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ABSTRACT—Stephanie C. Herring, Andrew Hoell, Martin P. Hoerling, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

This fifth edition of explaining extreme events of the 
previous year (2015) from a climate perspective contin-
ues to provide evidence that climate change is altering 
some extreme event risk. Without exception, all the 
heat-related events studied in this year’s report were 
found to have been made more intense or likely due to 
human-induced climate change, and this was discernible 
even for those events strongly influenced by the 2015 El 
Niño. Furthermore, many papers in this year’s report 
demonstrate that attribution science is capable of separat-
ing the effects of natural drivers including the strong 2015 
El Niño from the influences of long-term human-induced 
climate change.  

Other event types investigated include cold winters, 
tropical cyclone activity, extreme sunshine in the United 
Kingdom, tidal flooding, precipitation, drought, reduced 
snowpack in the U.S. mountain west, arctic sea ice ex-
tent, and wildfires in Alaska. Two studies investigated 
extreme cold waves and monthly-mean cold conditions 
over eastern North America during 2015, and find these 
not to have been symptomatic of human-induced climate 
change. Instead, they find the cold conditions were caused 
primarily by internally generated natural variability. One 
of these studies shows winters are becoming warmer, less 
variable, with no increase in daily temperature extremes 
over the eastern United States. Tropical cyclone activity 
was extreme in 2015 in the western North Pacific (WNP) 
as measured by accumulated cyclone energy (ACE). In this 

report, a study finds that human-caused climate change 
largely increased the odds of this extreme cyclone activity 
season. The 2015 Alaska fire season burned the second 
largest number of acres since records began in 1940. 
Investigators find that human-induced climate change has 
increased the likelihood of a fire season of this severity.

Confidence in results and ability to quickly do an 
attribution analysis depend on the “three pillars” of 
event attribution: the quality of the observational record, 
the ability of models to simulate the event, and our 
understanding of the physical processes that drive the 
event and how they are being impacted by climate change. 
A result that does not find a role for climate change 
may be because one or more of these three elements is 
insufficient to draw a clear conclusion. As these pillars 
are strengthened for different event types, confidence in 
the presence and absence of a climate change influence 
will increase.

This year researchers also link how changes in extreme 
event risk impact human health and discomfort during 
heat waves, specifically by looking at the role of climate 
change on the wet bulb globe temperature during a 
deadly heat wave in Egypt. This report reflects a growing 
interest within the attribution community to connect 
attribution science to societal impacts to inform risk 
management through “impact attribution.” Many will 
watch with great interest as this area of research evolves 
in the coming years. 
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12. THE 2015 EUROPEAN HEAT WAVE

Buwen Dong, Rowan Sutton, Len ShaffRey, anD LauRa wiLcox 

Observations. An extreme summer heat wave set 
temperature records across Europe during June and 
July. On 1 July, London experienced its hottest July 
maximum temperature on record: 36.7°C. Paris 
recorded its second hottest day ever on 2 July, with a 
high temperature of 39.7°C, and Berlin experienced 
its highest temperature on record, 37.9°C, on 4 July 
(BBC News 1 July 2015; Liberto 2015). Averaged 
over central Europe (Fig. 12.1a), the seasonal mean 
(June–August) surface air temperature (SAT) 
anomaly was 2.40°C above the 1964–93 mean: 3.65 
standard deviations of the interannual variability. 
This magnitude of warming is comparable with 
previous hot summers in Europe, such as 2003 (e.g., 
Schaer et al. 2004; Christidis et al. 2015) and 2010 
(e.g., Barriopedro et al. 2011; Otto et al. 2012) when 
summer mean SAT anomalies over the same region 
were 2.38°C and 2.42°C (3.63 and 3.68 standard 
deviations), respectively. In addition to the very hot 
mean SAT, records over central Europe were set for 
some temperature extremes: the annual hottest day 
temperature (TXx), seasonal mean daily maximum 
temperature (Tmax), and diurnal temperature range 
(DTR) were 4.04°, 3.04°, and 1.53°C above the 1964–93 
mean. The 2015 summer extreme hot temperature 
occurred in the context of a decade of summer 
warming and increases in hot temperature extremes, 
and in fact, 2015 was the driest and the second hottest 
summer in recent decades (Figs. 12.1a,b). 

The observed spatial patterns of 2015 anomalies 
in SAT and temperature extremes, relative to 
the 1964–93 mean, indicate coherent positive 
anomalies over central Europe, but weak negative 
anomalies over northern Europe (Figs. 12.1c–h). 
These temperature anomalies are associated with an 

anomalous anticyclonic circulation (not shown) and 
reduced precipitation over central Europe and a weak 
increase over northern Europe (Supplemental Figs. 
S12.1b,g). Importantly, the magnitude of changes in 
Tmax and TXx is about twice that in seasonal mean 
daily minimum temperature (Tmin) and the annual 
hottest night temperature (TNx), suggesting an 
important role of land–atmosphere–cloud feedbacks 
associated with the precipitation deficit over central 
Europe in summer. This results in a reduction of 
evaporation and cloud cover associated with soil 
drying, enhancing Tmax and TXx more than Tmin 
and TNx through increased daytime downward 
shortwave radiation and decreased daytime upward 
latent heat f lux (Vautard et al. 2007; Fischer and 
Schär 2010; Mueller and Seneviratne 2012; Boé and 
Terray 2014; Miralles et al. 2014; Perkins 2015; Dong 
et al. 2016). Precipitation anomalies in the winter 
and spring seasons before summer 2015 were much 
smaller than in summer over central Europe (not 
shown). This implies the land–atmosphere–cloud 
feedback on the 2015 European heat wave was mainly 
through simultaneous precipitation deficit rather 
than a presummer deficit over central Europe.

What caused these anomalous summer conditions 
over central Europe in 2015? Relative to the 1964–93, 
warm sea surface temperatures (SSTs) were present 
in many regions (Fig. 12.1i), with a prominent warm 
anomaly (>1.2°C) in the tropical Pacific during the 
developing phase of the exceptionally strong 2015/16 
El Niño (WMO 2016). There were also SST anomalies 
along the Gulf Stream extension in the North Atlantic 
with a cooling to the north and warming to the 
south. Associated with this feature is an enhanced 
meridional SST gradient along the Gulf Stream 
extension. This might have favored a northward 
shift of the North Atlantic summer storm track 
(e.g., Ogawa et al. 2012; Dong et al. 2013a and 2013b; 
Duchez et al. 2016), which would result in reduced 
precipitation in summer 2015 over central Europe 
(Supplemental Fig. S12.1g). The large warming in the 

A heat wave swept across central Europe in summer 2015. Model experiments suggest that anthropogenic 
forcings were a major factor in setting the conditions for the development of the 2015 heat wave.

AFFILIATIONS: Dong, Sutton, ShaffRey, anD wiLcox—
National Centre for Atmospheric Science, Department of 
Meteorology, University of Reading, Reading, United Kingdom

DOI:10.1175/BAMS-D-16-0140.1

A supplement to this article is available online (10.1175 
/BAMS-D-16-0140.2)
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Arctic might also be a factor for the 2015 summer heat 
wave (Coumou et al. 2015).  

Climate model experiments. Relative to 1964–93, 
there were significant increases in greenhouse gas 
(GHG) concentrations (e.g., WMO 2015) and also 

significant changes in anthropogenic aerosol (AA) 
precursor emissions with reductions from Europe and 
North America and increases from Asia (Fig. 12.1j;  
Lamarque et al. 2010 and 2011). A set of climate model 
experiments has been carried out to identify the 
relative roles of changes in SST/sea ice extent (SIE) and 

Fig. 12.1. (a),(b) Time series and (c)–(h) spatial patterns of summer or annual anomalies relative to 1964–93 
[black bar in (a)] climatology. (a),(b) Time series averaged over central Europe [45°–55°N, 0°–35°E, land only, 
blue box in (c)–(h)]. (c)–(h) Spatial patterns of 2015 anomalies in summer mean SAT, TXx, TNx, summer mean 
Tmax, Tmin, and DTR from the gridded E-OBS dataset (version 12.0; Haylock et al. 2008). (i) Spatial patterns 
of 2015 summer SST anomalies relative to 1964–93. (j) Changes in annual mean sulphur dioxide emissions (g 
m−2  yr−1) in 2015 relative to 1964–93. The units are °C for temperatures and mm day−1 for precipitation (Pr).
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anthropogenic forcings (GHG and AA) in shaping 
the 2015 European summer heat wave. In this study, 
we do not address the anthropogenic contribution to 
SST/SIE changes, but rather consider these changes as 
an independent forcing factor. We use the atmosphere 
configuration of the Met Office Hadley Centre Global 
Environment Model version 3 (HadGEM3-A; Hewitt 
et al. 2011), with a resolution of 1.875° longitude by 
1.25° latitude and 85 vertical levels. The CONTROL 
experiment is performed for the period 1964–93. 
Two other experiments, 2015ALL and 2015SST, are 
performed for the period November 2014 to October 
2015, use 2015 SST/SIE boundary conditions, but they 
differ in the specification of GHG and AA forcings 
(Table 12.1). All experiments are 27 years long, with 
only the last 25 years used for analysis (as an ensemble 
of 25 one-year members).

The CONTROL experiment reproduces both the 
mean and interannual variability of summer SAT 
over central Europe, despite the fact that there is no 
interannual variability in SST/SIE, GHG, and AA 
(Supplemental Fig. S12.1a). However, there are biases 
in the simulated seasonal mean precipitation and some 
temperature extremes in CONTROL (Supplemental 
Figs. S12.1b–e). Precipitation is overestimated by 0.23 
mm day−1 (~10% larger than observations), Tmax is 
underestimated by 1.5°C, and Tmin is overestimated 
by 1.5°C. As a result, seasonal mean SAT is similar 
to observations, but DTR is underestimated by about 
3.0°C in CONTROL (a common bias in AGCMs and 
RGCMs; e.g., Kysely and Plavcova 2012; Cattiaux et 
al. 2015).  The underestimation of Tmax, TXx, and 
DTR, and overestimation of Tmin and TNx (not 
shown) imply that the cloud cover over the region in 
the model might be overestimated, as suggested by 
the overestimation of area-averaged precipitation. 
Despite the mean biases in the temperature extremes, 

their interannual variability in the CONTROL 
experiment is in broad agreement with observations 
(Supplemental Figs. S12.1a–e). 

In response to all forcing changes (2015ALL), the 
area-averaged summer warming over central Europe 
is 1.6°C, compared to 2.4°C in observations (Fig. 
12.2a). This implies that about 2/3 of the observed 
summer warming might have been anticipated as a 
mean response to SST/SIE and anthropogenic forcing 
changes.  Spatial patterns of changes in SAT and tem-
perature extremes show some differences to observed 
changes (Figs. 12.1, and 12.2) with the large tempera-
ture changes in the model displaced eastward to east-
ern Europe. The model mean response shows warm-
ing and an increase in temperature extremes over 
both central and northern Europe (Figs. 12.2c–h), but 
does not capture the observed precipitation reduction 
over central Europe (not shown). Therefore, it is likely 
that the model is not capturing cloud and land surface 
feedbacks induced by precipitation changes, and thus 
underestimates the observed surface warming and 
changes in Tmax and TXx over central Europe by 
about 1/3, while simulated changes in Tmin and TNx 
are similar in magnitude to observations (Fig. 12.2a).  
The SST/SIE changes have a relatively weak effect 
on SAT and hot extremes but lead to a considerable 
increase in Tmin and TNx, likely related in part to 
water vapor feedback because increased water vapor 
in the atmosphere enhances the downward longwave 
radiation, which has a large impact on night tempera-
tures (Dai et al. 1999; Dong et al. 2016). Quantitatively, 
SST/SIE changes explain 22.5% of the area-averaged 
central European warming signal in the model, with 
the remaining 77.5% explained by GHG and AA 
changes with an assumption that the responses to dif-
ferent forcings add linearly (Fig. 12.2b), indicating a 
dominant role for the direct impact of anthropogenic 

Table 12.1. Summary of numerical experiments.

Experiments Boundary conditions

CONTROL

Forced with monthly mean climatological sea surface temperature (SST) and sea ice extent (SIE) aver-
aged over the period of 1964 to 1993 using HadISST data (Rayner et al. 2003), with greenhouse gas 
(GHG) concentrations averaged over the same period, and anthropogenic aerosol (AA) precursor 
emissions averaged over the period of 1970 to 1993 (Lamarque et al. 2010).

2015ALL
Forced with monthly mean SST and SIE from November 2014 to October 2015 using HadISST data, 
with GHG concentrations in 2014 (WMO 2015), and AA precursor emissions for 2015 from RCP4.5 
scenario (Lamarque et al. 2011).

2015SST As 2015ALL, but with GHG concentrations and AA precursor emissions the same as in CONTROL.
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forcings in changes of summer SAT and temperature 
extremes in the model mean response (Fig. 12.2b; 
Supplemental Fig. S12.2).

The various model experiments exhibit substantial 
internal variability in simulated precipitation and 
temperature extremes (Supplemental Fig. S12.1). One 
particular year in 2015ALL exhibits a decrease (rela-
tive to CONTROL) of the area-averaged precipitation 
that is as large as the observed anomaly (Supplemental 
Fig. S12.1b). The magnitudes, relative to CONTROL, 
of the area-averaged summer SAT and temperature 
extremes in this driest year are very close to the 
observed anomalies (Supplemental Fig. S12.1f). Fur-
thermore, the spatial patterns of simulated changes in 
SAT and precipitation also show good agreement with 

the observed patterns despite the eastward extension 
of large temperature anomalies in the simulation 
(Supplemental Figs. S12.1h,i). Interestingly, there are 
no such years in either the CONTROL or 2015SST 
simulation. This suggests that changes in SST/SIE 
and anthropogenic forcings set preconditions for an 
extremely dry year, such as summer 2015, to occur 
in the model simulation. The inability of the model 
to reproduce observed precipitation anomalies in the 
mean response, and the good agreement of changes 
in one particular year with observed anomalies in 
response to changes in all forcings, suggests that 
internal atmospheric variability might have played a 
significant role for the reduction in precipitation, and 
hence the severity of the 2015 European summer heat 

Fig. 12.2. (a) Observed and simulated 2015 anomalies for SAT, Pr (mm day−1), Tmax, Tmin, DTR, TXx, and 
TNx averaged over central Europe (land only) in response to changes in all forcings (2015ALL-CONTROL). 
Colored bars indicate central estimates and whiskers show the 90% confidence intervals based on a two-tailed 
Student’s t-test. (b) Model responses to different forcings. SST and SIE: Response to changes in SST/SIE 
(2015SST-CONTROL); GHG and AA: Response to changes in anthropogenic forcings (2015ALL–2015SST). 
(c)–(h) Spatial patterns of changes in temperature and temperature extremes (SAT, TXx, TNx, Tmax, Tmin, 
and  DTR) in response to all forcings (2015ALL-CONTROL). Only changes that are statistically significant at 
the 90% confidence level are plotted in (c)–(h). The unit is °C.  
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wave. Specifically, our simulations suggest internal 
variability contributed about 1/3 of the observed 
summer warming and increases in hot temperature 
extremes over central Europe, in line with attribu-
tions of the severity of the 2010 Russian heat wave 
(e.g., Dole et al. 2011; Otto et al. 2012). However, it 
is important to recognize that the quantitative par-
titioning of causes is potentially sensitive to model 
biases, such as the mean wet bias discussed earlier.

Conclusions. Summer 2015 was marked by hot and 
dry conditions over central Europe and significant 
increases in temperature extremes. Model experi-
ments indicate that high temperatures were caused 
by a combination of forced responses and internal 
atmospheric variability. Model simulations suggest 
that changes in SST/SIE and anthropogenic forcings 
explain about 2/3 (1.6°C) of the observed warming 
(2.4°C) and changes in hot temperature extremes 
over central Europe relative to 1964–93. Interestingly, 
when comparing 2015SST with 2015ALL simulations, 
the results indicate that the impact of anthropogenic 
forcings plays the dominant role. About 1/3 (0.8°C) 
of the observed summer mean warming and changes 
in hot extremes is not explained by the model mean 
response and consequently may have resulted from 
internal variability, principally through physical pro-
cesses associated with precipitation deficits. Thus, our 
results indicate that anthropogenic forcings set the 
conditions for the development of the 2015 heat wave 
in central Europe, but that internal variability was an 
important factor in explaining its extreme character.

ACKNOWLEDGEMENTS.  This work was 
supported by EUCLEIA project funded by the Eu-
ropean Union’s Seventh Framework Programme 
[FP7/2007-2013] under Grant Agreement No. 607085 
and by the U.K.-China Research and Innovation 
Partnership Fund through the Met Office Climate 
Science for Service Partnership China (CSSP China)  
as part of the Newton Fund. Authors are supported 
by the U.K. National Centre for Atmospheric Sci-
ence–Climate at the University of Reading. Had-
ISST and E-OBS gridded datasets are available from 
www.metoffice.gov.uk/hadobs/ and www.ecad.eu 
/download/ensembles/ensembles.php.

Barriopedro, D., E. M. Fischer, J. Lutenbacher, R. M. 
Trigo, and R. Garcia-Herrera, 2011: The hot summer 
of 2010: Redrawing the temperature record map of 
Europe. Science, 332, 220–224.

BBC News, 2015: Hottest July day ever recorded in 
UK. BBC, 1 July 2015. [Available online at www.bbc 
.co.uk/news/uk-england-33324881.]

Boé, J., and L. Terray, 2014: Land–sea contrast, soil-
atmosphere and cloud-temperature interactions: 
interplays and roles in future summer European 
climate change. Climate Dyn., 42, 683–699.

Cattiaux, J., H. Douville, R. Schoetter, S. Parey, and 
P. Yiou, 2015: Projected increase in diurnal and 
interdiurnal variations of European summer 
temperatures. Geophys. Res. Lett., 42, 899–907, 
doi:10.1002/2014GL062531.

Christidis, N., G. S. Jones, and P. A. Stott, 2015: 
Dramatically increasing chance of extremely hot 
summers since the 2003 European heatwave. Nat. 
Climate Change, 5, 46–50.

Coumou, D., J. Lehmann, and J. Beckmann, 2015: The 
weakening summer circulation in the Northern 
Hemisphere mid-latitudes. Science, 348, 324–327.

Dai, A., K. E. Trenberth, and T.R. Karl, 1999: Effects 
of clouds, soil moisture, precipitation, and water 
vapor on diurnal temperature range. J. Climate, 12, 
2451–2473.

Dole, R., and Coauthors, 2011: Was there a basis for 
anticipating the 2010 Russian heat wave? Geophys. 
Res. Lett., 38, L06702, doi:10.1029/2010GL046582.

Dong, B., R. T. Sutton, T. Woollings, and K. Hodges, 
2013a: Variability of the North Atlantic summer 
stormtrack: Mechanisms and impacts. Environ. Res. 
Lett., 8, 034037, doi:10.1088/1748-9326/8/3/034037.

Dong, B.-W., R. T. Sutton, and T. Woollings, 2013b: The 
extreme European summer 2012 [in “Explaining 
Extreme Events of 2012 from a Climate Perspective”]. 
Bull. Amer. Meteor. Soc., 94 (9), S28–S32.

Dong, B.-W., R. T. Sutton, and L. Shaffrey, 2016: 
Understanding the rapid summer warming and 
changes in temperature extremes since the mid-
1990s over Western Europe. Climate Dyn., open 
access, doi:10.1007/s00382-016-3158-8.

Duchez, A., and Coauthors, 2016: Drivers of 
exceptionally cold North Atlantic Ocean 
temperatures and their link to the 2015 European 
heat wave. Environ. Res. Lett., 11, 074004, 
doi:10.1088/1748-9326/11/7/074004.

REFERENCES



S62 DECEMBER 2016|

Fischer, E. M., and C. Schär, 2010: Consistent 
geographical patterns of changes in high-impact 
European heatwaves. Nat. Geosci., 3, 398–403, 
doi:10.1038/ngeo866.

Haylock, M. R., N. Hofstra, A. M. G. Klein Tank, E. 
J. Klok, P. D. Jones, and M. New, 2008: A Europe-
an daily high-resolution gridded dataset of surface 
temperature and precipitation for 1950–2006. J. Geo-
phys. Res., 113, D20119, doi:10.1029/2008JD010201.

Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Har-
ris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. 
Hunke, 2011: Design and implementation of the in-
frastructure of HadGEM3: The next-generation Met 
Office climate modelling system. Geosci. Model Dev., 
4, 223–253, doi:10.5194/gmd-4-223-2011.

Kysely, J., and E. Plavcova, 2012: Biases in the diurnal 
temperature range in Central Europe in an ensemble 
of regional climate models and their possible causes. 
Climate Dyn., 39, 1275–1286, doi:10.1007/s00382 
-011-1200-4.

Lamarque, J.-F., and Coauthors, 2010: Historical 
(1850–2000) gridded anthropogenic and biomass 
burning emissions of reactive gases and aerosols: 
Methodology and application. Atmos. Chem. Phys., 
10, 7017–7039, doi:10.5194/acp-10-7017-2010.

Lamarque, J.-F., and Coauthors, 2011: Global and re-
gional evolution of short-lived radiatively-active 
gases and aerosols in the Representative Concen-
tration Pathways. Climatic Change, 109, 191–212, 
doi:10.1007/s10584-011-0155-0.

Liberto, T. D., 2015: Summer heat wave arrives in 
Europe. Climate.gov, 14 July 2015. [Available online 
at www.climate.gov/news-features/event-tracker 
/summer-heat-wave-arrives-europe.]

Miralles, D. G., A. J. Teuling, C. C. van Heerwaarden, 
and J. V. G. de Arellano, 2014: Mega-heatwave 
temperatures due to combined soil desiccation and 
atmospheric heat accumulation. Nat. Geosci., 7, 
345–349.

Mueller, B., and S. I. Seneviratne, 2012: Hot days 
induced by precipitation deficits at the global scale. 
Proc. Natl. Acad. Sci. USA, 109, 12 398–12 403.

Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, 
and A. Kuwano-Yoshida, 2012: Dependence of the 
climatological axial latitudes of the tropospheric 
westerlies and storm tracks on the latitude of an 
extratropical oceanic front. Geophys. Res. Lett., 39, 
L05804, doi:10.1029/2011GL049922.

Otto, F. E. L., N. Massey, G. J. van Oldenborgh, 
R. G. Jones, and M. R. Allen, 2012: Reconciling 
two approaches to attribution of the 2010 Rus-
sian heat wave. Geophys. Res. Lett., 39, L04702, 
doi:10.1029/2011GL050422.

Perkins, S.E., 2015: A review on the scientific un-
derstanding of heatwaves—Their measurement, 
driving mechanisms, and changes at the global 
scale. Atmos. Res., 164, 242–267, doi:10.1016/j.at-
mosres.2015.05.014.

Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Fol-
land, L. V. Alexander, D. P. Rowell, E. C. Kent, and 
A. Kaplan, 2003: Global analyses of sea surface tem-
perature, sea ice, and night marine air temperature 
since the late nineteenth century. J. Geophys. Res., 
108, 4407, doi:10.1029/2002JD002670.

Schaer, C., P. L. Vidale, D. Luethi, C. Frei, C. Haeberli, 
M. A. Liniger and C. Appenzeller, 2004: The role 
of increasing temperature variability in European 
summer heatwaves. Nature, 427, 332–336.

Vautard, R., and Coauthors, 2007: Summertime Euro-
pean heat and drought waves induced by wintertime 
Mediterranean rainfall deficit. Geophys. Res. Lett., 
34, L07711, doi:10.1029/2006GL028001.

WMO, 2015: The state of greenhouse gases in the 
atmosphere based on global observations through 
2014. WMO Greenhouse Gas Bulletin, No. 11, 4 pp. 
[Available online at www.wmo.int/pages/prog/arep 
/gaw/ghg/GHGbulletin.html.]

WMO, 2016: Exceptionally strong El Niño has passed 
its peak, but impacts continue. WMO Press Re-
lease 3, 18 February 2016. [Available online at www 
.wmo.int/media/content/exceptional ly-strong 
-el-ni%C3%B1o-has-passed-its-peak-impacts 
-continue.]



S142 DECEMBER 2016|

Table 28.1. Summary of Results

ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Global Temperature (Ch. 2)

South India & Sri Lanka (Ch. 2)

Central Europe (Ch. 11)

Europe (Ch. 12)

Ethiopia and Southern Africa (Ch. 15)

N.W. China (Ch. 19)

W. China (Ch. 20)

Japan (Ch. 21)

Indonesia (Ch. 22)

S. Australia (Ch. 23)

Australia (Ch. 24)

 Central Equitorial Pacific (Ch. 2) Heat

Ch. 2: CMIP5 modeling

Ch. 11: Observations; weather@home modeling

Ch. 12: HadGEM3-A modeling

Ch. 15: CMIP5 modeling

Ch. 19: CMIP5 modeling with ROF; FAR 

Ch. 20: CMIP5 modeling with ROF; FAR 

Ch. 21: MIROC5-AGCM modeling

Ch. 22: Observations; CMIP5 modeling

Ch. 23: weather@home modeling; FAR

Ch. 24: BoM seasonal forecast attribution system and seasonal forecasts

12

Cold Northeastern U.S. (Ch. 7)
Mid-South Atlantic U.S. (Ch. 7)

N. America (Ch. 8)
Cold

Ch. 7: Observations; CMIP5 modeling
Ch. 8: AMIP (IFS model) modeling

3

Heat & 
Humidity

Egypt (Ch. 14)
India & Pakistan (Ch. 16)

Heat &  
Humidity

Ch. 14: weather@home modeling

Ch. 16: Non-stationary EV theory; C20C+ Attribution Subproject
2

Dryness
Indonesia (Ch. 22)

Tasmania (Ch. 25)
Dryness

Ch. 22: Observations; CMIP5 modeling

Ch. 25: Observations; Modeling with CMIP5 and weather@home
2

Heavy 
Precipitation China (Ch. 18)

Nigeria (Ch. 13)

India (Ch. 17)
Heavy 

Precipitation

Ch. 13: Observations; Modeling with CAM5.1 and MIROC5

Ch. 17: Observations; Modeling with weather@home, EC-Earth and CMIP5

Ch. 18: HadGEM3-A-N216 modeling; FAR

3

Sunshine United Kingdom (Ch. 10) Sunshine
Ch. 10: Hadley Centre event attribution system built on the high-resolution version

of HadGEM3-A
1

Drought
Canada (Ch. 9)

Ethiopia and Southern Africa (Ch. 15)
Drought

Ch. 9: Observations; CMIP5 modeling; Trend and FAR analyses

Ch. 15: CMIP5 modeling, land surface model simulations, and statistical analyses
2

Tropical 
Cyclones Western North Pacific (Ch. 26) Tropical  

Cyclones Ch. 26: GFDL FLOR modeling; FAR 1

Wildfires Alaska (Ch. 4) Wildfires Ch. 4: WRF-ARW optimized for Alaska with metric of fire risk (BUI) to calculate FAR 1

Sea Ice 
Extent Arctic (Ch. 27) Sea Ice 

Extent Ch. 27: OGCM modeling 1

HigH Tide 
Floods

souTHeasTern u.s. (Ch. 6) HigH Tide  
Floods

Ch. 6: Tide-gauge daTa; Time-dependenT eV sTaTisTical model 1

snowpack 
drougHT

wasHingTon u.s. (Ch. 5) snowpack  
drougHT

Ch. 5: obserVaTions; cesm1 modeling 1

ToTal 23 2 5 30



S143DECEMBER 2016AMERICAN METEOROLOGICAL SOCIETY |

Table 28.1. Summary of Results

ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Global Temperature (Ch. 2)

South India & Sri Lanka (Ch. 2)

Central Europe (Ch. 11)

Europe (Ch. 12)

Ethiopia and Southern Africa (Ch. 15)

N.W. China (Ch. 19)

W. China (Ch. 20)

Japan (Ch. 21)

Indonesia (Ch. 22)

S. Australia (Ch. 23)

Australia (Ch. 24)

 Central Equitorial Pacific (Ch. 2) Heat

Ch. 2: CMIP5 modeling

Ch. 11: Observations; weather@home modeling

Ch. 12: HadGEM3-A modeling

Ch. 15: CMIP5 modeling

Ch. 19: CMIP5 modeling with ROF; FAR 

Ch. 20: CMIP5 modeling with ROF; FAR 

Ch. 21: MIROC5-AGCM modeling

Ch. 22: Observations; CMIP5 modeling

Ch. 23: weather@home modeling; FAR

Ch. 24: BoM seasonal forecast attribution system and seasonal forecasts

12

Cold Northeastern U.S. (Ch. 7)
Mid-South Atlantic U.S. (Ch. 7)

N. America (Ch. 8)
Cold

Ch. 7: Observations; CMIP5 modeling
Ch. 8: AMIP (IFS model) modeling

3

Heat & 
Humidity

Egypt (Ch. 14)
India & Pakistan (Ch. 16)

Heat &  
Humidity

Ch. 14: weather@home modeling

Ch. 16: Non-stationary EV theory; C20C+ Attribution Subproject
2

Dryness
Indonesia (Ch. 22)

Tasmania (Ch. 25)
Dryness

Ch. 22: Observations; CMIP5 modeling

Ch. 25: Observations; Modeling with CMIP5 and weather@home
2

Heavy 
Precipitation China (Ch. 18)

Nigeria (Ch. 13)

India (Ch. 17)
Heavy 

Precipitation

Ch. 13: Observations; Modeling with CAM5.1 and MIROC5

Ch. 17: Observations; Modeling with weather@home, EC-Earth and CMIP5

Ch. 18: HadGEM3-A-N216 modeling; FAR

3

Sunshine United Kingdom (Ch. 10) Sunshine
Ch. 10: Hadley Centre event attribution system built on the high-resolution version

of HadGEM3-A
1

Drought
Canada (Ch. 9)

Ethiopia and Southern Africa (Ch. 15)
Drought

Ch. 9: Observations; CMIP5 modeling; Trend and FAR analyses

Ch. 15: CMIP5 modeling, land surface model simulations, and statistical analyses
2

Tropical 
Cyclones Western North Pacific (Ch. 26) Tropical  

Cyclones Ch. 26: GFDL FLOR modeling; FAR 1

Wildfires Alaska (Ch. 4) Wildfires Ch. 4: WRF-ARW optimized for Alaska with metric of fire risk (BUI) to calculate FAR 1

Sea Ice 
Extent Arctic (Ch. 27) Sea Ice 

Extent Ch. 27: OGCM modeling 1

HigH Tide 
Floods

souTHeasTern u.s. (Ch. 6) HigH Tide  
Floods

Ch. 6: Tide-gauge daTa; Time-dependenT eV sTaTisTical model 1

snowpack 
drougHT

wasHingTon u.s. (Ch. 5) snowpack  
drougHT

Ch. 5: obserVaTions; cesm1 modeling 1

ToTal 23 2 5 30

GFDL FLOR: Geophysical Fluid Dynamics Laboratory Forecast version 
Low Ocean Resolution

GhCN: Global Historical Climatology Network

IFS: Integrated Forecast System

MIROC5–AGCM: Model for Interdisciplinary Research on Climate–
Atmospheric General Circulation Model

OGCM: Ocean General Circulation Model

ROF: Regularized Optimal Fingerprinting

weather@home: http:www.climateprediction.net/weatherathome

WRF-ARW: Advanced Research (ARW) version of the Weather 
Research and Forecasting (WRF) model

ACRONYMS:
AMIP: Atmospheric Model Intercomparison Project

BOM: Bureau of Meteorology, Australia

BUI: Buildup Index

CAM: Community Atmosphere Model, http:www.cesm.ucar.edu

CESM: Community Earth System Model

CMIP: Coupled Model Intercomparison Project 

FAR: Fraction of Attributable Risk

EC-EARTh: https://verc.enes.org/

EV: Extreme Value
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