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Abstract 

The therapeutic use of mesenchymal stromal cells (MSCs) represents a promising alternative 

clinical strategy for treating acute and chronic lung disorders. Several pre-clinical reports 

demonstrated that MSCs can secrete multiple paracrine factors and that their 

immunomodulatory properties can support endothelial and epithelial regeneration, modulate 

the inflammatory cascade, and protect lungs from damage. The effects of MSC transplantation 

into patients suffering from lung diseases should be fully evaluated through careful assessment 

of safety and associated risks, which is a prerequisite for translation of pre-clinical research 

into clinical practise. In this article we summarise the current status of pre-clinical research and 

review initial MSC-based clinical trials for treating lung injuries and lung disorders. 

 

Keywords: cell-based therapy, lung disorders, mesenchymal stromal cells, mesenchymal stem 

cells, safety assessment 

 

Introduction  

The lung is a complex organ that is exposed to diverse pathogens and potentially 

harmful agents through the respiratory route [1]. Although the lung possesses an intrinsic 

capacity to regenerate itself, this endogenous repair mechanism often fails to achieve sufficient 

cellular turnover in pathological situations. Under normal circumstances there appears to be 

little need for local self-renewal, and < 1% of epithelial cells are proliferating at any given point 

in time [2, 3]. Consequently, lung disorders ranging from chronic obstructive pulmonary 

disease (COPD) to acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) 

represent one of the leading causes of death worldwide [4]. According to World Health 

Organization (WHO) statistics, COPD alone was responsible for 3.1 million deaths in 2012 

[5]. Long-term investigation of the outcome of current treatment options, including lung 
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transplant, revealed many associated problems and major complications in other organ systems, 

such as diverticulitis and perforation in the colon and rectum [6, 7]. Thus, novel therapeutic 

approaches to repair, replace, restore, and regenerate a functional airway epithelium are 

urgently needed. 

Cell-based therapy as a treatment for lung diseases is a rapidly growing field in 

regenerative medicine. Several pre-clinical studies reported promising results supporting the 

use of stem cells to treat lung diseases such as pulmonary hypertension [8, 9], ALI  [10], 

inflammatory and immune-mediated lung conditions [1]. Mesenchymal stromal cells (MSCs) 

represent the most frequently used stem cell type in pre-clinical reports and clinical trials 

conducted so far. As of April 2016, more than 33 clinical trials utilising MSCs to treat lung 

disorders were registered in the database of publicly and privately supported clinical trials 

(search terms: ’mesenchymal stem’ or ’mesenchymal stromal’ cells AND ’lung’). 

Mechanistically, MSCs delivery can enhance the endogenous repair process by increasing the 

limited regenerative capacity of the lung following injury [11] and in chronic lung disorders 

[12] in addition to potential integration into the host tissue and functional differentiation. 

Moreover, the potential of adult MSCs to modulate regeneration is mediated largely through 

paracrine immunomodulation and reduction of inflammation [13, 14]. MSCs are also known 

to possess intrinsic antimicrobial properties that are mediated by secretion of antimicrobial 

peptides such as LL-37 [15] and beta defensin [16].  

Despite their enormous clinical promise, the safety, adverse effects, and potential long-

term immunological effects of MSC transplantation must be carefully evaluated to assess the 

feasibility of using this technique to treat lung diseases. This step is of crucial importance, 

especially in light of increasing MSC-related medical tourism, with considerable numbers of 

patients undergoing not fully proven and expensive treatments all over the world [17]. The 

current International Society for Stem Cell Research (ISSCR) guidelines for Stem Cell 
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Research and Clinical Translation recommend that ‘early phase human studies should be 

preceded by rigorous demonstration of safety and efficacy in pre-clinical studies’ [18]. This 

review highlights recent advances in our understanding of the safety of MSC transplantation 

for the treatment of lung diseases and includes a critical assessment of complications and 

adverse effects reported in pre-clinical reports and clinical studies. 

 

General properties of MSCs  

MSCs are non-hematopoietic stromal cells that are present within the bone marrow and 

various peripheral tissues and have the ability to differentiate into a wide variety of 

mesenchymal cells, including adipose, bone, cartilage, tendon, muscle, and ligament cells [19, 

20]. Apart from bone marrow, MSCs are present in several other adult tissue types and fluids 

such as adipose tissues, synovial fluid, periosteum, foetal tissues and the umbilical cord [21-

24]. Cultivated MSCs have a spindle-like morphology and adhere to plastic surfaces under 

appropriate culture conditions (e.g., in the presence of foetal calf serum). According to the 

International Society for Cellular Therapy (ISCT), MSCs must by definition express the cell 

surface antigens CD105, CD73, and CD90 and be negative for major histocompatibility 

complex (MHC) class II surface molecules, endothelial-(CD31), and hematopoietic markers 

(CD34, CD45, CD14, CD11b, CD79α, CD19) [19, 20, 25]. Moreover, MSCs must possess the 

ability to undergo osteogenic, adipogenic, and chondrogenic differentiation in vitro [20]. 

In principle, the therapeutic capabilities of MSCs can be explained by two distinct 

mechanisms: cell replacement or cell ‘empowerment’ [26]. Today it is widely believed that the 

regenerative potential of MSCs is a bystander effect resulting more from trophic support of 

differentiated cells and modulation of endogenous regeneration and immune suppression than 

a result of integration and differentiation [26-31]. Thus, the collaborative action of immune 

regulatory factors secreted by MSCs and endogenous cells facilitates the tissue repair process 
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by reduction of apoptosis and inflammation, inhibition of scar formation, stimulation of 

angiogenesis, remodelling of extracellular matrix, and differentiation of tissue progenitor cells 

[26, 32]. MSCs themselves have low immunogenicity and possess a unique 

immunomodulatory capacity to affect most immune cells [33]. A typical hallmark of MSCs is 

the expression of functional Tumor Necrosis Factor Receptor I (TNFR1) [34] and a broad 

repertoire of Toll-like Receptors (TLRs) [35, 36]. After exposure to pro-inflammatory 

cytokines and damage-associated TLR ligands, MSCs secrete various immune regulatory 

factors. Notably, similar to macrophages, MSCs themselves can be polarised into MSC1 and 

MSC2 phenotypes after stimulation of TLR3 and TLR4 [37]. In accordance with this finding, 

results of recent studies provide strong evidence that the paracrine action of MSCs results in 

an increase of endogenous regeneration and repair, and reduction of inflammation. Whilst 

immunomodulation could be mainly mediated by extracellular vesicles that are released after 

exposure of MSCs to inflammatory mediators and damage-associated molecular patterns [13, 

38]. Indeed, such extracellular vesicles have been recently proposed as a therapeutic option for 

the treatment of respiratory diseases including ALI and other inflammatory lung disorders [39, 

40].   

 

MSCs treatment in lung disorders  

Acute lung injuries 

ALI/ARDS in in vivo models is characterised by disruption of alveolar epithelial 

barriers [41]. The pathologic changes include an increase in endothelial permeability, 

infiltration of proteinaceous and fibrin fragments, and infiltration of inflammatory cells (mostly 

neutrophils and macrophages) into the airspaces [42, 43]. It is believed that MSC 

transplantation can contribute to marked reduction in pathological lung damage and alleviate 

the lung inflammatory response through several mechanisms that lead to down-regulation of 
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pro-inflammatory mediators [44-46]. Neutrophils are considered to play a key role in the 

progression of both ALI and ARDS [47]. Activation and recruitment of neutrophils into the 

lung damages the alveolar-capillary barrier, thus resulting in oedema [48]. Xu J, Woods CR, 

Mora ALet al [49] reported that MSC transplantation following lipopolysaccharide (LPS) 

administration prevents further inflammation and injury and reduces oedema as well as the 

influx of neutrophils into the injured alveolar tissue. There is also evidence that MSCs can 

ameliorate fibrogenesis caused by bleomycin [50], radiation, and inhaled asbestos [51], and 

reduce oedema and mortality in a model of ALI [52].  

As introduced above, one major characteristic of MSCs is their immunomodulatory 

action. Numerous studies have suggested that immunomodulatory factors secreted by MSCs 

could also be responsible for their anti-inflammatory effects in lung injuries [53-58]. It has 

been reported that LPS or TNFα-induced lung injury activates transplanted MSCs to secrete 

prostaglandin E2 (PGE2), which then reprograms alveolar macrophages to secrete anti-

inflammatory interleukin-10 (IL-10) [54, 55]. Notably, an increased production of IL-10 

contributes subsequently to the inhibition of adhesion and transmigration of neutrophils into 

the alveolar wall [53, 55]. 

 

Chronic lung injuries 

COPD and interstitial lung diseases are mostly associated with clinical chronic lung 

disease. Acute stages of these disorders are frequently associated with inflammatory responses, 

whereas chronic stages usually involve interstitial, intra-alveolar, or peri-bronchial fibrosis 

[59]. COPD is irreversible and often associated with expiratory airflow limitation with influx 

of inflammatory cells and emphysema [60]. In animal models of COPD, MSC treatment has 

been shown to significantly improve emphysema and lung function [61, 62]. Similar to MSC 

treatment for ALI/ARDS, in a COPD model, MSC transplantation down-regulated pro-
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inflammatory cytokines and increased vascular endothelial growth factor production [62]. 

Furthermore, it has been reported that MSCs can interact with macrophages, which then later 

suppress cigarette smoke-induced cyclooxygenase-2 and PGE2 production in macrophages 

[61]. In addition, MSCs can protect the lung from further progression of emphysema by 

increasing epithelial cell regeneration and reducing alveolar apoptosis [63, 64]. In asthma, 

administration of MSCs effectively ameliorated airway hyper-responsiveness, reduced airway 

wall [65, 66], and smooth muscle thickening [65]. MSC treatment in ovalbumin-sensitized 

mice also decreased levels of asthma-related inflammatory cytokines (interferon gamma (IFN-

γ), IL-5, and IL-13) compared to the untreated group [67]. These results verify the effectiveness 

of MSCs in experimental animal studies and suggest their therapeutic potential for the 

treatment of airway inflammation associated with chronic lung diseases in humans such as 

COPD and asthma. 

 

Efficacy and safety assessment for in vivo studies of MSC treatment 

In both pre-clinical and clinical studies, a thorough and rigorous assessment of efficacy 

is crucial for evaluation of a potential benefit of a treatment. To assess the efficacy of MSC 

transplantation in treating lung disorders, vital signs, body weight, activity, food consumption, 

and clinical pathology such as haematology [63, 68], urine, eyes, and histopathology [68] 

should be observed and measured to monitor any physical changes in the experimental subject. 

Bronchoalveolar lavage (BAL) fluid collection is a commonly used diagnostic technique to 

retrieve secretions for the assessment of cellular (i.e., macrophage and leukocyte counts) and 

acellular components of the respiratory airways following injury [44, 69, 70]. BAL fluid 

specimens represent the events that occurred in the alveoli and interstitial region of the airways 

[71]. Pulmonary function tests should be routinely performed pre- and post- MSC delivery to 

identify any underlying respiratory abnormalities and to determine the condition and 
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physiological responses of the recipient’s lungs in order to compare pre- and post-transplant 

effects [72].  

Pulmonary function tests are important for assessing lung function [73, 74]. Spirometry 

is the most frequently used approach to measure the rate of air exhaled or inhaled [74]. 

However, this technique can only be applied to human patients. In experimental animal models, 

it is common to use whole body plethysmography to determine lung function [75-78]. In this 

method, the animal is unrestrained and placed in an airtight chamber after injury and treatment. 

This non-invasive technique determines lung volumes by measuring the changes in pressure 

and tidal volume during respiration in the chamber, which can be related to the animal’s 

breathing frequency and respiratory function [74, 79, 80]. Another way to measure lung 

function is to use a computer-controlled and pre-programmed piston ventilator (i.e., FlexiVent) 

[78] that directly measures lung volumes, pressure, and flow. However this technique is 

invasive and requires anesthetising the animal and subjecting it to tracheostomy [81, 82].  

It has been reported that intravenously administered MSCs can be trapped in the 

pulmonary circulation [83, 84], resulting in embolic phenomena with increased right 

ventricular strain and elevated pulmonary artery pressures, eventually culminating in 

pulmonary oedema  [85, 86]. This potential risk can be reduced by tracking the administered 

MSCs. Direct labelling of cells before transplant should be performed to enable the 

visualization of cell homing and engraftment efficacy by clinical imaging techniques [87]. 

Delivery route and engraftment of MSCs is discussed below in the section titled 

‘Biodistribution and delivery of MSCs when treating lung disorders’. Cell size is another 

factor that can lead to pulmonary oedema. A study comparing different MSC sizes indicated 

that cells with a size of 7–18 μm accumulated in the lungs after infusion, resulting in a small 

percentage of cells reaching the organ of interest [84]. Cell adhesion to vascular endothelium 

may also play a role in pulmonary cell trapping. Ruster et al. [88] demonstrated an interaction 
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between MSCs and endothelial cells that involved rolling and activation of both selectin-

dependent (P-selectin) and integrin-dependent binding (VCAM-1/VLA-4). P-selectin and 

VCAM-1/VLA-4 are engaged in MSC binding to vascular endothelium, thus potentially 

preventing MSCs from leaving the blood circulation. 

According to the ISSCR guidelines, ‘a stem cell-based intervention must aim at 

ultimately being clinically competitive with or superior to existing therapies or meet a unique 

therapeutic demand’ [18]. Thus, a final assessment of efficacy should ultimately include a 

comparison with the current standard of care, at least in pre-clinical animal models.  

 

Assessment for long-term efficacy and safety of MSC treatment 

Safety assessment of any stem cell-based therapy should address likely short- and long-

term risks and also consider unexpected events. The in vitro culture and expansion of stem cells 

harbors the intrinsic risk of culture-acquired abnormalities. Notably, in addition to pluripotent 

stem cells, culture-induced spontaneous transformation into a tumour-like phenotype has been 

reported for several adult stem cells, including neural stem cells, hippocampal progenitors, and 

MSCs [89-91]. For example human adipose- and bone marrow-derived MSCs has undergo 

spontaneous transformation when cultured for long term in vitro [89, 92]. Conversely, 

Bernardo ME, Zaffaroni N, Novara Fet al [93] failed to demonstrate malignant transformation 

in human MSCs following long-term in vitro expansion. It has been suggested that this 

discrepancy could be a consequence of species-specific differences. Aguilar S, Nye E, Chan 

Jet al [94] reported no abnormalities in human MSC cultures after prolonged cultivation, 

whereas murine MSCs acquired significant chromosomal abnormalities as early as after four 

in vitro passages. Notably, prolonged in vitro passage of murine bone marrow-derived MSCs 

can lead to a loss of differentiation potentiation in addition to formation of fibrosarcoma-like 

tumours [95].  
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The susceptibility of MSCs to malignant transformation could be explained by the two 

main control points in the human cell cycle (i.e., the senescence and crisis phases). The cells 

continue to grow and telomeres become extremely short if the senescence stage is bypassed, 

leading the cells to move into the crisis phase in which instability of chromosomes induces 

apoptosis. Despite the lower tumourigenic potential of human MSCs compared to murine 

MSCs, risks for tumourigenicity must be rigorously assessed (in vitro and in an appropriate 

animal model), and the cells used in a clinical setup should be in a low passage to minimise the 

risk of culture-induced transformation. In in vitro model, MSCs can be used up to passage 25 

[93]. However for clinical trial, MSCs below passage 5 or less than 30 cells doubling was used 

[96]. In addition the US Food and Drug Administration suggested that propagation of MSCs 

in vitro should not exceed five weeks [97] As human MSCs have been shown to accumulate 

mutations with increasing cultivation time (as soon as after five weeks in culture) [92], safety 

assessment criteria in addition to in vivo tumourigenicity testing could be introduced (e.g., an 

evaluation of the karyotype and microarray-based gene expression screening for typical 

culture-induced mutations). In particular, expression of genes known to be associated with 

tumourigenic transformation of MSCs, including c-myc and Rb, should be assessed [97-99].   

An additional risk of MSCs transplantation is an immune reaction of the recipient to 

animal-derived components of the culture medium. Notably, a clinically insignificant immune 

reaction against components of foetal calf serum was reported after transplantation of 

autologous MSCs [100]. To minimise any potential risks associated with xeno-derived medium 

components, use of chemically fully defined media in MSC culture and preservation is 

recommended [18]. One crucial factor affecting MSC expansion is the source and purity of the 

cells, thus the donor should be assessed for any risk of abnormalities. However, such an 

assessment may be challenging, as no regulations currently exist [27]. Physical factors such as 
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donor age also should be taken into account, as increased donor age seems to be directly 

correlated with detrimental effects in terms of proliferation and multipotency of MSCs [101]. 

The efficacy of stem cell therapy depends on several factors, and one of the most 

important is the manufacturing of the cells and the ability to produce significant amounts of 

MSCs [27]. Tissue culture for MSC production is at high risk of microbial contamination 

because it requires a nutrient-rich medium. Thus, extra precautions must be taken, including 

proper manufacturing facilities and practices and rigorous microbiological testing [102]. Wang 

S, Qu X, Zhao RC [103] suggested additional tests such as endotoxin assays, oncogenicity 

tests, and viability and phenotype tests; moreover cell dose and timing should be evaluated for 

different disease types and severities. 

 

Biodistribution and delivery of MSCs when treating lung disorders 

In general, studies of biodistribution in stem cell-based treatments are an important step 

towards translation of pre-clinical research into clinical trials. Usually, the success of delivery 

and biodistribution is assessed based on the degree of cell engraftment and the presence of 

transplanted cell in different tissues. However, despite beneficial effects, the engraftment of 

MSCs in pre-clinical models of lung diseases is generally low. Ortiz LA, Gambelli F, McBride 

Cet al [46] reported that systemic administration of MSCs resulted in low levels of engraftment 

in the normal lung of mice, although engraftment was significantly elevated in response to 

bleomycin-induced injury. These results are supported by a report from Gupta N, Su X, Popov 

B, Lee JW, Serikov V, Matthay MA [52], which states that < 5% MSC engraftment was 

observed 48 hours post-delivery via the intrapulmonary route into mice exposed to LPS. 

Interestingly, Eggenhofer E, Benseler V, Kroemer Aet al [104] have reported that one hour 

post-infusion of radio- and fluorescently labelled MSCs, the majority of cells can be found in 

the lungs, whereas after 24 h the cells were predominantly detected in the liver. Despite this 
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low level of engraftment, several pre-clinical studies reported that MSCs improved lung 

regeneration and enhanced alveolar fluid clearance following lung injury [11, 46, 52, 105, 106]. 

Studies have shown that a large number of cells reach the lung early after injection but that 

they are rapidly cleared. Thus, while engraftment/retention is low, many MSCs get to the sites 

of injury and exert their paracrine to release extracellular vesicles to boost endogenous 

regeneration [104]. In addition, MSCs could exert their immunomodulatory and anti-

inflammatory properties through endocrine interactions with other cell types at distant sites.   

Two methods are commonly used to introduce cells into the lungs: i) systemic delivery 

and ii) local delivery into the target tissue. Cell delivery via the intravenous route is commonly 

used in both pre-clinical studies [11, 44, 46, 50] and clinical trials [107-110]. The beneficial 

effect of the immunomodulatory properties of MSCs involves the interactions between the cells 

and their environment [111]. Thus, most systemic diseases treated with MSCs have used the 

intravenous route to deliver cells into the circulatory system [112, 113]. Intravascular systemic 

delivery relies on two assumptions. First, delivered MSCs receive and respond to the injury 

signals produced by injured airway tissue, and those stimuli are sufficient to induce homing 

from blood vessels to the injury site. Second, MSCs contribute to regeneration via interactions 

with cells at distant sites through endocrine effects. However, intravenously administered cells 

must pass through the pulmonary circulation before they migrate throughout the body [114], 

and it is possible that intravenously administered MSCs could be trapped in the pulmonary 

circulation [83-86].  

In contrast, intrapulmonary administration of MSCs involves direct injection of cells 

into the lung parenchyma [115, 116]. This method is feasible if the therapy involves repair of 

lung parenchyma. This type of delivery is invasive, and it requires technical expertise to avoid 

injury or haemorrhage. In addition, intrapulmonary delivery may result in formation of pockets 
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of cells that fail to disperse throughout the lung tissue and may affect the surrounding tissue, 

resulting in a local fibrotic response [115].  

A further option for MSC delivery is the intratracheal route, which involves the 

administration of cells into the bronchial tree [115, 117-120]. This technique requires that a 

small incision be made over the anterior neck in a transverse fashion [115]. Another alternative 

delivery method is the aerosol technique, which was initially developed as a tool to deliver 

medicinal compounds to the lungs more than 4000 years ago [121]. This technique is widely 

used to deliver pharmaceutically active compounds to the lung [122-124]. One major challenge 

in aerosol-based cell delivery is the choice of an appropriate aerosolisation tool that will allow 

efficient cell delivery without affecting cell viability. Currently there is no commercially 

available tool specifically designed for cell delivery. The handheld ultrasonic nebulizer 

(MABISmist™, Mabis Heathcare, Inc.) does not result in sufficient cell viability. However, 

we measured a cell viability of 80% when a custom aerosol device (MicroSprayer® 

Aerosolizer Model IA-1B; Penn-Century, Inc.) was applied [125]. In a pre-clinical study using 

rabbits as models for acute and chronic lung injuries, we found that aerosol-based cell delivery 

is a feasible technique to deliver cells directly into the lungs and results in a uniform distribution 

of aerosolised liquid containing cells (unpublished data). Based on these promising results we 

believe that the aerosol technique could be a valuable tool for cell-based treatment of lung 

disorders. Notably, in addition to stem cells, the aerosol technique represents an ideal tool for 

delivery of cell-derived biologicals, particularly MSC-derived extracellular vesicles.  

 

Clinical trials 

While a significant number of MSC-based clinical trials have been conducted for other 

implications, only a small number of trials have dealt with lung disorders. Thirty-three clinical 

trials that assessed the therapeutic potential of MSCs in patients with moderate to chronic lung 
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disorders are registered on ClinicalTrials.gov (search terms: ‘mesenchymal stem’ or 

‘mesenchymal stromal’ cells AND ‘lung’) (Table 1). Four of the trials have been completed 

and one of them (NCT00683722) demonstrated a positive effect of MSC administration. In 

particular, decreasing level of circulating C-reactive protein was reported in patients with 

moderate to severe COPD [107]. This clinical trial was initiated in 2008, involved 62 patients 

that suffered from moderate to severe COPD, and was completed in 2010. The patients were 

randomized to receive double-blinded allogeneic 1 × 108 MSCs/infusion (PROCHYMAL™) 

or a placebo-vehicle control every 4 months. Primary safety and efficacy endpoint assessments 

involved patients’ adverse effects and reactions to the treatment, pulmonary function test 

results, and quality of life indicators that included a 6-minute walk test and blood and cytokine 

analysis. Based on these assessments, the treatment was found to be safe and beneficial in terms 

of improving COPD-related lung inflammation. There was no serious or clinically significant 

adverse effect observed following the MSC infusion. However, 33.3% (10 out of 30 patients) 

in the MSC group and 25.0% (8 out of 32 patients) in the placebo group experienced an 

incidence of adverse effects such as cardiac and gastrointestinal disorders [107]. Another 

completed clinical trial (NCT01306513) reported that treatment promoted tissue repair in 

emphysema. Autologous bone marrow-derived MSCs were infused into seven patients who 

suffered from pulmonary emphysema. The MSC treatment showed no adverse effects and lung 

tissue showed no fibrotic responses. An increase in CD31 expression was reported after the 

treatment, which indicated a response from vascular endothelial cells to repair severely affected 

parts of the lung [109]. 

In another completed clinical trial (NCT01297205), intratracheal transplantation of 

allogeneic MSCs (PNEUMOSTEM®) was performed in a small group of preterm infants at 

high risk of bronchopulmonary dysplasia [126]. The first three infants received a low dose (1 

× 107 MSCs/kg) of cells, whereas the next six infants were given a high dose (2 × 107 
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MSCs/kg). Eighty-four days after treatment, the high dose MSC transplantation was clinically 

well tolerated in these infants with no adverse events, and no immediate complications related 

to the treatment within 6 hours after transplantation was detected. A minor adverse effect was 

observed subsequently in six infants. In particular, patent ductus arteriosus ligation occurred in 

four of the nine infants (44%), with one case of pneumothorax (11.1%) that was directly related 

to the ligation. Nevertheless, the MSC treatment resulted in a significant reduction of 

bronchopulmonary dysplasia severity and inflammatory cytokine levels in tracheal aspirates 

[126]. 

Completed clinical trial (NCT01385644) also revealed a positive effect of MSC 

transplantation in patients with lung disorders. Eight patients with a diagnosis of idiopathic 

pulmonary fibrosis received a dose of 1 x 106 (the first four patients) or 2 x 106 (the subsequent 

four patients) placenta-derived MSCs/kg via intravenous infusion. The placenta donor and 

MSC transplantation recipient were unrelated and HLA unmatched. A 94–99% change in lung 

function was detected by comparing function before and after treatment. However, one of the 

four patients who received 1 x 106 MSCs/kg treatment suffered from severe abdominal pain. A 

CT scan confirmed that the pain was caused by a small bowel obstruction.  

Clinical trials NCT01902082 [110] and NCT01775774 [127] were aimed at treating 

ARDS patients and showed promising results following phase 1 trials. NCT01902082 patients 

(total of twelve patients) received an intravenous dose of 1 x 106 allogeneic adipose-derived 

MSCs/kg. The first three patients in the NCT01775774 clinical trial received 1 x 106 MSCs/kg 

via intravenous infusion and the next six patients received 5 x 106 and 1 x 107 MSCs/kg, 

respectively. Both clinical trials reported that no treatment-related adverse events occurred 

following the treatment. Nevertheless, three patients in trial NCT01775774 subsequently 

developed serious adverse effects in the weeks following the infusion, although none were 

thought to be related to MSC administration.  
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Another clinical trial (not registered on ClinicalTrials.gov) focused on ARDS attempted 

to correlate the clinical results with in vitro anti-inflammatory actions using the patients’ own 

blood and BAL samples [128]. MSC administration improved respiratory dynamics with 

progressive decreases in pulmonary infiltrates. In parallel, a decrease was observed in multiple 

pulmonary and systemic markers of inflammation, including epithelial apoptosis, alveolar 

capillary fluid leakage, pro-inflammatory cytokines, microRNAs, and chemokines. This study 

proves the anti-inflammatory capacity of MSC in ARDS treatment, including suppression of 

T-cell responses and induction of regulatory phenotypes in T cells, monocytes, and neutrophils. 

Several questions regarding the general safety of MSC application in treating lung 

disorders remain unanswered [129-131]. Adverse effects following MSC treatment can be 

difficult to predict and vary from person to person. Factors such as infections from previous or 

current treatment, type of cell transplant (autologous/allogeneic), use of prophylactic 

antibiotics, and time elapsed since transplant can influence the occurrence of these 

complications [132]. Thus, a thorough evaluation of the potential risks of a stem cell-based 

therapy must be a prerequisite before any clinical application. The use of standardised MSC-

derived extracellular vesicles could be superior compared to MSCs themselves. This option 

could also minimise problems inherent in cell delivery, including efficacy and safety following 

administration.  

 

Conclusions 

The clinical experience with MSC therapy is increasing and provides great hope for 

future treatment of lung diseases and degenerative lung conditions. Despite a limited number 

of successful clinical trials, a thorough evaluation of the general safety and efficacy of MSC 

treatment compared to that of the standard of care still needs to be conducted. In addition, open 

questions remain regarding the biodistribution and engraftment of MSCs versus the impact of 
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paracrine factors. If paracrine factors (e.g., those embedded in extracellular vesicles) show 

efficacy similar to that of MSCs in pre-clinical research, clinical translation of this treatment 

approach could also be considered.  

 

Executive summary 

General properties of MSCs  

 According to the ISCT, MSCs must by definition express the cell surface antigens 

CD105, CD73, and CD90 and be negative for MHC class II surface molecules, 

endothelial-(CD31), and hematopoietic markers (CD34, CD45, CD14, CD11b, CD79α, 

CD19).  

 MSCs must possess the ability to undergo osteogenic, adipogenic, and chondrogenic 

differentiation in vitro. 

 The regenerative potential of MSCs is a bystander effect resulting more from trophic 

support of differentiated cells and modulation of endogenous regeneration and immune 

suppression than a result of integration and differentiation. 

 The paracrine action of MSCs is mainly mediated by extracellular vesicles that are 

released after exposure of MSCs to inflammatory mediators and damage-associated 

molecular patterns.  

MSCs treatment in lung disorders  

 In animal models of ALI, MSC transplantation prevents further inflammation, 

ameliorates fibrogenesis, and reduces oedema and the influx of neutrophils into the 

injured alveolar tissue. 

 In animal models of COPD, MSC treatment has been shown to significantly improve 

emphysema and lung function, whereas in asthma, administration of MSCs was 

effective at ameliorating airway hyper-responsiveness. 
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Efficacy and safety assessment for in vivo study 

 The efficacy of MSC transplantation is assessed by observing vital signs, body weight, 

activity, food consumption, and clinical pathology (e.g., haematology, urine, eyes, 

histopathology, and BAL fluid collection). 

 Pulmonary function tests should be routinely performed pre- and post- MSC delivery. 

In experimental animal models, it is common to use whole body plethysmography and 

a computer-controlled and pre-programmed piston ventilator to evaluate lung function.  

 There have been reports that intravenously administered MSCs can be trapped in the 

pulmonary circulation. Cell size is also a factor that can lead to this condition, and this 

potential risk can be reduced by tracking/labelling the administered MSCs. 

Assessment for long-term efficacy and safety treatment 

 Spontaneous transformation of MSCs into a tumour-like phenotype following long-

term in vitro culture is possible, but results of different studies vary. This discrepancy 

could be a consequence of species-specific differences, including differences in 

senescence and the crisis phase of the cells. 

 An evaluation of the karyotype and microarray-based gene expression screening for 

typical culture-induced mutations could be introduced as safety assessment criteria in 

addition to in vivo tumourigenicity testing. 

 To minimise any potential risks associated with xeno-derived medium components, use 

of chemically fully defined media in MSC culture and preservation is recommended. 

 Tissue culture for MSC production has a high risk of microbial contaminations because 

it requires a nutrient-rich medium. Thus, extra precautions must be taken, including 

proper manufacturing facilities and practices and rigorous microbiological testing. 

Biodistribution and delivery of MSCs in lung disorders 
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 The engraftment of MSCs in pre-clinical models of lung diseases is generally low. 

Despite this low level of engraftment, several pre-clinical studies reported that MSCs 

improve lung repair and regeneration.  

 In a pre-clinical study in rabbits as models for acute and chronic lung injuries, we found 

that aerosol-based cell delivery is a feasible technique to deliver cells directly into the 

lungs and results in a uniform distribution of aerosolised liquid containing cells 

(unpublished data). 

Clinical trials 

 There are thirty-three clinical trials registered on ClinicalTrials.gov (search terms: 

‘mesenchymal stem’ or ‘mesenchymal stromal’ cells AND ‘lung’) that assessed the 

therapeutic potential of MSCs in patients with moderate to chronic lung disorders. 

 Four of the trials have been completed and have demonstrated a positive effect of MSC 

administration. 

Conclusions 

 MSC therapy is increasing and provides great hope for future treatment of lung diseases 

and degenerative lung conditions.  

 Despite a limited number of successful clinical trials, a thorough evaluation of the 

general safety and efficacy of MSC treatment compared to that of the standard of care 

is needed.  

 An open question remains regarding the role of MSC biodistribution and cell 

engraftment versus the impact of paracrine factors on mediating MSC treatment. If 

paracrine factors (e.g., those embedded in extracellular vesicles) show efficacy similar 

to that of MSCs in pre-clinical research, a clinical translation of this approach could 

also be considered.  
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Table 1 Registered clinical trials of MSCs treatment for acute to chronic lung diseases (from 

ClinicalTrials.gov, last updated 04/05/16). 

ID Phase Donor cells Delivery route Conditions Year 

NCT00683722 

[107] 
Completed 

PROCHYMAL™ (human 

adult stem cells) 

Intravenous 

infusion 
COPD 2008 

NCT01306513 

[109] 
Completed Bone marrow-derived MSCs 

Intravenous 

infusion 
Pulmonary emphysema 2010 

NCT01385644 Completed Placenta-derived MSCs 
Intravenous 

infusion 
Idiopathic pulmonary fibrosis 2010 

NCT01207869 1 Umbilical cord-derived MSCs 

Through a catheter 

inserted into the 

endotracheal tube 

Bronchopulmonary dysplasia 2010 

NCT01207869 
 

1 Umbilical cord-derived MSCs Intratracheal 
Infants with bronchopulmonary 

dysplasia 
2010 

NCT01632475 1 
PNEUMOSTEM® (Human 

umbilical cord blood-derived MSCs) 
Intratracheal 

Premature infants with 

bronchopulmonary dysplasia 
2011 

NCT01297205 
[126] 

Completed 
PNEUMOSTEM® (Human 

umbilical cord blood-derived MSCs) 
Intratracheal 

Premature infants with 
bronchopulmonary dysplasia 

2011 

NCT02023788 

 
1 

PNEUMOSTEM® (Human 

umbilical cord blood-derived MSCs) 
Intratracheal 

Premature infants with 

bronchopulmonary dysplasia 
2014 

NCT01897987 
 

2 
PNEUMOSTEM® (Human 

umbilical cord blood-derived MSCs) 
Intratracheal 

Premature infants with 
bronchopulmonary dysplasia 

2014 

NCT01828957 2 
PNEUMOSTEM® (Human 

umbilical cord blood-derived MSCs) 
Intratracheal 

Premature infants with 

bronchopulmonary dysplasia 
2013 

NCT02381366 2 
PNEUMOSTEM® (Human 

umbilical cord blood-derived MSCs) 
- 

Premature infants with 

bronchopulmonary dysplasia 
2015 

NCT01758055 1 MSCs 
Intra-bronchial 

injection 
Pulmonary emphysema 2012 

NCT02013700 1 Human MSCs 

Allogeneic 

peripheral 

intravenous 
infusion 

Idiopathic pulmonary fibrosis 2013 

NCT01902082 

[110] 
1 Adipose-derived MSCs 

Intravenous 

infusion 
ARDS 2013 

NCT01919827 1 Bone marrow-derived MSCs 
Autologous 

endobronchial 

infusion 

Idiopathic pulmonary fibrosis 2013 

NCT02045745 2 MSCs 
Directly into 

the lung suture line 

Patients at risk of post-

operative air leaks 
after lung resection 

2013 

NCT02594839 2 Bone marrow-derived MSCs 
Intravenous 

infusion 

Idiopathic interstitial 

pneumonia associated with 
interstitial lung disease 

2013 

NCT01849159 2 MSCs 
Intravenous 

infusion 
Pulmonary emphysema 2014 

NCT01775774 
[127] 

2 Bone marrow-derived human MSCs 
Intravenous 

infusion 
ARDS  

NCT02097641 2 Bone marrow-derived human MSCs 
Intravenous 

infusion 
ARDS 2014 

NCT02181712 1 MSCs 
Intravenous 

infusion 
Lung transplant reject patients 
with bronchiolitis obliterans 

2014 

NCT02135380 2 Adipose-derived MSCs 
Intravenous 

infusion 
Idiopathic pulmonary fibrosis 2014 

NCT02112500 2 Bone marrow-derived MSCs 
Intravenous 

infusion 
ARDS 2014 

NCT02192736 2 Umbilical cord-derived MSCs Intranasal Asthma 2014 

NCT02543073 2 MSCs - 

Interstitial lung disease after 

Allo-HSCT 

 

2014 

NCT02277145 1 Umbilical cord blood-derived MSCs 

Injection via 

fiberoptic 
bronchoscopy after 

fully lavage of the 

localized lesions 

Post-

radiotherapy pulmonary fibrosis 
2014 

NCT02668068 1 Umbilical cord-derived MSCs 
Large volume 

whole-lung lavage 
Pneumoconiosis 2016 

NCT02444455 
1 

Umbilical cord-derived MSCs 
Intravenous 

infusion 

ALI 
2015 

2 ARDS 
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NCT02444858 2 Umbilical cord-derived MSCs 
Intravenous 

injection 

Paraquat poisoning 

lung injury 
2015 

NCT02749448 1 Adipose-derived MSCs 
Intravenous 

injection 
Airway injury patients that 
exposed to sulphur mustard 

2015 

NCT02625246 1 Bone marrow-derived human MSCs 

Peripheral 

intravenous 
infusion 

Bronchiectasis 2015 

NCT02443961 1 MSCs - 
Premature infants with 

bronchopulmonary dysplasia 
2015 

NCT02645305 2 Adipose-derived MSCs 
Autologous 
transfusion 

COPD 2015 

 

 

 

 


