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a b s t r a c t 

Technological advances in sensors and communications have enabled discrete integration into everyday 

objects, both in the home and about the person. Information gathered by monitoring physiological, be- 

havioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, 

health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be wo- 

ven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To 

interpret the complex multidimensional information provided by these sensors, data fusion techniques 

are employed to provide a meaningful representation of the sensor outputs. This paper is intended to 

provide a short overview of data fusion techniques and algorithms that can be used to interpret wear- 

able sensor data in the context of health monitoring applications. The application of these techniques are 

then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, 

fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also 

provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to 

bring research to market. 

© 2017 The Authors. Published by Elsevier Ltd on behalf of IPEM. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many countries, including the United Kingdom, have an age-

ng population, with an increase in the average age and proportion

f older people [1] . In 2010, there were approximately 10 million

eople over the age of 65 in the United Kingdom, with this num-

er projected to rise by over 50% by 2020 [2] . One consequence

f the ageing population is an increase in life expectancy implying

reater healthcare needs. However, the relationship between age

nd dependency is complicated and not determined by age alone.

ndeed, the risk factor profile of those born more recently is worse

han previous generations [3] . This can be attributed, in part, to

he link between economic development and increased risky be-

aviours [4] . Risk factors such as tobacco and alcohol use, inac-

ivity, and poor diet choices are associated with chronic diseases

ncluding obesity, cardiovascular disease, and diabetes [4] . 
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Recent advances in wearable technology including microelec-

romechanical (MEM) devices, physiological sensors, low-power 

ireless communications, and energy harvesting, have set the

tage for a significant change in health monitoring. Technology can

e discreetly worn and used as a means to monitor health and

otentially enable older adults to live safely and independently at

ome. Early detection of key health risk factors enables more effec-

ive interventions to reduce the impact of, or even avoid, serious or

hronic illness. Inertial measurement devices, such as accelerome-

ers, represent a range of sensors that can be used for healthcare

onitoring and are being extensively investigated for the monitor-

ng of human movement [5] and daily activity [6] . Another applica-

ion for wearable systems is rehabilitation [7] . There are also cur-

ently many systems commercially available for the monitoring of

ports and some aspects of health. 

The richness of data available using wearable sensors presents

hallenges in the way that it is processed to provide accurate and

elevant outputs. To fully exploit this data for the purposes of

ealthcare monitoring, data fusion techniques can be employed to

ake inferences and improve the accuracy of the output. Hall and

linas [8] provide a detailed introduction and discussion to multi-

ensor data fusion. A review of data fusion techniques is also pro-
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Table 1 

Table of abbreviations. 

Abbreviation Definition Terminology 

ADL Activities of daily living Medical 

ANN Artificial neural networks Technical 

BLE Bluetooth low energy Technical 

COPD Chronic obstructive Pulmonary disease Medical 

DT Decision tree Technical 

ECG Electrocardiogram Medical 

EEG Electroencephalogram Medical 

EMG Electromyography Medical 

GMM Gaussian mixture models Technical 

HR Heart rate Medical 

HRV Heart rate variability Medical 

KF Kalman filter Technical 

k -NN k -nearest neighbour Technical 

MEM Microelectromechanical Technical 

PF Particle filter Technical 

QoL Quality of life Medical 

SpO2 Capillary oxygen saturation Medical 

SVM Support vector machines Technical 
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vided by Castanedo [9] including the different categories of data

fusion techniques. With a focus on body sensor networks, Fortino

et al. [10] discuss wearable multisensor fusion with an emphasis

on collaborative computing. 

This paper introduces wearable sensors for human monitoring

in the context of health and well-being, including a snap shot of

current commercial wearable sensor systems. An overview of data

fusion techniques and algorithms is offered, including data fusion

architecture, feature selection, and inference algorithms. These are

put into the context of wearable technology for healthcare appli-

cations including activity recognition, falls detection, gait and am-

bulation, biomechanical modelling, and physiological sensing. Re-

lated challenges of data fusion for healthcare are presented and

discussed. 

2. Wearable sensors 

Wearable sensors can be considered in three categories: motion,

biometric, and environmental sensors. Sensors used to capture hu-

man motions include inertial sensors such as accelerometers, gy-

roscopes, and magnetometers. By combining a tri-axial accelerom-

eter, gyroscope, and magnetometer, inertial measurement units

can be made for 9 degree of freedom tracking and are used for

biomechanical modelling. Common biometric sensors are used to

measure heart rate, muscle activation, respiration, oximetry, blood

pressure, galvanic skin response, heat flux, perspiration, and hydra-

tion level. Electrocardiogram (ECG) and electromyography (EMG)

detect the electrical activity produced by the heart and muscles

respectively and are interpreted into heart rate and muscle activa-

tion. 

For a wearable monitoring system to be practical it needs to

meet several key criteria: to be non-invasive, intuitive to use, re-

liable, and provide relevant feedback to the wearer. The number

of devices, location, and attachment method would be considered

during design, and are usually application specific. Wearable sen-

sor systems also have to take the target users’ needs, such as dex-

terity or cognitive ability, into account. Devices can be either at-

tached directly to the skin using some form of adhesive, mechani-

cally using a clip, strap or belt, or incorporated directly into cloth-

ing or shoes. Advanced fabrication techniques can now create ‘flex-

ible/stretchable electronics’ for integrated circuits, electronics and

sensors [11] . Such systems can be applied directly to the skin en-

abling discrete sensing possibilities e.g. devices developed by MC10

Inc. [12] . 

It is essential the system is reliable and measures with accept-

able accuracy, providing the user with relevant feedback. In the re-

search literature this is often presented as the accuracy of identify-

ing specific events or health aspects, or in terms of selectivity and

specificity, the proportion of the data that is positively identified

correctly and the proportion of the data that is negatively identi-

fied correctly, respectively. 

The past decade has seen major advances in sensing tech-

nologies, including MEMs and physiological sensors. Wireless low

power communications, such as BLE, enable sensing technology to

be integrated into wearable devices, clothing, and in the future em-

bedded about the person without the restrictions of wires or the

need to download data. Low power sensing and communications

also enable wearable energy harvesting to be a viable option for

powering and recharging these systems. 

Commercially, wearable sensor systems are available for hu-

man monitoring and some of their output features are tabulated

in Table 2 . Much of the software developed for commercial de-

vices is proprietary; however, some systems are able to provide

raw data, or have been explicitly designed for the purposes of re-

search. Table 3 describes wearable devices that are commercially

available for activity, physiological, and biomechanical monitoring,
ncluding both consumer and research devices. The table presented

ives a snapshot overview of commercial wearable devices as this

s a wide and rapidly changing landscape, with the features mon-

tored and the sensors used for daily monitoring, including a few

xamples for specific applications. Devices that only provide step

ount have not been included. A large proportion of these sen-

ors target the health and fitness industry, and track the amount

nd intensity of activity performed including measures such as an

stimate of energy expenditure and calories burned. For purposes

f research however, a much broader range of outputs are being

nvestigated and will be described in greater detail, including the

echniques used to achieve them, in Section 5 . 

.1. Sensor placement 

The placement of wearable sensors for health monitoring is mo-

ivated by three main driving forces: (1) what data is required or

rovided by the sensors; (2) where it is considered acceptable to

ear the sensors; and (3) the number of sensors the user is will-

ng to wear. For commercial systems the most common place to

ear a sensor is on the wrist or arm although many systems can

e worn at multiple locations, such as on the chest using a clip

r as a pendent, and the thigh and ankle ( Table 3 ). The waist and

rist are intuitive and unobtrusive places to wear sensors as many

eople are already accustomed to wearing watches or belts. In a

tudy conducted by van Hess et al. [13] to investigate the estima-

ion of daily energy expenditure using a wrist-worn accelerometer,

he acceptability of wearing the device on the hip or wrist was also

xamined. It was found that both sensor placements were rated as

ighly acceptable, however, men on average preferred wearing the

ensor on the wrist. 

Systems with more niche applications need to be worn at more

pecific locations relevant to the information being acquired, e.g.

he Reebok Checklight with MC10 helmet [14] that determines the

umber and severity of impacts to the head while participating in

ports. 

Sensor placement for activity recognition has been investigated

n several studies. Atallah et al. [15] investigated the most rele-

ant features and sensor locations for discriminating activity lev-

ls, demonstrating the dependence of sensor location on the activi-

ies being monitored. Liu et al. [16] investigated different combina-

ions of sensors and locations for physical activity assessment. The

best” results, i.e. the ones giving the highest activity recognition

ccuracy, were obtained using all the sensors, followed by a com-

ination of the wrist and waist worn sensors. Patel et al. [17] also

nvestigated the different combinations of sensors for monitoring
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Table 2 

Output features from commercial health monitoring systems. 

Activity features Biometric features 

Steps Activity Sleep Heart Breath Head Other 

Step count Lying, sitting, 

standing, 

stepping, 

walking, running 

Duration Heart rate (HR) 

/sec or min 

Blood pressure 

Cadence Latency HR (R-R intervals) Number of impacts 

to the head 

Glucose level 

Average steps/day Intensity: low, 

moderate, high 

REM sleep duration HR variability Respiratory rate Skin temperature 

Number of steps at 

moderate/ high 

intensity 

Duration and 

percentage of 

time at each 

intensity level 

Light sleep 

duration 

HR zone Intensity of head 

impacts 

Perspireation 

Deep sleep 

duration 

ECG Blood oxygen level 

(SpO2) 

EEG (Electroen- 

cephalography 

Distance Total exercise time Toss and turn count 20 mincardiovascu- 

lar 

score 

Head injury criteria 

Elevations Energy 

expenditure: kcal 

/ MET.hr 

Efficiency 60 minendurance 

score 

EMG (Electromyog- 

raphy Stress 

level 
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atients with chronic obstructive pulmonary disease (COPD) and

gain found the “best” results were obtained using all the sen-

ors (in this case 10 accelerometers distributed about the body).

he “best” single sensor location was found to be on the left or

ight thigh. Pärkkä et al. [18] conducted a study to determine

hich sensors are most information rich for activity classification

nd included both motion and physiological sensors. Accelerom-

ters were found to be most informative for activity monitoring,

owever the position of the sensors (on the wrists) did not en-

ble the separation of sitting and standing. Interestingly, physio-

ogical sensors did not prove as useful for activity monitoring due

o the delay in physiological reactions to activity changes, whereas

ccelerometers react immediately. 

Sensor orientation can also effect classification accuracy. Thiem-

arus et al. [19] compared the performance of the k -NN ( k -nearest

eighbour) classifier using accelerometry data of activities with the

ensor orientated in different directions. By transforming the sig-

al to eliminate the orientation of the sensor an overall accuracy

f 91% was achieved. 

. Data fusion 

This section discusses data fusion models and the different lev-

ls of data fusion. A description of the possible types of features

hat can be extracted to characterise the data and techniques to

elect them are also described. 

.1. Data fusion models 

A useful data fusion model is The Joint Directors of Labora-

ory model described by Hall and Llinas [8] that was developed

o improve communications among military researchers and sys-

em developers. Work by Luo and Kay [20] define a hierarchical

odel consisting of four levels of abstraction at which fusion can

ake place; signal level fusion, pixel level fusion (for image data),

eature level fusion, and symbol level fusion. Dasarathy [21] ex-

anded on the hierarchical data fusion models by defining five fu-

ion processes characterised by each processes input-output mode,

.g. data in - feature out fusion. For the application of healthcare

any models have been suggested. Lee et al. [22] proposed a hier-

rchical model for the application of pervasive healthcare to min-

mise the probability of unacceptable error. Fortino et al. [10] de-

cribed a framework for collaborative body sensor networks, C-
PINE. Gong et al. [23] proposed a multi preference-driven data fu-

ion model and demonstrated its application for a wireless sensor

etwork healthcare monitoring system. 

Fig. 1 describes a generic centralised hierarchical data fusion ar-

hitecture for a wearable health monitoring systems, drawing on

hree of the data fusion levels of abstraction (signal, feature, and

ecision) and elements from the previously described models. Data

s sampled from the sensors (at a frequency appropriate to the

ensor type and application) and transferred to the fusion centre

hich may reside on a smart phone or a gateway. An obvious way

o do this is by using wireless radio communications, such as Low

nergy Bluetooth (BLE) or Zigbee. Alignment and cleaning of the

ata takes place at the pre-processing stage to take into account

ifferences in sampling rates, timing offsets, and lost or corrupt

ata. Filtering would also take place at this stage. Data can then

e processed at the appropriate level of fusion. Additionally, some

ensors may operate by being activated by an event trigger which

ay be the result of the systems output. Potentially, in the case of

 suspected fall detected using body worn accelerometry, a camera

ould be activated to gain additional context of the event. 

To interpret the sensor data three main hierarchical levels at

hich data fusion takes place are commonly used: signal level

ata fusion (sometimes referred to as direct or raw data fusion),

eature level fusion, and decision (symbolic or inference) level

usion [8] . Signal level fusion can be applied to combine com-

ensurate data i.e. data measuring the same property, directly.

or example, to deduce kinematic parameters for biomechanical

odelling, the Kalman filter (KF) can be used to estimate the

tate. 

For data that is non-commensurate, fusion takes place at the

eature level [8] . Features are extracted from the sensor data and

sed to form a feature vector that, after fusion, will result in a

igher level representation of the data. If appropriate, output from

he signal level fusion can be used as part of the feature vector.

here are a wide range of parametric and non-parametric algo-

ithms that can be used to classify the data into higher levels of

bstraction, which will be described in further detail in Section 4 . 

Decision level fusion is performed at the highest level of ab-

traction from sensor data and can be based on raw data, features

xtracted from the raw data, and symbols defined at the feature

evel fusion to make higher level deductions. Probabilistic meth-

ds are commonly used at the decision level due to the high lev-

ls of uncertainty; however other methods that are also tolerant of
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Table 3 

Consumer and research commercial wearable sensor systems. Older versions have been replaced by those that supersede them. Abbreviations: RD Raw Data; EE Energy 

Expenditure; HR Heart Rate; 
√ 

featured; − not featured; ∗ optional. 

Up/Up24 Jawbone ✓ - - - - - - - - - - - - - - - - - - intensityactivitysleep,EE,Wrist

Physilog 4 Gait Up ✓ ✓ ✓ ✓ - - - - - * * - - - - - - - - Foot
Temporal/spatial gait analysis,

clearance, turning

Wireless Activity

and Sleep Tracker
iHealth ✓ - - - - - - - - - - - - - - - - - - Wrist, waist

Steps, EE, distance travelled,

sleep time and efficiency

Checklight MC10 ✓ ✓ - - - - - - - - - - - - - - - - - intensitycounts,impacts,HeadHead

BodyMedia fit Core

/Link armband
BodyMedia ✓ - - - ✓ - - - - - - - - - ✓ ✓ - - ✓ timebodyon/offsleep,activity,steps,EE,RD,Arm

Wellograph Wellograph ✓ - - - - - - - - ✓ - - - - - - - - ✓ Wrist
HR, steps, time scales, sedentary and

active times, calories

Pulse Withings ✓ - - - - - - - - ✓ - - - - - - - - - Wrist, hip
Steps, calories, elevation, distance,

sleep (duration, light, depth), instant HR

Scout Scanadu - - - - - - - - - - - ✓ ✓ - - - - - - Fingers
Temperature, blood pressure, HR, SpO2, ECG,

HRV, stress

Hydrate MC10 - - - - - - - - - - - - - - - - - ✓ - levelHydration-

Mio FUSE Mio ✓ - - - - - - - - ✓ - - - - - - - - ✓ sleepburned,caloriesdistance,steps,HR,Wrist

Rhythm + Scosche - - - - - - - - - ✓ - - - - - - - - ✓ pacespeed,distance,burned,caloriesrate,PulseForearm

Wireless blood pressure iHealth ✓ - - - - - - - - ✓ - - - ✓ - - - - ✓ Wrist
Systolic and diastolic blood pressure, HR,

pulse wave, measurement

Shimmer3 Shimmer ✓ ✓ ✓ ✓ ✓ - - - - ✓ ✓ - - - ✓ - - - ✓ availableareappsdevelopmentRD,-

Motion

sensors

Environmental

sensors

Biometric

sensors

Device Company A
cc
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Placement Outputs

ActivPal
Pal Tech-

nologies
✓ - - - - - - - - - - - - - - - - - - Thigh

Steps, activity(sedentary, standing,

steps), duration and time

MoveMonitor McRoberts ✓ - - - - - - - - - - - - - - - - - - Lower back Activity, EE

AX3 Watch Axivity ✓ - - - ✓ ✓ - - - - - - - - - - - - - Wrist RD

MotionWatch 8 CamNtech ✓ - - - - ✓ - ✓ - - - - - - - - - - - Wrist Sleep, activity

Actiheart CamNtech ✓ - - - - - - - - ✓ - - - - - - - - - Chest RD, activity, HR, inter-beat-interval

RT6 Research Tracker Stayhealthy ✓ ✓ - - - - - - - - - - - - - - - - - Waist RD, kcal

EXL-S3 Exel ✓ ✓ ✓ ✓ ✓ ✓ - - - - - - - - - - - - ✓ noitamitsenoitatneiro,DR-

Basis Basis ✓ - - - ✓ - - - - ✓ - - - - - - ✓ - ✓ Wrist
Sleep, HR, perspiration, skin temperature,

motion, calorie expenditure, steps, activity.

x-BIMU x-io ✓ ✓ ✓ - - - - - - - - - - - - - - - ✓ DR-

tibtiFenO ✓ - - - - - - - - - - - - - - - - - ✓
Clip: waist,

pocket, belt, bra

EE, steps, stairs climbed,

distance travelled, sleep time and quality

Shine Misfit ✓ - - - - - - - - - - - - - - - - - ✓ Waist, pendent, wrist Steps, calories, distance, activities

wGT3X-BT Monitor

(wActigraphSleep-BT)
ActiGraph ✓ - - - - - - - - * - - - - - - - - ✓

Wrist, waist,

ankle, thigh

RD, EE, MET rates,

steps, activity intensity,

sleep (time, latency,

wake after sleep onset, efficiency),

ambient light levels,

HR (with optional monitor), position
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uncertainty can also be used including artificial intelligence, fuzzy

logic and genetic algorithms. 

3.2. Feature extraction and selection 

To combine data for the classification or detection of an activity

or event characteristics, or features, are extracted from the sen-

sor data as input for the data fusion algorithm. The features rep-
esent the information in the original signal and are usually cal-

ulated over fixed time windows that can range from 0.5 to 10 s

ong. Using a fixed window, an overlap in the data can be applied,

ith the effect of smoothing the output. Typically, a 1 s window

s sufficient, with a 50% overlap with the previous window, how-

ver this is application dependent and a longer or shorter win-

ow maybe more appropriate. Features can be summarised into

wo main domains: time and frequency, however some features in-
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Fig. 1. A data fusion architecture for wearable health monitoring systems incorpo- 

rating concepts from [8] and [20] . 
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Table 4 

Example features that can be extracted from sensor data. 

Domain Type Feature 

Time Signal 

characteristics 

Absolute value 

Range 

Maximum/minimum 

Zero crossings 

Derivative 

Integral 

Jerk 

Root mean square 

Root-sum-of-squares (or signal 

magnitude vector) 

Surface magnitude area 

Statistical 

characteristics 

Mean 

Median 

Variance 

Standard deviation 

Skew 

Kurtosis 

Interquartile range 

Percentiles 

Pearson coefficients 

Cumulative histograms 

Cross correlation 

Entropy 

Frequency Fourier coefficients 

Energy 

Power 

Wavelet features 

Power spectral density 
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orporate both temporal and frequency elements, such as wavelets

24] . A summary of some of these features can be found in Table 4 .

Feature selection describes the process by which features are

hosen. This is sometimes based on empirical observation, how-

ver, search strategies can provide an objective means to select ap-

ropriate features. Search strategies fall broadly under two types;

lter based, where the properties of the data are examined with-

ut knowledge of the inference algorithms to be used; and wrap-

er based that use the performance of the target learning algo-

ithm to inform the set of features [25] . An introduction to feature

election has been provided by Guyon and Elisseeff [26] . For wear-

ble sensor applications, selecting the most appropriate features

an make a great difference to the quality of the inference. Atallah

t al. [15] compared feature sets for activity recognition compiled

sing several filter based feature selection algorithms including Re-

ief and Simba, that aim to maximise the margins between decision

oundaries, and minimum redundancy maximum relevance. 

A common problem for multi-sensory systems is high dimen-

ionality feature space which leads to increased computational

osts and higher demands on memory. Algorithms such as in-

ependent component analysis and principal component analysis

24] can be used to reduce the dimensionality of feature space.

eep learning, offers an alternative approach building features at

ultiple levels of a deep network. While deep learning has often

een applied to static data, Längkvist et al. [27] provided a re-

iew of deep learning for time-series data. Plötz et al. [28] com-
ared different types of features used to represent human activ-

ty data including: statistical metrics, fast Fourier transform coeffi-

ients, principal component analysis based features, and those de-

ived using deep learning methods. A standard nearest neighbour

lassifier, which will be described later, was used to demonstrate

he effectiveness of the features. 

For systems reliant on wireless communications, including body

orn systems, power consumption also requires consideration i.e.

he trade-off between transmitting raw data to the fusion centre

s. extracting features for transmission on the sensing device. 

. Data fusion algorithm overview 

In the following sections an overview of the different types of

ata fusion algorithms are presented and examples given from the

esearch literature. For feature level data fusion, non-parametric al-

orithms (that do not make assumptions regarding the distribution

f the data) and parametric algorithms are presented. At the deci-

ion level, algorithms including Bayesian approaches, fuzzy logic,

nd topic models will be described. 

.1. Signal level algorithms 

• Weighted averages - is a simple signal level fusion method for

combining commensurate information by taking an average of

all the sensor readings [20] . The contribution of the “worst”

sensor’s error will be alleviated in the final estimate, although

not eliminate it completely. To reduce the impact of large er-

roneous sensor readings weighted averages can be used [24] .

For example, the weighted average of physiological temperature

measurements could be taken from an array of body worn ther-

mistors to find a single best estimate. 
• The Kalman filter (KF) - is a popular statistical state estimation

method that can be used to fuse dynamic signal level data. The

state estimates of the system are determined based on a re-

cursively applied prediction and update algorithm and assumes
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the state of a system at the current time is based on the state

of the system at the previous time interval. One of the main

advantages of the KF is that it is computationally efficient [29] .

The KF is often used to fuse accelerometer and gyroscope in-

formation to provide better estimates, an example of which is

the use of the KF to detect postural sway during quiet standing

(standing in one spot with out performing any other activity or

leaning on anything) [30] . For non-linear filtering the extended

KF or unscented KF can be used. 
• Particle filtering (PF) - Particle filtering is a stochastic method

to estimate moments of a target probability density, when they

can’t be computed analytically. The principle is to generate ran-

dom numbers called particles, from an “importance” distribu-

tion that can be easily sampled. Then, each particle is associ-

ated a weight that corrects the dissimilarity between the target

and the importance probabilities. In the Bayesian context, par-

ticle filters are often used to estimate the mean of the poste-

rior density. They have the benefit of estimating the full tar-

get distribution without any assumption, which makes them

particularly useful for nonlinear /non-Gaussian systems. Djuri ́c

et al. [31] and Arulampalam [32] both provided a tutorial of PF

theory. The PF can be used for biomechanical state estimation

based on accelerometer and gyroscope data. 

4.2. Feature level non-parametric algorithms 

• k-Nearest Neighbour (k-NN) - One of the simplest classification

algorithms, k -NN measures the distance between the unlabelled

observations and the training samples to infer which class they

belong to. The unlabelled observation is assigned the label of

its nearest neighbours where k is the number of training ob-

servations to be taken into account. Distance measures include

the Euclidean and Manhattan distance. Use of k -NN has been

widely used and reported in the literature for activity classifi-

cation applications [15,16,19,33–37] . Bicocchi et al. [37] , in par-

ticular, compared k -NN to several other instance based learning

algorithms using a real-life activity set and achieved a precision

of about 75% with k equal to 1. 
• Decision Trees (DT) - DT or rule-based algorithms are a pop-

ular method used for classification. Rules are defined in the

form of a “tree”, starting at the root that is split into decision

nodes which refine the class prediction with each level of de-

cision nodes. Leaf nodes represent the predicated class of the

unknown data [5] . DT can be constructed manually by empir-

ically defining rules; however, algorithms are available to au-

tomatically generate trees based on the data such as ID3 and

C4.5. Other DT algorithms include CART, random tree, random

forest, and J48. Examples of the use of DT for activity recogni-

tion include [17,18,34,35,38–41] . 
• Support Vector Machines (SVM) - SVM have been extensively

used for human activity classification [16,17,36,39,42,43] and

can be used for both linear and non-linear classification prob-

lems. SVM is a binary classifier finding separation between two

classes. The data is mapped into a high dimensional space using

a kernel function (such as a Gaussian, sigmoid, or radial basis

function). A hyperplane is then found that maximises the deci-

sion boundary between the examples of the classes [44] . In a

comparative study by Liu et al [16] to determine the best sen-

sor configuration to recognise activities, SVM performed bet-

ter than the k -NN and Naive Bayes classifiers with an accuracy

of 76% using a single hip worn accelerometer, to 88% using a

hip and wrist worn accelerometer and a ventilation sensor that

measures features associated with breathing. 
• Artificial Neural Network (ANN) and Deep Learning - An ANN is

a biologically inspired computational model to describe func-

tions consisting of a network of simple computing elements,
or nodes [45] . An ANN structure is composed of several lay-

ers of nodes connected by weighted links. Inputs into the ANN

are propagated forward through the layers to compute the out-

put of the network, as follows: for each node, the sum of the

weights multiplied by the input value of all inputs is found. The

output for this node is then calculated by the activation func-

tion, such as the sigmoid function. To train the network, the

internal connective weights are adjusted using techniques such

as back propagation which minimises the error between the

network’s output and the target output [45] . ANN have been

applied to the problem of classifying human activity recogni-

tion; some examples include [18,36,46,47] . Pärkkä et al. [18] ,

Roy et al. [46] , and Altun et al. [36] conducted studies to com-

pare the performance of ANN to other algorithms. Yang et al.

[47] implemented an activity recognition strategy based on two

phase neural classification. During the first phase, activities are

classified as either static or dynamic activities, then during the

second phase more detailed activity recognition is performed.

Recently, success with deep learning methods, based on neural

networks, have attracted interest from many domains includ-

ing image classification and natural language processing [48] .

As mentioned previously, deep learning can be used to learn

features for activity recognition [28] , and as well as perform

classification. 

.3. Feature level parametric algorithms 

• Gaussian mixture model (GMM) – GMM can be used as a para-

metric classifier by modelling the probability distribution of

continuous measurements or features. A GMM consists of a

weighted sum of Gaussian distributions that can be trained

with example data using algorithms such as expectation-

maximisation (EM) [38,49] . A GMM is trained for each class,

then the new data examples are classified by determining the

GMM that provides the highest likelihood of producing the

data. Allen et al. [38] used GMM to distinguish postures and

movements for the monitoring of older patients based on ac-

celerometer data, comparing it to the performance of a heuris-

tic DT system. Wang et al. [49] classified five gait patterns using

GMM. 
• k-Means – k -means is an unsupervised iterative distance-based

clustering algorithm. It aims to classify data based on the dis-

tance of a data point to the mean centroid of each cluster. The

classifier is trained by defining k centroids, one for each clus-

ter. These can be defined randomly or by defining the initial

centroid based on all the training data and subsequent cen-

troids using the data points furthest away from the initial cen-

tre [24] . An iterative process is then used to minimise the dis-

tance of the centroids from the data points. Each data point

is assigned to the nearest centroid, after which the centroid is

recalculated based on the clusters that are formed. This pro-

cess is repeated until the criteria to stop have been met. Af-

ter this process, data for classification is assigned to the clos-

est centroid. Ghassemzadeh et al. [33] used k -means cluster-

ing to define motion primitives which, in combination, form

transcripts that can be used for activity recognition. Machado

et al. [50] applied k -means clustering to the problem of activity

recognition using accelerometry successfully predicting activi-

ties with an accuracy of 89% for the user independent case. 

.4. Decision level algorithms 

• Bayesian inference - Approaches, based on Bayes theorem, relate

the posterior probability, i.e. the probability of the hypothesis

occurring given the observations (or features), the prior proba-

bility of the hypothesis, and the likelihood, i.e. the probability
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of the observations given the hypothesis. Bayesian methods en-

able the inclusion of prior probabilities that can take into ac-

count known information and can be updated based on the

observations. The Naive Bayes classifier is a popular method

for inferring activity from sensor data. Despite the assumption

of independence between features, which is often considered

poor, it can perform well. Atallah et al. [51] used Bayesian clas-

sification for activity recognition from an ear worn accelerom-

eter based device. One drawback of Bayesian inference is the

requirement that competing hypotheses are mutually exclusive,

however, this is not generally compatible with the way humans

assign belief [24] . Dempster–Shafer theory, also known as be-

lief function theory or evidential reasoning, provides a frame-

work for reasoning with uncertainty by extending the Bayesian

approach [24] . 
• Fuzzy logic - or fuzzy set theory, is a fusion technique that can

be applied at the decision level and have been used for the

recognition of human activities using both wearable and am-

bient sensors [52,53] . Fuzzy logic describes input data in terms

of possibility , i.e. the possibility the input data describes some

property [24] . Medjahed et al. [53] describe three main steps

for the application of fuzzy logic. First, fuzzification takes place

converting the data into fuzzy sets. Secondly, a fuzzy inference

system is applied which consists of fuzzy rules that take the

IF/THEN form and fuzzy set operators including the union, com-

plement and intersection [24] . Finally, defuzzification is applied

to convert fuzzy variables generated by the process into real

values. 
• Topic models - are an unsupervised machine learning algorithm

originally designed for aiding understanding of large corpuses

of text. They allow hidden thematic patterns in a dataset to

be discovered using latent Dirichlet allocation. Huynh et al.

[54] showed that Topic Models could be used to discover rou-

tine behaviours (e.g. lunch) from other activities (e.g. queuing,

eating). Seiter et al. [55] further investigated the robustness of

Topic Models for daily routine discovery by varying the char-

acteristics of simulated datasets based on the original data col-

lected by Huynh et al. and identified optimal values of dataset

properties required to achieve good performance stability. 

. Applications of data fusion for health monitoring 

.1. Activity recognition 

Activity monitoring using wearable technology has received a

ast amount of attention. A person’s level of functional mobility

an directly reflect quality of life (QoL) and overall health. From in-

ormation provided by wearable sensors, feature level data fusion

echniques and inference methods can be used for activity recogni-

ion at different levels of detail: activity intensity levels, static and

ynamic postures, and activities of daily living (ADL). 

Static postures refer to activities which are globally still, such

s lying and sitting, where as dynamic postures refer to activities

uring which someone is actively moving, such as bipedal activ-

ties and during transitions, e.g. moving from sitting to standing.

tanding can be referred to as a dynamic activity, e.g. [19] , or a

tatic activity, e.g. [56] , depending on the perspective and applica-

ion. Standing is a globally stationary activity, however, to maintain

 standing posture active work is required on the part of the per-

on. Corrective movements are continuously made which can be

etected using a trunk worn accelerometer and have been used

o investigate standing balance [57] . In contrast to maintain static

ostures such as sitting or lying, no active work is required on the

art of the person. There are links between health and the amount

f dynamic activity a person performs in the form of physical ac-

ivity, such as walking, thus, even simple measures can provide in-
ight into well-being [58] . Static and dynamic postural information

an be used to determine the time spent in various positions and

he amount of dynamic activity being carried out. 

ADL describe in greater detail the essential tasks of daily liv-

ng. The ability with which individuals can perform these tasks are

ommonly assessed using questionnaires [59] . The research liter-

ture reflects the interest in using body-worn sensors to identify

hese activities, which can be treated either as individual activities

37] or by dividing the ADL into the levels of physical intensity

ach activity requires [51] . 

It can be seen from the research literature that accelerometers

re the most widely used sensors for these applications. Excep-

ions include Pawar et al. [60] , who performed body movement

lassification using artifacts present in wearable ECG signals, and

oy et al. [46] who combined surface EMG with accelerometers for

ctivity recognition. Gyroscopes are also used for activity recog-

ition, although not as frequently. Potentially this is due to their

igh power consumption while accelerometers can operate at very

ow power making them attractive for battery powered systems.

n in-depth review of the technology used in wearable systems for

ealth applications can be found in a review by Lowe and OLaighin

61] . 

It is worth noting that heuristic algorithms are often employed

nd used to great effect for activity recognition. These can be used

lone or in conjunction with other data fusion techniques. For ex-

mple, thresholds can be used to define the limits between one

tate and another, distinguish between periods of static and dy-

amic activity, and identify posture [19,56,62–65] . Culhane et al.

64] used two bi-axial accelerometers attached to the thigh and

ternum and by applying a threshold to the standard deviation of

he sensor data, it could be determined if the wearer was static

r dynamic. During static activities, posture was inferred using the

ccelerometer by measuring the tilt of the trunk and thigh. Dalton

t al. [65] compared the mean of accelerometer data to thresholds

hat had been pre-defined to differentiate between activities. 

There are a wide range of approaches used for general activ-

ty recognition, however some studies are more disease specific.

sipouras et al. [66] developed a method for the automatic as-

essment of levodopa-induced dyskinesia for patients living with

arkinson’s disease. Using data from body worn accelerometers

nd gyroscopes, levodopa-induced dyskinesia could be detected

nd the severity assessed. Salarian et al. [67] and Rodriguez-Martin

t al. [43] also investigated the use of activity classification for

arkinson’s disease using fuzzy classification and SVM, respectively.

ther participant cohorts that were the focus of different studies

nclude: those who had recently been in hospital [62] , rehabilita-

ion [64] , stroke [46] , and COPD [17,68] . 

.2. Fall detection and prediction 

Fall detection, often performed in conjunction with activity

ecognition [63,69,70] , is another widely researched application for

earable sensing technology. The incidence of falls and the risk

f injury due to a fall increases as people age, affecting QoL and

onfidence. After a fall, it may not be possible to call for help or

ttract attention which could result in a sustained period of time

ithout assistance. During this time, dehydration, hunger, and in-

uries sustained during the fall can lead to prolonged hospital stays

nd potentially prove fatal. 

Heuristics are often employed for fall detection including work

y Bourke et al. [71] who investigated fall detection using 2 tri-

xial trunk and thigh worn accelerometers. The resultant was cal-

ulated for both accelerometers and an upper falls thresholds ap-

lied capable of identifying 100% of falls from normal activities. In

ubsequent work, Bourke et al. [72] applied thresholds to the re-

ultant of the angular velocity from a trunk mounted gyroscope.
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Karantonis et al. [63] used a single waist worn accelerometer and

thresholds to determine activity, rest, posture and falls. Benocci

et al. [73] also conducted falls detection using an accelerometer

attached to the sacrum and simulated falls from standing, walking,

out of bed, and sliding down a wall. Wang et al. [74] described a

three-fold threshold system that combine a trunk worn accelerom-

eter and cardiotachometer to detect falls. The thresholds test for

high accelerometer values, angle of the trunk, and heart rate to

detect a fall. 

One of the greatest predictors of a fall is having fallen previ-

ously, therefore it is of equal importance to be able to predict a

fall such that preventative measures can be put in place. As well as

the detection of falls, work by Giansanti et al. [75] used wearable

sensors to determine the risk of falls using 60 s balance tests. An

accelerometer and gyroscope were worn on the trunk and a four

layer ANN were used to classify participants into fall risk levels. 

5.3. Gait and ambulatory monitoring 

Gait analysis can provide insight into functional mobility, rang-

ing from the ability to perform various bipedal activities to a de-

tailed account of the gait cycle. Gait analysis and biomechanical

modelling are traditionally performed in laboratory environments

using optical motion capture to track body segment motion. More

recently body worn inertial devices have been investigated as an

alternative, eliminating the need to collect data in specialised labo-

ratories. Biomechanical modelling of the lower body could be used

to build unique gait models such that deviations from the norm

could indicate the need for treatment or intervention. 

Moe-Nilssen and Helbostad [76] used a low back mounted ac-

celerometer to monitor gait variability in the anterior-posterior and

mediolateral plane, and estimate cadence, step, and stride length

over a known distance and was used to differentiate between fit

and frail older adults. Xu et al. [77] examined the walking param-

eters of those recovering from stroke with a hemiparetic gait for

rehabilitation purposes. A hierarchical approach using Naïve Bayes

and dynamic time warping methods were used to classify walk-

ing, then gait parameters are computed including walking speed,

cadence, stride length, and distance travelled. 

In the clinical environment, gait has been used to predict the

risk of falling using tools such as the Tinetti gait and balance as-

sessment [78] . Body-worn sensors could be used as an alterna-

tive or complementary assessment. Caby et al. [79] collected ac-

celerometry data from 10 sensors during a walking test and the

Timed Up-and-Go for the objective classification of fallers and non-

fallers. Accelerometry and force sensitive resistors have also been

used to distinguish between normal and abnormal gait [80] . Ishi-

gaki et al. [81] determined pelvic movement from an accelerom-

eter and gyroscope mounted on the sacrum during 10m of free

walking to find correlations with stability in older adults. Less

pelvic motion was found for those classed as unstable based on

a single leg balance test. 

The differences in bipedal locomotion styles imposed by envi-

ronmental conditions such as a flat or sloped surface, and stairs are

subtle. The ability to negotiate these conditions can be an indica-

tion of physical well-being and used to monitor those with limited

mobility. To this end, Wang et al. [82] decomposed the accelera-

tion data from a single waist mounted sensor into frequency fea-

tures using wavelets to classify the different walking patterns us-

ing a multilayer perceptron neural network. In further work, Wang

et al. [83] included walking up and down two different gradients

and used GMM for classification. Lau et al. [84] focused on walk-

ing conditions for those with uni-lateral drop foot and deployed

two accelerometers and a single gyroscope on the affected side

to distinguish the aforementioned conditions and compare classi-

fication results from several data fusion methods. Muscillo et al.
85] adopted an adaptive Kalman-based Bayes estimation method

o differentiate between locomotor conditions for both young and

lder adults. 

By analysing gait events, such as heel contact, heel-off, and toe-

ff, body-worn sensors can be used to characterise gait for applica-

ions such as drop foot stimulation [86] . Kotiadis et al. [87] investi-

ated gait phase detection for drop foot, exploring trigger timings

or a stimulator. For those suffering from Parkinson’s disease and

ultiple sclerosis gait disturbances, such as freezing of gait, can be

n indication of a higher risk of a fall. Tripoliti et al. [88] used body

orn accelerometers and gyroscopes for the automatic detection of

reezing of gait. Accelerometers can also be used to recognise an

ndividual’s gait [89] which in a multi-resident home or scenario

here sensors are shared could aid identification of the wearer. 

.4. Biomechanical modelling 

Parametric state estimation algorithms, such as the KF and PF,

an be used to measure biomechanical motions by combining ac-

elerometer and gyroscope data to estimate the kinematic parame-

ers. These algorithms come under the banner of signal level fusion

ethods as they combine commensurate data to achieve the best

stimation of a parameter. Musi ́c et al [90] used an extended KF

o fuse inertial sensor data for the reconstruction of body segment

rajectories in the sagittal plane of sit-to-stand motions. 

Takeda et al. [91] presented a method for gait analysis by cal-

ulating the 3-dimensional position of each lower body segment

sing 7 tri-axial accelerometers and gyroscopes, joint-range-of-

otion, the contribution of gravity to the accelerometer signals,

nd frequency features that describing the cyclic nature of walk-

ng. 

Due to the high power consumption of gyroscopes other meth-

ds using multiple accelerometers are being developed such as the

ouble-sensor difference algorithm presented by Liu et al. [92] for

he measurement of rotational angles of human segments. Djuri ́c-

ovi ̌ci ́c et al. [93] used pairs of tri-axial accelerometers for the esti-

ation of leg segment angles and trajectories in the sagittal plane

hrough the removal of sensor drift. 

.5. Physiological monitoring 

By monitoring physiological aspects of health, an insight can be

ained into how well our bodies are functioning, and can be used

o monitor cardiovascular health, and the potential onset of illness

i.e. body temperature). A novel use of accelerometers was pre-

ented by Lapi et al. [94] to detect respiratory rate by positioning

ensors on opposite sides of the chest wall. Li and Kim [95] devel-

ped a patch style sensor for wireless heart rate monitoring and

ovement index incorporating a HR monitor and accelerometer. 

Stress is another area of well-being that has drawn interest by

he research community due to its impact on health and well-

eing. A system presented by Healey and Picard [96] was able

o classify stress during real-world driving tasks into three levels

ased on wearable sensors including two skin conductivity sen-

ors, ECG, EMG, chest expansion respiration sensor. Ikehara and

rosby [97] used physiological sensors to assess cognitive load.

ensors used in this study included those to measure electroder-

al temperature and blood flow, an eye tracker extracting related

eatures, and an oximeter. Luprano et al. [98] incorporated textile

lectrodes and an accelerometer into a shirt to measure ECG and

erform activity recognition. Fletcher et al. [99] developed a sys-

em for cognitive behavioural therapy for drug addiction that mon-

tors for unusual arousal patterns using accelerometer, tempera-

ure, and electrodermal activity sensors (with optional ECG). When

pecific arousal events are detected a message was automatically

ent to the wearer’s phone with an empathetic message. 
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Bandodkar et al. [100] described sodium sweat sensors applied

s a temporary stick on ‘tattoo’ sensor. These sensors were tested

n a laboratory during stationary cycling activities. Indeed there are

any biological MEMs sensors being developed that can be ap-

lied to physiological monitoring such as the triglyceride biosensor,

-reactive protein detector to monitor increases which may cause

eart attacks or cardiovascular disease, and membrane-based glu-

ose sensors for diabetics [101] . 

. Discussion and further considerations 

.1. Wearable sensors 

Energy remains a dilemma for long term wearable research as

t dictates not only how the wearable is used by the individual,

ut also the quality and availability of the data. For the applica-

ion of activity recognition, inertial sensors such as accelerometers

nd gyroscopes provide the most appropriate data. The number of

ensors required depends largely on the application. If we consider

he use of one to five sensors, for the purpose of identifying funda-

ental static and dynamic postures a single sensing device can be

ufficient. Wrist worn devices, as favoured commercially, are not

ell placed to accurately distinguish between sitting and standing

ostures but can detect overall activity level. For the general popu-

ation, measuring activity intensity may be sufficient, however, for

hose that live with chronic disease or have restricted movement,

he distinction between sitting and standing would provide further

nsight into their well-being and health. A single waist or trunk

orn sensor will provide information on the transitions between

itting and standing and the global pose of the body, improving

ctivity recognition accuracy. A single waist worn sensor can also

e used to monitor gait variability, cadence, step and stride length

76] as described in Section 5.3 . However, these methods were de-

eloped for walking in a straight line using a known distance and

ould not be suitable for free living monitoring. 

A two-sensor scenario would include a sensor on the wrist

hich would provide information related to ADL, e.g. cooking, eat-

ng and drinking. With the addition of a third sensor on an ankle

r foot, more detailed parameters regarding gait can be extracted

uch as unilateral step length and height. An optional sensor po-

itioned on the thigh would provide more definitive information

egarding body posture, however maybe redundant if used in con-

unction with a waist worn sensor. Five sensors, worn at the waist,

rists and ankles, would provide even greater levels of detail re-

arding both leg and arm movement that can be used for bilateral

ait analysis and increase the accuracy of activity recognition algo-

ithms. 

For applications that require data from many sensors to address

pecific diseases or conditions, the benefits of an improved QoL

ay well outweigh the inconvenience of wearing multiple sensors.

his presents several challenges regarding the usability of the sys-

em, such as taking the sensors on and off, recharging the sensors,

nd overall adherence of wearing the system. With the wide avail-

bility of small, cheap, low powered sensors, incorporating them

irectly into clothing where needed could address some of these

hallenges. Further, near field charging would negate the need to

irectly connect the system to a power source. 

.2. Data fusion models and algorithms 

The data fusion model presented in this paper is based on

 centralised hierarchical data fusion model and can be seen to

e the most commonly used model for most commercial health

onitoring and many research systems. Most of these systems

re aimed at personal health and well-being monitoring and fo-

us on determining specific features related to that individual. For
ore complex environments and scenarios, this type of architec-

ure can be extended, such that the output, i.e. the local view, can

e used to contribute towards the global view. This is similar to

 distributed architecture [9] and could be used in the study of

pidemiology, e.g. disease surveillance in hospitals. This architec-

ure also naturally lends itself towards a decentralised architecture

here data fusion takes place at each node and does not rely on a

ingle fusion centre making it more robust to intermittent or unre-

iable communications services [9] . In this case each personal sys-

em becomes part of a community of nodes, each contributing in-

ormation as and when it can and could be implemented in situa-

ions such as disaster sites. 

The choice of data fusion algorithm used depends on the target

pplication. Influences include the required output, system accu-

acy, computational complexity, available processing power, battery

ower available, and expected operational time. Many of these as-

ects constitute a direct trade off. 

Low complexity data fusion algorithms, such as heuristic

hresholds, weighted averages, k -NN, and k -means, are well suited

o simple activity recognition applications. These include estimat-

ng activity intensity and fundamental static and dynamic postures.

hese are ideal for applications where a long battery life is ex-

ected and on-wearable user feedback is given. These algorithms

an be trained in advance and could be implemented on the wear-

ble using simple features extracted from the sensor data. These

ype of algorithms are well suited to everyday free living situations

s targeted by many commercial systems. 

Medium complexity data fusion algorithms, require more com-

utational power, and in turn more energy to run. The data can be

reated in two ways, (1) implement the algorithm on-wearable, or,

2) transmit the data off-wearable to the fusion centre. Both meth-

ds require more energy and will shorten the battery life of the

earable system. These algorithms include activity recognition al-

orithms that can infer more complex ADL such as Naive Bayes,

MM, DT, and NN. Kinematic estimation algorithms such as the

F which can be used towards biomechanical and gait analysis,

owever, require a high sampling frequency of typically 50-100Hz,

igher than many sampling frequencies required for activity recog-

ition. 

For research applications, data is often collected using wearable

ensor nodes and then post-processed. Medium complexity, as pre-

iously mentioned, to high complexity algorithms have been used

or activity recognition including SVM, deep learning, and Bayesian

etworks. To extract and process the the relevant data for biome-

hanical and gait analysis, as previously described, KF, extended

F, and PF can be used for the kinematic state estimation. Fea-

ure level algorithms can then be used to extract features such as

linically relevant outputs. 

Depending on the algorithm, there is more or less transparency

f how the algorithm maps the sensor data to the output features.

lgorithms based on neural networks and deep learning provide

ittle insight into this process and requires training with large ex-

mple data sets. Where as model based algorithms, for example

he KF, control how the sensor data maps to the features but re-

uires a predefined model. 

.3. Annotation and system validation 

Collecting accurately labelled activity data in a natural environ-

ent to apply to machine learning techniques is time consuming

nd expensive. To reduce the amount of labelled data needed to

rain activity recognition algorithms, techniques can be used such

s semi-supervised training and active learning [102–105] . 

Semi-supervised training approaches use small amounts of

abelled training data to initially train the activity recognition

lgorithms which are then used to label the unlabelled data.
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Stikic et al. [102] demonstrated two approaches to semi-supervised

training, self-training (the classification model is updated itera-

tively based on the most confidently predicted newly labelled data)

and co-training (the same as self-training but uses additional infor-

mation to augment the process). 

Active learning finds the unlabeled data with the most infor-

mation and queries the user to label them. Various strategies can

be used to decide what data has the most information such as the

data that is classified with the least confidence, or the amount of

disagreement between two classifiers [102] . This reduces the cost

of annotating all the data and is a good alternative to manual an-

notation. Hoque and Stankovic [104] used a clustering technique

to group activities based on data from a smart home environment

and asked users to label each cluster rather than label all data. Ac-

tive learning techniques can also be used to update a classifier af-

ter deployment. Longstaff et al. [105] explored active learning as

a means to dynamically augment mobile activity classifiers. Diethe

et al. [106] proposed a Bayesian active transfer learning framework

for smart home environments. 

Although there is a wealth of research being carried out in the

area of body worn sensors for health applications, further valida-

tion for many of the methods developed is needed using realistic

conditions such as: matched participant cohorts, target environ-

ments, and natural behavioural conditions. This is especially true

of fall detection where the algorithms used are often developed

using simulated data from young healthy participants by tripping

onto a crash mat or mattress. Algorithms based solely on labora-

tory data have been shown to fail and lead to unacceptably high

rates of false alarms [107] . In a similar way, people rarely perform

activities and ambulation in the same way as they would natu-

rally when being cued to do it, or carrying out a script. Although

features and data fusion algorithms may appear to be successful

based on laboratory training and testing data, they may fail when

used in real-world situations or from one person to the next. 

6.4. Data loss and synchronisation 

Another challenge for data fusion for health monitoring is the

imperfection introduced throughout the data fusion health moni-

toring system. Khaleghi et al. [108] , in an in-depth review of the

state-of-the-art in multisensor data fusion, provided a taxonomy

of data imperfection including uncertainty, imprecision (vagueness,

ambiguity and incompleteness), and granularity. Transferable belief

models could be used as a method for modelling sensor reliability

[109] . As well as error introduced by the sensors, wireless com-

munications present another source of system error. For the ap-

plication of body worn sensors, wireless transmission of data to a

fusion centre is a desirable and practical option allowing it to be

analysed continuously without unnecessary user interaction. Dis-

ruption in the communication of data to the fusion centre could

severally affect the quality of the received data and be caused by:

operation outside the range of the receiver; loss of power; receiver

error, and packet loss. Retransmission of lost or corrupted packets

can increase data reliability using two way communications, i.e. ac-

knowledgement of received packets [69] , however, there is a power

trade off associated with receiving and resending packets and there

will be a time delay introduced. 

Data transmitted from different sources will arrive to the fusion

centre at different times and need to be aligned prior to analy-

sis. This raises the issue of data synchronisation. Sensor data that

is collected using more than one stand alone module can be syn-

chronised by providing an input that each sensor can pick up, e.g.

a series of taps made during recording. Any drift can then be cal-

culated and the data resampled. Systems employing wireless com-

munications can correct for clock drift by broadcasting a regular

beacon from a master clock which can be used determine drift. In-
luding this additional information with the time stamp of when

he data was received can be used to reorder the data before fu-

ion. The synchronisation of sensors is an open and often over-

ooked area of research and methods are restrained by the target

pplication requirements, power consumption, sampling and trans-

ission frequency, and robustness to data loss. 

Alemdar and Ersoy [110] presented a survey on wireless sensor

etworks for healthcare and discussed design considerations. The

ireless sensor network system was broken down into five subsys-

ems including: body area network, personal area network, gate-

ay to the wide area network, and the end-user healthcare mon-

toring application. Each subsystem has a different set of design

onsiderations. Gravina et al. [111] presented a framework called

PINE that can be used for multiple body worn sensor applications.

aker et al. [112] described wireless sensor network prototypes for

ome healthcare. 

. Conclusions 

This paper outlined the state-of-the-art and future concepts

or using wearable sensors in healthcare applications. It describes

ome principles of data fusion and many of the foundation tech-

iques that can be used to perform data fusion on wearable sensor

ata. The commercial landscape of wearable sensors is constantly

hanging, however a snap shot of some of the currently available

roducts has been given, providing context for an overview of the

esearch literature conducted in the area of wearable sensors for

ealthcare applications. Applications of wearable technology for

ealthcare has been described including activity recognition, falls

etection, ambulatory monitoring, and biomechanical monitoring.

 discussion of other considerations that need to be addressed to

ugment wearable sensor technology has been provided, highlight-

ng potential directions for research and issues such as data collec-

ion, algorithm training, quality of data, infrastructure and the po-

ential fusion of wearable sensors with other external data sources.

onflict of interest 

There are no known conflicts of interest. 

cknowledgements 

This work was performed under the SPHERE IRC funded by the

K Engineering and Physical Sciences Research Council (EPSRC),

rant EP/K031910/1. This study did not involve human subjects. 

eferences 

[1] Office of National Statistics Population ageing in the united kingdom, its con-
stituent countries and the european union. 2012. www.ons.gov.uk . 

[2] Cracknell R. The ageing population. House of Commons Library 2010. pp. 44–

45. 
[3] Spijker J , MacInnes J . Population ageing: the timebomb that isn’t? BMJ

2013;347:f6598 . 
[4] Yach D , Hawkes C , Gould CL , Hofman KJ . The global burden of chronic

diseases: overcoming impediments to prevention and control. JAMA
2004;291:2616–22 . 

[5] Godfrey A , Conway R , Meagher D , OLaighin G . Direct measurement of human

movement by accelerometry. Med Eng Phy 2008;3(10):1364–86 . 
[6] Cheung VH , Gray L , Karunanithi M . Review of accelerometry for de-

termining daily activity among elderly patients. Arch Phys Med Rehabil
2011;92(6):998–1014 . 

[7] Patel S , Park H , Bonato P , Chan L , Rodgers M . A review of wearable sensors
and systems with application in rehabilitation. J Neuroeng Rehabil 2012;9:21 .

[8] Hall DL , Llinas J . An introduction to multisensor data fusion. Proc IEEE
1997;vol. 85:6–23 . 

[9] Castanedo F . A review of data fusion techniques. Sci World J 2013;2013:1–19 .

[10] Fortino G , Galzarano S , Gravina R , Li W . A framework for collaborative
computing and multi-sensor data fusion in body sensor networks. Inf Fus

2015;22:50–70 . 
[11] Ghaffari R , Schlatka BL , Balooch G , Huang Y , Rogers JA . Reinventing biointe-

grated devices. Mater Today 2013;16(5):156–7 . 

http://www.ons.gov.uk
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0001
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0001
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0001
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0002
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0002
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0002
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0002
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0002
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0003
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0003
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0003
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0003
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0003
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0004
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0004
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0004
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0004
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0005
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0005
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0005
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0005
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0005
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0005
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0006
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0006
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0006
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0007
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0007
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0008
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0008
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0008
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0008
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0008
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0009
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0009
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0009
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0009
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0009
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0009


R.C. King et al. / Medical Engineering and Physics 42 (2017) 1–12 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[12] MC10 Inc. MC10 Reshaping electronics. 2014 http://www.mc10inc.com/ . [ac-
cessed 13.11.14]. 

[13] van Hees VT , Renström F , Wright A , Gradmark A , Catt M , Chen KY , et al. Es-
timation of daily energy expenditure in pregnant and non-pregnant women

using a wrist-worn tri-axial accelerometer. PLoS ONE 2011;6(7) . 
[14] Checklight. 2014 http://www.mc10inc.com/consumer-products/sports/ 

checklight/ . [accessed 18.12.14]. 
[15] Atallah L , Lo B , King R , Yang G-Z . Sensor positioning for activity recognition

using wearable accelerometers. IEEE Trans Biomed Circ Syst 2011;5(4):320–9 .

[16] Liu S , Gao RX , John D , Staudenmayer JW , Freedson PS . Multisensor data fusion
for physical activity assessment. IEEE Trans Biomed Eng 2012;59(3):687–96 . 

[17] Patel S , Mancinelli C , Healey J , Moy M , Bonato P . Using wearable sensors to
monitor physical activities of patients with COPD: a comparison of classifier

performance. In: Proceedings of the sixth international workshop on wear-
able and implantable body sensor networks. IEEE; 2009. p. 234–9 . 

[18] Pärkkä J , Ermes M , Korpipää P , Mäntyjärvi J , Peltola J , Korhonen I . Activity

classification using realistic data from wearable sensors. IEEE Trans Inf Tech-
nol Biomed 2006;10:119–28 . 

[19] Thiemjarus S . A device-orientation independent method for activity recog-
nition. In: Proceedings of the 2010 international conference on body sensor

networks. IEEE; 2010. p. 19–23 . 
[20] Luo RC , Kay MG . A tutorial on multisensor integration and fusion. In: Pro-

ceedings of the 16th annual conference of the IEEE IECON’90. Industrial Elec-

tronics Society; 1990. p. 707–22 . 
[21] Dasarathy BV . Sensor fusion potential exploitation-innovative architectures

and illustrative applications. Proc IEEE 1997;85(1):24–38 . 
[22] Lee H , Park K , Lee B , Choi J , Elmasri R . Issues in data fusion for healthcare

monitoring.. In: Proceedings of the PETRA ’08; 2008 . 
[23] Gong J , Cui L , Xiao K , Wang R , Sens N . MPD-Model: A distributed multipref-

erence-driven data fusion model and its application in a WSNs-based health-

care monitoring system. Int J Distr ib 2012;2012:1–13 . 
[24] Yang G-Z . Body Sensor Networks. 2nd ed. London: Springer; 2014 . 

[25] Das S . Filters, wrappers and a boosting-based hybrid for feature selection.. In:
Proceedings of the eighteenth international conference on machine learning;

2001. p. 74–81 . 
[26] Guyon I , Elisseeff A . An introduction to variable and feature selection. J Mach

Learn Res 2003;3:1157–82 . 

[27] Längkvist M , Karlsson L , Loutfi A . A review of unsupervised feature
learning and deep learning for time-series modeling. Pattern Recogn Lett

2014;42(C):11–24 . 
[28] Plötz T , Hammerla NY , Olivier P . Feature learning for activity recognition in

ubiquitous computing.. In: Proceedings of IJCAI-11; 2011. p. 1729–34 . 
[29] Luo RC , Chang CC , Lai CC . Multisensor fusion and integration: theories, appli-

cations, and its perspectives. IEEE Sens J 2011;11(12):3122–38 . 

[30] Al-Jawad A , Barlit A , Romanovas M , Traechtler M , Manoli Y . The use of an ori-
entation Kalman filter for the static postural sway analysis. APCBEE Procedia

2013;7:93–102 . 
[31] Djuri ́c PM , Kotecha JH , Zhang J , Huang Y , Ghirmai T , Bugallo MF , et al. Particle

filtering. IEEE Signal Process Mag 2003;20(5):19–38 . 
[32] Arulampalam MS . A tutorial on particle filters for online non-

linear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process
2002;50(2):174–88 . 

[33] Ghassemzadeh H , Guenterberg E , Ostadabbas S , Jafari R . A motion sequence

fusion technique based on PCA for activity analysis in body sensor networks.
2009 Conf Proc IEEE Eng Med Biol Soc IEEE 2009:3146–9 . 

[34] Maurer U , Smailagic A , Siewiorek DP , Deisher M . Activity recognition and
monitoring using multiple sensors on different body positions.. In: Proceed-

ings of the BSN’06. IEEE; 2006. p. 113–16 . 
[35] Jatobá LC , Großmann U , Kunze C , Ottenbacher J , Stork W . Context-aware mo-

bile health monitoring: Evaluation of different pattern recognition methods

for classification of physical activity.. In: Proceedings off the IEEE conference
on engineering in medicine and biology society; 2008. p. 5250–3 . 

[36] Altun K , Barshan B , Tunç el O . Comparative study on classifying human
activities with miniature inertial and magnetic sensors. Pattern Recogn

2010;43(10):3605–20 . 
[37] Bicocchi N , Mamei M , Zambonelli F . Detecting activities from body–

worn accelerometers via instance-based algorithms. Pervasive Mob Comput

2010;6(4):482–95 . 
[38] Allen FR , Ambikairajah E , Lovell NH , Celler BG . Classification of a known

sequence of motions and postures from accelerometry data using adapted
Gaussian mixture models. Physiol Meas 2006;27(10):935–51 . 

[39] Banos O , Damas M , Pomares H , Prieto A , Rojas I . Daily living activity recog-
nition based on statistical feature quality group selection. Expert Syst Appl

2012;39(9):8013–21 . 

[40] Suzuki S , Mitsukura Y , Igarashi H , Kobayashi H , Harashima F . Activity recog-
nition for children using self-organizing map.. In: Proceedings of the 21st

IEEE international symposium on robot and human interactive communica-
tion. IEEE; 2012. p. 653–8 . 

[41] Bao L , Intille SS , Ferscha A , Mattern F . Activity recognition from user-anno-
tated acceleration data. pervasive computing. In: Lecture notes in computer

science, vol. 3001. Berlin Heidelberg: Springer; 2014 . 

[42] Mannini A , Sabatini AM . On-line classification of human activity and esti-
mation of walk-run speed from acceleration data using support vector ma-

chines.. In: Proceedings of the IEEE conference on engineering in medicine
and biology society; 2011. p. 3302–5 . 
[43] Rodriguez-Martin D , Samà A , Perez-Lopez C , Català A , Cabestany J , Rodriguez–
Molinero A . SVM-based posture identification with a single waist-located tri-

axial accelerometer. Expert Syst Appl 2013;40(18):7203–11 . 
[44] Schölkopf B , Sung K , Burges CJC , Girosi F , Niyogi P , Poggio T , et al. Compar-

ing support vector machines with Gaussian kernels to radial basis function
classifiers. IEEE Trans Signal Process 1997;45(11):2758–65 . 

[45] Russell S , Norvig P . Artificial intelligence a modern approach. Upper Saddle
River, NJ: Prentice Hall, Inc; 1995 . 

[46] Roy SH , Cheng MS , Chang S-S , Moore J , De Luca G , Nawab SH , et al. A com-

bined sEMG and accelerometer system for monitoring functional activity in
stroke. IEEE Trans Neural Syst Rehabil Eng 2009;17(6):585–94 . 

[47] Yang J-Y , Wang J-S , Chen Y-P . Using acceleration measurements for activity
recognition: an effective learning algorithm for constructing neural classifiers.

Pattern Recogn Lett 2008;29(16):2213–20 . 
[48] LeCun Y , Bengio Y , Hinton G . Deep learning. Nature 2015;521(7553):436–44 . 

[49] Wang N , Ambikairajah E , Celler BG , Lovell NH . Feature extraction using an

AM-FM model for gait pattern classification.. In: Proceedings of the IEEE con-
ference on biomedical circuits and systems; 2008. p. 25–8 . 

[50] Machado IP , Gomes AL , Gamboa H , Paixão V , Costa RM . Human activity
data discovery from triaxial accelerometer sensor: non-supervised learn-

ing sensitivity to feature extraction parameterization. Inf Process Manag
2015;51(2):204–14 . 

[51] Atallah L , Lo B , Ali R , King R , Yang G-Z . Real-time activity classifica-

tion using ambient and wearable sensors. IEEE Trans Inf Technol Biomed
2009;13(6):1031–8 . 

[52] Yuan B , Herbert J . Fuzzy CARA - a fuzzy-based context reasoning system for
pervasive healthcare. Procedia Comput Sci 2012;10:357–65 . 

[53] Medjahed H , Istrate D , Boudy J , Dorizzi B . Human activities of daily living
recognition using fuzzy logic for elderly home monitoring.. In: Proceedings of

the IEEE international conference on fuzzy systems. IEEE; 2009. p. 2001–6 . 

[54] Huynh T , Fritz M , Schiele B . Discovery of activity patterns using topic models..
In: Proceedings of the UbiComp ’08. ACM Press; 2008. p. 10–19 . 

[55] Seiter J , Amft O , Tröster G . Assessing topic models: How to obtain robust-
ness?. In: Proceedings of the AwareCast 2012: workshop on recent advances

in behaviour prediction and pro-active pervasive computing; 2012. p. 1–12 . 
[56] Lyons GM , Culhane KM , Hilton D , Grace PA , Lyons D . A description

of an accelerometer-based mobility monitoring technique. Med Eng Phys

2005;27(6):497–504 . 
[57] Gago MF , Fernandes V , Ferreira J , Silva H , Rocha L , Bicho E , et al. Postural

stability analysis with inertial measurement units in alzheimer’s disease. De-
ment Geriatr Cogn Disord Extra 2014;4:22–30 . 

[58] Gillison FB , Skevington SM , Sato A , Standage M , Evangelidou S . The effects of
exercise interventions on quality of life in clinical and healthy populations; a

meta-analysis. Soc Sci Med 20 09;68(9):170 0–10 . 

[59] Fox P , Ford P . Nursing assessment and older people - a royal college of nurs-
ing toolkit. London: Royal College of Nursing; 2004 . 

[60] Pawar T , Chaudhuri S , Duttagupta SP . Body movement activity recognition for
ambulatory cardiac monitoring. IEEE Trans Biomed Eng 2007;54(5):874–82 . 

[61] Lowe S , ÓLaighin G . Monitoring human health behaviour in one’s living envi-
ronment: A technological review. Med Eng Phys 2014;36(2):147–68 . 

[62] Choquette S , Hamel M , Boissy P . Accelerometer-based wireless body area net-
work to estimate intensity of therapy in post-acute rehabilitation. J Neuroeng

Rehabil 2008;5(2):20 . 

[63] Karantonis DM , Narayanan MR , Mathie M , Lovell NH , Celler BG . Imple-
mentation of a real-time human movement classifier using a triaxial ac-

celerometer for ambulatory monitoring. IEEE Trans Inf Technol Biomed
2006;10(1):156–67 . 

[64] Culhane KM , Lyons GM , Hilton D , Grace PA , Lyons D . Long-term mobility
monitoring of older adults using accelerometers in a clinical environment.

Clin Rehabil 2004;18(3):335–43 . 

[65] Dalton AF , Scanaill CN , Carew S , Lyons D , ÓLaighin G . A clinical evaluation
of a remote mobility monitoring system based on SMS messaging.. In: Pro-

ceedings of the annual international conference of the IEEE engineering in
medicine and biology society. IEEE; 2007. p. 2327–30 . 

[66] Tsipouras MG , Tzallas AT , Rigas G , Tsouli S , Fotiadis DI , Konitsiotis S . An auto-
mated methodology for Levodopa-induced dyskinesia: assessment based on

gyroscope and accelerometer signals. Artif Intell Med 2012;55(2):127–35 . 

[67] Salarian A , Russmann H , Vingerhoets FJG , Burkhard PR , Aminian K . Ambu-
latory monitoring of physical activities in patients with Parkinson’s disease.

IEEE Trans Biomed Eng 2007;54(12):2296–9 . 
[68] Sherrill DM , Moy ML , Reilly JJ , Bonato P . Using hierarchical clustering meth-

ods to classify motor activities of COPD patients from wearable sensor data. J
Neuroeng Rehabil 2005;2(16) . 

[69] Chan H-L , Chao P-K , Chen Y-C , Kao W-J . Wireless body area network for phys-

ical-activity classification and fall detection.. In: Proceedings of the 5th inter-
national summer school and symposium on medical devices and biosensors.

IEEE; 2008. p. 157–60 . 
[70] Wang J , Chen R , Sun X , She MFH , Wu Y . Recognizing human daily activities

from accelerometer signal. Procedia Eng 2011;15:1780–6 . 
[71] Bourke AK , O’Brien JV , Lyons GM . Evaluation of a threshold-based tri-axial

accelerometer fall detection algorithm. Gait Posture 2007;26(2):194–9 . 

[72] Bourke AK , Lyons GM . A threshold-based fall-detection algorithm using a
bi-axial gyroscope sensor. Med Eng Phys 2008;30(1):84–90 . 

[73] Benocci M , Tacconi C , Farella E , Benini L , Chiari L , Vanzago L . Accelerome-
ter-based fall detection using optimized Zigbee data streaming. Microelectron

J 2010;41(11):703–10 . 

http://www.mc10inc.com/
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0010
http://www.mc10inc.com/consumer-products/sports/checklight/
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0011
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0011
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0011
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0011
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0011
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0012
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0012
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0012
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0012
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0012
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0012
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0013
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0013
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0013
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0013
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0013
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0013
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0014
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0014
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0014
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0014
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0014
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0014
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0014
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0015
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0015
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0016
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0016
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0016
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0017
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0017
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0018
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0018
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0018
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0018
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0018
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0018
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0019
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0019
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0019
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0019
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0019
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0019
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0020
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0020
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0021
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0021
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0022
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0022
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0022
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0023
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0023
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0023
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0023
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0024
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0024
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0024
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0024
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0025
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0025
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0025
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0025
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0026
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0026
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0026
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0026
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0026
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0026
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0027
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0028
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0028
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0029
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0029
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0029
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0029
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0029
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0030
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0030
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0030
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0030
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0030
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0031
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0031
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0031
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0031
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0031
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0031
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0032
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0032
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0032
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0032
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0033
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0033
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0033
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0033
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0034
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0034
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0034
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0034
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0034
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0035
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0035
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0035
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0035
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0035
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0035
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0036
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0036
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0036
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0036
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0036
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0036
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0037
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0037
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0037
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0037
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0037
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0038
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0038
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0038
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0039
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0039
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0039
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0039
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0039
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0039
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0039
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0040
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0041
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0041
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0041
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0042
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0043
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0043
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0043
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0043
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0044
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0044
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0044
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0044
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0045
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0045
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0045
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0045
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0045
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0046
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0046
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0046
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0046
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0046
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0046
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0047
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0047
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0047
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0047
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0047
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0047
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0048
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0048
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0048
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0049
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0049
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0049
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0049
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0049
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0050
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0050
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0050
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0050
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0051
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0051
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0051
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0051
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0052
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0052
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0052
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0052
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0052
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0052
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0053
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0054
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0054
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0054
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0054
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0054
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0054
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0055
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0055
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0055
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0056
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0056
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0056
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0056
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0057
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0057
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0057
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0058
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0058
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0058
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0058
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0059
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0059
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0059
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0059
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0059
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0059
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0060
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0060
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0060
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0060
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0060
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0060
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0061
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0061
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0061
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0061
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0061
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0061
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0062
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0062
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0062
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0062
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0062
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0062
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0062
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0063
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0063
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0063
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0063
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0063
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0063
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0064
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0064
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0064
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0064
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0064
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0065
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0065
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0065
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0065
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0065
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0066
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0066
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0066
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0066
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0066
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0066
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0067
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0067
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0067
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0067
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0068
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0068
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0068
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0069
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0069
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0069
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0069
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0069
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0069
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0069


12 R.C. King et al. / Medical Engineering and Physics 42 (2017) 1–12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[74] Wang J , Zhang Z , Li B , Lee S , Sherratt RS . An enhanced fall detection system
for elderly person monitoring using consumer home networks. IEEE Trans

Consum Electron 2014;60(1):23–9 . 
[75] Giansanti D , Maccioni G , Cesinaro S , Benvenuti F , Macellari V . Assessment of

fall-risk by means of a neural network based on parameters assessed by a
wearable device during posturography. Med Eng Phys 2008;30(3):367–72 . 

[76] Moe-Nilssen R , Helbostad JL . Interstride trunk acceleration variability but not
step width variability can differentiate between fit and frail older adults. Gait

Posture 2005;21(2):164–70 . 

[77] Xu X , Batalin MA , Kaiser WJ , Dobkin B . Robust hierarchical system for clas-
sification of complex human mobility characteristics in the presence of neu-

rological disorders.. In: Proceedings of the international conference on body
sensor networks. IEEE; 2011. p. 65–70 . 

[78] Yelnik A , Bonan I . Clinical tools for assessing balance disorders. Clin Neuro-
physiol 2008;38(6):439–45 . 

[79] Caby B , Kieffer S , de Saint HM , Cremer G , Macq B . Feature extraction and

selection for objective gait analysis and fall risk assessment by accelerometry.
Biomed Eng Online 2011:1–19 . 

[80] Senanayake C , Senanayake SMNA . Human assisted tools for gait analysis and
intelligent gait phase detection.. In: Proceedings of the innovative technolo-

gies in intelligent systems and industrial applications. IEEE; 2009. p. 230–5 . 
[81] Ishigaki N , Kimura T , Usui Y , Aoki K , Narita N , Shimizu M , et al. Analysis of

pelvic movement in the elderly during walking using a posture monitoring

system equipped with a triaxial accelerometer and a gyroscope. J Biomech
2011;44(9):1788–92 . 

[82] Wang N , Ambikairajah E , Lovell NH , Celler BG . Accelerometry based classifi-
cation of walking patterns using time-frequency analysis.. In: Proceedings of

the annual international conference of the IEEE engineering in medicine and
biology society. IEEE; 2007. p. 4899–902 . 

[83] Wang N , Ambikairajah E , Redmond SJ , Celler BG , Lovell NH . Classification of

walking patterns on inclined surfaces from accelerometry data.. In: Proceed-
ings of the 16th international conference on digital signal processing. IEEE;

2009. p. 1–4 . 
[84] Lau H , Tong K , Zhu H . Support vector machine for classification of walk-

ing conditions of persons after stroke with dropped foot. Hum Mov Sci
2009;28(4):504–14 . 

[85] Muscillo R , Schmid M , Conforto S , D’Alessio T . An adaptive Kalman-based

Bayes estimation technique to classify locomotor activities in young and el-
derly adults through accelerometers. Med Eng Phys 2010;32(8):849–59 . 

[86] Lau H , Tong K . The reliability of using accelerometer and gyroscope
for gait event identification on persons with dropped foot. Gait Posture

2008;27(2):248–57 . 
[87] Kotiadis D , Hermens HJ , Veltink PH . Inertial gait phase detection for control

of a drop foot stimulator inertial sensing for gait phase detection. Med Eng

Phys 2010;32(4):287–97 . 
[88] Tripoliti EE , Tzallas AT , Tsipouras MG , Rigas G , Bougia P , Leontiou M , et al. Au-

tomatic detection of freezing of gait events in patients with Parkinson’s dis-
ease. Comput Methods Programs Biomed 2013;110(1):12–26 . 

[89] Gafurov D , Helkala K , Soendrol T . Gait recognition using acceleration from
MEMS.. In: Proceedings of the first international conference on availability,

reliability and security (ARES’06) IEEE; 2006. p. 1–6 . 
[90] Musi ́c J , Kamnik R , Munih M . Model based inertial sensing of human body

motion kinematics in sit-to-stand movement. Simul Model Pract Theory

2008;16(8):933–44 . 
[91] Takeda R , Tadano S , Todoh M , Morikawa M , Nakayasu M , Yoshinari S . Gait

analysis using gravitational acceleration measured by wearable sensors. J
Biomech 2009;42(3):223–33 . 

[92] Liu K , Liu T , Shibata K , Inoue Y , Zheng R . Novel approach to ambulatory as-
sessment of human segmental orientation on a wearable sensor system. J

Biomech 2009;42(16):2747–52 . 

[93] Djuri ́c-Jovi ̌ci ́c MD , Jovi ̌ci ́c NS , Popovi ́c DB , Djordjevi ́c AR . Nonlinear optimiza-
tion for drift removal in estimation of gait kinematics based on accelerome-

ters. J Biomech 2012;45(16):2849–54 . 
[94] Lapi S , Lavorini F , Borgioli G , Calzolai M , Masotti L , Pistolesi M , et al. Res-
piratory rate assessments using a dual-accelerometer device. Respir Physiol

Neurobiol 2014;191:60–6 . 
[95] Li M , Kim YT . Development of patch-type sensor module for wireless moni-

toring of heart rate and movement index. Sens Actuators 2012;173:277–83 . 
[96] Healey JA , Picard RW . Detecting stress during real-world driving tasks using

physiological sensors. IEEE Trans Intell Transp Syst 2005;6(2):156–66 . 
[97] Ikehara CS , Crosby ME . Assessing cognitive load with physiological sensors..

In: Proceedings of the 38th annual Hawaii international conference on system

sciences. IEEE; 2005. p. 1–9 . 
[98] Luprano J , Sola J , Dasen S , Koller JM , Chetelat O . Combination of body sen-

sor networks and on-body signal processing algorithms: the practical case of
myheart project.. In: Proceedings of the international workshop on wearable

and implantable body sensor networks (BSN’06). IEEE; 2007. p. 76–9 . 
[99] Fletcher RR , Tam S , Omojola O , Redemske R , Kwan J . Wearable sensor plat-

form and mobile application for use in cognitive behavioural therapy for drug

addiction and PTSD.. In: Proceedings of the annual international conference of
the IEEE engineering in medicine and biology society. IEEE; 2011. p. 1802–5 . 

100] Bandodkar AJ , Molinnus D , Mirza O , Guinovart T , Windmiller JR ,
Valdés-Ramírez G , et al. Epidermal tattoo potentiometric sodium sen-

sors with wireless signal transduction for continuous non-invasive sweat
monitoring. Biosens Bioelectron 2014;54:603–9 . 

[101] Khoshnoud F , de Silva CW . Recent advances in MEMS sensor technolo-

gy-biomedical applications. IEEE Instrum Meas Mag 2012;15(1):8–14 . 
[102] Stikic M , Van Laerhoven K , Schiele B . Exploring semi-supervised and active

learning for activity recognition. In: Proceedings of the 12th IEEE interna-
tional symposium on wearable computers. IEEE; 2008. p. 81–8 . 

[103] Liu R , Chen T , Huang L . Research on human activity recognition based on
active learning.. In: Proceedings of the international conference on machine

learning and cybernetics (ICMLC), 2010 (Volume:1); 2010. p. 285–90 . 

[104] Hoque E , Stankovic J . AALO: Activity recognition in smart homes using active
learning in the presence of overlapped activities.. In: Proceedings of the 6th

international conference on pervasive computing technologies for healthcare.
IEEE; 2012. p. 139–46 . 

[105] Longstaff B , Reddy S , Estrin D . Improving activity classification for health ap-
plications on mobile devices using active and semi-supervised learning.. In:

Proceedings of the 4th International ICST Conference on Pervasive Computing

Technologies for Healthcare. IEEE; 2010. p. 1–7 . 
[106] Diethe T , Twomey N , Flach P . Bayesian active transfer learning in smart

homes.. In: Proceedings of the ICML active learning workshop; 2015. p. 1–6 . 
[107] Feldwieser F , Gietzelt M , Goevercin M , Marschollek M , Meis M , Winkel-

bach S , et al. Multimodal sensor-based fall detection within the domes-
tic environment of elderly people. Zeitschrift für Gerontologie und Geriatrie

2014;47:661–5 . 

[108] Khaleghi B , Khamis A , Karray FO , Razavi SN . Multisensor data fusion: A re-
view of the state-of-the-art. Inf Fus 2013;14:28–44 . 

[109] Elouedi Z , Mellouli K , Smets P . Assessing sensor reliability for multisensor
data fusion within the transferable belief model. IEEE Trans Syst Man Cybern

B Cybern 2004;34(1):782–7 . 
[110] Alemdar H , Ersoy C . Wireless sensor networks for healthcare: a survey. Com-

put Netw 2010;54(15):2688–710 . 
[111] Gravina R , Alessandro A , Salmeri A , Buondonno L , Raveendranathan N ,

Loseu V , et al. Enabling multiple BSN applications using the SPINE frame-

work.. In: Proceedings of the international conference on body sensor net-
works. IEEE; 2010. p. 228–33 . 

[112] Baker CR , Armijo K , Belka S , Benhabib M , Bhargava V , Burkhart N , et al. Wire-
less sensor networks for home health care.. In: Proceedings of the 21st in-

ternational conference on advanced information networking and applications
workshops (AINAW’07). IEEE; 2007. p. 832–7 . 

http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0070
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0070
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0070
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0070
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0070
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0070
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0071
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0071
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0071
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0071
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0071
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0071
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0072
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0072
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0072
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0073
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0073
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0073
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0073
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0073
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0074
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0074
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0074
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0075
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0075
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0075
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0075
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0075
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0075
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0076
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0076
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0076
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0077
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0078
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0078
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0078
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0078
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0078
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0079
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0079
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0079
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0079
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0079
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0079
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0080
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0080
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0080
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0080
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0081
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0081
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0081
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0081
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0081
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0082
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0082
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0082
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0083
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0083
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0083
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0083
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0084
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0085
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0085
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0085
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0085
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0086
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0086
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0086
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0086
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0087
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0087
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0087
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0087
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0087
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0087
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0087
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0088
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0088
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0088
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0088
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0088
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0088
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0089
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0089
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0089
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0089
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0089
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0090
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0091
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0091
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0091
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0092
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0092
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0092
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0093
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0093
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0093
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0094
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0094
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0094
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0094
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0094
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0094
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0095
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0095
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0095
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0095
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0095
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0095
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0096
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0097
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0097
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0097
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0098
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0098
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0098
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0098
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0099
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0099
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0099
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0099
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0100
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0100
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0100
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0101
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0101
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0101
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0101
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0102
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0102
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0102
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0102
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0103
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0104
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0104
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0104
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0104
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0104
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0105
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0105
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0105
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0105
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0106
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0106
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0106
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0107
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108
http://refhub.elsevier.com/S1350-4533(17)30015-2/sbref0108

	Application of data fusion techniques and technologies for wearable health monitoring
	1 Introduction
	2 Wearable sensors
	2.1 Sensor placement

	3 Data fusion
	3.1 Data fusion models
	3.2 Feature extraction and selection

	4 Data fusion algorithm overview
	4.1 Signal level algorithms
	4.2 Feature level non-parametric algorithms
	4.3 Feature level parametric algorithms
	4.4 Decision level algorithms

	5 Applications of data fusion for health monitoring
	5.1 Activity recognition
	5.2 Fall detection and prediction
	5.3 Gait and ambulatory monitoring
	5.4 Biomechanical modelling
	5.5 Physiological monitoring

	6 Discussion and further considerations
	6.1 Wearable sensors
	6.2 Data fusion models and algorithms
	6.3 Annotation and system validation
	6.4 Data loss and synchronisation

	7 Conclusions
	 Conflict of interest
	 Acknowledgements
	 References


