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Abstract 

Interpretations of high-resolution proxy datasets from stalagmites require support from long-

term cave monitoring data and quantified changes in sample growth rate. One cave site for 

which the modern climate signal transfer systematics are relatively well characterised by cave 

monitoring is New St Michael’s Cave, Gibraltar. This site provides a rare opportunity to 

reconstruct modern calcite growth, to link growth with the cave environment and local 

climate, and to test the sufficiency of existing growth rate theory on monthly to inter-annual 

timescales. Here, we use a numerical time-series growth rate model, driven by cave 

monitoring and local meteorological data, and the results of an experimental investigation 

into variation in dripwater film thickness as a function of stalagmite apex morphology to 

reconstruct the modern growth (AD 1951-2004) of ‘Gib04a’, a stalagmite retrieved from 

New St Michael’s Cave. Our experimental measurements demonstrate that dripwater film 

thickness decreases linearly with increasing stalagmite curvature and that the presence of 

millimetre-scale surface microtopography reduces film thickness by an order of magnitude. 

We identified changes in growth laminae curvature from a Gib04a cut section to determine 

film thickness variability through time and combined this with estimated dripwater [Ca
2+

] and 

cave air pCO2 seasonality to drive the model. Our reconstruction exhibits strong seasonality 

and tracks variability in calcite [Sr
2+

], a trace metal whose incorporation into calcite is 

partially growth rate-controlled. Reconstructed growth also shows co-variation with seasonal 

changes in calcite fabric, with high growth corresponding to a greater density of calcite grain 

boundaries. We also link secular trends in karst recharge, film thickness and Gib04a growth, 

and assess the overall sensitivity of vertical growth rate to film thickness variability. This 

approach could be used to characterise the growth of other samples retrieved from well-

monitored cave systems and may prove particularly useful in quantifying seasonal bias in 

geochemical proxy datasets, facilitating greater robustness of palaeoclimate reconstructions. 

Keywords: stalagmite, growth rate, analogue experiment, palaeoclimate  
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1. Introduction 

High-resolution, precisely-dated, multiproxy geochemical records of late Quaternary climate 

change are frequently obtained from stalagmites, particularly in low- and mid-latitude regions 

where few alternative proxy archives exist (Fairchild et al., 2006). Cylindrical stalagmites 

that have undergone uniform growth are most often sampled for such research, and many 

stalagmite records benefit from robust chronologies based on petrographic or geochemical 

annual laminae (Baker et al., 2008). The acquisition of multi-annual cave monitoring datasets 

is a critical prerequisite for palaeoclimate reconstruction using speleothems (e.g., Mattey et 

al., 2008; Spötl et al., 2005). 

Existing empirical relationships between cave environmental parameters, such as cave 

atmosphere temperature and pCO2 (CO2 partial pressure), and stalagmite growth rate appear 

robust (Baker et al., 1998; Baldini et al., 2008; Genty et al., 2001) and recent studies have 

attempted to quantify the effects of cave processes, such as ventilation, on stalagmite growth 

and net geochemical proxy records (Sherwin and Baldini, 2011; Wong et al., 2011). Previous 

speleothem growth studies include modelled spatial variability based on ‘snapshot’ cave 

atmosphere CO2 concentration maps (Baldini et al., 2006b; Whitaker et al., 2009) and 

comparisons of modelled and actual growth rates. Such studies have compared average 

values (Baker and Smart, 1995), investigated the sensitivity of growth rate to cave dripwater 

hydrochemistry (Genty et al., 2001), and compared modelled growth with calcite grown in 

situ (Sherwin and Baldini, 2011). Collectively, this research provides first-order tests of our 

theoretical understanding of both instantaneous calcite growth rate and vertical stalagmite 

extension rate. Attempting to link stalagmite growth and morphology to climate variability, 

Kaufmann (2003) combined temperature estimates from ice core (GRIP and VOSTOK) and 

deep marine sediment core (SPECMAP) proxy data with approximations of glacial-

interglacial precipitation and soil cover changes to drive a model of vertical stalagmite 

growth and equilibrium diameter, and Kaufmann and Dreybrodt (2004) adopted the inverse 

approach in attempting to derive climatic information from such stalagmite stratigraphies. 

Understanding stalagmite growth variability is important for palaeoclimate research for 

various reasons. (i) Several studies (e.g., Polyak and Asmerom, 2001; Proctor et al., 2000) 

employed stalagmite growth rate itself as a palaeoclimate proxy and others have described 

seasonally variable stable isotope ratios (e.g., Johnson et al., 2006; Mattey et al., 2008) and 

trace element concentrations (e.g., Huang et al., 2001) in stalagmites that potentially result 

from cave ventilation dynamics and/or karst hydrological processes, both of which also affect 

stalagmite growth. (ii) High vertical extension rates are conducive to generating high-

resolution geochemical proxy datasets from stalagmites, yet to-date few studies have 

characterised stalagmite growth on intra-annual to decadal timescales and its implications for 

geochemical climate signal capture. (iii) Seasonal growth rate fluctuations potentially bias net 

proxy signals towards the season favourable to deposition (Baldini et al., 2008; Banner et al., 

2007; Fairchild et al., 2006; Frisia et al., 2000; Mattey et al., 2008; Spötl et al., 2005). (iv) 

Growth rate variability may be related to climate signal modification by other processes, such 

as biomass change above the cave (e.g., Baldini et al., 2005) and surface and epikarst 

hydrology (Baker and Bradley, 2010; Bradley et al., 2010; Darling, 2004). Moreover, 
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stalagmite growth rate may provide a proxy for surface or soil temperature (Genty et al., 

2001), rainfall amount (Genty and Quinif, 1996), or vegetation changes (Baldini et al., 2005). 

The work of Kaufmann (2003) and Kaufmann and Dreybrodt (2004) represents an important 

advance in linking stalagmite growth with climate variability, but the model resolutions used 

(1000 and 200 years, respectively) are too low to be directly applicable to many high-

resolution palaeoclimate studies using stalagmites. 

The principal non-biological controls on calcareous speleothem deposition (temperature, drip 

rate, dripwater [Ca
2+

], and soil and cave air pCO2) are relatively well understood (Dreybrodt, 

1999; Genty et al., 2001). Recent research has characterised their spatio-temporal variability 

at certain sites (Banner et al., 2007; Whitaker et al., 2009) and, in particular, highlighted the 

importance of cave atmosphere pCO2 dynamics for speleothem palaeoclimatology (Baldini et 

al., 2008; Fairchild et al., 2006). Although interpreting climatic variability from stalagmite 

morphology alone is challenging (Dreybrodt, 1988), understanding the physical controls on 

stalagmite growth, such as drop volume and dripwater film thickness, is necessary for proper 

linkage of local climate variability, cave environment systematics, and stalagmite growth 

behaviour. 

The following equation describes vertical stalagmite extension rate (R0) fed by a punctiform 

drip source theoretically (Baker et al., 1998; Baldini et al., 2008; Buhmann and Dreybrodt, 

1985; Dreybrodt, 1980; 1999): 

R0 = 1174 ([Ca
2+

] - [Ca
2+

]
app

) (δ t-1) (1 - e-α t δ
-1

)    (Equation 1) 

where the constant 1174 converts molecular accumulation rate of calcite (mmol mm
-1

 s
-1

) to 

vertical extension rate (mm a
-1

); [Ca
2+

] is the initial calcium cation concentration of the 

dripwater (mmol L
-1

); [Ca
2+

]app is the apparent dripwater [Ca
2+

] (mmol L
-1

) after equilibration 

with a given cave atmospheric pCO2; δ is the dripwater film thickness (mm) from which 

calcite precipitates according to Ca
2+

(aq)
 
+ 2HCO3

−
(aq) ↔ CaCO3(s) + CO2(g) + H2O(l); t is the 

drip interval (s); and α is a ‘kinetic constant’ (mm s
-1

) that is sensitive to change in δ and 

ambient cave temperature. Note that R0 may also be denoted ‘W0’ (e.g., by Kaufmann, 2003). 

This equation was tested by Sherwin and Baldini (2011), who found close agreement between 

measured in situ calcite deposition and a model estimate. However, the main source of 

uncertainty encountered in this study was in estimating δ, highlighting the need to constrain 

this parameter before any time-series reconstruction of stalagmite growth may be attempted. 

Of particular interest is whether δ tends to remain constant or varies significantly with time, 

according to relationships with other variables. 

In this paper, the 51-year growth of a modern stalagmite (‘Gib04a’) retrieved from New St 

Michael’s (NSM) Cave, Gibraltar (Mattey et al., 2008), is reconstructed in an a priori 

forward model driven by cave monitoring (cave atmosphere pCO2 and temperature and drip 

discharge) and local meteorological (surface temperature, rainfall, and water excess) time 

series datasets. Additionally, this model is refined with experimental measurements of 

dripwater films, which provide basic constraints on the role of film thickness on growth rate. 

Our rationale for selecting Gib04a as a target specimen is as follows. (i) Cave monitoring 
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data (continuous logging and spot measurements) are available since 2004 (Mattey et al., 

2008) and modern climate signal transfer systematics have been relatively well constrained at 

NSM Cave by Mattey et al. (2010). (ii) Continuous monthly meteorological time series 

datasets (surface air temperature and precipitation) are available from the nearby Royal Air 

Force Meteorological Office (RAFMO) station, which is also the site of Global Network for 

Isotopes in Precipitation (GNIP) sampling since 1962 (Fig. 1), with a temporal coverage 

appropriate to drive the time series growth model. (iii) Gib04a underwent relatively fast 

vertical extension (~0.9 mm a
-1

) and exhibits annual petrographic laminae, providing a robust 

age model, which is substantiated by annual carbon isotope cyclicity and correct 

identification of the atmospheric 
14

C activity  ‘bomb spike’ (Mattey et al., 2008). Altogether, 

these factors provide a rare opportunity to (i) develop, to our knowledge, the first time-series 

growth reconstruction for a modern speleothem and (ii) test the sufficiency of existing growth 

rate theory (as a natural system description) in capturing seasonal and interannual variation. 

To conclude, the implications for linking stalagmite growth and local climate are considered. 

 

2. Site description 

NSM Cave developed within the dolomitised Gibraltar Limestone Formation of the Rock of 

Gibraltar (Gibraltar peninsula, southern Iberia; 36° 9` N, 5° 21` W), whose maximum 

elevation is 426 m above mean sea level (Fig. 1). Pervasive fracturing provides extensive 

macroporosity, and drips sites within NSM Cave are fed by down-dip and sub-vertical 

fracture systems. NSM Cave is at least Pleistocene in age (Rodrı́guez-Vidal et al., 2004), 

phreatic in origin, has experienced uplift of ~275 m, and preserves evidence for multiple 

phases of drainage and secondary speleothem decoration (Tratman, 1971). NSM Cave has no 

known natural entrances; however, a 1 m
2
 trap door, constructed in 1942 and the only link 

with Old St Michael’s Cave, does not significantly disturb the natural chimney-effect 

ventilation (Mattey et al., 2010; 2008 and references therein). 

Mattey et al. (2010)  identified links between ventilation dynamics, calcite fabrics, stable 

isotope ratio and trace element seasonality, and dripwater trace element variability. Seasonal 

ventilation of NSM Cave is characterised by rapid summer-to-winter increases and winter-to-

summer decreases in cave atmosphere pCO2, between near-atmospheric values and ~3000-

8000 ppm, occurring over several days. Ventilation of this cave system is the focus of on-

going research and therefore a full explication of ventilation processes and controls on cave 

air pCO2 variability is beyond the scope of this paper. Here, we make reasonable 

simplifications in light of this on-going work, which are explained in the following section. 

Mattey et al. (2010) also compared drip discharge and hydrologically-effective precipitation 

data and performed groundwater dye tracer experimentation, suggesting that coherence in 

dripwater hydrochemistry between separate monitoring sites results from common 

hydrochemical control, given the observed distinct recharge responses and inferred epikarst 

flow paths for each drip site. 

 



Baker, A. J., Mattey, D. P., and Baldini, J. U. L., 2014. Earth and Planetary Science Letters 392, 239-249 

  Page 5 of 33 

3. Methods 

3.1. Experimental measurements of dripwater film thickness 

Collister and Mattey (2008) determined an empirical relationship between stalactite radius 

and drop volume experimentally using analogue materials, constraining a previously poorly 

understood parameter impacting stalagmite width. Hansen et al. (2013) determined time 

constants for CO2 degassing, new pCO2 equilibration, and calcite precipitation using 

experimental analogue materials, demonstrating that the geochemical evolution of cave 

dripwater is a function of these constants, not simply of CO2 degassing rate. This 

experimental literature has implications for cave monitoring and speleothem sampling 

strategies. However, the role of stalagmite morphology on vertical extension is yet to be 

quantified empirically. 

We determined the dependency of dripwater film thickness (δ) on stalagmite curvature and 

surface microtopography using 10 plano-convex Al domes (uniform spherical curvature), and 

employed image analysis techniques to calculate the thickness of water films formed from a 

known volume of water dispensed from a known height. In geometric terms, the domes 

utilised for these experimental measurements are chords of spheres of various known radii. 

The curved surface area, A, of each dome is given by: 

 A = 2πρ2 (1-√1-
x2

ρ2
)        (Equation 2) 

where ρ is the spherical radius and x is the projected radius of the base of the subtended cone 

of the chord (i.e., the radius of the circular base of the dome). As x  ρ, A ≈ 2πρ
2
 (i.e., the 

area of a hemisphere). A is expressed here in terms of projected radius because this parameter 

is known for all domes. (Alternatively, A may be expressed more simply in terms of arc 

length, but use of Eq. 2 favourably avoids the need for additional measurements of arc length 

and propagating their associated error to the final δ calculations.) 

Each dome was wetted and an 80 μl droplet dispensed onto its apex using a calibrated 

mechanical pipette, allowed to spread, and photographed. The position of domes in each 

image and the viewshed of the camera were fixed (Fig. S1). Droplets were dyed in order to 

create a colour contrast between the droplet and the dome in the image (Fig. S2). For each 

image, the Java™-based, public domain software ImageJ (Schneider et al., 2012) was used to 

threshold the colour of the dyed water film from that of the surface of the dome (Fig. S2) and 

a particle analysis tool was used to determine the projected area (2-D) of the dripwater film, 

which was corrected for dome curvature using Eq. 2. Water droplets were dispensed from a 

height of 10 mm to prevent splashing and conform to experimental conditions, but this is less 

than ‘typical’ drop heights at natural drip sites (see Supplementary Material). Five replicates 

were performed for each dome (Fig. 4a). 

Simplistically, calculating δ assumes that a droplet spreads radially from the dome’s apex, 

forming a uniform disc of curvature equal to ρ. However, because many photographed 

droplets exhibited non-circular forms (Fig. S2), it is necessary to avoid this simplification by 
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calculating the (curved) surface area of each dome and the precise proportion covered by the 

80 μl droplet. δ is given by: 

δ = 
v

Ad
          (Equation 3) 

where v is droplet volume (mm
3
) and Ad is the curved surface area of the dripwater film at 

rest on the dome (mm
2
). Using a high-precision balance, we estimated the error associated 

with v to be of the order of 0.01 %. 

We performed a second set of measurements with non-smooth domes, created by affixing a 

layer of laboratory-grade quartzose sand (pre-filtered through a 0.15-0.425 mm particle 

mesh) to the surface each dome. The grain size is comparable to previous estimates of δ by 

Dreybrodt (1981) and acts as an opposite end-member to the idealised, smooth surfaces. We 

favour this analogue for stalagmite surface microtopography because it preserves the original 

curvature of each dome, thus isolating the microtopography effect. A second set of δ 

calculations was performed. Greater scatter was found for these measurements, so Fig. 4b 

shows mean values with 1 standard deviation. 

This approach incurs two important uncertainties. (i) The interfacial properties and contact 

angles associated with water, air and dry Al are different from those associated with water, 

air and dry calcite, potentially giving rise to erroneous results. Dripwater films would be 

thickest at a dome’s apex if dispensed onto a dry dome, so wetted dome surfaces were used to 

better approximate the interfacial properties of a natural speleothem substrate. Additionally, 

we duplicated measurements on Al (with ρ = ∞) using wetted calcite spar, a precaution 

undertaken by Collister and Mattey (2008). (ii) In this study, the magnitudes of drop height 

and microtopography are constants. Therefore, future experimental work should attempt to 

quantify the role of variable drop height and degree of microtopography on film thickness. 

 

3.2. Construction of a time series stalagmite growth model 

We derived transfer functions to estimate [Ca
2+

]app and α, both of which are based on earlier 

calculations by Dreybrodt (1999), to provide inputs for Eq. 1. A non-linear relationship 

between cave atmosphere pCO2 and [Ca
2+

]app was determined for a constant temperature of 

20 °C (Fig. 2a) and a linear relationship between temperature and [Ca
2+

]app was determined 

for a constant pCO2 of 2000 ppm (Fig. 2b). Combining these relationships gives the 

following transfer function: 

[Ca
2+

]
app

 = 
1

2
 ((5.872 pCO2

0.2526) + (-0.0167 Tc + 1.5146))  (Equation 4) 

where pCO2 is that of cave air (atm) and Tc is in-cave temperature (°C). 

A non-linear relationship between α and Tc was determined for several values of δ. Selecting 

a single value is not necessary because our experimental measurements provide independent 

constraints on δ (Fig. 2c) and α depends only on Tc for δ < 0.4 mm (Baker et al., 1998; 
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Hansen et al., 2013). A non-linear relationship between α and δ was determined for a constant 

temperature of 20 °C (Fig. 2d). Combining these gives the following transfer function: 

α = 
1

2
 ((2.22×10

-7
 Tc

2 + 6.36×10
-6

 Tc + 3.88×10
-5)  + (-0.0057 δ

2
 + 0.002 δ + 0.0001))

 (Equation 5) 

The constant values for which Eq. 4 and Eq. 5 were derived are those of Dreybrodt (1999) 

which best represent conditions at the Gib04a site since cave monitoring began. Mean annual 

cave air pCO2 is 2496 ppm and Tc remains constant at 17.9 °C at the Gib04a drip site (Fig. 3), 

which is satisfactorily close to the temperature for which the relationships in Fig. 2a and Fig. 

2d were derived. Therefore, Eq. 4 and Eq. 5 are used with minimal systematic error and α 

varies with δ, rather than assuming a constant value for the entire reconstruction. 

Finally, an input time series of dripwater [Ca
2+

] is required for Eq. 1. Dripwater [Ca
2+

] 

measured at the Gib04a site likely equilibrated with soil pCO2 of ~1 % (Mattey et al., 2010). 

Unfortunately, there is no overlap between on-going monitoring at NSM Cave and the period 

of modern Gib04a growth (1951-2004). To compensate for this, we linked between dripwater 

[Ca
2+

] and surface environmental parameters. Genty et al. (2001) derived an empirical 

relationship between mean annual cave temperature and dripwater [Ca
2+

] based on data from 

temperate European sites. Although this is a useful relationship, it is not appropriate to use 

temperature as a single predictor for dripwater [Ca
2+

] at NSM Cave, despite the similarity 

between mean annual surface and cave temperatures (18.3 and 17.9 °C, respectively). In a 

Mediterranean climate, with relatively distinct dry and rainy seasons, moisture availability as 

well as surface temperature control soil CO2 productivity (Baldini et al., 2008; Murthy et al., 

2003). Measured dripwater [Ca
2+

] at the Gib04a site is highest in winter, suggesting a 

potential connection to moisture availability, and other Mediterranean sites (e.g., Clamouse 

Cave, southern France) do not plot along the Genty et al. (2001) relationship. Given these 

observations, we performed multivariate regression between NSM Cave dripwater [Ca
2+

] 

(Mattey et al., 2010) and surface environmental (predictor) variables (temperature, rainfall 

and potential evapotranspiration) for Gibraltar, obtaining the following expression: 

[Ca
2+

] =  
123 - 3.45 Ts - 0.0139 (P - E)

40.078
        (Equation 6) 

where P is total monthly precipitation and E is potential evapotranspiration (Fig. 3), 

calculated according to the method of Thornthwaite (1948). Dividing by the molecular mass 

of Ca (40.078) converts [Ca
2+

] from ppm to mmol L
-1

. Combined, Ts and epikarst recharge 

explain 67 % of [Ca
2+

] dripwater variability observed at the Gib04a site, with 0.23 mmol L
-1

 

uncertainty. 
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4. Results and discussion 

4.1. Relationships between local meteorological variables, cave microclimate, and 

stalagmite growth 

Gibraltar’s Mediterranean maritime climate is characterised by mean summer (June-August) 

and winter (December-February) temperatures of 22.8 and 13.2 °C, respectively, with ~0.7 

°C warming over the last ~30 years (Wheeler, 2011), and mean summer (April-September) 

and winter (October-March) total precipitation of 135 and 668 mm, respectively, with a ~20 

mm decrease mean annual rainfall since 1960 (IAEA/WMO, 2013; Wheeler, 2006; 2007). 

Clear seasonality in NSM Cave microclimate exists. Winter months produce seasonally low 

temperature, high water excess, high cave atmosphere pCO2, and low dripwater [Ca
2+

]. The 

opposite is therefore true of each during summer months. Dripwater [Ca
2+

] is not exactly in-

phase with surface temperature because it depends also on water excess, which is sensible 

given that existing monitoring data from NSM Cave and from the overlying soil cover show 

that cave air pCO2 seasonality is not in exact phase with soil moisture availability (i.e., 

rainfall seasonality). Predictable pCO2 seasonality at the Gib04a site co-varies with modelled 

dripwater [Ca
2+

] because both are primarily temperature-dependent (Fig. 3). Ventilation of 

NSM Cave is probably venturi- and/or chimney-type (Mattey et al., 2010) and the subject of 

on-going research. These monitoring data are discussed in much greater detail by Mattey et 

al. (2010) and indicate fast growth of Gib04a, whose actual mean linear extension rate was 

~0.9 mm a
-1

 during 1951-2004 (Mattey et al., 2008). 

 

4.2. Control of stalagmite apex morphology on film thickness 

Dreybrodt (1988) estimated δ to be in the range 0.05 – 0.4 mm, yet microtopography is not 

parameterised explicitly in growth models. Baldini et al. (2008) found that δ may tend 

towards the upper end of that range (0.32 mm) for a stalagmite exhibiting mm-scale surface 

microtopography, consistent with the measurements of Baker et al. (1998), but Kaufmann 

(2003) fixed δ at 10
-4

 mm. Therefore, few constraints on δ exist. We derived two empirical δ-

ρ relationships for smooth and microtopographical surfaces (Fig. 4, Table S1), providing 

experimental constraints. Both relationships are linear and negatively correlated. For smooth 

surfaces, δ decreases with increasing curvature (r
2
 = 0.74) because droplets spread under 

gravity and are retarded only by surface tension effects. Over microtopography (r
2
 = 0.47), 

spreading is greatly encouraged by capillary action and reduced surface tension. Importantly, 

microtopography (0.15-0.425 mm) reduces film thickness by an order of magnitude 

compared to idealised, smooth substrates, and our values are consistent with those of Baker et 

al. (1998). These results indicate that stalagmites with irregular morphologies or high surface 

roughness are less likely to undergo fast vertical extension conducive to generating high-

resolution palaeoclimate records. 

For flat surfaces (ρ = ∞), mean δ values for smooth and non-smooth surfaces are similar: 0.93 

and 0.77 mm, respectively, indicating flat surfaces behave differently from curved surfaces. 

Spreading over a smooth surface under gravity or by capillary action over a 
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microtopographical surface is reduced if that surface is flat, and the effect of 

microtopography to encourage spreading is significantly reduced. For comparison, additional 

measurements were performed on wetted calcite spar with ρ = ∞, providing natural interfacial 

properties between calcite, water and air. Mean δ for flat calcite is 0.83 mm, which is similar 

to values for wetted Al (Fig. 4). These observations are important because many actively-

growing stalagmites selected for research, including Gib04a, exhibit uniform cylindrical 

morphology and possess low-curvature apexes, particularly if initial surfaces are near-flat 

(Dreybrodt, 1999). We speculate that water spreading over curved microtopographical 

surfaces is reduced by the development of minute menisci over the substrate (i.e., between 

sand grains in our analogue), but this is less significant for stalagmites exhibiting undulatory 

rather than granular microtopography. 

For low-curvature smooth surfaces (ρ > 75 mm), our empirically-derived δ values 

overestimate those of Dreybrodt (1999) and Hansen et al. (2013), highlighting the role of 

other mechanical processes affecting the amount of dripwater at rest on a stalagmite surface 

and therefore δ. Under experimental conditions, water dispensation onto Al and calcite spar 

involves no water loss through mechanical processes, such as splashing. In natural cave 

settings, with greater drop heights, the net effect of splashing is a reduction of δ, and 

potentially results in unconventional growth features, such as splash coronae, where 

maximum calcite accumulation occurs away from the vertical extension axis. Potentially, a 

relationship between drip height and amount of water lost by mechanical processes for a 

given droplet volume, which depends on stalactite radius and ambient barometric pressure 

(Collister and Mattey, 2008), may be demonstrable. Quantifying this and the role of different 

types and magnitudes of microtopography will provide future modelling challenges. 

In summary, our data show a linear decrease in film thickness with increasing surface 

curvature and that the presence of sub-millimetre scale microtopography reduces δ by an 

order of magnitude, providing constraints on temporal δ variation in Gib04a, which is 

discussed in the following section. 

 

4.3. Constraints on film thickness and reconstructing modern Gib04a growth (1951-

2004) 

We estimated the average curvature of 11 visible growth laminae in Gib04a (Fig. 5) and 

calculated the associated δ values for each using our empirical relationships (Fig. 4, Table 1). 

Excepting laminae 2 and 3, a decreasing trend in δ is found with decreasing equilibrium 

diameter of Gib04a during the period 1951-2004, showing broadly uniform stalagmite growth 

(Fig. 5). Broadly, these δ estimates for Gib04a are within the range described by previous 

research (Dreybrodt, 1999; Kaufmann, 2003), though they tend towards higher values of that 

range during the early phase of Gib04a growth. We have not estimated δ for every 

macroscopic growth lamina in Gib04a, aiming instead to identify locations at an 

approximately regular interval where curvature changes notably. In the Gib04a R0 

reconstruction, each value of δ is ‘active’ until the subsequent identified surface (Table 1). 
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The full Gib04a R0 reconstruction shows clear seasonality (Fig. 6, Table S2) that is related to 

dependence on surface temperature, water excess, and cave atmosphere pCO2. Total 

modelled vertical extension is 55.99 mm, which overestimates Gib04a’s actual growth by 

8.16 mm. Overall, model performance demonstrates that existing growth rate theory 

sufficiently describes Gib04a growth on seasonal to interannual timescales. However, an 

overestimation of calcite growth was also observed by Day and Henderson (2013). These 

intriguing deviations from existing theory warrant the application of our modelling approach 

to other well-monitored cave sites, given that local meteorological data (surface temperature 

and water excess) provide constraints on dripwater [Ca
2+

] using Eq. 6 or previous work by 

Genty et al. (2001) for semi-arid or temperate environmental settings, respectively. 

 

4.3.1. Non-uniform Gib04a growth 

Growth laminae 2 and 3 in Gib04a (Fig. 5) represent the development of a splash corona; 

during this interval, calcite precipitation has occurred away from the central growth axis. Pre-

Holocene Gib04a growth provided a low-curvature lower edifice above which modern 

growth initiated (Fig. 5). Therefore, the development of this feature is unexpected, given the 

results of Dreybrodt (1999). Nevertheless, if non-uniform growth and the development of the 

splash corona began close to lamina 1, the estimated δ value for this initial surface may be an 

overestimate. Additionally, this suggests that shifts in the position of the vertical extension 

axis occurred, potentially explaining the ~8 mm model overestimation. At their intersection 

with the vertical growth axis, lamina 2 is inclined and lamina 3 is near-flat, and several 

laminae immediately below and above lamina 3 exhibit convex (i.e., negative) curvature. 

Additionally, several laminae exhibit relatively sharp inflections in ρ (Fig. 5), though these do 

not affect the curvature uniformity of calcite deposited immediately above them, and only 

one such inflection is proximal to the vertical growth axis. Such observations may be difficult 

to make in 2-D sections of slower-growing stalagmites. Our empirical relationships give 

realistic δ estimates for negative ρ values, but their physical plausibility is uncertain. The δ 

values for laminae 2 and 3 plot away from the linearly decreasing δ trend and several 

indistinct or discontinuous laminae are apparent (Fig. 5), both of which produce a period of 

low vertical extension and reduced seasonal variability (Fig. 6). This non-uniform growth, 

totalling ~6 mm, persisted for ~10 years. 

Alternatively, a decrease in calcite saturation index, related to surface temperature changes, 

or to changes in drip rate or dry season deposition, may have caused this temporary change in 

calcite distribution. However, our growth reconstruction and temperature data do not support 

this explanations (see section 4.5) and there is no evidence for decreased dripwater [Ca
2+

] 

saturation in the past (e.g., reduce soil/vegetation cover). Additionally, calcite precipitation 

may still occur at the point where water droplets impact a stalagmite (Hansen et al., 2013), 

but the distribution of calcite precipitation over pre-existing laminae is affected by splashing. 

Vertical calcite accumulation at the central growth axis is reduced by the development of 

splash coronae, partly as a result of a reduction in δ. 
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4.4. Model validation: comparing growth seasonality with Gib04a petrography and Sr 

Stalagmite R0, calcite microfabric and Sr concentrations may be linked because Sr 

incorporation into calcite is partially dependent on R0 (Fairchild and Baker, 2012). At low 

instantaneous growth rates, Sr may substitute for Ca in the calcite lattice, but is susceptible to 

competition with other species such as Mg and Na (Boch, 2008; Fairchild et al., 2001) and 

incorporation of organic macromolecules (McGarry and Baker, 2000). At higher rates, Sr 

occupies interstitial and defect lattice sites, the abundance of which increases with R0 (Boch, 

2008), because the lattice is less able to distinguish between Ca
2+

 (ionic radius = 1.08 Å) and 

larger divalent trace metals, such as Sr
2+

 (1.44 Å) (Gabitov and Watson, 2006; Huang and 

Fairchild, 2001; Lorens, 1981). Therefore, R0 and the effective partition coefficient for Sr in 

calcite (Kd
Sr) may co-vary (Fairchild and Treble, 2009; Gabitov et al., 2014; Gabitov and 

Watson, 2006). Boch (2008) reported higher Sr and vertical extension rate associated with 

porous laminae (summer deposition) in stalagmites sampled from Katerloch Cave, southeast 

Austria. However, Borsato et al. (2007) found no ostensible seasonal co-variation between 

trace element concentrations and calcite fabric in a stalagmite from Grotta di Ernesto, 

northeast Italy, but Sr maxima increased linearly with growth. Experimental evidence 

indicates R0 and Sr incorporation are strongly related above R0 ≈ 0.5 mm a
-1

 (Gabitov and 

Watson, 2006), but there is also evidence that R0 increases well above the natural range are 

required to produce such co-variation (Day and Henderson, 2013). These results suggest that 

links between growth mechanics and Sr variability may vary temporally or from site to site. 

For NSM cave, several observations indicate that Kd
Sr should respond to Gib04a R0: (i) 

modelled Gib04a R0 falls only occasionally below 0.5 mm a
-1

, most notably between 1956 

and 1965 (Fig. 6), (ii) Gib04a site temperature remained constant over the monitored period 

(Fig. 3), and (iii) soil cover above NSM Cave is minimal, so competition between Sr 

incorporation and molecular organic matter deposition in speleothem calcite is less a factor 

compared with other sites. Therefore, comparing our R0 reconstruction with high-resolution 

synchrotron μXRF Sr data, available for the upper ~13 mm (corresponding to 1987-2004) of 

Gib04a (Mattey et al., 2010) provides a critical test of the reconstruction’s fidelity. 

The R0 reconstruction tracks Gib04a Sr concentrations closely, capturing the seasonal and, 

occasionally, the sub-seasonal variability (Fig. 6). Therefore, R0, Sr and calcite fabrics can be 

compared with confidence, and across the most recent ~4 mm the discrepancy between actual 

and modelled vertical extension is 0.18 mm (Fig. 7). Gib04a exhibits annual couplets of pale 

columnar calcite and darker compact calcite (Fig. 7a), which represent winter and summer 

deposition, respectively (Mattey et al., 2010). Dark compact calcite is characterised by a 

greater density of calcite grain boundaries (Fig. 7b), and this associated with high summer Sr 

and R0, although this is less clear for 2000-1 (Fig. 7c, d). This suggests that Gib04a calcite 

lattice changes with increased linear extension rate appear to favour Sr incorporation, 

consistent with experimental data (e.g., Gabitov et al., 2014). The amplitudes of seasonal R0 

and Sr variations match well, though higher frequency variability indicates non-R0 effects 

inhibit Sr incorporation. A potential microhiatus in Gib04a growth was identified  by Mattey 

et al. (2010) at 2001-2, which is characterised by an abrupt change in the density of calcite 

grain boundaries (Fig. 7b), indicating that the year-to-year deposition of calcite couplets is 
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not regular. These abrupt changes in calcite fabric are likely due to ventilation dynamics at 

NSM Cave. Rapid summer-to-winter increases in cave atmosphere pCO2 from near 

atmospheric values occur (Fig. 3), potentially leading to weekly-to-monthly scale cessation of 

calcite deposition. However, this is not apparent in reconstructed R0, Sr or other previously-

published trace element data from Gib04a. Dripwater [Ca
2+

] is sufficient to maintain vertical 

extension at lower than average rates ~0.5 mm a
-1

, through winters when cave air pCO2 is 

high. 

Ionic competition affects Sr incorporation, implying that the Kd
Sr-Ro relationship may vary 

temporally, responding to changes in ionic supply. Despite R0-Sr co-variation apparent in 

Gib04a, it is necessary to estimate Sr incorporation. Unfortunately, the available dripwater 

hydrochemistry and Gib04a trace element time series datasets do not overlap, but we 

compensate for this by calculating Kd
Sr based on an extrapolation of the R0 reconstruction (see 

Supplementary Material). Mean R0-derived Kd
Sr is 0.39 (Fig. S3), which is above but close to 

the published range of experimentally-determined and natural speleothem values (Day and 

Henderson, 2013; Fairchild and Baker, 2012; Gabitov and Watson, 2006), supporting the 

fidelity of the R0-Sr comparison. 

 

4.5. Inter-annual growth rate variability 

A first order sensitivity analysis suggests that R0 is sensitive to δ variability (see 

Supplementary Material and Fig. S4). Inter-annual morphological change in modern Gib04a 

growth is characterised by decreasing equilibrium diameter and increasing ρ, resulting in a 

decreasing δ trend (Fig. 5). Consequently, α also decreases during the period 1951-2004 

according to Eq. 5. The secular decrease in Ro (Fig. 8), most obviously after the non-uniform 

growth period, potentially reflects drying in Gibraltar. Stalagmite equilibrium diameter can 

reflect long term trends in karst aquifer recharge (and therefore rainfall). An overall ~30 mm 

decline in mean annual rainfall and increasing Ts since 1973 result in a linear decrease in total 

annual water excess feeding Gib04a (Fig. 8). (Note that 1996/1997 winter rainfall is 

anomalous.) Qualitatively, the tapered shape of Gib04a may be explained in this way. 

Decreasing Gib04a equilibrium diameter and increasing ρ (Fig. 5) cause decreases in other 

growth-determining parameters (δ and α) and result in a secular decline in R0 since 1965, 

providing a first-order link between Gibraltar climate and Gib04a’s growth history. 

Interestingly, step-like decreases in R0 during the non-uniform growth period and during 

1990-1994 coincide with large temperature fluctuations, but secular temperature changes do 

not correlate with R0 (Fig. 8). Cave air pCO2 seasonality, which is effectively invariant, also 

cannot explain this, indicating that the dominant control on long-term changes in vertical 

extension and morphology of Gib04a is karst recharge. 
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5. Conclusions 

This paper presents (i) experimental measurements of dripwater film thickness performed on 

analogue materials, which are used to model δ variation during modern Gib04a growth 

(1951-2004), and (ii) the first attempt to reconstruct temporal vertical growth rate variability 

in a modern stalagmite. Our experimental measurements demonstrate that δ decreases 

linearly with increasing surface curvature and that the presence of sub-millimetre scale 

microtopography reduces δ by an order of magnitude compared to idealised, smooth surfaces 

(Fig. 4). We attribute these observations to spreading under gravity and by capillary action 

versus surface tension effects. By examining changes in growth laminae curvature, we 

identified a linearly decreasing δ trend in the Gib04a stalagmite (Fig. 5), consistent with its 

uniform tapered morphology (decreasing equilibrium diameter and increasing curvature). A 

period of non-uniform growth, with two δ outliers resulting from the development of a splash 

corona, occurs during 1956-1965 (comprising ~6 mm vertical extension). Furthermore, a 

first-order δ-sensitivity analysis of R0 (using only weighted mean δ and α values) 

demonstrates that Gib04a’s total vertical growth is underestimated by an order of magnitude 

and non-sensible negative R0 values arise if δ variability is not taken into account. 

The Gib04a growth reconstruction, based on cave monitoring, meteorological data, captures 

growth seasonality but overestimates total vertical accumulation by ~8 mm. Seasonality in 

surface temperature, hydrologically effective precipitation (both of which control dripwater 

[Ca
2+

]), cave atmosphere pCO2, and moderate seasonality in drip interval, at NSM Cave (Fig. 

3) forces strongly seasonal growth of Gib04a (Fig. 5 and Fig. 6). Seasonality in R0 co-varies 

with high-resolution Sr concentration data (Fig. 6) and Sr partitioning between dripwater and 

calcite is captured reasonably by the reconstruction (Fig. S3). A high-resolution comparison 

of R0 with Sr and changes in grain-scale calcite fabric across the upper ~4 mm shows that the 

amplitude of seasonal R0 and Sr variation is comparable, and both are associated with sub-

annual layers of dense calcite grain boundaries (Fig. 7). An inter-annual decrease in 

reconstructed Gib04a R0 is likely linked to a similar decrease in rainfall in Gibraltar since 

1960 and this is explained by secular decreases in δ and equilibrium diameter of Gib04a. 

Therefore, our results demonstrate that growth rate theory is sufficient on inter- and intra-

annual timescales, but represent not the first example of overestimating vertical extension 

rate. Future work should therefore apply our approach to other well-monitored cave systems 

to determine whether modifications of growth rate theory are necessary in particular 

environmental settings. 

Recent research has indicated that (i) seasonal dripwater trace element hydrochemistry, if 

recorded by stalagmites, may provide geochemical markers of seasonal growth laminae 

(Fairchild and Treble, 2009; Wong et al., 2011), and (ii) δ controls the time constant for CO2 

degassing (Hansen et al., 2013). In light of these results, our empirical constraints on the 

relationship between δ and stalagmite morphology and R0 modelling results provide a timely 

test of stalagmite growth rate theory. Immediate experimental and modelling studies should 

quantify the roles of drop height and microtopography magnitude (involving various 

stalagmite morphologies) on vertical growth. Future possibilities include constraining past 

variability in multiple environmental parameters from stalagmite data; such an approach is 
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tenable because only a limited proportion of parameter space will produce good model fits to 

data (e.g., Sr concentrations), and there are now studies confirming the sufficiency of existing 

growth rate theory on various time scales. Finally, for well-monitored cave systems, 

modelling growth provides a way to quantify biases in geochemical proxy data, aiding the 

interpretation of records irrespective of resolution. 
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Surface ρ (mm) ρ⁻¹ (mm⁻¹) Height (mm) Mean δ (mm) 

11 36.5 0.027 45.59 0.232 

10 29.0 0.034 42.35 0.129 

9 40.0 0.025 36.03 0.267 

8 58.0 0.017 29.56 0.379 

7 77.0 0.013 25.15 0.440 

6 72.0 0.014 19.85 0.427 

5 88.0 0.011 17.21 0.464 

4 155.0 0.006 12.21 0.535 

3 25.5 0.039 8.09 0.061
b
 

2 39.0 0.026 7.06 0.257
b
 

1 157.0 0.006 0.00 0.536
a
 

    
0.365

c
 

 

Table 1. Film thickness for Gib04a growth laminae based on experimental 

measurements. Estimated curvature and associated mean film thickness (given as the mean 

of values calculated using both transfer functions in Fig. 4) for 11 growth surfaces identified 

in Gib04a (Fig. 5). For each surface, height denotes the start point of the interval of vertical 

calcite accumulation for the estimated δ is used in the growth model. 

 
a
 Initial surface from which modern growth initiated. 

b
 Non-uniform stalagmite growth (see text for discussion). 

c
 Growth-weighted mean value. 
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Figure 1. Location and most recent survey map (undertaken in 2007) of NSM Cave and 

location and map of Gibraltar with locations of Gibraltar’s RAFMO/GNIP station at North 

Front (World Meteorological Organisation station code:  8495; 36.2 °N, 5.4 °W, 5 m asl). 

Topographic contour lines on the Gibraltar map are in 100 metre intervals. Figure adapted 

from Mattey et al. (2010). 
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Figure 2. A synthesis of data originally presented by Dreybrodt (1999) and transfer functions 

derived from these data by bivariate regression, which are used in the time series growth 

reconstruction for Gib04a. (a) A power law fit (correlation coefficient, r
2
 = 0.95) between 

[Ca
2+

]app and cave atmosphere pCO2 for a constant cave temperature of 20 °C. (b) A linear fit 

(r
2
 = 0.99) between [Ca

2+
]app and temperature for a constant pCO2 of 0.002 atm. (c) A 2

nd
-

order polynomial fit (r
2
 = 0.91) between the ‘kinetic constant’ (α) and cave temperature for 

all data. (d) A 2
nd

-order polynomial fit (r
2
 = 1) between α and film thickness (δ) for a 

constant temperature of 20 °C. A linear fit (r
2
 = 0.89) is also shown for comparison, but not 

used in the growth reconstruction (grey line). Terms are defined in the text. 
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Figure 3. Monitoring data (2004-2009) from the Gib04a drip site in NSM Cave (Fig. 1) and 

calculated model parameters: cave atmosphere pCO2 spot measurements (squares) and 

monthly mean trend (red line); dripwater electrical conductivity (triangles); modelled 

dripwater [Ca
2+

] using Eq. 6 (circles); drip discharge (filled triangles); surface temperature 

measured at Gibraltar’s RAFMO station (crosses) and continuously logged cave air 

temperature (grey line); surface water excess (blue – positive, red – negative) calculated by 

subtracting potential evapotranspiration (E) from total monthly rainfall (GNIP data). We 

calculated E according to the method of Thornthwaite (1948), following Mattey et al. (2008), 

with heat index values and reduction factors taken from Patra (2001). Cave monitoring data 

were originally published by Mattey et al. (2010; 2008). RAFMO meteorological data © 

Crown Copyright, the Met Office. 
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Figure 4. Change in film thickness (δ) as a function of surface curvature (ρ) for wetted 

surfaces; δ increases with decreasing curvature. (a) Smooth surfaces (r
2
 = 0.74; p = 8.48×10

-

16
; n = 50) and (b) surfaces with 0.15 – 0.425 mm microtopography (r

2
 = 0.47; p = 0.09; n = 

9). Mean values for wetted calcite spar (red; n = 7; σ = 0.012) are shown in (a). The δ values 

determined for smooth surfaces are an order of magnitude greater than those for 

microtopographical surfaces. In the case of flat (infinite curvature) surfaces, δ values are 

similar, indicating that wet Al provides a useful, though not perfect, analogue for calcite, 

supporting recent research (e.g., Collister and Mattey, 2008). 
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Figure 5. Cut section of the modern growth of Gib04a (AD 1951-2004). The dotted line 

indicates the hiatus separating ancient (pre-Holocene) and modern growth, termed growth 

surface 1. The dashed lines indicate laminae 2 to 11. For each lamina, estimated curvature 

(mm) is given on the left, with corresponding mean δ values plotted against height (see also 

Table 1). Laminae 2 and 3 (highlighted green) represent non-uniform stalagmite growth. The 

dashed red line indicates the vertical growth axis and the black arrows indicate clear 

inflections in laminae curvature that are visible in this 2-D cut section. See text for 

discussion. 
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Figure 6. The full R0 reconstruction (black), with a magnification of the period January 1987 

to April 2004 that is compared with Gib04a Sr concentration (blue). Sr data originally 

published by Mattey et al. (2008). 

  



Baker, A. J., Mattey, D. P., and Baldini, J. U. L., 2014. Earth and Planetary Science Letters 392, 239-249 

  Page 25 of 33 

 

Figure 7. Comparison of modelled growth during the period 2000 to April 2004 

(corresponding to the upper ~4 mm of Gib04a) with (a) Gib04a petrography, (b) an electron 

backscatter grain boundary map of the area outlined in (a), and (c) high-resolution Sr 

concentration transect across the upper ~4 mm of Gib04a (blue), each of which were 

originally published by Mattey et al. (2010). (d) Reconstructed growth seasonality over this 

period, totalling 4.18 mm (black). Both Sr and R0 are plotted as normalised z-Scores, 

calculated by subtracting the mean and dividing by 1 standard deviation, so that the 

amplitude of seasonal changes in each dataset may be compared fairly. Vertical grey shading 

illustrates the association of R0, Sr, and grain-scale calcite fabric. See text for discussion. 
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Figure 8. Comparison of R0 (grey; black curve is a 12-month running mean) with Ts 

anomalies (red), P anomalies (pale blue; dark blue curve is a 24-month running mean), and 

total annual water excess during the period 1951-2004 (grey). The non-uniform period of 

Gib04a growth (Fig. 6), an inflection in secular Ts variability, and the anomalously wet 

1996/1997 winter are indicated. 
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S1. Experimental setup for δ measurements 

The experimental setup (Fig. S1) uses a fixed camera viewshed in order to obtain consistent 

images of water droplets. An example photograph (Fig. S2) shows a drip at rest on the 

surface of a curved wetted Al surface. An 80 μl droplet spreads over a dome apex for 

between ~0.5 and ~3 seconds under wetted conditions. Therefore, the time allowed for each 

droplet to spread is different depending on dome curvature because the more curved the 

dome, the longer the spreading time. However, each droplet was able to come to rest on the 

domes we used, which are 50 – 90 mm in diameter, without loss of water. 

The addition of dye slightly alters the flow properties of the water used in our experimental 

measurements. However, it is difficult to provide a quantitative assessment of this because 

image analysis is less precise when using non-dyed water. Determining the boundary of a 

water film using image analysis (Fig. S2) is very precise when a detectable colour contrast 

exists. However, our measurements are in close agreement with those of Baker et al. (1998), 

obtained with a Vernier spherometer and without dye, suggesting that the effect of dying on 

water flow is minimal. 

Photographs were processed (colour thresholding, binary conversion, scaling and particle 

analysis) using ImageJ (Schneider et al., 2012). Image analysis provide a precise 

measurement of the projected area covered by the dispensed water droplet and ultimately of 

mean film thickness because droplet volume and surface curvature are known (Eq. 3). Our δ 

calculations are provided in Table S1. 

 

S2. Sr partitioning and additional validation of Gib04a growth 

reconstruction 

To further test the validity of the R0 reconstruction, how well its output captures the 

partitioning of Sr between calcite and dripwater solution is examined. Unfortunately, the 

available dripwater hydrochemistry and Gib04a trace element time series datasets do not 

overlap, which is compensated for by calculating Kd
Sr based on modelled R0. We extended the 
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R0 reconstruction beyond the sampling date of Gib04a, through the cave monitoring period, 

and derived Kd
Sr variability from these hypothetical vertical growth rate values using the 

relationship of Gabitov and Watson (2006). (Our aim is not to provide modelling constraints 

on Kd
Sr in speleothem calcite that may be used directly in future studies; we aim only to 

undertake an assessment of the R0-Sr comparison for Gib04a.) Mean calculated Kd
Sr between 

2005 and 2007 is 0.39 (Fig. S3), which is higher than but close to experimentally-determined 

values (Day and Henderson, 2013; Gabitov et al., 2014; Gabitov and Watson, 2006; Huang 

and Fairchild, 2001; Lorens, 1981; Tang et al., 2008; Tesoriero and Pankow, 1996) and 

natural speleothem calcite values deposited at cave temperatures comparable to those of NSM 

Cave (Bourdin et al., 2011; Gascoyne, 1983). This overestimation is expected, given the 

higher vertical extension rate of Gib04a relative to the rates considered in those studies. This 

comparison is made cautiously because higher Kd
Sr values in some experimental studies were 

derived at instantaneous growth rates which are higher than those applicable to speleothem 

deposition (Day and Henderson, 2013). Nevertheless, this result is broadly consistent with 

association between vertical calcite growth, calcite fabrics, and Sr concentration variability 

identified in Gib04a (Fig. 7), but other factors (e.g., karst hydrology, crystallographic growth 

kinetics) influence Sr incorporation into speleothem calcite (Fairchild and Baker, 2012). 

 

S3. Sensitivity of vertical extension rate to δ 

The full R0 reconstruction, including surface environmental variables and dripwater [Ca
2+

], 

calculated using Eq. 6, are provided in Table S2. Quantifications of the sensitivity of R0 to 

various parameters are largely absent from the literature. We conducted a first-order 

assessment of the δ-sensitivity of R0 by re-calculating Gib04a R0 during the period 1951-2004 

using constant values of δ and α and comparing this to the original Gib04a growth 

reconstruction. Theoretically, assessing R0’s sensitivity to δ alone is not possible because α 

partially depends on δ (Eq. 5 and Fig. 2c, d). Therefore, this sensitivity test takes α into 

account, but because Tc is approximately constant (Fig. 3), primarily reflects δ. Gib04a R0 

was recalculated using a weighted mean values of δ (0.365 mm; Table 1) and α (5.12×10
-4

 

mm s
-1

). All other growth conditions remained as per the original R0 reconstruction (Fig. 6). 

Recalculated in this way, the total vertical Gib04a growth during 1951-2004 is 6.3 mm, 

which underestimates actual vertical growth by an order of magnitude. The recalculated data 

are poorly, negatively correlated with the original reconstruction (r
2
 = 0.23) and exhibit much 

scatter. Many recalculated R0 values are negative (Fig. S4), which suggest potential re-

dissolution of previously-deposited calcite (Baldini et al., 2006a; Whitaker et al., 2009), 

causing microhiatuses in growth, but the original R0 reconstruction and Sr data indicate that 

this is not the case. Moreover, the largest R0 values in the original monthly reconstruction, 

though potential overestimates, in fact correspond to negative values in the recalculation with 

constant δ. The seasonal timing of these negative values therefore indicates they are 

implausible. Overall, this strongly suggests that using a single value for δ is not appropriate 

for modelling R0 on interannual timescales and classical stalagmite growth can be 
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significantly sensitive to δ, with important implications for quantifying the cave and 

meteorological controls on Gib04a morphology and vertical growth. 
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Figure S1. Illustration of the experimental procedure for obtaining δ measurements from a 

fixed quantity of dyed water dispensed onto a wetted, curved Al surface. Terms are defined 

by Eq. 2 and Eq. 3. Note that figure is not to scale and that the morphology of the dripwater 

film in section view is also schematic. 
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Figure S2. Top-view example photograph of a curved wetted aluminium surface with 80 μl 

dyed water droplet dispensed onto its apex. The droplet spreads, indicated by the dashed 

arrows, over the uniformly curved surface (ρ = 37.5 mm in this image). The outline of the 

water film (solid white line), as determined by ImageJ, is accurate. Spreading does not 

necessarily displace existing water from pre-wetting the surface. Note that the image shows 

only the central area of the dome’s surface; the width of this dome, 2x, is equal to 90 mm 

(Fig. 2). 
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Figure S3. Kd
Sr time series derived from an extrapolation of the Gib04a R0 reconstruction 

beyond the sampling date and into the cave monitoring period (diamonds). The mean Kd
Sr 

value of 0.39 is higher than but close to the range described by published data (coloured bars; 

not plotted against x-axis) (Bourdin et al., 2011; Day and Henderson, 2013; Gabitov et al., 

2014; Gabitov and Watson, 2006; Gascoyne, 1983; Huang and Fairchild, 2001; Lorens, 1981; 

Tang et al., 2008; Tesoriero and Pankow, 1996). 
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Figure S4. Quantification of δ-sensitivity of Gib04a R0. Values recalculated with constant δ 

and α (y-axis) versus original R0 reconstruction as per Fig. 6 (x-axis). Linear regression 

between these two datasets gives r
2
 = 0.23 (p = 1.04×10

-43
; n = 684). 

 


