system units and 

the English unit. As with the cooling load, the output of the total heating load will be 

expressed in Watts (W).   

1W=3,412Btu/hr. 1 (degree F)=9/5*(degree C)+32 (McQuiston et al., 2005). 

 

Table 7.3 The factors used to calculate the heat loss 

Wall Factor (Wf) 0.32 Btu/(ft2*hour* ºF) 1.82W/(m2*K) 

Glass Factor (Gf) 1 Btu/ (ft2*hour* ºF)  5.68W/( m2*K) 

Contents Factor (Cf) 0.02 Btu/ (ft3*hour* ºF) 0.37W/( m3*K) 

 

As the HVAC system is assumed to be working under the heating mode, the indoor 

and outdoor temperature difference is 𝑡𝑖 − 𝑡𝑜. The heat loss through the glass 𝐻𝐿𝐺 

can be expressed as function (7.13): 

𝐻𝐿𝐺 = 𝐺𝑓 ∗ (𝑊𝑤 ∗ 𝐻𝑤) ∗ (𝑡𝑖 − 𝑡𝑜)                             (7.13) 

where:  𝑊𝑤 ∗ 𝐻𝑤 = the total area of the glass. 

The heat loss of the wall 𝐻𝐿𝑊 is given by: 

 𝐻𝐿𝑊 = 𝑊𝑓 ∗ (𝑊𝑟 ∗ 𝐻 − 𝑊𝑤 ∗ 𝐻𝑤)) ∗ (𝑡𝑖 − 𝑡𝑜)         (7.14) 

where: 𝑊 ∗ 𝐻= the total area of the wall. 

The heat loss caused by the contents of the spaces 𝐻𝐿𝐶 is: 

𝐻𝐿𝐶 = 𝐶𝑓 ∗ (𝐿 ∗ 𝑊𝑟 ∗ 𝐻) ∗ (𝑡𝑖 − 𝑡𝑜)                                 (7.15) 

where: 𝐿 ∗ 𝑊𝑟 ∗ 𝐻 is the volume of the indoor space.  

 Then the total estimated heating load 𝐻𝐿 is: 

𝐻𝐿 = 𝐻𝐿𝐺 + 𝐻𝐿𝑊 + 𝐻𝐿𝐶                                                  (7.16) 
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7.2.3 Objective Function for Behaviour 

When the BEMS makes suggestions to occupants on behavioural adaptations, there 

are two aspects that need to be considered. The first one is that the system should 

select the easiest way for the occupants to act.  The system considers that all of the 

behaviours only take one action to complete have the same complexity. For example, 

putting on some clothes, taking off some clothes and turning down the set point of 

the HVAC all require one action. In this case, the complexity value of performing one 

of these actions is set as one. If the system suggests that the occupants put on some 

clothes and turn up the set point, then this suggestion contains two of these actions 

and has a complexity value of two.  In the decision-making algorithm, all the 

‘complexity values’ of the actions are set up by the system. The complexity of the 

behaviour adaptations in a suggestion is defined as the sum of all the complexity 

values of the actions in the suggestion. The decision-making algorithm tends to 

choose suggestions with lower complexity values.   

In addition, the system should choose those actions that the occupant is most 

accustomed to perform. Different people react differently when they feel 

uncomfortably cold or hot. Thus, when the energy management system notices that 

occupants will feel thermally uncomfortable, it is not appropriate to give identical 

advice to all the occupants without considering their individual differences.  

Furthermore, based on the field study result, even for one person, usually more than 

one type of behaviour will take place when he or she feels uncomfortable. Each 

occupant has their own habitual behaviour patterns to adjust their thermal conditions. 

Thus, when providing personalised behavioural advice, an occupant’s customary 

behaviours should be considered.  

However, in order to take occupants’ personal habits into account, it is imperative to 

find a method to quantitatively represent the occupants’ habitual behaviour based on 

the behaviour records in the database. It is not accurate to simply count the 

occurrences of a behaviour over a time period since some behaviours, such as the 

opening the windows, may occur for reasons other than seeking thermal comfort. In 

this research, the norm confidence inherited from the association rule mining method 

is utilised to represent the relatedness between a particular behaviour and a type of 

uncomfortable thermal comfort sensation. The association rule mining technology 

was developed to find the association rules between purchased items from transaction 
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records in a database (Agrawal et al., 1993) and has been applied to create 

recommendation systems, such as the video recommendation system used by some 

commercial websites (Davidson et al., 2010).  It is an algorithm for discovering 

interesting relations between variables in databases (Hahsler et al., 2007) by using 

‘measures of interestingness’ (Han et al., 2012). The rule confidence is one of the 

measures of interestingness and it is used to numerically assess the strength of the 

association rules (Kotsiantis and Kanellopoulos, 2006). In this research, the 

uncomfortable sensations and occupants’ reactions are regarded as two related 

variables in the database.  During the field study and data processing, the rules and 

relationships between these variables have already been identified and recorded. Then 

the confidence is used to qualitatively analyse the associations between the thermal 

sensation and behaviour data and represent the possibility of performing the 

behaviour under certain circumstances. The scale of calculated confidence is a value 

in the range 0 to 1. ‘Zero’ means that the behaviour is never performed under an 

uncomfortable condition, and ‘one’ means that the behaviour always takes place when 

a situation occurred. 

The calculation method of the rule confidence value is actually calculating the 

conditional probability, which process can be expressed as follows (Han et al., 2012): 

Let, 𝑡𝑖  denote the uncomfortable thermal sensation feeling, where i ∈  [1,2]. 𝑡1 

represents uncomfortably cold and 𝑡2  represent uncomfortably hot. 𝑏𝑗  denotes a 

particular type of behaviour. 𝑃(𝐴)  means the probability of A. The form of the 

association rule of these two variables is 𝑡𝑖 ⇒ 𝑏𝑗 , then the confidence of the 

association rule 𝑐(𝑡𝑖 ⇒ 𝑏𝑗) can be expressed as a conditional probability: 

                                      𝑐(𝑡𝑖 ⇒ 𝑏𝑗)  = 𝑃(𝑏𝑗│𝑡𝑖)= 
𝑃(𝑡𝑖⋃𝑏𝑗)

𝑃(𝑡𝑖)
                    (7.17)   

Let 𝑛  denote the total sample in the database, 𝑛𝑖  be the number of the thermal 

sensation 𝑡𝑖  occurrences and  𝑛𝑖𝑗  be the count of the behaviour 𝑏𝑗  when thermal 

sensation 𝑡𝑖 occurs.  It can be found that:                

𝑃(𝑡𝑖) =
𝑛𝑖

𝑛
                             (7.18) 

𝑃(𝑡𝑖⋃𝑏𝑗) =  
𝑛𝑖𝑗

𝑛
                        (7.19) 

By substituting function (7.19) and (7.18) into function (7.17), and simplifying the 

expression of 𝑐(𝑡𝑖 ⇒ 𝑏𝑗) into 𝑐𝑖𝑗, the value of the association rule confidence will be 

calculated as: 

javascript:void(0);
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                                                     𝐶𝑖𝑗 =

𝑛𝑖𝑗

𝑛

 
𝑛𝑖
𝑛

  =  
𝑛𝑖𝑗

𝑛𝑖
                                  (7.20) 

Because the purpose of using the confidence here is to find the numerical scale of a 

behaviour association with thermal comfort, no threshold is set for 𝐶𝑖𝑗. From function 

(7.20), it can be found that if a type of behaviour was not recorded to be performed 

by an occupant at all, the value of the confidence is zero. 

When carrying out the questionnaire survey, the subjects have already been asked to 

give the reason for one reaction, for example, putting on some clothes because of 

feeling cold. In this case, the value of  𝑛𝑖𝑗 and 𝑛𝑖 can be retrieved from the collected 

data. With the confidence, the Condition-Action Rules introduced in section 6.7 

understand whether the suggested action is the one the occupant is most accustomed 

to perform or not. In this case, personalised suggestions can be made by the 

Condition-Action Rules. The confidence value may also be used by the decision-

making algorithm to select the most appropriate action plan. This is illustrated in 

sections 7.3 and 7.4.   

 

 Decision-making Process Development for the BEMS 

7.3.1 Problem Analyses  

It has been shown that to realise the aim of the BEMS, the system needs to fulfil three 

objectives: 1) is minimising the energy consumption; 2) is maximising the occupants’ 

thermal comfort level and 3) is providing the personalised suggestion to the occupants 

with the simplest behavioural adaptation and considering the occupants’ habits.   It 

can be seen that objective one is a minimum optimisation problem as in the cooling 

load function (7.12) and the heating load function (7.16) which both need to be 

minimised to save energy. It also can be found that people’s thermal comfort level 

should be maximised so objective two is a maximum optimisation problem. However, 

maximum optimisation problems can be transferred into equivalent minimum 

optimisation problems, so Function (6.1) can still use the symbol ‘minimum’  as the 

description of the multi-objective optimisation problem in this research.   

Let 𝑓𝑒 , 𝑓𝑐 𝑎𝑛𝑑 𝑓𝑏  respectively represent the objective functions of the energy 

consumption, thermal comfort and personal behaviours in general. Every built 

environment has its own 𝑓𝑒 , 𝑓𝑐 𝑎𝑛𝑑 𝑓𝑏 functions. All of the objective functions have 
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been discussed in the previous sections.  

The relationship among objective functions and their related variables are depicted in 

Fig. 7.1. In the diagram, item(s) in the blocks at the beginning of the arrow will affect 

the items in those at the end of the arrow. The block with a ‘P’ in it means that items 

in that block are parameters. For a certain built environment, the physical parameters 

of the building are fixed. It can be found that some of objective functions are affected 

by common factors. The variables affecting its 𝑓𝑒 value include the outdoor climate 

conditions, indoor thermal environment conditions and set temperatures of the 

installed HVAC system. The parameters affecting the 𝑓𝑐  contain the indoor 

environment factors and the personal factors defined by the ASHRAE standard and 

ISO7730 (ANSI/ASHRAE55-2010, 2010, ISO7730, 2005). The value of 𝑓𝑏  is 

determined by the suggested behaviours. It should be noted that occupants’ behaviour 

will also change the personal factors such as cloth insulation value. If occupants are 

able to manually change the settings of the HVAC system, the personal behaviours 

also include changing set points of the HVAC system. In conclusion, behavioural 

adaptation may affect values in all three objective functions. Applying behaviour 

adaptations as one of the input variables of the objective functions is an effective way 

to take the adaptations into account when making decisions. This way is adopted by 

the decision-making algorithm in the A-component in the agent. 

Among all the variables, the parameters that can be affected by the BEMS are the 

occupants’ behaviours and the settings of the HVAC system. So they are the decision 

variables to build up the action plans in the D-component. The vectors of behaviours 

and the settings can be used to form the feasible decision space. 
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Figure 7.1 The Relationship between the Factors and Objective Functions 

7.3.2 Operation Process of the Multi-agent BEMS in Single-occupancy 

Offices 

The flowchart of the decision-making process of a multi-agent BEMS in a single 

occupancy office is illustrated in Fig. 7.2.  The whole process can be divided into two 

phases. The first phase is the learning phase of the system. During the learning phase, 

the agent-based system utilises the data collected from the environment and the 

occupants to generate the objective functions for the decision-making algorithms in 

the local agents. The learning/modelling algorithms in the agents’ E-components 

thermal are used to generate objective functions concerning comfort, energy 

consumption and behavioural adaptation.  

Once the learning is completed, the agent is ready to make decisions to fulfil its design 

purposes. The decision-making process involves all three components in the agents. 

Firstly, the decision-making algorithm in the A-component downloads the generated 

models/algorithms from the E-component. Then, the action plans stored in the D-

component are sent to the A-component for selection. Under the single occupancy 

office situation, action plans comprise changing the set temperature of the HVAC 

system and finding the best behavioural adaptation for the end user. The selection of 

the best plan is performed by the decision-making algorithm equipped with objective 

functions generated in the learning phase. The selection is an optimisation process 

based on the lexicographic method either alone or in combination with the ϵ-

constraint method. The sequence of solving the optimisation problems is firstly to 
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optimise the thermal comfort objectives, then minimise the energy consumption and, 

finally, to decide the best way to react if necessary. Once the optimised action plan is 

selected, the settings of the HVAC system are sent to the HVAC actuator directly or 

sent to personal agent for the occupant to perform. If behavioural adaptations are 

needed, this information will also be sent to the personal agent, which will then 

provide the suggestions from the system to the occupant based on suggestion plans 

and occupant’s individual differences already stored in the D-component in the agent. 

The personalised suggestion is realised by the Condition-Action Rules in the A-

component in the personal agent. 
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Figure 7.2 Operation Process in Single-occupancy Offices
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7.3.3 Decision-making process in Open-Plan Offices 

In an open plan office, the operation processes of the local agent and the personal 

agent are different from those in the single occupancy office. The operation flowchart 

of the multi-agent BEMS under the open-plan office condition is illustrated in Fig. 

7.3. The first phase of operation is still the learning phase. However, in the decision-

making phase, because multiple occupants are in in the environment, the local agent 

only makes decision on the set temperature of HVAC for the whole area. Once the 

settings are decided, the information is sent to the HVAC actuator as well as to the 

personal agents that serve their corresponding occupants. The personal agents 

examine if their occupants will be satisfied by the set conditions. If an occupant will 

feel uncomfortable, his/her personal agent will decide on a behavioural adaptation 

and then send out the message to the occupant. The message is also processed by the 

Condition-Action rules.  
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Figure 7.3 Decision-making Process in Open-plan Offices 
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 Illustrating the Operations of the BEMS by Case 

Studies  

7.4.1 The Building Model and Characteristics of the Occupants  

In order to verify if the developed BEMS is functioning properly, the developed 

decision-making algorithm, thermal sensation models, adaptation evaluation 

algorithm and heating and cooling load calculation methods are integrated into the 

agent-based system then tested in a simulated air-conditioned office environment. The 

properties of the office environment, as well as the characteristics of the occupants 

inside, are based on the data collected from the experimental study carried out in the 

University of Reading. For more details of the data collection process and model 

generation, please refer to Chapter 2, Chapter 4 and Chapter 5. 

In order to study the energy consumption of the office environment without losing 

generality, two typical office occupancy conditions are considered in this research. 

The first one is the single occupancy office, which is occupied by one person during 

office hours. The second one is an open-plan office, which is occupied by a group of 

people during the same office hours. The office hours are from 9:00a.m. until 5:00p.m. 

The occupants in both the open-plan office and the personal office have their fixed 

seats. Windows in both offices are facing the east and they are double-glazed. Only 

one wall with windows is exposed to the outside air. The rooms are under 

unconditioned built areas and over a basement crawl space. The rooms are next to air-

conditioned zones and the doors of the rooms lead to another air conditioned zone. 

The dimensions of these two offices and the windows inside are illustrated in Table 

7.4:
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Table 7.4 Parameters of the Studied Rooms  

Office Type Room Length (L) Room Width  

(Rw) 

Room Height (H) Window Width 

(Ww) 

Window Height 

(Hw) 

Single-occupancy Office 3m 5m 2.5m 2m 1.5m 

Open-plan Office 5.5m 10m 2.5m 8m 1.85m 
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It is assumed that the HVAC system is able to adjust the indoor temperature, humidity 

and air velocity to achieve a stable level. The air in the controlled environment is 

evenly mixed and physical parameters of the air in the whole area are uniform. The 

ambient air temperature around each end-user is assumed to be the same as that set 

by the HVAC system. It is assumed that the temperatures and radiation fluxes of the 

surfaces in the indoor environment are uniform, so the mean radiant temperature is 

regarded as being equal to the air temperature (Walikewitz et al., 2015). Based on the 

data collected from the field study, the HVAC system’s set points range from 18℃ to 

27℃, with 0.5℃ steps. The relative humidity is 40%. When the outdoor temperature 

is higher than the indoor temperature, the air conditioning unit works in cooling mode 

and if the indoor temperature is higher,  it works in heating mode. How the HVAC 

system stabilises the indoor environment at certain levels is beyond the scope of this 

research. 

 

The personal factors and behavioural habits of the occupants come from subjects AC1, 

AC2, AC3, AC4, AC5 and AC6 who finished the experiment in the air-conditioned 

environment. In the single occupancy scenarios, it is assumed that subjects AC1 to 

AC5 had a single office as described above. For the open-plan office, all six subjects 

are sitting in the same area. Based on the collected data, the range of the clothing level 

for the simulation is set between 0.5 and 1.5CLO. The typical activity level is 1 or 

1.1MET.  The CLO and MET values will be specified in each simulated built 

environment. 

Two types of behavioural adaptations frequently observed from these occupants 

during the field study are considered as the optimal decision-making process. The 

adaptations are: changing the clothing insulation level and changing the set-point of 

the HVAC system. The observation from the field study demonstrates that occupants 

sometimes do either of these two actions separately or do both of them at the same 

time.  

Following the definition of Function (7.20), the rule confidence value 𝐶  of the 

association rule of the thermal sensation and behaviour reaction of all the subjects in 

the air-conditioned are shown in Table 7.5: 
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Table 7.5  Confidences of Association Rules of the Sensations and the Adaptations 

 AC1 AC2 AC3 AC4 AC5 AC6 

Put on clothes when feeling 

cold. 

100% 0% 0% 66.7% 80% 40% 

Turn up the set point of the 

HVAC when feeling cold. 

0% 50% 0% 0% 0% 0% 

Put on clothes and turn up the 

set point of the HVAC at the 

same time when feeling cold. 

0% 50% 0% 0% 0% 0% 

Take off clothes when feeling 

hot. 

66.7% 52.6% 100% 50% 66.7% 0% 

Turn down the set point of the 

HVAC when feeling hot. 

33.3% 21.1% 
 

0% 0% 33.3% 100% 

Take off clothes and turn down 

the set point of the HVAC at the 

same time when feeling hot. 

0% 26.3% 
 

0% 0% 0% 0% 

 

If the decision-making algorithm attempted to suggest the actions the occupants’ most 

usually carried out, the algorithm should select the behaviour having the highest 

confidence value. However, in the developed program, the function ‘minimise’ is 

used consistently in this part of program for ease of programming. This means that 

the program treats the optimisation problem as a minimisation problem. In this case, 

the program is developed to search for the minimum value of 𝐶′ = 1 − 𝐶 , which 

converts the maximum problem into a minimum problem.   

 

7.4.2 Case Studies in Single-occupancy Offices  

7.4.2.1 Basic Assumptions for Single-occupancy Offices 

The simulated indoor environment is set up to test whether the multi-agent BEMS 

functions correctly with the desired output. It is assumed that the air-conditioning 

system is serving an office which is designed for only one occupant. Based on the 

generally defined information in the last section, the specifications of the built 

environment, the BEMS and the occupants are as follows. It is assumed that one of 

the occupants AC1, AC2, AC3, AC4 and AC5 is seated in an office and the outside 

temperature is 10℃ while the HVAC system is working under the heating mode. Or, 

alternatively, the outside temperature is 30℃ when the HVAC system is working 

under cooling mode. It is assumed that the indoor air velocity is 0.08m/s.  When the 

HVAC system is working under heating mode, the initial indoor air temperature is 
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18℃. When the system is working under cooling mode, the initial indoor air 

temperature is 28℃.  

It is also assumed that the BEMS is aware of the occupant’s activity levels and 

clothing insulation level. The occupant has the ability to control the set point of the 

air temperature within the given range. The occupant also has the opportunity to 

change his/her clothing insulation level. When the subject is inside the office, his or 

her activity level is one. The occupants can change the CLO into 1.25 or 0.75. The 

MET value of the occupant is one. 

During the decision-making process, the control target of the thermal environment is 

the environment that lets the occupant feel ‘neutral’, which is the highest level of the 

thermal sensation values. For energy consumption, the system looks for the plans that 

consume minimum energy. If the system needs to decide the occupant’s reactions, the 

complexities of the behaviours or the accustomedness of the behaviours to the 

occupant can be used as a basis for the evaluation. The system either selects the 

simplest action or the most common action for the occupants. The lexicographic 

method is used to tackle the multi-objective problem.  

7.4.2.2 Case Study One: Decision-making for AC1 

When making decisions, the variables needing to be considered are the set 

temperature of the HVAC system and the CLO level of the occupants. From Fig.7.1, 

it can be seen that indoor environmental conditions affect the energy consumption 

and the occupant’s thermal comfort. Beside the indoor environment, the occupant’s 

behaviours, such as changing clothing level, affect his/her thermal sensation. Both of 

the actions affect the value of the behaviour objective function. So the feasible 

decision space can be a two-dimensional space with two factors: HVAC settings and 

CLO values. In addition to the value in an objective function, the grid search 

outcomes for every step in the lexicographic method can be displayed as a three-

dimensional diagram.  

Values of the objective functions of the thermal comfort and energy consumption 

based on different temperature settings and actions are illustrated in Fig. 7.4.  

Following the settled decision-making process of the local agent, the optimal 

solutions of the thermal comfort objectives are firstly found by the grid search method. 

Solutions to the thermal comfort objective are illustrated as black circles in Fig. 7.4.a. 
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As shown in the figure, these solutions guarantee the subject’s thermal sensation at a 

‘neutral’ level. It can be found that by co-operating with suitable CLO levels, the 

acceptable set point range is from 21 to 25.5℃. Once all possible solutions for the 

thermal comfort objective are selected, these solutions become constraints to the next 

optimal objective, which is energy saving. This means the optimal solution for the 

energy-saving objective should only be selected from the grid points which fit the 

requirement of thermal comfort. The values of energy consumption calculated at these 

grid points are also expressed as black circles in Figure 7.4.b. Then, the grid search 

method is applied again, and the selected optimal solution is expressed as a red star 

in the figure. In any step, if only one potential solution remains as the search result, 

this solution is claimed as the final solution. Here, the grid search gives only one 

solution as the optimal solution of the energy consumption problem. So the solution 

is the optimal solution to the whole multi-objective decision-making problem. The 

final decision can be interpreted as suggesting that the occupant increases the CLO 

level to 1.25 and configures the set point of the HVAC system to 21℃. The value of 

the required cooling load is 1,811.9W.  According to Table 7.5, adjusting the CLO 

level is the most frequent way in which AC1 achieved his/her comfortable feeling, 

but changing the settings for the HVAC system is not. So the decision of the system 

needs to be processed by the condition-action rules in the personal agent to explain 

that only changing the CLO level may not enable the occupant to feel comfortable. 
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Fig. 7.4a 

 

 

Fig. 7.4b 

Figure 7.4 Values of objective functions of AC1 (Heating Mode) 
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Fig. 7.5a 

 

Fig. 7.5b 

Figure 7.5 Values of objective functions of AC1 (Cooling Mode) 
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When the HVAC system is working under cooling mode, the decision-making process 

of the local agent is shown in Fig. 7.5. It can be found that the comfort zone for AC1 

is the same as the one when the HVAC system is working under cooling mode, but 

the decision is different. The decision from the system suggests that AC1 changes the 

clothing insulation level to 0.75; the recommended set point is 25.5℃ and the cooling 

load under these conditions is 1,339.8W. Again, the solution plan is not the one most 

commonly used by the occupant. So the information will be processed by the personal 

agent before being sent to the occupant. 

7.4.2.3 Case Study Two: Decision-making for AC2 

When the decision-making algorithm deals with AC2 in the same environmental and 

personal conditions, the decision-making process is different. Because of the 

limitations of the developed model, the case study only investigates the decision-

making outcomes when the air conditioner is working under heating mode. The 

outcomes of the grid search whose thermal comfort value fits the requirements are 

illustrated in Fig. 7.6a. Compared to AC1, AC2 accepts a lower HVAC system set 

point. The final solution suggested to the occupant was to increase the CLO value to 

1.25, with an HVAC set point of 18℃. The required heating load is 1,317.7W. 

However, from Table 7.5 it can be seen that the occupant is more used to changing 

the settings of the HVAC system than changing his/her clothing level. In this case, the 

personal agent will remind the occupant that changing the CLO level will guarantee 

his/her thermal comfort without overshooting the HVAC’s settings.   
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Fig. 7.6a 

 

Fig. 7.6b 

Figure 7.6 Values of objective functions of AC2 (Heating Mode) 
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7.4.2.4 Case Study Three: Decision-making for AC3 

When the system is working under heating mode, the algorithm’s decision-making 

process for AC3 is shown in Fig. 7.7. From Fig. 7.7a, it can be found that compared 

to subject AC1, subject AC3 is more sensitive to cold conditions. The suggestion from 

the system is to put on clothing with 1.25CLO level and change the temperature 

setting to 22.5℃. The energy consumption is 2,059W. According to Table 7.5, this 

decision will be directly forwarded to the occupant by the personal agent.    

 

Fig. 7.7a 
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Fig. 7.7b 

Figure 7.7 Values of objective functions of AC3 (Heating Mode) 

When the system is working under cooling mode, the HVAC set point can be as high 

as 25℃. Unlike AC1, Fig. 7.8b shows that the final solution is not found by searching 

the values of the energy consumption objective function. Two action plan options 

exist in the figure. In this case, the behaviour objective function needs to be involved. 

By considering the complexity of the proposed action plans, the system’s final 

suggestion is adjusting the temperature to 25℃ without changing the clothing level. 

The required cooling load is 1,963.9W. This decision outcome is shown in Fig. 7.8c. 

If the system wishes to use the accustomedness of the actions to evaluate the actions 

plans, the outcome is shown in Fig. 7.8d. Unfortunately, values of the rule confidence 

of both actions are the same. In this case, the system will randomly select a solution 

as both the solutions fit all the requirements set by the system.   

If the system chooses the solution shown by Fig. 7.8c, again, it can be found that the 

action is not the commonly used one; in this case, the personal agent needs to give 

notice to the user regarding the energy consumption information to avoid 

overshooting the set point. 
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Fig. 7.8a 
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Fig. 7.8b 

 

Fig. 7.8C 
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Fig. 7.8d 

Figure 7.8 Values of objective functions of AC3 (Cooling Mode) 

7.4.2.5 Case Study Four: Decision-making for AC4 

For occupant AC4, the decision-making process shown in Fig.7.9 is similar to that for 

AC2. The final decision from the local agent is adjusting the HVAC set point to 21.5℃ 

while putting on clothing with a CLO level of 0.25. The heating load will be 1,894.3W. 

The decision information needs to be processed by the personal agent. 
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Fig. 7.9a 
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Fig. 7.9b 

Figure 7.9 Values of objective functions of AC4 (Heating Mode) 

7.4.2.6 Case Study Four: Decision-making for AC5 

For occupant AC5, the decision-making process is illustrated in Fig. 7.10. In Fig. 

7.10b, it can be seen that the final decision is: HVAC set point equals 20.5℃; the 

CLO level equals 1.25 and the heating load is 1,729.5W. This decision needs to be 

processed by the personal agent before being forwarded to the occupant.  
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Fig. 7.10a 
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Fig. 7.10b 

Figure 7.10 Values of objective functions of AC5 (heating Mode) 

7.4.3 The Open Plan Office with Multi-occupant Scenario   

7.4.3.1 Basic Assumptions of the Open-Plan Office 

The physical dimensions of the open plan office are defined in Table 7.4. The indoor 

air velocity is 0.08m/s and the relative humidity is 40%. It is assumed that the six 

occupants, AC1, AC2, AC3, AC4, AC5 and AC6 are sitting in the area. Occupants 

inside cannot access the control panel of the HVAC system. The set point of the 

HVAC system is defined by the BEMS automatically. The occupants adjust their 

clothing level as necessary.    

7.4.3.2 Decision-making Outcomes of the BEMS in an Open Plan Office 

The decision-making process of the multi-agent BEMS is depicted in Fig. 7.3. Here, 

both the PMV model and the group people-based thermal sensation model developed 

in Chapter 5 are used as the objective functions of thermal comfort. The system 

assumes that the outside temperature is 10℃ and the clothing insulation level is 1.0 

CLO. The occupants’ activity levels are one. Because for the local agent, the decision 
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vectors have only one element, namely, the set temperature of the HVAC system, the 

feasible decision space can be regarded as a one-dimensional space. The decision 

variable, which is the set temperature and the values in the objective function form a 

two dimensional space. Following the guidelines provided by the ASHRAE standard, 

the optimisation target for the thermal environment is to maintain the average value 

of the thermal sensation votes at between –0.5 and +0.5. The target for the energy 

consumption is to minimise the energy consumption while achieving the thermal 

comfort goal. It is a typical bi-objective optimisation problem. The thermal comfort 

goal can be converted into the constraints of the energy consumption goal, so the ϵ-

constraint method can applied to solve this problem. The grid search method firstly 

locates all the set points that fulfil the thermal comfort requirement. Then the range 

of the set points becomes a constraint of the energy consumption objective function. 

The grid search algorithm finds the most energy-efficient solution within the selected 

set point range.  

Based on the simulated environmental conditions, the decision-making outcomes 

based on PMV model are illustrated in Fig. 7.11.  In Fig. 7.11a, the area marked by 

the diamond mark is the range that fits the thermal comfort requirement. In this case, 

when the grid search method looking for the optimal solution gives the minimum 

energy consumption, the method only needs to search the region marked by diamonds. 

The method is integrated in the A-component of the local agent and the search 

outcomes are shown in Fig. 7.11b. The final decision made by the local agent is 

highlighted by the red star.  It can be found that the lowest possible set point predicted 

by PMV is 22℃. The heating load required to reach this setting is 6,298.3W. 

Fig. 7.12 illustrates the decision-making outcomes of the local agent equipped with 

the newly-developed group-of-people-based thermal sensation model. The decision-

making process is the same as for the installed PMV model. The acceptable range of 

indoor temperature is marked with blue diamonds. The final decision of the local 

agent is 21.5℃, which is 0.5 degrees lower than the PMV prediction. In consequence, 

the required heating load is 6,035.9W. The decision based on the developed model 

has a heating load 256W smaller than its counterpart. If the HVAC system is working 

under a fixed schedule policy with a 23℃ set point, as observed in the field study, the 

system needs to produce a 6,823.2W heating load. In this case, the decision made by 

the group thermal sensation model requires a heating load more than 10% less than 
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the fixed schedule method required in the field study. 

 

 

 

 

 

 

Fig. 7.11a 
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Fig. 7.11b 

Figure 7.11 Decision-making Outcomes in an Open Plan Office (PMV Model-

Based BEMS) 

 

Fig. 7.12a 
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Fig. 7.12b 

Figure 7.12 Decision-making Outcomes in an Open Plan Office (Group People’s 

Model-based BEMS) 

However, not all the occupants will feel ‘neutral’ under the decided condition. As 

illustrated in Table 7.6, the personal thermal sensation mode developed in Chapter 4 

calculates that occupant AC3 will still feel ‘slightly cold’ when the set point is 21.5℃, 

and will not feel ‘neutral’ until the temperature rise is as high as 24℃. The thermal 

sensation vote from AC4 will be smaller than zero as well. If the system adjusts the 

set point to 24℃, a heating load of 7,348W is needed. Compared to the heating load 

needed for a set point of 21.5℃, more than 17.6% extra heating load is needed when 

the set point is 24℃.  

In this case, the personal agent in the system will provide advice for the occupants to 

regain their comfortable feelings and try to avoid increasing the set points of the 

HVAC system. Here, the personal agent will only consider the action of changing the 

clothing level. The decision-making process for the personal agent is the same as the 

one shown in Fig. 7.3. The decision-making algorithm in the A-component of the 

personal agent considers thermal comfort and behaviour as optimisation criteria. The 

multi-objective decision-making problem is solved by the lexicographic method.    
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Once the system decides on the activities undertaken, it examines whether the 

recommended reactions are the occupant’s most common ones. If it is, the system will 

directly provide the optimal decision to the end-user. If not, the system will utilise the 

Condition-action Rules to provide the personalised suggestion information to the 

occupant. 

Based on the calculation of the personal thermal sensation model, if AC3 increases 

the CLO value to 1.5, he/she will feel neutral. It is also the most commonly used 

method of adaptation used by the occupant.  So the system will suggest AC3 to 

increase his/her clothing level to 1.5CLO via a human machine interface. For 

occupant AC4, the decision-making process is the same and the decision from the 

system is to increase the CLO level to 1.25.  

The requirement of the thermal comfort and the energy consumption can also be 

loosened if necessary. Then the values of the thermal comfort objective function and 

energy consumption objective functions are within a manually-defined range. Thus, 

the multi-objective optimisation problem can be solved by the ϵ-constraint method. 

 

 

 

Table 7.6  Predicted Personal Thermal Sensations 

Set 

Temperature 

Predicted Personal Thermal Sensation 

Values for Five Occupants 

 

AC1 AC2 AC3 AC4 AC5 AC6 

20.5 ℃ -1 0 -1 -1 -1 0 

21 ℃ -1 0 -1 -1 -1 0 

21.5 ℃ -1 0 -1 -1 0 0 

22℃ 0 0 -1 -1 0 0 

24℃ 0 0 0 0 0 0 

 

 Energy Management Performance of BEMS 

In this section, performances of the developed multi-agent energy management 

system are tested by using real outdoor climate data in both single occupancy offices 

and an open-plan office. The data is the hourly average outdoor temperature data from 

9:00am until 17:00pm in March 2015. In total, 177 hours of data from the 1st of March 

2015 until 31st of March 2015 are used. The data were collected by a meteorological 
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station in the University of Reading. For more details of the data collection, please 

refer to Brugge (2015). 

The assumption of the single occupancy office is as follows. The indoor air velocity 

is 0.08m/s. The relative humidity is 40%.  Occupants AC1, AC2, AC3, AC4 and AC5 

are regarded as research subjects. Each occupant sits in a single occupancy office with 

dimensions defined in Table 7.4. The default CLO level during the whole period is 

set as 0.75. The climate conditions in March are selected because in this month the 

occupants’ CLO level is close to the assumed value. The average CLO level of 

occupants in March 2015 was 0.733. Occupants are able to adjust the set point of the 

HVAC system. They can also change their CLO level by ±0.25, which is equal to 

putting on or taking off a sweater or a jacket.   
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Figure 7.13 Hourly Heating or Cooling Load for Single Occupancy Offices

0

500

1000

1500

2000

2500

3000

3500

4000

0
1

/0
3

/2
0

1
6

0
1

/0
3

/2
0

1
6

0
2

/0
3

/2
0

1
6

0
3

/0
3

/2
0

1
6

0
4

/0
3

/2
0

1
6

0
4

/0
3

/2
0

1
6

0
7

/0
3

/2
0

1
6

0
8

/0
3

/2
0

1
6

0
9

/0
3

/2
0

1
6

0
9

/0
3

/2
0

1
6

1
0

/0
3

/2
0

1
6

1
1

/0
3

/2
0

1
6

1
4

/0
3

/2
0

1
6

1
5

/0
3

/2
0

1
6

1
6

/0
3

/2
0

1
6

1
7

/0
3

/2
0

1
6

1
7

/0
3

/2
0

1
6

1
8

/0
3

/2
0

1
6

2
1

/0
3

/2
0

1
6

2
2

/0
3

/2
0

1
6

2
2

/0
3

/2
0

1
6

2
3

/0
3

/2
0

1
6

2
4

/0
3

/2
0

1
6

2
5

/0
3

/2
0

1
6

2
5

/0
3

/2
0

1
6

2
8

/0
3

/2
0

1
6

2
9

/0
3

/2
0

1
6

3
0

/0
3

/2
0

1
6

3
0

/0
3

/2
0

1
6

3
1

/0
3

/2
0

1
6

H
e

at
in

g 
o

r 
C

o
o

lin
g 

Lo
ad

 (
W

)

Time

Simulated Heating or Cooling Load in Single Occupancy 
Offices

AC1 Model Based System

AC2 Model Based System

AC3 Model Based System

AC4 Model Based System

AC5 Model Based System

PMV Index Based System

Fixed Schedule Based System



 

173 

 

The hourly heating/cooling load values are illustrated in Fig. 7.13. The figure shows 

that, in general, offices managed by the BEMS need a smaller amount of energy to 

keep the occupants in a thermally comfortable environment compared to the offices 

managed by the fixed schedule management method.    

The total required heating and cooling energy values are illustrated in Fig. 7.14 and 

the optimised set point for occupants is shown in Table 7.7. The table illustrates that 

even some of the set points consumed more energy than the set point recommended 

by the ASHRAE standard. In total, the energy consumption of the setting decide by 

the BEMS system with personal thermal sensation models is 2% less than the energy 

consumption of the settings decided by the BEMS system equipped with the 

ASHRAE-recommended PMV model. Compared to the offices managed by a fixed 

schedule, the BEMS system with personal thermal sensation models saved around 10% 

energy.   
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Figure 7.14 Required Heating and Cooling Energy in March (Single-Occupancy Office) 
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Table 7.7 Optimised Set Point and the Detailed Monthly Required Heating and Cooling Energy Values 

 AC1 Model-

based 

System  

AC2 Model-

based 

System 

AC3 

Model-

based 

System 

AC4 

Model-

based 

System 

AC5 Model-

based 

System 

PMV 

Index-

based 

System 

Fixed 

Schedule-

based 

System 

Set Temperature 

(℃) 

22  19.5 23 22.5  21.5  22   23  

Required 

Heating/Cooling 

Energy (kW.h) 

398.637  325.749 427.792 413.214 384.059 398.636 398.636 
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For the open-plan office, the outdoor data and the indoor environmental assumptions 

are the same as the ones in the single occupancy offices. The dimensions of the office 

is also defined in Table 7.4. Occupants AC1, AC2, AC3. AC4, AC5 and AC6 are 

seated in the office. For all the occupants, the default CLO level is 0.75 and the MET 

value is one. The assumption is that the occupants cannot change the settings of the 

HVAC but they can adjust their CLO level by ±0.25. The settings of the HVAC 

system are calculated by the BEMS.   

The hourly heating load and cooling load requirements are illustrated in Fig. 7.15. 

The monthly summary of the required heating and cooling energy is shown in Table 

7.8. The recommended CLO levels from the personal agents are shown in Table 7.9. 

It can be found that compared to the BEMS based on the PMV model and the fixed 

schedule, the BEMS with the developed thermal sensation model saves 7% and 3.5% 

of energy respectively.     



 

177 

 

 

 

Figure 7.15 Hourly Heating or Cooling Loads for Single Occupancy Offices 
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Figure 7.16 Required Heating and Cooling Energy in March (Open-plan Office) 

 

 

Table 7.8 Optimised Set Point and the Detailed Monthly Heating and Cooling Load 

Values in an Open-Plan Office 

 

Comfort Models PMV Index-

based System 

Fixed Schedule-

based System 

Group Model-

based System 

Set Temperature (℃) 23.5  23  22.5  

Heating and Cooling 

Load (kW.h)  

1409.564 1363.115 1316.665 

 

Table 7.9 Recommended CLO level for Occupants  

AC1 AC2 AC3 AC4 AC5 AC6 

1 0.75 1.25 1 0.75 1 
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 Summary: 

This chapter firstly applied the heating load and cooling load equations to represent 

the energy-saving objective functions of the BEMS and the method to evaluate 

adaptation behaviours for the occupants. The evaluation method forms the 

behavioural adaptation objective function. Then, these objective functions, together 

with the thermal comfort model (thermal comfort objective function) and optimal 

decision-making algorithms, are integrated into the E-component and A-component 

in the local agent and personal agents in the BEMS to complete these agents. The 

operation process including the learning process and the decision-making process for 

the local agent and personal agent in both single-occupancy offices and open-plan 

offices are developed. Case studies in the simulated single-occupancy offices and 

open-plan office prove the functionalities of the BEMS. By considering the behaviour 

adaptations, the multi-agent BEMS is able to make the desired optimal decisions to 

minimise the energy consumption while guaranteeing the thermal comfort feelings of 

the occupants. The performances of the BEMS are then further examined by using 

the climate data provided by a meteorological station. The outcomes indicate that the 

HVAC systems managed by the developed multi-agent BEMS equipped with thermal 

comfort models developed in Chapters 4 and 5 consumes 3% to 10% less energy than 

the ones guided by the fixed schedule management method in the simulated built 

environment. The personal thermal sensation model-based or group people’s thermal 

sensation-based BEMS also consume 2% to 7% less energy than the PMV index-

based BEMS does in the simulated environment.
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Chapter 8 : Conclusions and Future Work 

 Introduction 

This chapter presents the findings and conclusions drawn from this research, the aim 

of which is to develop a building energy management system that enables the energy 

consumption of an HVAC system to be reduced while meeting the occupants’ thermal 

comfort requirements. The BEMS realises an optimised control of an HVAC system 

by determining a temperature set point which considers occupants’ requirements and 

adaptive behaviours. It also contains an advisory function providing alternative 

behavioural adaptation suggestions to the occupants for the improvement of their 

thermal comfort. In order to hit its targets, the BEMS should have abilities to 1) Sense 

the existing environmental conditions in real-time; 2) Collect personal factors and 

occupants’ responses to the current thermal conditions: 3) Learn occupants’ thermal 

comfort preferences and identify their adaptive behaviour patterns; 4) Calculate the 

desired set points for the built environment and 5) Provide personalised suggestions 

to the occupants. To build a system with these abilities, the following research 

questions were set in Chapter 1.    

 How can the energy management system understand occupants’ real-time 

thermal comfort needs in a real building environment?  

 How can the energy management system further eliminate the energy wastage 

of the HVAC system by using information from the occupants and the 

environment?  

 How can the BEMS increase the thermal satisfaction level of occupants whilst 

avoiding energy wastage by improving the interaction between the buildings 

and the occupants?  

 How can an energy management system be developed that takes care of the 

operation of the HVAC system whilst simultaneously addressing the thermal 

comfort issues of all the occupants?  

In order to answer these questions, seven research objectives are set out in Chapter 1, 

and then being achieved in Chapter 2, Chapter 3, Chapter 4, Chapter 5, Chapter 6 and 

Chapter 7 respectively. By investigating these objectives, the achievements are 
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illustrated in the next section. Then the chapter summarises scientific Contributions 

to the Knowledge of BEMS Development. Contributions to theories are also 

illustrated. This chapter ends by discussing the potential directions for future research.     

 Achievement of the Objectives 

8.2.1 Achievement of Objective One  

The first objective is to develop the architecture and identify the key components, 

especially the software components, of the BEMS. The objective is mainly realised 

in Chapter 3. The literature review section in Chapter 2 indicates that the agent-based 

technologies need to be applied to develop the BEMS. Then the system architecture 

is developed following the process of developing a multi-agent system. The problem 

faced by the BEMS is decomposed into smaller ones. They are used to define the 

types and functions of the agents needed in the BEMS.  

By analysing the decomposed research problem, the BEMS is developed as a multi-

agent system comprised of local and personal agents. The review of previous agent-

based systems reveals that the BEMS system requires intelligent agents which are 

able to make their own decisions and act rationally. The Epistemic-Deontic-Axiologic 

(EDA) agent model is applied to guarantee the developed personal and local agents 

are rational agents. Structures of the personal agent and the local agent are defined by 

the EDA model. The functions of the E-component, D-component and A-component 

in personal and local agents are generated from the abilities needed by the personal 

agent and local agent to function in both the open-plan office scenario and single-

occupancy offices. The procedure of generating output information for every agent 

based on input data is also defined.   

Specifically, previous research did not provide the solution on how to build the A-

component in agents for evaluating the different actions plans stored in the D-

component in the BEMS. This research suggests that the evaluation abilities needed 

by the A-component in agents could be realised by a decision-making algorithm 

supported by the objective functions from control theory. The algorithm could also 

be supported by Condition-Action plans.  
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8.2.2 Achievement of Objective Two  

The second objective is developing a modelling method for the system to dynamically 

predict the personal thermal comfort level for each occupant. The objective is realised 

by the C-SVC modelling algorithm in Chapter 4. This research finds that the personal 

thermal sensation modelling problem can be regarded as a classification problem, so 

C-SVC algorithm is employed as an effective tool to generate models to solve the 

classification problem. By using the data collected in China, the developed personal 

thermal sensation models reach 89% prediction accuracy. For UK subjects, the 

models’ accuracy exceeds 85%. The performance of the models proves that the C-

SVC modelling method could be an effective algorithm to generate personal thermal 

sensation models by using data collected from built environments similar to those 

used in the experimental field study here.   

8.2.3 Achievement of Objective Three 

The third objective is finding a method to estimate the thermal sensation level of a 

group of occupants in the same built environment in real time. This objective is 

achieved in Chapter 5. Group-of-people-based thermal sensation models are 

developed to estimate the mean thermal sensation values of the occupants. Both the 

personal-thermal-sensation-model-based modelling method and the SVR method are 

selected to generate the group-of-people-based thermal sensation model. The 

validation results indicate that both of the modelling methods are able to generate 

people-based thermal sensation models from the data collected in China. The SVR 

method is used to generate the people-based thermal sensation model by using the 

data collected in the UK. The prediction outcomes indicate that the generated model 

is able to estimate the occupants’ average thermal sensation level. It could be used by 

an HVAC system to avoid unnecessary cooling and heating.  

8.2.4 Achievement of Objective Four 

The fourth objective is developing a method to numerically analyse and evaluate 

occupants’ behavioural adaptations. The objective is investigated in Chapter 7. Two 

algorithms are proposed to evaluate the behaviours. The first one measures the 

complexity of the behaviours in the suggestions. In general, the suggested behavioural 
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adaptations that require more actions to be performed have a higher complexity value 

than the ones with fewer actions. The second way to evaluate occupants’ behavioural 

adaptations is by applying the confidence of association rules to measure how likely 

it is that an occupant performs a behaviour when he/she feels uncomfortably hot or 

cold. These two types of measurement can be applied to objective functions to help 

the decision-making algorithm choose the best action plan.  

8.2.5 Achievement of Objective Five 

The fifth objective is developing optimal decision-making algorithms for the system 

to decide the set point for the HVAC system. The objective is realised in Chapter 6 

in which the settings of the HVAC system are found to be related to the occupants’ 

thermal preferences, the occupants’ adaptations and the energy consumption of the 

HVAC system. Choosing the action plan which includes the HVAC system’s set-

points and the occupants’ behavioural adaptations is a multi-objective decision-

making process. The process of making the decision can also be regarded as solving 

a multi-objective optimisation problem. Drawbacks of the previous solutions to the 

multi-objective optimisation problem are pointed out by a critical review. Based on 

the properties of the problem, the lexicographic, the ϵ-constraint and the grid search 

methods are selected to realise the multi-objective optimisation. It can be found that 

the decision-making algorithms developed by these methods overcome the drawbacks 

of the algorithms applied in the previous research.   

8.2.6 Achievement of Objective Six 

The sixth objective is developing an optimal decision-making algorithm for the 

system to provide personalised suggestions for the occupants. The decision-making 

algorithms to choose the appropriate suggestions are also proposed in Chapter 6. In 

detail, the decision-making process can be divided into two steps. In the first step, the 

lexicographic, the ϵ-constraint and the grid search methods can be applied to choose 

the most appropriate action plan for the occupants by considering the energy 

consumption, the occupants’ personal thermal preferences and the properties of their 

behaviours, such as their complexity. In the second step, the Condition-Action Rules 

are applied for the BEMS to select the appropriate way to present the system’s 

suggestions to the occupants.  



 

184 

 

8.2.7 Achievement of Objective Seven 

The seventh objective is integrating the developed models and decision-making 

algorithm together into the energy management system structure and evaluating its 

performance. This objective is realised in Chapter 7.  In the chapter, the developed 

personal thermal sensation models, group people-based thermal sensation models, the 

algorithm to evaluate behavioural adaptations, the heating and cooling load models 

and the decision-making algorithms are integrated together into the BEMS. The 

information and decision-making processes carried out by the local and personal 

agents are developed for both the open-plan and the single-occupancy office scenarios. 

Using the developed components and the planned operation process, the operations 

of the BEMS in both office scenarios are simulated. The BEMS targets making all 

occupants feel neutral in the built environment. Firstly, the detailed decision-making 

processes of the local and personal agents for the occupants in single-occupancy 

offices and an open-plan office are analysed. Then, the required heating and cooling 

loads of the BEMS in single-occupancy offices over one month are calculated. These 

loads are calculated based on the personal thermal sensation models of these 

occupants, the PMV index and the fixed schedule control method. The required 

heating and cooling loads of the BEMS in open-plan offices are also calculated. These 

calculations are based on the group-of-people-based thermal sensation model, the 

PMV index and the fixed schedule. The calculation results indicate that for simulated 

single-occupancy offices the BEMS supported by the developed personal thermal 

sensation models might save up to 10% of the energy compared to the system using 

the fixed schedule. In the simulated open-plan office, the BEMS with the group-of-

people-based thermal sensation model might save up to 7% of the energy compared 

to the system using the PMV index. These data indicate that the proposed BEMS has 

the ability to save energy while maintaining a comfortable thermal environment for 

occupants under the under the environmental conditions defined in this research 

which means this research achieves its aim.  
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 Scientific Contributions to the Knowledge of BEMS 

Development 

In this research, a number of technologies are newly applied to solve problems faced 

by the developer. Applications of these technologies contribute to the knowledge of 

BEMS development. These contributions are summarised as follows:    

 The personal thermal sensation modelling problem can be regarded as a 

classification problem. 

 The C-SVC algorithm can be used to tackle the personal thermal sensation 

modelling problem. 

 The SVR algorithm can be used to generate the group-of-people-based 

thermal sensation model.  

 The ability of the A-component to evaluate action plans in the EDA model 

can be realised by the decision-making algorithms supported by objective 

functions and Condition-Action Rules.  

 The lexicographic, the ϵ-constraint and grid search methods could work 

together to solve the multi-objective optimisation problem faced by the 

BEMS.  

 Confidence of association rules and the complexity of the actions can be used 

to numerically analyse the behavioural adaptations in the action plans. The 

outcomes of the analyses can be used as objective functions during the multi-

objective decision-making process.  

 Contributions to Theories  

8.4.1 BEMS based on Adaptive Comfort Theory  

This research indicates that adaptive comfort theory could provide guidelines for the 

design of the BEMS. Adaptive comfort theory points out that occupants will actively 

react to feelings of discomfort by making adaptations (Humphreys, 1997). The 

adaptive behaviours, such as changing the set point of the HVAC system, have effects 

on both energy consumption and thermal comfort. Therefore, by considering the 

occupants’ behavioural adaptations, the BEMS is able to reach the goals of energy-

saving and maintaining a comfortable environment.  
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This research further reveals that the adaptive comfort theory which defines 

occupants’ adaptations could be involved in three stages of BEMS’ operations. 

Correspondingly, relevant software components in the system should be orientated 

by adaptations to enable these operations. The three operation stages are the learning 

stage, the decision-making stage and the feedforward stage. In the learning stage, the 

agents in the BEMS are getting information from the environment and occupants and 

then processing it to generate the knowledge needed for the decision-making stage. 

For the EDA-model-based agent, the learning stage is mainly performed by the E-

component. Key knowledge stored in this component to support decision-making can 

be objective functions. Therefore, in order to utilise the occupants’ adaptations, in the 

learning stage, the BEMS should collect the information on occupants’ behaviours. 

Generated objective functions should be able to reflect the effects of different 

adaptive behaviours. This can be realised by introducing the different adaptive 

behaviours as variables in objective functions.    

In the decision-making stages, BEMS applies the knowledge learnt from the 

environment and occupants to make decisions on selecting appropriate adaptive 

behaviours and settings for the HVAC system. The behaviours are regarded as the 

direct ways to save energy and promote thermal comfort levels. In the BEMS here, 

the decision-making is realised by the A-component in agents.   

The last stage of operation backed up by the adaptive comfort theory is the 

feedforward stage. In this stage, the BEMS forwards information to the occupants. 

The information not only contains the current environmental information but also 

contains the decisions made by the system on behavioural adaptations. The 

information should be organised, then presented to the occupants. The information 

could be sent out by the human-machine interfaces.  

In general, the adaptive comfort theory not only helps the system find the optimum 

thermal conditions in a built environment, but also decides the best way to respond to 

the environment if necessary.   

8.4.2 The Proof of Successful Functioning of EDA Agent Model  

This research proves that following the EDA agent model from the social psychology 

theory is an effective way to build agents in a BEMS. Previous research only proposed 
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that the EDA model was a potential way to develop the agents without fully realising 

the agents in the BEMS. The performance of the agents developed in this research 

provides solid evidence that the social psychology theory could provide guidance on 

the development of rational agents in a BEMS. All components in the BEMS agents 

proposed in the thesis are developed based on the EDA model and the performance 

of the system in different types of built environment is discussed. Results indicate 

that, guided by the agent framework provided by the EDA agent, researchers are able 

to generate the rational agents needed by the BEMS.  

 

 Limitations and Future Work 

In this research, the simulated built environment has an HVAC system operating 

inside during working hours. This environment setting is from the air-conditioned 

environment where the field studies were carried out in the UK. The adaptive 

opportunities of the subjects in this research are limited by regulations from the 

building manager and the facilities in the building. 

More studies can be carried out based on the results from this research. The potential 

future research directions are listed as follows: 

 The future study could simulate other built environments such as the 

naturally-conditioned environment with central heating operating in winter 

but with no mechanical cooling in all other seasons. When the central heating 

is off, the BEMS system might still be able to provide suggestions to the 

occupants to guarantee their thermal comfort.   

 The future research could collect occupants’ behavioural adaptation data in 

other environments, which might allow the occupants to have more types of 

adaptive opportunities. Personalised conditioning systems could also be 

considered. In this case, the BEMS could provide more types of adaptation 

suggestions other than changing the set temperature of the HVAC system 

and/or changing clothing insulation levels.    

 The energy consumption models of a certain type of HVAC system can be 

used to replace the heating and cooling load models in this research. 
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Supported by these models, the exact energy consumption values can be 

outputted by the system. 

 Future studies could consider applying the BEMS proposed in this research in 

a building or block of buildings, which contain multiple offices. In these 

buildings, the renewable energy resources can be considered as a decision-

making factor to further reduce carbon emissions. 

 Future studies could also consider illumination comfort, acoustic comfort and 

air pollution as criteria when making decisions. This requires the researcher 

to find the appropriate objective functions to express the effects of these other 

forms of comfort.    
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Appendix A: General Questionnaire 

1. Could you please fill in your initials and current time? Please use the 24 

hour clock format for example (14:50). 

initials___________;  

Fill in time____:___ 

2. Activity Level (Please choose your current activity level. Please only 

choose one box.) 

   Seated (quiet, writing or reading)       

         Seated (typing)    

         Seated (filing)  

         Standing, relaxed 

 

3. Clothes (Please choose all the clothes you are currently wearing. Please 

choose all that apply. Please choose all the appropriate items.) 

 

Upper:  

Long underwear top (like thermals) 

T-shirt  

Short-sleeved shirt  

Long-sleeved shirt  

Long-sleeved sweatshirt   

Suit Jacket: thin    thick  

Sleeveless sweater vest: thin    thick  

Sweater: thin   thick 

Hat or Scarf  

Other:_________ 

Lower:  

Long underwear bottoms  

Thin trousers/leggings    

Normal trousers(like jeans) 

Thick trousers  

Shorts 

Walking shorts 

Sweatpants 

 

 

Other:_________ 

Dress and skirts:  

Skirt: thick   thin 

Light dress:  

no sleeves   short sleeves    long sleeves  

Thick (winter) dress: 

Footwear:  

Short / ankle socks  

Long socks (knee socks or longer) 

Stockings  

Shoes 
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no sleeves    short sleeves   long sleeves   

Other:_________ 

Boots   

Sandals/thongs 

Other:_________ 

4. In general, do you satisfy with the indoor environment you are in at this 

moment? 

Yes      No 

If the answer is No, please tell us which aspect/aspects you are not satisfy with 

(you may choose more than one aspect). 

Thermal Comfort     Illumination       Air Quality  

 

5. Current Thermal Feeling (Please choose your thermal sensation at the 

moment. Please choose the one that is most appropriate.)  

Cold    Cool     Slightly Cool    Neutral    Slightly Warm    Warm    Hot 

 

 

6. Previous thermal experience (Please tell us how many hours you have 

stayed in this environment). 

________hour(s) ________minute(s) 

 

7. Did you take any of these following actions in last 2 hours? If you did, 

please tell us the time of the action/actions in the 24 hour clock format for 

example (14:50). Please also brief a reason if the actions are not for 

improving thermal comfort. For example put the reason as 'feel thirsty' 

if drinking hot water is not for keeping warm.  
 

Clothing Level:  Add   ;                    Time_______; Reason_______; 

                            Remove   ;                Time_______; Reason_______; 

Drinking:   Hot drinking   ;                 Time_______; Reason_______; 

                    Cold Drinking   ;               Time_______; Reason_______; 

Air Conditioning/central heating:  

Turn Up (warmer) ;                           Time_______; Reason_______; 

Turn Down (cooler) ;                          Time_______; Reason_______;  

Portable Heaters: Start up   ;             Time_______; Reason_______; 

                                Turn off   ;             Time_______; Reason_______; 

Fans:                       Start up   ;            Time_______; Reason_______; 

                                 Turn off   ;           Time_______; Reason_______; 
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Windows:     Open   ;                     Time_______; Reason_______; 

                      Close   ;                     Time_______; Reason_______; 

Blinds:          Open   ;                     Time_______; Reason_______; 

                      Close   ;                     Time_______; Reason_______; 

Doors:           Open   ;                     Time_______; Reason_______; 

                       Close   ;                    Time_______; Reason_______; 

Others______;                               Time_______; Reason_______; 

   

8. How would you rate the ventilation within your area i.e. the perceived 

feeling of draught across your body? 

 

       Unacceptable - air speed is too high 

       Acceptable - air speed seems high   

       Acceptable – air speed seems just right  

       Acceptable - air speed seems low   

       Unacceptable – air speed is too low    

   

9. At this point of time, would you prefer to be (Please only choose one box.) 

          Cooler         The same as it is now           Warmer     

 

 

 

10. If you choose both 'acceptable- air speed seems just right' in question 8 

and ‘The same as it is now’ in question 9, please skip this question. At this 

point, if you want to improve your thermal comfort, please select one 

action you want to take most. Please be aware that these 

actions/instruments should be available to you. 

 Put on some clothes   Take off some clothes    

 Drink hot water           Drink cold water    

 Turn up the Air Conditioning/Central Heating Set Temperature (Warmer) 

 Turn down the Air Conditioning /Central Heating Set Temperature (Cooler)  

             Start up a portable heater or turn up the heater (warmer) 

 Start up a fan or turn up the fans (cooler) 
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             Open the Window   Close the Window    

             Open the Blinds      Close the Blinds 

             Open the Door        Close the Door 

             Others______;                               

 

11. If you choose both 'acceptable- air speed seems just right' in question 8 

and ‘The same as it is now’ in question 9, please skip this question. At this 

point, if you want to improve your thermal comfort, but all action(s) you 

can perform currently are not sufficient, please select the actions you 

want to take but are not available to you. 

Put on more clothes (more cloth is not available) 

Take off more clothes (cannot take off any more cloth) 

Turn up the Air Conditioning/central heating set Temperature (Warmer) 

Turn down the Air Conditioning/central heating set Temperature (Cooler)  

Turn on a portable heater to warm you up 

Turn on a fan to cool you down 

Open the window 

Other:_________ 

 

 

 

 

End of the Survey
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Appendix B: Activity Logger 

 

 

 

 

 

 

On Arrival Time:____________      Initials_____________       Date__________ 

 

Clothes (Please choose all the clothes you are currently wearing. Please choose all 

that apply. Please choose all the appropriate items.) 

Upper:  

Long underwear top (like thermals) 

T-shirt  

Short-sleeved shirt  

Long-sleeved shirt  

Long-sleeved sweatshirt   

Suit Jacket: thin    thick  

Sleeveless sweater vest: thin    thick  

Sweater: thin   thick 

Hat or Scarf  

Other:_________ 

Lower:  

Long underwear bottoms  

Thin trousers/leggings    

Normal trousers(like jeans) 

Thick trousers  

Shorts 

Walking shorts 

Sweatpants 

 

 

Other:_________ 

Dress and skirts:  

Skirt: thick   thin 

Light dress:  

no sleeves   short sleeves    long sleeves  

Thick (winter) dress: 

no sleeves    short sleeves   long sleeves   

Other:_________ 

Footwear:  

Short / ankle socks  

Long socks (knee socks or longer) 

Stockings  

Shoes 

Boots   

Sandals/thongs 

Other:_________ 
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9:00 am-9:59am   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open   Close   Not Available    ;  

Portable Heater(warmer): on    off    Not Available    ;  

Fan(cooler): on   off    Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

 

10:00 am-10:59am   I am not in           (Please  skip  this time slot if you take this box) fill in time____    
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 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open   Close   Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

 

11:00 am-11:59am   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
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12:00 pm-12:59pm   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open    Close    Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Windows: Open    Close   Not Available   ;Door: Open   Close   Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 
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Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

 

 1:00 pm-1:59pm   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open    Close    Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
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                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

 

 2:00 pm-2:59pm   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open    Close    Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 
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             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

 

 3:00 pm-3:59pm   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open    Close    Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 
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                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

 

4:00 pm-4:59pm   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open    Close    Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 
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                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 

             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

 

5:00 pm-5:59pm   I am not in           (Please  skip  this time slot if you take this box) fill in time____    

 Current Thermal Feeling: (Please only choose the one that is most appropriate.)  
             Cold     Cool    Slightly Cool    Neutral    Slightly Warm     Warm    Hot 

 Current Facilities Status.  
Windows: Open    Close   Not Available   ;Door: Open    Close    Not Available    ;  

Portable Heater(warmer): on    off    Not Available   ;  

Fan(cooler): on   off   Not Available     ;  

Air Conditioning Unit: on    off     Not Available    ;    

 At this point of time, would you prefer to be (Please only choose one box) 
                          Cooler    The same as it is now     Warmer     

 Did you take any of these following actions in last 1 hour? If you did, please tell us the 
time of the action/actions in the 24 hour clock format for example (14:50) and please 
also brief a reason. 

             Clothing Level: Add           ;                  Time_______; Reason_______; 

                                         Remove    ;                  Time_______; Reason_______; 

             Drinking:      Hot drinking     ;                Time_______; Reason_______; 

                                    Cold Drinking    ;              Time_______; Reason_______; 

             Air Conditioning/central heating:  

                                     Turn Up (warmer)       ;     Time_______; Reason_______; 

                                    Turn Down (cooler)      ;     Time_______; Reason_______;  

             Portable Heaters: Start up     ;                  Time_______; Reason_______; 

                                             Turn off    ;                  Time_______; Reason_______; 
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             Fans:                       Start up     ;                  Time_______; Reason_______; 

                                             Turn off     ;                 Time_______; Reason_______; 

             Windows:               Open     ;                       Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Blinds:                     Open     ;                      Time_______; Reason_______; 

                                              Close     ;                      Time_______; Reason_______; 

             Doors:                      Open   ;                        Time_______; Reason_______; 

                                              Close   ;                          Time_______; Reason_______; 

Leave time___________     End of the Survey  


