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Variational and ensemble methods have been developed separately by various research and
development groups and each brings its own benefits to data assimilation. In the last decade
or so, various ways have been developed to combine these methods, especially with the aims
of improving the background-error covariance matrices and of improving efficiency. The
field has become confusing, even to many specialists, and so there is now a need to summarize
the methods in order to show how they work, how they are related, what benefits they bring,
why they have been developed, how they perform, and what improvements are pending. This
article starts with a reminder of basic variational and ensemble techniques and shows how
they can be combined to give the emerging ensemble-variational (EnVar) and hybrid meth-
ods. A key part of the article includes details of how localization is commonly represented.

There has been a particular push to develop four-dimensional methods that are free of
linearized forecast models. This article attempts to provide derivations of the formulations
of most popular schemes. These are otherwise scattered throughout the literature or absent.
It builds on the nomenclature used to distinguish between methods, and discusses further
possible developments to the methods, including the representation of model error.

Key Words: variational data assimilation; ensemble data assimilation; hybrid data assimilation; flow-dependent
background-error covariances; localization; model error; nomenclature
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1. Data assimilation and uncertainty

Dealing with uncertainty is at the heart of data assimilation (DA).
Forecast models (here those used in numerical weather prediction,
NWP) use initial conditions that are imperfect, and are based upon
imperfect representations of physical processes. It is well known
that a free-running model will accumulate errors until its forecast
is no longer useful (Tribbia and Baumhefner, 2004). The only
way to restore usefulness is to allow the model to be influenced by
observations (Leith, 1993). DA (Daley, 1991; Kalnay, 2002; Rabier,
2005) is the procedure of maintaining the link between evolving
models and reality by updating the model with fresh observations.
Researchers are working towards formal and robust mathematical
methods that work in ways that are consistent with the model, the
data, and their degree of uncertainty. DA is related to approaches
used in other fields and which go by different names, e.g. state
estimation (Wunsch, 2012); optimization (Biegler, 1997); history
matching (Emerick, 2012); retrieval production (Rodgers, 2000);
inverse modelling (Tarantola, 2005)), and there are additionally
many ways of solving a DA problem. Most known DA methods

are based on probabilistic theories (most, if not all, exploit Bayes’
Theorem (Lorenc, 1986)) and each is made practical by making
approximations.

Traditionally there are three Bayesian-based strategies that
allow the DA problem to be solved in approximate (hence sub-
optimal) ways. These may be categorized as the following.
(i) Variational DA (Var, or its specific implementation 3D-Var or
4D-Var) implements an algorithm to minimize a cost function.
In its basic form, Var gives a single, (quasi-) optimal analysis state
based on an a priori state (the background or forecast), some
observations, and the prescribed Gaussian uncertainty statistics
for the background and observations. Var requires linearized
versions of the observation operators and 4D-Var requires a
linearized version of the forecast model.
(ii) Ensemble DA, based on the ensemble Kalman filter (EnKF),
offers a priori error statistics from an ensemble instead of from a
prescribed source, which changes as the system evolves, and does
not require use of linearized models.
(iii) Monte-Carlo methods additionally allow the assimilation of
information from sources that have non-Gaussian errors.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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608 R. N. Bannister

Figure 1. Summary of popular categories of ‘pure’ and ‘combined’ DA. A box with a straight (curved) top represents a 3D (4D) scheme (the relevant background-error
covariance matrix is specified in the upper portion). A box with a curved (straight) base represents a Var (sequential) scheme. Multiple overlaid boxes are for ensemble
schemes. The numbers of control variables are specified and, where localization is used, values are given for the (Buehner, 2005) (B05) and/or (Lorenc, 2003) (L03)
methods. The pure Var schemes are boxes 1©, 2© and 3©. The lower dashed box encloses the pure ensemble schemes and the upper dashed box encloses the EnVar
schemes. The broad dashed lines show the development path of the theory (for instance hybrid En4DVar (box 11©) is built from pure En4DVar, 7©, which is itself built
from 4D-Var, 2©, and an EnKS scheme, 5©). The solid arrows show the basic flow of information in a working system, where multiple (single) arrows represent the
transfer of an ensemble of states (single state). Alternative names of schemes are in square braces. Acronyms and symbols are defined in the specified sections of this
article.

Approaches (i) and (ii) have been successful in NWP, but have
limitations (sections 1.2 and 1.3). In recent years this has led to
an explosion of techniques that combine them in the hope of
maximizing the benefits and eliminating the inadequacies of the
separate methods. This includes so-called ‘pure EnVar’ schemes
(section 1.5) and ‘hybrid EnVar’ schemes (section 1.6). The
modern DA toolbox now includes a spectrum of methods that
are often subtly different in their name, but may be profoundly
different in their treatment of uncertainty (especially in nonlinear
systems), in their efficiency, and in the way that the equations are
solved (e.g. Buehner et al., 2015b; Liu and Xue, 2016). The boxes
in Figure 1 represent the main methods, including Var, ensemble,
pure EnVar and hybrid EnVar methods and how they are linked
(the Figure caption gives details). The suggested nomenclature to
distinguish the methods (Lorenc, 2013) is shown and the Figure
will be explained throughout the article.

The aim of this article is to firstly remind ourselves of
the basic forms of (i) and (ii), to then review the methods
that combine them (pure EnVar and hybrid EnVar), and
to summarize the nomenclature. The similarities, differences,
advantages, disadvantages and successes of each new method are

reviewed. It is beyond the scope of this article to review in depth
the numerous ways of implementing each traditional method
(such as parallelizable implementations of 4D-Var, and the many
implementations of the EnKF such as the stochastic and square-
root formulations (Ehrendorfer, 2007; Houtekamer and Zhang,
2016). A review of (iii) is given by van Leeuwen (2009).

The structure of this article is as follows. In the remainder of
this section we outline the basic principles of each traditional and
combined approach, and mention the advantages, disadvantages
and limitations of each. In section 2 we derive common forms
of pure variational methods. In section 3 we review the basic
principles of pure EnKF-related methods. In section 4 we
review how DA systems can be formulated by replacing the
fixed background-error statistics of Var with ensemble-derived
statistics, while maintaining the variational framework. Broadly,
there are two approaches – one that requires the linear models of
4D-Var and another that does not. In section 5 we review hybrid
methods, which are DA systems that merge the prescribed and
ensemble-derived background-error covariances, again in ways
that may or may not require linearized models. For reasons
of simplicity, up to this point in this article the inevitable

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Ensemble-variational Data Assimilation 609

ensemble sampling noise is not considered. In section 6 we
review state-space localization methods which reduce sampling
noise. In section 7 we give localized forms of the methods
discussed in sections 3–5, and we present a summary of accepted
nomenclature. In section 8 we discuss how they could handle
model error. In section 9 we compare how they perform in
practice, and in section 10 we summarize which schemes are used
at leading centres and groups. In section 11 we provide a brief
summary and some closing comments. In the appendices we give
some important derivations which may help understanding of
the theory and efficient implementation of the new assimilation
schemes.

1.1. Data assimilation challenges

The objective of DA is to produce information about the posterior
probability density function (PDF). This is produced as a first
moment (the analysis), or as information about the second
moment (e.g. from an ensemble). These can be used as initial
conditions for weather forecasts. Observations influence the
posterior by matching synthetic versions of the observations
(found from the model state via observation operators) to the
real observations. This process depends on the nature of each
observation (whether it is in situ or remotely sensed) and the
time of each observation relative to the analysis time. Most
observations nowadays are asynoptic (or asynchronous), meaning
that respecting the detailed temporal nature of the problem is
essential. This problem poses many challenges, including the
following.

• Analyses must be produced even in unobserved regions
and times, hence the need for prior information (from a
background forecast or an ensemble).

• All data are imperfect and uncertainties between different
pieces of data can be correlated. The statistics of this
information are needed for DA to work well, so uncertain
data, for example, should be given lower weight than more
precise data. In Var the background- and observational-
error covariance matrices are specified and in the EnKF the
background-error covariance matrix is estimated from
the ensemble. The background-error covariances can
significantly affect the analysis (e.g. Navon et al., 2005)
and if they are incorrectly specified then the DA is sub-
optimal. An incorrect background-error covariance matrix
can actually lead to analyses being worse than the prior
(Morss and Emanuel, 2002).

• All NWP models are imperfect. This is accounted for
in weak-constraint 4D-Var (section 2.1) and in EnKF
methods that include stochastic processes in the NWP
model (section 3.2).

• Many modes can be excited by DA; these are associated with
processes of very different space/time-scales. Modifying
the right modes is an issue that goes right back to
Richardson’s forecast in the 1920s. The use of 4D methods,
an appropriate background-error covariance matrix, and
initialization (Temperton, 1988) all help with this issue.

• All DA problems for NWP are large and so methods must
be able to deal with huge numbers of degrees of freedom
(typically ≥ O(107) pieces of prior information and similar
numbers of observations). Building DA systems that are
practicable is often the task that takes the most effort.

The methods dealt with in this review are designed to deal with
these points in different ways.

1.2. Variational data assimilation

Variational DA (Talagrand and Courtier, 1987; Schlatter, 2000) is
a tool used to estimate a single initial state and a single trajectory of

an NWP model.∗ These are found by minimizing a cost function
to optimize the fit of (i) the initial conditions to the background
and (ii) the model’s version of the observations to the actual
observations over a time window.

Variational methods have been used in NWP for many years
(Courtier et al., 1994; Park and Zupanski, 2003; Rawlins et al.,
2007) as they allow assimilation of a wide range of observations,
including those remotely sensed (e.g. from satellite and radar).
Variational methods are restricted in their ability to quantify
adequately the flow-dependent background and model error
statistics, which are prescribed in Var by a parametrized scheme
(Trémolet, 2007; Bannister, 2008). Such schemes will almost
inevitably be incapable of representing properly the true space
and time structure of error statistics. The Var equations are
derived in section 2. In 4D-Var the background-error covariance
statistics do evolve with the flow within each window, and weak
constraint formulations can account for model errors. Normally
only the first moment (the mode) of the analysis is found and
4D-Var relies on linearized and adjoint versions of the numerical
model.

1.3. Ensemble data assimilation

Instead of specifying a covariance model, the EnKF (Evensen,
1994; Hamill, 2006; Ehrendorfer, 2007; Houtekamer and Zhang,
2016) uses an ensemble of possible forecasts (section 3)
that contains valuable flow-dependent information about the
background-error statistics. The EnKF is designed to produce an
ensemble of analyses, which will similarly contain information
about the analysis-error statistics, and can be cycled to future
analysis times. The EnKF does not require linearized or adjoint
versions of the model, nor of the observation operators. One of
the first centres to use an EnKF operationally was Environment
Canada (Buehner et al., 2010a,2010b).

Due to cost, the number of ensemble members is too small
in practice. Error statistics found from small ensembles will
suffer sampling error, and so the statistics will not necessarily
be representative of the state. This shows itself in the form of
ensemble-derived correlations that are noisy, and variances that
are systematically too small (van Leeuwen, 1999; Houtekamer and
Mitchell, 2001). The issue with the correlations is problematic
when errors between two variables are only weakly correlated in
reality (e.g. variables that are widely separated in space).† The issue
with the variances will cause the DA to believe that the forecast
ensemble is more accurate that it really is. This will place too
much trust in the ensemble in comparison with the observations.
Left to its own devices, the ensemble will collapse effectively to
a single trajectory and the observations will be ignored. This
problem in DA is called ‘filter divergence’ (Houtekamer and
Mitchell, 1998). These problems can be lessened with a procedure
called localization (which dampens the sample covariances at long
range; Gaspari and Cohn, 1999) and ensemble inflation (which
artificially increases the spread of an ensemble; Anderson and
Anderson, 1999; Hamill et al., 2001) by either multiplicative
or additive processes (Kalnay et al., 2007; Whitaker et al.,
2008). The ad hoc nature of these fixes is largely unsatisfactory,

∗Systems that deal with just one realization are often colloquially referred
to as ‘deterministic’ as there is no information about alternative realities
(as opposed to systems that deal with ensembles which are referred to as
‘probabilistic’). This is a different use of the term ‘deterministic’ to that used in
the theory of dynamical systems. Note that, confusingly, ‘deterministic’ is also
used to describe flavours of the EnKF which do not perturb observations (as
opposed to ‘stochastic’ which is used to describe flavours of the EnKF which
do) – section 3.2.
†The expected root-mean-square error in the variance derived from an N-
member ensemble is ∼ σ 2/N, where σ 2 is the true variance. The expected root-
mean-square error in the correlation between two variables is ∼ (1 − ρ2)/

√
N

(Houtekamer and Mitchell, 1998), where ρ is the true value of the correlation.
Both errors can be large when N is small and the latter error can be large also
when ρ is small.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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610 R. N. Bannister

although methods have been investigated that use adaptive (rather
than imposed) moderation functions (Bishop and Hodyss, 2007,
2009a, 2011) and inflation factors that are based on innovation
statistics (Bowler et al., 2008).

The EnKF is applied sequentially. The Ensemble Kalman
Smoother (EnKS) on the other hand can assimilate observations
at times later than the nominal analysis time (Evensen and
van Leeuwen, 2000). Elements of the EnKF and the EnKS are
covered in section 3.

1.4. Non-Gaussian Monte-Carlo assimilation

Monte-Carlo techniques form a range of methods that include the
particle filter (PF). The PF represents a probability distribution
by an ensemble (the particles) but, unlike in the EnKF, non-
Gaussianity of the distribution is represented. PFs do suffer from
degeneracy problems (where the filter ignores all but one particle).
For this reason, PFs have to be implemented in special ways which
are not used currently for operational purposes (van Leeuwen,
2009). PFs are not considered further in this article.

1.5. Combined 4D-Var/EnKF assimilation schemes (‘EnVar’)

Most of this article is about combining Var with the EnKF.
Such schemes usually run a Var and an EnKF scheme in parallel
with information being exchanged between them, which can be
one-way or two-way.

One-way coupling can be achieved by shifting each EnKF
analysis member for the ensemble mean to equal the Var analysis
(‘recentring’). In this configuration the EnKF does not transmit
information to Var. This kind of coupling has been used, for
example, at the Met Office (Bowler et al., 2008).

Another one-way coupling may be achieved by using the
ensemble as a source of background-error covariance information
(instead of or in addition to climatological covariances) in a
Var system to give some flow dependency. This is the basis
of En3/4DVar and 3/4DEnVar methods (section 4). Two-way
coupling may be achieved, e.g. by combining En3/4DVar or
3/4DEnVar with recentring.

1.6. Hybrid data assimilation

Var is suboptimal partly due to the unrealistic imposed error
covariance matrix, and the EnKF is suboptimal partly due to
under-sampling. Hybrid DA has been developed to accentuate
the best features of each source of background-error information,
namely the statistically robust background-error covariances
of Var and the flow-dependency of the EnKF. Mathematical
approaches have been developed to do this, and most are solved
with a (deterministic) Var-style method but with added ensemble
information. The simplest solves a Var-like problem, but replaces
the static background-error covariance matrix with a weighted
average of itself with the error covariance matrix from the
ensemble. Efficient methods have been developed to deal with the
very large matrices used in real problems, while at the same time
attending to the ensemble sampling error problem (section 5).

1.7. Notation

The schemes reviewed in this article try to tackle the above
challenges, but they become complex, so a consistent notation is
required. We use a notation as close as possible to that of (Ide
et al., 1997) and to subsequent literature, although our priority
here is to use a common notation throughout the article. To help
readers follow the equations, a summary of notation is provided
in Table 1.

2. Pure variational data assimilation

Let the n-element vectors x(t) and xb represent a state of the model
at time t and the background state at time 0 respectively (quantities
with no time argument are implicitly at t = 0, and underlined
quantities will represent augmented quantities throughout the
time window). State x(t) is found by propagating x(t − 1) forward
by one time step δt by the model, Mt−1,t :

x(t) = Mt−1,t{x(t − 1)} + η(t), (1)

where the n-element perturbation η(t) is to offset model error
introduced over t − 1 → t. Let the pt-element vectors yo

t and yx
t

be the set of observations made at time t, and their modelled
counterparts respectively. yx

t is related to x(t) via the observation
operator Ht :

yx
t = Ht{x(t)}. (2)

2.1. 4D-Var cost functions

2.1.1. A full-form (non-incremental) cost function

Var has been the workhorse of DA for many years (Le Dimet
and Talagrand, 1986; Talagrand and Courtier, 1987; Thepaut
and Courtier, 1991; Zupanski, 1997; Rabier et al., 2000; Rawlins
et al., 2007). The 4D-Var problem may be posed as a cost function,
which is a functional of the T + 1 states in x = {x, x(1), . . . , x(T)}
(over the time window t = 0 to T) and then varying x to minimize
J (Zupanski, 1997):

J(x) =1

2

∥∥∥x − xb
∥∥∥2

B−1
0

+ 1

2

T∑
t=0

∥∥yo
t − Ht(x(t))

∥∥2
R−1

t

+ 1

2

T∑
t=1

∥∥x(t) − Mt−1,t(x(t − 1))
∥∥2

Q−1
t

, (3)

where ‖a‖2
A−1 ≡ aTA−1a.

The interpretation of this cost function is as follows.

• The first term (the background term, Jb) measures the
deviation between x and xb. This is calculated in the L2

norm described by the n×n background-error covariance
matrix B0.

• The second term (the observation term, Jo) measures
the deviation between yo

t and yx
t . This is calculated in

the L2 norm described by the pt ×pt observation-error
covariance matrix Rt and is summed over the window.
Equation (3) does not allow for observations that depend
on the model state at more than one time (e.g. precipitation
accumulation which at time t depends upon earlier states),
although it may be adapted accordingly.

• The third term (the model error term, JQ) measures
the deviation between x(t) and Mt−1,t{x(t − 1)}. This
is calculated in the L2 norm described by the n× n model-
error covariance matrices Qt . In JQ we have assumed
that model errors are uncorrelated in time (white noise
approximation) and have a priori values of zero.

This minimization may be regarded as an inverse problem,
which can be solved given the ability to solve the forward problems
(Mt1,t2 and Ht) and then minimizing J(x). Cost function (3)
is weak-constraint, meaning that x does not have to be exactly a
model trajectory (Sasaki, 1970; Trémolet, 2006). This means that
we can formally account for imperfect models in the DA problem.

A common approximation follows by setting Qt = 0 which
forces the states to follow a model trajectory exactly. This is
called strong constraint 4D-Var, and such systems have been used
operationally for some years (e.g. Rabier et al., 2000; Rabier, 2005;
Gauthier et al., 2007; Rawlins et al., 2007). In this approximation
only the state at t = 0 needs to be determined as all subsequent
states follow from the model equations ((1) with η = 0), and the
JQ term no longer appears.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Ensemble-variational Data Assimilation 611

Table 1. Summary of key notation used in this article, where n is the size of the state space, p is the total number of observations over the assimilation window (pt at
time t), T is the number of time steps, N is the number of ensemble members, and ∀t here means ‘all times’.

Symbol Description Size

‖a‖2
A−1 aTA−1a

(δ) x(t), x, x State vector: time t, 0, ∀t n, n, (T+1)n
(b background, a analysis, (i) ensemble member)

η(t), η Model error: time t, ∀t n, Tn
Mt1,t2 (•) Nonlinear model: t1 → t2 in: n, out: n
Mt1,t2 Linear model: t1 → t2 n×n
M(•) Nonlinear model: 0 → ∀t in: n, out: (T+1)n
M Linear model: 0 → ∀t
Ht (•) Nonlinear observation operator: time t in: n, out: pt

Ht Linear observation operator: time t pt ×n
H(•) Nonlinear observation operator: ∀t in: (T+1)n, out: p
H Linear observation operator: ∀t p×(T+1)n
HM(•) Nonlinear observation operator incorporatingM in: n, out: p
HM Linear observation operator incorporating M p×n
yo

t , yx
t Observations pt

(o observed, x model version, (i) perturbed)
B0, Bh Background-error covariance matrix n×n

(time 0, hybrid matrix)
Rt Observation-error covariance matrix: time t pt ×pt

Qt Model-error covariance matrix: time t n×n
J, Jb, Jo, JQ Cost function, or term therein

(b background, o observation, Q model)
(δ) dt , d Innovation: time t, ∀t pt , p
U Control variable transform for the state n×n
Vt Control variable transform for model error: time t n×n
δχ var, χ ens, χh Perturbation to the state in control space: time 0 to variational, ensemble, hybrid components n, N, n+N
χ̂ ens, χ̂h Perturbation to the state in control space: time 0 to ensemble, hybrid components NM, n+NM
δγ (t), δγ Perturbation to the model error in control space: time t, ∀t n, Tn
∇v , ∇V̂ Gradient vector (with respect to vector v, matrix V̂) n, n×N
Xb, Xb Matrix of ensemble members: time t, ∀t n×N, (T+1)n×N

X̂b, X̂
b

Matrix of ‘localized’ ensemble members: time t, ∀t n×NM, (T+1)n×NM
C(t), C, C Localization matrix: time t, 0, ∀t n×n, n×n, (T+1)n×(T+1)n
UC Square root of C (M is rank of C) n×M
Pb

(N), P̂b
(N) Sample background-error covariance, localized version n×n

Â, V̂, Â, V̂ 3D control matrix, precon ditioned version, n×N, n×N,
4D control matrix, precon ditioned version (T+1)n×N, (T+1)n×N

Yx
t , Yx Perturbed observation array at time t, ∀t pt ×N, p×N

Kh, Kens, Kvar Effective gain matrices for hybrid, EnKF, Var

In general, an underlined symbol represents that quantity at all relevant times over the assimilation window, and a δ prefix in brackets indicates that the quantity may
be represented as a perturbation.

2.1.2. An incremental cost function

Cost function (3) is a full-fields approach to DA. A more practical
approach is incremental DA, which deals with perturbations made
to known reference states (Courtier et al., 1994) and has some
advantages over full-fields DA.

The cost function has a quadratic form if Mt1,t2 and Ht

are linear (which they are not in general). In practical terms, a
non-quadratic cost function is difficult to minimize, especially if
it possesses multiple local minima. A quadratic problem emerges
by linearizing Mt1,t2 and Ht about a guess (or reference) state,
xg, and formulating the problem in terms of perturbations
(increments) to xg. In this article we will take xg = xb for
simplicity. The result is a modified cost function which is an
approximation to the original but is easier to minimize.

The 4D state xb is found by integrating the model over the
window using (1) with the assumption that η(t) = 0:

xb(t) = Mt−1,t

{
xb(t − 1)

}
. (4)

This can be perturbed to give a general state x(t) as follows:

x(t) = xb(t) + δx(t), (5)

η(t) = δη(t). (6)

Substituting these into (1) gives:

xb(t)+δx(t) ≈Mt−1,t

{
xb(t − 1)

}
+Mt−1,tδx(t − 1) + δη(t),

∴ δx(t) ≈ Mt−1,tδx(t − 1) + δη(t), (7)

where Mt−1,t = ∂x(t)/∂x(t − 1) is the model linearized about xb.
Repeated use of (7) leads to:

δx(t) ≈ M0,tδx(0) + M1,tδη(1) + M2,tδη(2) + . . .

+ Mt−1,tδη(t − 1) + δη(t),

= M0,tδx(0) +
t∑

τ=1

Mτ ,tδη(τ ), (8)

noting that Mt,t = I. The linearized form of (2) is found in a
similar way:

Ht(x(t))≈Ht

{
xb(t)

}
+Ht

(
M0,tδx(0)+

t∑
τ=1

Mτ ,tδη(τ )

)
, (9)

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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612 R. N. Bannister

where Ht = ∂yx
t /∂x(t). Substituting (9) into (3) gives the

incremental cost function:

Jinc(δx, δη) = 1

2
‖δx‖2

B−1
0

+ 1

2

T∑
t=0

‖δdt‖2
R−1

t

+ 1

2

T∑
t=1

‖δη(t)‖2
Q−1

t
, (10)

where δdt = dt −Ht

(
M0,tδx +

t∑
τ=1

Mτ ,tδη(τ )

)
, (11)

and dt = yo
t − Ht

{
xb(t)

}
. (12)

These equations represent incremental weak-constraint 4D-
Var ( 1© in Figure 1). Minimizing Jinc (over an inner loop)
gives particular values of (δx, δη) = {δx, δη(1), . . . , δη(T)}. The
strong-constraint 4D-Var version is obtained by setting all
δη(t) = 0 in (10) and (11), which is valid when model error
is negligible over the window ( 2© in Figure 1).

For practical reasons Var uses a B0-matrix (and weak-
constraint 4D-Var uses Qt matrices) that is (are) essentially
the same for each cycle, although flow-dependence can be added
artificially to the way that B0 is modelled by, for example, cycling
variance information (Dee, 2002) and the use of (linearized)
nonlinear balance relationships (Fisher, 2003; Barker et al., 2004).

2.1.3. Further simplifications

Strong-constraint 4D-Var may be further simplified to exclude
part of the time dimension (Courtier et al., 1998; Gauthier et al.,
1999; Lorenc et al., 2000; Gustafsson et al., 2001). The most
popular is called 3D-FGAT (3D-Var with the First Guess at the
Appropriate Time, but also known as just 3D-Var), which emerges
from the strong-constraint version of (10) with the assumption
that Mt1,t2 ≈ I ∀t1, t2 ( 3© in Figure 1):

J3DFGAT
inc (δx) = 1

2
‖δx‖2

B−1
0

+ 1

2

T∑
t=0

‖δdt‖2
R−1

t
,

δdt = dt − Htδx. (13)

(Lee et al., 2004; Lawless, 2010), where δx is here valid at the
centre of the observation window. The 3D aspect is due to the
loss of the time dimension through the neglect of all Mt1,t2 and
the FGAT aspect is due to the preservation of time in δdt ((12)
still holds for dt). Notably, 3D-FGAT was used to produce the
ERA-40 reanalysis (Uppala et al., 2005).

Note that even operational 4D-Var systems in practice use
approximations, e.g. the Jacobian M0,t does not normally contain
linearizations of the complete model, as many physical processes
are problematic to linearize (Xu, 1996).

2.2. The derivative of the 4D-Var cost function

The minimum of Jinc is found iteratively (e.g. Liu and Nocedal,
1989) with algorithms that require calculation of the gradient of
(10), ∇Jinc. This is a column vector of the same structure as the
argument of Jinc in (10), i.e. (δx, δη), but of derivatives as follows:

∇Jinc =

⎛⎜⎜⎜⎝
∇δxJinc

∇δη(1)Jinc
...

∇δη(T)Jinc

⎞⎟⎟⎟⎠ , (14)

where the ith components [•]i of the sub-vectors are:

[∇δxJinc]i = ∂Jinc/∂[δx]i,

and [∇δη(t)Jinc]i = ∂Jinc/∂[δη(t)]i.

There are n components of each sub-vector, so ∇Jinc has (T + 1)n
components in total. (For strong-constraint 4D-Var and 3D-Var,
elements exist with respect to only δx in (14) so ∇Jinc has just n
components.) The gradient is important because in phase space
−∇Jinc points in the direction of greatest descent of Jinc.

Components of ∇Jinc are derived in Appendix A to be:

∇δxJinc = B−1
0 δx −

T∑
t=0

MT
0,tHT

t R−1
t δdt , (15)

∇δη(t′)Jinc = −
T∑

t=t′
MT

t′,tHT
t R−1

t δdt +Q−1
t′ δη(t′). (16)

4D-Var is limited in its scope for computational paralleliz-
ability. The estimation of δx and δη(t) –as in formulation
(10) – cannot be parallelized temporally (e.g. for δη(t): this
requires integration of the forward linear model from earlier
times in (11), and the integration of the adjoint model from
future times in (16)). There are alternative formulations though
that may allow parallelization of 4D-Var in time (M. Fisher, 2011;
personal communication; Desroziers and Berre, 2012) .

2.3. Control variable transforms in Var

The cost function (10), with definitions (11) and (12), requires
the matrices B0, Rt , and Qt to be known explicitly, but even
modern computers are incapable of dealing with such large
matrices. The method of control variable transforms (CVTs)
is a ‘trick’ to represent B0 and Qt without needing to know
them explicitly.‡ Instead of dealing with (10) – a function of
(δx, δη) –an alternative cost function is formulated in terms
of new variables (‘control variables’). There are number of key
studies that describe the choice of control variables used for
meteorological DA (e.g. Parrish and Derber, 1992; Derber and
Bouttier, 1999; Berre, 2000), for ocean DA (Weaver et al., 2005),
and in general (Bannister, 2008; Ménétrier and Auligné, 2015).

The following transformations may be made for δx, and δη(t)
in (10):

δx = Uδχvar, (17)

δη(t) = Vtδγ var(t). (18)

Here δχvar and δγ var(t) are ‘control variables’, which are
associated with the model space variables δx and δη(t)
respectively, and U and Vt are the CVTs. Vectors δχ var and
δγ var(t) need not have n elements each, but for the purposes
of this article we shall assume that each is an n-element vector.
Substituting (17) and (18) into (10) gives the preconditioned cost
function:

Jinc(δχ var, δγ var)=1

2

∥∥δχvar

∥∥2
UTB−1

0 U+ 1

2

T∑
t=0

‖δdt‖2
R−1

t

+ 1

2

T∑
t=1

∥∥δγ var(t)
∥∥2

VT
t Q−1

t Vt
, (19)

and substituting into (11) gives:

δdt = dt −Ht

(
M0,tUδχvar+

t∑
τ=1

Mτ ,tVτ δγ var(τ )

)
, (20)

‡The Rt matrices are often assumed diagonal. Over all time steps, there are
p = ∑T

t=0 pt observations in total, which is a practical number of diagonal
elements. There is evidence though that the correlations between errors
(including representivity) of different observations should be accounted for
(Stewart et al., 2014; Waller et al., 2014).
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(dt is still defined by (12)). The aim is to have control variables
that have error covariances I, which is achieved by choosing U
and Vt such that UTB−1

0 U = I and VT
t Q−1

t Vt = I. Setting these
in (19) gives:

Jinc(δχ var, δγ var) =1

2

∥∥δχvar

∥∥2
I + 1

2

T∑
t=0

‖δdt‖2
R−1

t

+ 1

2

T∑
t=1

∥∥δγ var(t)
∥∥2

I . (21)

The gradients in control space follow from (15) and (16) with the
chain rule:

∇δχvar
Jinc = UT∇δxJinc, (22)

and ∇δγ var(t′)Jinc = VT
t′∇δη(t′)Jinc. (23)

Cost function (21) is minimized with respect to (δχ var, δγ var),
which is an easier and better conditioned problem than
minimizing (10) with respect to (δx, δη) (Lorenc et al., 2000;
Haben et al., 2011) and useful physical constraints can be built
into U (Ingleby, 2001; Bannister, 2008). Importantly the two
problems are equivalent given:

B0 = UUT, (24)

and Qt = VtVT
t , (25)

which follow from UTB−1
0 U = I and VT

t Q−1
t Vt = I above. The

optimum values of (δχ var, δγ var) relate to (δx, δη) with the
CVTs (17) and (18). In practice U and Vt are modelled
(leading to implied covariance matrices above) by making
simplifying assumptions about how errors are thought to be
related (Bannister, 2008), and the CVT viewpoint will be key to
understanding EnVar methods (section 4 onwards). In most of
the remainder of this article we do not consider model error.

3. Pure ensemble data assimilation systems

Var has been a success in NWP but is limited by the B0-
matrix, which influences the quality of the analysis (Berre et al.,
2006). Despite its importance, B0 has to be estimated – usually
crudely – due to its large size. It is also assumed to be static (at
the start of each cycle), even though in reality background-
error statistics change in time. Ensemble methods (e.g. the
EnKF) circumvent this problem by representing background
uncertainty with an ensemble. We show briefly how the EnKF
approximates background-error statistics and mention some
basic EnKF formulations. However, to avoid complications here,
we leave discussion of localization until section 6.

3.1. Background uncertainty represented by an ensemble

Consider a population of N background forecasts,§ each labelled
with index (i) xb

(i) (all valid at t = 0). The n × n background-error

covariance matrix Pb is approximated by this population:

Pb ≈ Pb
(N) = 1

N−1

N∑
i=1

δxb
(i)δxb

(i)
T = XbXbT

, (26)

where δxb
(i) = xb

(i) − xb. (27)

Here Pb is the true (and full-rank) matrix, approximated by B0

in Var and by Pb
(N) in the EnKF. The overbar in (27) indicates the

§For operational DA, N � n, and presently N is O(101) to O(103).

sample average. Pb
(N) is approximate (rank-N−1) due to sampling

error as N is finite (section 6). A compact way of writing Pb
(N)

is given in (26) where the columns of the n×N matrix Xb are
δxb

(i)/
√

N−1 (Evensen, 1994).

3.2. Ensemble filters

Substituting Pb
(N) into the Kalman filter (KF) update equation

(Jazwinski, 1970; Evensen, 2003) gives:

xa
(i) = xb

(i)+PbHT
(

R + HPbHT
)−1

d(i),

≈ xb
(i)+Xb(HXb)T

{
R+HXb(HXb)T

}−1
d(i), (28)

where d(i) = yo
(i) − H(xb

(i)). Equation (28) is evaluated for each
ensemble member (i = 1, . . . N), each with a perturbed set of
observations, yo

(i) = yo + εo
(i), whereεo

(i) ∼ N(0, R). The ensemble
of analyses xa

(i) can be cycled to the next observation time. The
key idea is that (28) does not need the explicit n×n matrix
Pb

(N). Equation (28) is a stochastic formulation of the EnKF
(Houtekamer and Mitchell, 1998; Burgers et al., 1998) – so-
called because the observations are perturbed stochastically to
give the correct spread of the analysis ensemble. Other important
variations of the EnKF (e.g. the ensemble transform Kalman filter)
use deterministic formulations (Anderson, 2001; Bishop et al.,
2001; Whitaker and Hamill, 2002; Tippett et al., 2003) which do
not require perturbed observations. (It is outside the scope of this
article to review the many flavours of ensemble filters.) The EnKF
is 4© in Figure 1.

The last line of (28) is written so that it does not require
the adjoint of the observation operator. The linear operation
HXb is also often approximated by the nonlinear operations{
H(xb

(i)) − H(xb)
}

/
√

N − 1 (approximating the ith column of

HXb). The EnKF can therefore be implemented without the
need for linearized operators (this includes the linearized forecast
model in the case of the ensemble smoother – section 3.3).
This represents a significant reduction of development effort
compared to Var (Lorenc, 2003). Many studies show that the
EnKF is a useful tool in NWP, often comparable or better
than Var (e.g. Houtekamer et al., 2005; Zhang et al., 2006;
Meng and Zhang, 2007; Bonavita et al., 2008; Meng and Zhang,
2008a,2008b; Szunyogh et al., 2008, Whitaker et al., 2008; Hamill
et al., 2011a,2011b; Zhang et al., 2011, Houtekamer et al., 2014).
The differences between EnKF and Var can be most evident in
data-sparse regions (Whitaker et al., 2008).

The background-error covariance matrix in the ordinary KF is
assumed to include predictability errors (propagation of analysis
error from the previous analysis, generically MPaMT) and a
model error contribution (Q). Since the model producing the
xb

(i) is imperfect, model error should be allowed to affect the
spread of the ensemble background states (the system simulation
approach of Houkekamer et al., 1996). There are many strategies
for accounting for model error, including covariance inflation
(Whitaker et al., 2002) and additive error (Houtekamer et al.,
2005). These approaches have been tested in an EnKF with a
simplified primitive-equation model to represent the model error
introduced due to unresolved scales (Hamill and Whitaker, 2005).
However the difficulty is choosing the degree of inflation and the
structure of the additive error. Hamill and Whitaker (2005) chose
to prescribe inflation factors a little over unity (although more
advanced approaches are possible, e.g. Raynaud et al., 2012), and
they chose additive errors from three options: random samples
of differences between forecasts of different resolutions, random
samples of differences between forecasts and climatology, and
random samples of forecast tendencies. It is also possible to relax
the analysis ensemble spread closer to the spread of the forecast
ensemble (Zhang et al., 2004).
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3.3. Ensemble smoothers

In the EnKF, xb
(i), yo

(i), and xa
(i) are valid at t = 0, but information

is propagated from one time to the next via cycling (sequential
DA). An EnKS (Evensen, 2007) on the other hand introduces
the time dimension into the analysis problem itself so it can deal
directly with observations spanning a time window (0 ≤ t ≤ T).
We discuss two ways of implementing an EnKS, which later
influence how EnVar is developed.

3.3.1. An EnKS with a 3D state vector

The EnKF (28) may be adapted by keeping its 3D state vector (valid
at the start of the window), but incorporating the forecast model
into the observation operator (as in 4D-Var) for observations
made at t > 0:

xa
(i) =xb

(i)+Xb
(

HMXb
)T
{

R+HMXb
(

HMXb
)T
}−1

d(i), (29)

where d(i) = yo
(i) − HM(xb

(i)) (see below). Objects (not) under-
lined are for (t = 0) t ≥ 0: yo

(i) contains the perturbed obser-
vations (error covariance R) over the window in chronological
order, HM(xb

(i)) is the time-distributed observation operator,
and HM is its Jacobian:

HM(xb
(i)) = H

(
M(xb

(i))
)

=

⎛⎜⎝H0(•) 0
. . .

0 HT(•)

⎞⎟⎠
⎛⎜⎝ M0,0(xb

(i))
...

M0,T(xb
(i))

⎞⎟⎠

=

⎛⎜⎝ H0(xb
(i))

...

HT(M0,T(xb
(i)))

⎞⎟⎠ , (30)

HM = HM =

⎛⎜⎝ H0 0
. . .

0 HT

⎞⎟⎠
⎛⎜⎝ M0,0

...

M0,T

⎞⎟⎠

=

⎛⎜⎝ H0
...

HT M0,T

⎞⎟⎠, (31)

where Ht(•) means use the quantity to the right as an argument
and Ht and Ht are defined in section 2. The above also
serves to define the operators H, M, H and M. Furthermore
the linear step HMXb can be avoided by approximating

with the nonlinear operations
{
HM(xb

(i))−HM(xb)
}/√

N − 1

(approximating the ith column of HMXb). This EnKS is 5© in
Figure 1.

3.3.2. An EnKS with a 4D state vector

An EnKS may be alternatively formulated with 4D state vectors
(van Leeuwen and Evensen, 1996), contained in the (T + 1)n×N-
element matrix Xb (the ith column being δxb

(i)/
√

N − 1, where

δxb
(i) is the 4D analogue of (27)):

Xb =

⎛⎜⎝ Xb(0)
...

Xb(T)

⎞⎟⎠ = MXb, (32)

and a similar ensemble exists for the analysis, Xa. An EnKS can
be derived by underlining all quantities (e.g. Xb → Xb) in (28):

xa
(i) =xb

(i)+Xb(HXb)T
{

R + HXb(HXb)T
}−1

d(i), (33)

where now d(i) = yo
(i) − H(xb

(i)), and H(xb
(i)) and H are defined

in (30) and (31). Again the linear step HXb can be avoided with

the approximation {H(xb
(i))−H(xb)}/√N−1 (approximating

the ith column of HXb). This EnKS is 6© in Figure 1. An EnKS
may also be posed in a formulation which considers observations
in batches over the window (Evensen and van Leeuwen, 2000).

The EnKS formulations with 3D and 4D state vectors will
be important in the next section where they form the basis of
methods that we shall call En4DVar and 4DEnVar respectively.

4. Pure EnVar: combining an ensemble with Var

The last decade has seen experimentation with combining the
EnKF with Var. Perhaps the simplest means of doing this is to
use a Var analysis to recentre the EnKF analysis ensemble. This
(one-way) coupling has been used by Zhang et al. (2009) with
the simple Lorenz 96 model (Lorenz, 1996), and by Bowler et al.
(2008) with MOGREPS (the Met Office Global and Regional
Ensemble Prediction System).

However, in this section we look at one-way coupling the other
way round and review two (related) methods of using the EnKF
ensemble forecasts to define the background-error statistics in
Var (collectively known as ‘EnVar’). We focus on 4D methods
(3D methods follow in the same way as in section 2.1.3). The two
methods differ in the use – or not – of the linear/adjoint models
as used in 4D-Var. Following the nomenclature recommended by
Lorenc (2013), we call a pure EnVar system that uses a linear model
‘En4DVar’ (the labels ‘E4DVar’, ‘4DVarBen’, and ‘4DVarBenkf’
have also been used by authors). In all such labels, ‘4DVar’
appears, indicating that it uses the same linearized machinery as
4D-Var does. Also following Lorenc (2013), we call a pure EnVar
system that does not use a linear model ‘4DEnVar’. En4DVar and
4DEnVar are discussed below (without localization at this stage).
Bear in mind that this nomenclature is not consistent with all
the literature, especially in articles prior to Lorenc (2013). Liu
et al. (2008, 2009) for instance called their method En4DVar even
though it does not use a linear model, but this has been changed
to the recommended 4DEnVar in later articles (e.g. Liu and Xiao,
2013).

Note that pure En4DVar and pure 4DEnVar use background
errors from one source (here the ensemble), but further coupling
can be achieved by merging the ensemble statistics with B0 of
Var. This forms another family of methods called ‘hybrid EnVar’
(Lorenc, 2013) (section 5) but again this term is not always used
consistently in the literature.

4.1. Pure En4DVar: requiring linear/adjoint models

A deterministic analysis xa (essentially the ensemble mean of
(29)) may be found using a Var technique. Consider the cost
function (Liu et al., 2008):

JEn4DVar(χ ens)

= 1

2

∥∥χ ens

∥∥2
I + 1

2

T∑
t=0

∥∥∥dt −HtM0,tXbχ ens

∥∥∥2

R−1
t

(34)

= 1

2

∥∥χ ens

∥∥2
I + 1

2

∥∥∥d−HMXbχ ens

∥∥∥2

R−1 , (35)

which is a function of a new N-element control variable χ ens,
and where dt = yo

t −Ht
{
M0,t(xb)

}
and d = yo−HM(xb). The

latter of the two equations uses the time-compact (underlined)
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notation. This control variable comprises coefficients that
multiply the ensemble perturbations in the linear combination as
follows:

δx = Xbχ ens (36)

(Lorenc, 2003). Here Xb acts as a CVT, which is taken from
a parallel EnKF system (or even from a population of NMC-
style forecast differences (Wang et al., 2014), where the National
Meteorological Centre (NMC) method approximates forecast
errors with a set of lagged forecasts (Parrish and Derber, 1992)).

To see how (34) works, compare the above equations with
those of preconditioned Var (section 2.3). Comparing (34) with
(21) (with definition (20) [where in (21) and (20) no model
error is considered, δγ var(t) = 0]). These systems have the same
form, except that the CVT U in (17) becomes Xb in (36). The

implied B-matrix of En4DVar is then akin to (24), i.e. XbXbT
,

as consistent with (26). Minimizing (34) is efficient as it is well
conditioned, and χ ens has only N elements. At the minimum of
(34) χ ens = χ a

ens, which leads to the analysis xa = xb+Xbχ a
ens.

The gradient of (34) (Appendix A) is required for the
minimization and has the forms:

∇χens JEn4DVar

= χ ens−XbT
T∑

t=0

MT
0,tHT

t R−1
t

(
dt −HtM0,tXbχ ens

)
= χ ens − XbT

HT
MR−1

(
d − HMXbχ ens

)
, (37)

where, as in 4D-Var, the linear and adjoint operators appear. This
method is formally called En4DVar ( 7© in Figure 1) and the 3D
counterpart is called En3DVar ( 8©). An accepted alternative name
for this method is 4D/3DVarBen (Lorenc, 2013), which translates
as 4D/3D-Var with background-error covariance matrix implied
from an ensemble. Our recommended nomenclature (broadly in
line with Lorenc (2013)) is summarized in Figure 1 (but note the
comments at the start of section 4). Minimizing JEn4DVar when
the model and observation operators are linear is equivalent to
the mean EnKS solution in section 3.3.1 (Appendix C).

4.2. Pure 4DEnVar: avoiding linear/adjoint models

Just as the linear and adjoint operators can be avoided in the EnKF
and EnKS (section 3), a similar approximation can be applied
to En4DVar. For pt observations at time t, the combination
HtM0,tXb can be translated to the explicit pt ×N-element matrix
Yx

t using the nonlinear operators Ht and M0,t (Liu et al., 2008):

Yx
t = HtM0,tXb

≈ 1√
N−1

(
Ht{M0,t(xb

(1))} − yx
t , · · ·

· · · , Ht{M0,t(xb
(N))}−yx

t

)
, (38)

and let Yx =

⎛⎜⎝ Yx
0
...

Yx
T

⎞⎟⎠ = HMXb, (39)

where yx
t is the model observation vector at time t based on

the ensemble mean, yx
t = Ht{M0,t(xb)} and Yx has dimension

p×N. The (time-compact) cost function and gradient of this
formulation are adapted from (35) and (37) using (39):

J4DEnVar(χ ens) = 1

2

∥∥χ ens

∥∥2
I +∥∥d−Yxχ ens

∥∥2

R−1 , (40)

∇χens
J4DEnVar = χ ens−YxTR−1

(
d − Yxχ ens

)
. (41)

Notice that M0,t(xb
(i)) = xb

(i)(t) (comprising Xb in (32)) may be
computed in advance, which means that this method is akin to
using an EnKS with a 4D state vector (section 3.3.2). In (40) and
(41), the CVT is δx = Xbχ ens. This method is formally called
4DEnVar ( 9© in Figure 1) (Desroziers et al., 2014; Fairbairn et al.,
2014), and is similar to methods of Hunt et al. (2004) and Tian
et al. (2008). The 3D counterpart is 3DEnVar (although it is
essentially the same as En3DVar) and alternative names are given
in sections 4 and 7.5.

4.3. Comments on EnVar methods

For En4DVar and 4DEnVar the implied background-error

covariance at t = 0 is XbXbT
, and between times t1 and

t2 it is Xb(t1)XbT
(t2), where for En4DVar Xb(t) comprises

columns of Xb propagated to time t by M0,t (Xb(t) = M0,tXb)
but for 4DEnVar Xb(t) comprises columns propagated by

the nonlinear model as
{
M0,t(xb

(i))−M0,t(xb)
}

/
√

N−1 (for

column i). En4DVar and 4DEnVar are each used typically to
find a single deterministic analysis per analysis cycle, and the
perturbed ensemble members, Xb, are used in these methods only
to define the CVT. There are advantages and disadvantages of
EnVar over traditional Var:

• They do not require a background-error covariance model
as Var does. This is important when modelling background
errors in B0 involving processes that are too complicated,
nonlinear or when geophysical balances are not relevant.

• The control vector χ ens has N elements while the control
vector δχ in 3D-Var or strong-constraint 4D-Var has n
elements. As N � n, this represents an efficient problem
that has shrunk in size to reflect the low rank of Pb

(N).
• 4DEnVar does not need linearized models, but 4D-Var and

En4DVar do. If NWP centres no longer have to develop,
maintain and run linear and adjoint models, this results
in a significant cost gain, especially if linearizing highly
nonlinear processes with M can be avoided (e.g. Xu, 1996;
Stiller and Ballard, 2009; Stiller, 2009). As a consequence
however, other quantities that rely on the adjoint will
no longer be available, such as adjoint sensitivity analysis
(e.g. Benedetti et al., 2003) or Hessian singular vector
calculations (e.g. Lawrence et al., 2009).

• As with the EnKF/S, EnVar has a suitability for parallel
processing for computing the matrix Yx. Such systems
have limitless parallelizability with the number of ensemble
members.

• The low-rank property of the implied background-error
covariance matrix in EnVar means that sampling error
problems will inevitably arise when N is small. This usually
requires some kind of mitigation such as localization
(section 6).

4.4. Generating an ensemble within EnVar

The EnVar forms given in sections 4.1 and 4.2 produce only a
single analysis (the mode of the posterior),¶ while the EnKF/S
produce an ensemble of possible analyses. However EnVar
permits further constraints to the analysis, such as a tangent
linear normal mode constraint (Kleist et al., 2009; Wang et al.,
2013) or a variationally-based initialization term applied with
an extra term–normally called JC –added to the cost function

¶Instead of a single analysis, such minimization problems can, if required, be
repeated for each ensemble member i, e.g. (Liu and Xiao, 2013), where
the following substitutions are made in (35): xb → xb

(i), yo
t → yo

t(i) and
χ ens → χ ens(i), where yo

t(i) is the ith perturbed observation vector, and

δx(i) = Xbχ ens(i) is analysis perturbation i. The resulting ensemble of N
EnVar analyses is equivalent to (29).
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(Clayton et al., 2012; Ge et al., 2012), which can help the analysis
to be close to a defined balance.

We also mention a couple of related EnVar schemes that are
capable of producing an ensemble. The ‘Maximum Likelihood
Ensemble Filter’ (MLEF) (Zupanski, 2005) can also bypass use of
the linearized model. MLEF, which preconditions the variational
problem on the Hessian, has been demonstrated in a 3D context.
This preconditioning replaces (36) with the following CVT:

δx = Xb(I + S)−T/2χMLEF, (42)

where in 3D S = (
R−1/2HXb

)T (
R−1/2HXb

)
, which is written in a

way so that the H (as before) can be approximated with two runs
of the nonlinear observation operator. Hessian preconditioning
not only allows a very efficient minimization but it also allows
calculation of an analysis ensemble, so the method can be used
without a separate ensemble generator. The ‘Ensemble Variational
Integrated localized (or Lanczos)’ (EVIL) scheme of Auligné et al.
(2016) is another method (discussed further in section 5.5 where
it is applied to a hybrid setting).

5. Hybrid methods

According to the definition in Lorenc (2013), a hybrid method
refers to one that blends B0 from Var with Pb

(N) from an ensemble
(recall B0 is full-rank but quasi-static and crudely modelled, and
Pb

(N) is flow-dependent but rank deficient). Six ways of combining
these matrices are discussed here. The first is an ensemble-based
recalibration of the B0-matrix in Var; the second and third are
(equivalent) ways of averaging B0 and Pb

(N); the fourth averages the
gain matrices instead of the covariance matrices; the fifth returns
to averaging B0 and Pb

(N) but provides an ensemble of analyses as
part of the variational iterations; and the sixth combines B0 with
Pb

(N), but not by averaging them.
Hybridization introduces climatological error information into

EnsVar (where the hybrid system becomes less sensitive to
ensemble size than the pure EnKF; Zhang et al., 2009). The
use of hybrid covariances has long been thought to be useful
(Gustafsson, 2007; Bishop and Satterfield, 2013). Here we shall
consider the former viewpoint (equivalent to hybridization of,
for example, 4D-Var with En4DVar). From this perspective, the
hybrid background-error covariance matrix, here denoted Bh,
replaces the usual B0-matrix in Var. Localization is not discussed
until section 6 since at this stage it is a distraction from the
hybridization procedure.

5.1. Ensemble recalibration of B0 in Var

Some operational centres use a parallel ensemble prediction
system to continuously recalibrate the model of B0 in their Var
system (this blending of ensemble and climatological information
would arguably classify this as a hybrid method, so we should
call it a Bh-matrix). Météo-France and the ECMWF, for example,
use the spread of their ensemble prediction systems (initialized
not from an EnKF but from ensembles of perturbed 4D-Var
assimilations; Belo Pereira and Berre, 2006; Berre et al., 2007,
2009; Isaksen et al., 2010) to model the ‘variances of the day’ of Bh

(Bonavita et al., 2011, 2012; Raynaud et al., 2012). The ensemble
is known to have significant sampling errors (and so needs to be
filtered) and is known to be under-spread (and so needs to be
inflated).

Recently the ECMWF and Météo-France extended their
hybrid schemes to include on-line calibration of the spatial
correlations in their B-matrices. At the ECMWF, e.g. these spatial
structures are described by a ‘wavelet diagonal’ scheme (Fisher,
2003), which can represent different correlation length-scales
for different geographical regions. The original implementation
of this scheme used a climatological calibration, which implied

static background-error length-scales, but these are known in
reality to be flow-dependent (e.g. longer length-scales in higher
pressure systems). The ECMWF has experimented with two ways
of calibrating their wavelet scheme, namely using samples of
background errors from either (i) a 12 day window (25 ensemble
members, twice per day, leading to 600 samples), or (ii) a
combination of current members (25 members within an 8 h
window – 200 samples) plus samples representing climatology
(400 samples spread over the seasons, leading again to 600
samples in total) (Bonavita et al., 2016). The 600 samples in
each case are considered necessary to calibrate the wavelet model
without filtering or localizing. Even though the forms of their Bh-
matrix models (Derber and Bouttier, 1999; Fisher, 2003) are not
changed by recalibration, important flow-dependence is added
as a consequence of recalibration with either (i) or (ii) above,
resulting in modestly improved forecasts right out to 10 days in
some quantities (Bonavita et al., 2016).

5.2. The explicit average of error covariance matrices

The classic hybrid background-error covariance matrix, Bh, is
defined according to Hammill and Snyder (2000) as the weighted
average of B0 and Pb

(N):

Bh = (1 − β)B0 + βPb
(N), (43)

where β (0 ≤ β ≤ 1) is a tunable factor controlling the weighting
of the static and flow-dependent covariances, and Bh replaces
B0 in (10). The use of explicit matrices is obviously impractical
for large systems and so methods of using Bh implicitly are
introduced.

5.3. The implicit average of error covariance matrices

This method merges the CVTs of (17) and (36) to represent B0

and Pb
(N) implicitly. We show this in the context of hybridizing

4D-Var with En4DVar:

JHEn4DVar(δχvar, χ ens) =1

2

∥∥δχvar

∥∥2
I + 1

2

∥∥χ ens

∥∥2
I

+ 1

2

T∑
t=0

‖δdt‖2
R−1

t
, (44)

where

δdt = dt −HtM0,t

(√
1−β Uδχvar+

√
β Xbχ ens

)
(45)

and dt = yo
t − Ht

{
M0,t(xb)

}
,

(cf. (44)–(45) with (34)). In (44) the augmented control vector
(δχ var, χ ens) has n+N elements where δχvar is associated with B0

(as δχ var in section 2.3), and χ ens associated with Pb
(N) (as χ ens in

section 4). Recall that n is the size of the state, N is the number of
ensemble members, U is the original n×n CVT of section 2.3, and
Xb is the n×N matrix comprising the ensemble perturbations

(xb
(i)−xb)/

√
N−1. The hybrid En4DVar cost function can be

compactly written as

JHEn4DVar(χh) = 1

2

∥∥χh

∥∥2
I + 1

2

T∑
t=0

‖δdt‖2
R−1

t
, (46)

where χh =
(

δχvar

χ ens

)
. (47)

For conciseness, the formula for the gradient of JHEn4DVar with
respect to χh is left to section 7, where localization is also
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considered. The CVT for (46) relates δχ var and χ ens to δx at
t = 0:

δx =
√

1 − βUδχvar +
√

βXbχ ens,

= Uhχh =
(√

1 − βU
√

βXb
)

χh, (48)

(cf. (17)). The hybrid CVT which consolidates U and Xb is
called Uh, which is the n×(n+N) matrix

(√
1 − βU

√
βXb

)
.

In the χh representation, background errors have covariance〈
χhχhT

〉
b

= I, which implies the following error covariance in

the model representation (δx):

Bh = 〈
δxδxT

〉
b

= (√
1−βU

√
βXb

)〈
χhχhT

〉
b

(√
1 − βUT

√
βXbT

)
= (1−β)UUT+βXbXbT= (1−β)B0+βPb

(N), (49)

where 〈•〉b performs an expectation over the background
population. Equations (49) and (43) are identical, which shows
that minimizing (44) with respect to δχh (with CVT (48)), and
then transforming the resulting control variable increment into
model space with (48), is the same as minimizing the strong-
constraint 4D-Var cost function with B0 → Bh.‖ This is hybrid
En4DVar (11© in Figure 1, 12© for En3DVar).

A benefit of form (44) over (43) is efficiency as it avoids
prohibitively large matrices. Wang et al. (2007b) provide an
alternative derivation of (49). Although this hybrid method of
representing the background-error covariance matrix has been
applied to strong-constraint 4D-Var, it may also be used with
the weak-constraint formulation (21). When β = 1 (β = 0), this
system is identical to pure En4DVar (pure Var) (section (4.1)).

5.4. Combining gain matrices

The most common type of hybrid schemes average B0 with Pb
(N),

but an alternative is to follow Penny (2014) by averaging the
Kalman gains of pure Var (gain Kvar) and of pure EnKF (gain
Kens) to give Kh. For 3D schemes, e.g.

Kh = β1Kens+β2Kvar+β3KvarHKens, (50)

where Kens = Pb
(N)HT

(
HPb

(N)HT+R
)−1

, (51)

Kvar = B0HT
(

HB0HT+R
)−1

, (52)

and βi are scalars. Kens and Kvar capture the way that the respective
schemes work but are not computed explicitly.

Penny (2014) applied this averaging to 3D-Var and an LETKF
with the Lorenz 96 model (Lorenz, 1996) and the choices β1 = 1,
β2 = α, and β3 = −α. This leads to the hybrid gain:

Kh = Kens + αKvar(I − HKens), (53)

and the hybrid analysis xa = xb+Kh(yo−Hxb). This analysis is
equivalent to first running the EnKF to give the ensemble mean
x̄a

ens, running Var with this as the background to give xa
var, and then

doing the following weighted average to give the hybrid analysis
xa

h = x̄a
ens+αxa

var. Penny (2014) found that this kind of hybrid
improves the analysis over those of the separate pure schemes.
However the benefit of this hybrid is that it requires little extra
coding to existing EnKF and Var schemes.

‖It is possible to allow the β to vary with vertical level, as is done by Buehner
et al. (2013). Some authors put the

√
1−β and

√
β terms on the ensemble

and climatological terms respectively instead of the way round in (48). Other
authors (e.g. Wang et al., 2008b; Gustafsson et al., 2014), prefer to set the β
weights in the cost function instead of in the CVT. In this case the background
‘Var’ and ‘ens’ terms would contain the extra factors 1/(1−β) and 1/β
respectively and the

√
1−β and

√
β would be omitted in (48).

5.5. EVIL

Most EnVar systems use a separate EnKF-style system to generate
Xb for each cycle. The fact that the EnVar and EnKF are separate
can lead to inconsistencies, and hence to sub-optimality in hybrid
EnVar. EVIL (Ensemble Variational Integrated Localized [or
Lanzos]) (Auligné et al., 2016) represents a modification to hybrid
EnVar which uses information gained in the Var minimization
procedure to estimate an analysis ensemble, instead of the usual
single analysis.

EVIL is based on the fact that conjugate gradient (CG)-based
minimization algorithms are closely related to Lanczos methods
(Paige and Saunders, 1975; Fisher and Courtier, 1995; El Akkraoui
et al., 2013). In outline, the gradient descent vectors from q
iterations of the CG procedure form a Krylov sub-space in which
the Hessian of the cost function is tridiagonal (q here takes
the role of N). Typically q ∼ O(50), so such a Hessian can be
easily diagonalized. The eigenvectors of the Hessian in control
space – stored in the n×q matrix Zq - and the eigenvectors - in
the q×q diagonal matrix � – are called Ritz pairs. In general in
quadratic systems, the analysis-error covariance matrix, A, is the
inverse of the Hessian. This leads to the following approximation
for an n×q analysis ensemble, Xa in 3D (Auligné et al., 2016):

Xa = Xb + AHTR−1
(

Yo − HXb
)

,

≈ Xb+UhZq�
−1
q ZT

q UT
h HTR−1

(
Yo−HXb

)
, (54)

where Zq�
−1
q ZT

q is the analysis-error covariance (in control space)
found from the CG/Lanczos procedure, Yo is a p×q matrix of
stochastically perturbed observations, and Uh is the hybrid CVT
(48). (Note that the 3D objects like Xb, H, etc. could be extended
to 4D with the underline notation of sections 3.3.1 and 3.3.2
as appropriate.) The EnVar minimization would provide the
Ritz pair information and (54) would provide the machinery to
compute an analysis ensemble – then propagated in time for the
next forecast ensemble. EVIL is 10© in Figure 1.

Equation (54) is a particular implementation of EVIL
called stochastic-EVIL (S-EVIL). Other implementations are
deterministic EVIL (D-EVIL), which uses the Ritz pairs to
compute a square-root of the analysis-error covariance matrix,
and a resampling EVIL (R-EVIL) which can yield additional
ensemble members (Auligné et al., 2016). It may also be applied
to bi-conjugate gradient algorithms giving dual representations
of the Ritz pairs.

The number of iterations, q, may need to be relatively high to
obtain a reasonable representation of the correct eigenspectrum
of A, and Auligné et al. (2016) suggest that several hundred may
be needed in their cut-down (single-level) system. This may not
yet be affordable to run routinely, but is an option for future
systems. The ability of Zq�

−1
q ZT

q to represent the analysis-error
covariance matrix will need to be checked thoroughly, as will the
performance of the method with nonlinear operators where the
link between the Hessian and the analysis-error covariance matrix
is no longer strictly valid.

5.6. The ensemble reduced-rank Kalman filter

In (43), B0 is able to influence how the DA affects all degrees
of freedom, including the subspace spanned by the ensemble. In
Petrie and Bannister (2011), another hybrid scheme is proposed
which, instead of averaging, essentially uses Pb

(N) in the ensemble
subspace and uses B0 elsewhere. The general method is based on
the ‘reduced-rank Kalman filter’ (or the ‘simplified Kalman filter’)
developed at ECMWF in the 1990s for use with Hessian singular
vectors (Fisher, 1998; Fisher and Andersson, 2001; Beck and
Ehrendorfer, 2005), but Petrie and Bannister (2011) adapted it for
use with an ensemble and called it the ‘Ensemble Reduced-Rank
Kalman Filter’ (EnRRKF).
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The cost function for the EnRRKF is a function of the n-element
control vector χEnRRKF:

JEnRRKF(χEnRRKF) = ∥∥χEnRRKF

∥∥2

Pb
χ

−1

=1

2

∥∥χ s

∥∥2

Pb
χ

−1 + χ̄T
s Pb

χ

−1
χ s

+ 1

2

∥∥χ̄ s

∥∥2
I + 1

2

T∑
t=0

‖δdt‖2
R−1

t
, (55)

where χEnRRKF = χ s + χ̄ s, (56)

δdt =dt −HtM0,tUXχEnRRKF,

and dt =yo
t −Ht

{
xb(t)

}
.

The first part of χEnRRKF in (56) is χ s (n-elements) which
represents the subspace (the part that has flow-dependent
covariances) and is non-zero only in the first N elements. The
second part is χ̄ s (n-elements) which is the remainder (the part
that has climatological covariances) and is non-zero only in the
last n−N elements. Due to the zero terms, summing these vectors
in (56) does not lose any information. The first line of (55) has
three terms due to errors that lie
(i) exclusively inside the N-dimensional subspace,
(ii) inside and outside this subspace, and
(iii) exclusively outside this subspace respectively.
The CVT for the EnRRKF is:

δx = UXχEnRRKF, (57)

where U is the same CVT used in pure Var (17) and X is a special
n×n matrix (XXT = I and XTX = I) (do not confuse X with
Xb). X has the following special properties: when δx lies in the
ensemble subspace, X−1U−1δx is a vector which can be non-zero
only in the first N elements (the last n−N elements are zero),
and when δx lies outside the ensemble subspace, X−1U−1δx is a
vector which can be non-zero only in the last n−N elements (the
first N elements are zero). This reflects the structures of χ s and
χ̄ s and can be achieved using Householder transforms (Fisher,

1998). Although Pb
χ

−1
appears in (55), it acts only on vectors that

are always zero in the last n−N elements. This means that only

part of the inverse matrix Pb
χ

−1
(the left-most n×N part) needs

to be known, which is achievable for N ∼ O(10)–O(102). This

reduced Pb
χ

−1
matrix is derived in Petrie and Bannister (2011)

and has a complicated, but calculable form.
To our knowledge, the EnRRKF has not yet been tested, so it is

impossible to assess it. Since the flow-dependent part of the error
covariance is nearly full-rank in the N-dimensional space (or at
least a K-dimensional subspace (K < N) can be defined where
Pb

(K) is full rank), there is reason to suppose that localization in the
EnRRKF is not essential. Unlike for the other hybrid methods, the
length of the EnRRKF control vector is no larger than that used
for pure Var. Note that the implied background-error covariance
matrix for the EnRRKF is not of the form UX(UX)T as the χEnRRKF
does not have uncorrelated background-error covariances.

6. Sampling noise and localization

In ensemble applications in NWP, N � n, where n is ≥ O(107),
but N is typically < O(103). This means that Pb

(N) (26) is under-

sampled. The consequences of under-sampling are two-fold: Pb
(N)

usually underestimates the variance (leading to filter divergence)
and Pb

(N) is severely rank deficient; the rank of Pb
(N) computed with

(26) is ≤ (N−1), which leads to the introduction of analysis noise
(Houtekamer and Mitchell, 1998; van Leeuwen, 1999; Hamill
et al., 2001; Houtekamer and Mitchell, 2005; Ehrendorfer, 2007;

Meng and Zhang, 2012; Houtekamer and Zhang, 2016). In normal
situations when N � n, filter divergence can be mitigated with
inflation (Anderson and Anderson, 1999) and rank deficiency can
be mitigated with localization (Hamill et al., 2001; Lorenc, 2003).

Localization plays a fundamental role in EnKF-based systems,
but before this section, for simplicity, it has been missing from
the equations. This section is about how localization is included.

Different means of reducing far-field sampling errors by
localization are used. One common method modifies the sample
covariances by a Schur product in model space (Lorenc, 2003;
Hamill et al., 2001). This is the type of localization that is
reviewed below. Another method works in observation space by
limiting the observations used to update a particular point to
those within a prescribed radius, and/or by gradually reducing
the influence of the observations as a function of distance from
the point (Houtekamer and Mitchell, 2005). The latter method
is used for instance in the local ensemble Kalman filter (Ott
et al., 2004; Szunyogh et al., 2005) and with other ensemble DA
techniques (Bishop et al., 2001; Pham, 2001; Szunyogh et al.,
2008), but presents problems with interpreting observations with
non-local observation operators (Fertig et al., 2008), such as
satellite radiance measurements.

6.1. Schur product localization applied in model space

Sampling noise due to small N is most significant when the true
correlation values are small. Since true correlation values are
expected to be small between points that are separated by a large
distance, a common approach is to filter computed correlation
values according to the distance separating the points. Consider
a single field and let the sample covariance between points p
and q (at positions rp and rq respectively) be the matrix element[

Pb
(N)

]
pq

. This is multiplied by a moderation function c(rp, rq)

which is unity when rp = rq and goes to zero when |rp−rq| → ∞
(Gaspari and Cohn, 1999). This is localization. In the context of
(26), the localized covariance function is

c(rp, rq)
[

Pb
(N)

]
pq

= c(rp, rq)

N − 1

N∑
i=1

δxb
(i)(rp)δxb

(i)(rq), (58)

where δxb
(i)(rp) is the ith background perturbation (27) at

rp. Define an n×n localization matrix C to have elements
Cpq = c(rp, rq) and define the localized background-error
covariance matrix to be P̂b

(N), whose matrix elements are[̂
Pb

(N)

]
pq

= c(rp, rq)
[

Pb
(N)

]
pq

. This can be written in the following

compact way:

P̂b
(N) = C ◦ Pb

(N), (59)

where the ◦ symbol is the Schur (element-by-element or
Hadamard) product, and where a covariance with a hat indicates
its localized form. (This hat notation will apply to any quantity:
covariance matrices and cost functions, etc.) This localization can
be generalized to the multivariate situation (Bishop and Hodyss,
2009a,2009b,2011; Bannister, 2015). Matrix C is mathematically
a correlation matrix, and should be chosen such that P̂b

(N) remains
a true covariance (Gaspari and Cohn, 1999).

The Schur product localization discussed above may be written
implicitly, which allows localization to be used in DA without
the need for the explicit covariance matrices in (59). The two
known forms are labelled ‘B05’ and ‘L03’ after Buehner (2005)
and Lorenc (2003) respectively (as is done in Wang et al., 2007b).

6.2. The ‘B05’ representation of the localization Schur product

In a similar way to the decomposition of Pb
(N) as Pb

(N) = XbXbT

(26), suppose similarly that C can be decomposed as C = UCUCT
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(where the n×M matrix UC is a kind of ‘square-root’ of C), and

P̂b
(N) can be decomposed as P̂b

(N) = X̂bX̂bT
(where the n×NM

matrix X̂b is defined below). Appendix D shows that P̂b
(N) can be

written as:

P̂b
(N) = X̂bX̂bT

, where (60)

X̂b = 1√
N−1

(
δxb

(1)◦uC
(1), . . . , δxb

(1)◦uC
(M), . . .

. . . , δxb
(i)◦uC

(1), . . . , δxb
(i)◦uC

(M), . . .

. . . , δxb
(N)◦uC

(1), . . . , δxb
(N)◦uC

(M)

)
= 1√

N−1

(
diag(δxb

(1))UC, . . . , diag(δxb
(N))UC

)
(61)

(Buehner, 2005), where δxb
(i)/

√
N−1 is the vector occupying the

ith column of Xb, uC
(i) is the vector occupying the ith column of

UC, and the diag operator evaluates to an n×n diagonal matrix
whose diagonal comprises its n-element vector argument. In
other words, the columns of X̂b are formed in (61) from every
possible Schur-product-pair of columns of Xb and UC, and X̂b

can be thought of as a matrix of NM scaled effective ensemble

members whose covariance X̂bX̂bT
is the localized background-

error covariance P̂b
(N). As NM > N, P̂b

(N) would be expected to

have a higher rank (maximum rank ∼ NM) than Pb
(N) (maximum

rank ∼ N). This approach may be used to localize any of the pure
EnVar or hybrid schemes discussed in sections 4 and 5 by changing
(36) to

δx = X̂bχ̂ ens, (62)

where χ̂ ens is the corresponding NM-element control vector.

6.3. The ‘L03’ representation of the localization Schur product

Another compact representation of a localized ensemble
background-error covariance matrix is often used for the
variational formulations of sections 4 and 5 (Lorenc, 2003).
This representation is explained with reference to localizing the
En4DVar system (34) ( 7© in Figure 1), which involves N new
control vectors:

ĴEn4DVar(Â) =1

2

N∑
i=1

∥∥α̂(i)

∥∥2
C−1

+ 1

2

T∑
t=0

∥∥∥dt −HtM0,t

[
Xb◦Â

]
1N

∥∥∥2

R−1
t

, (63)

where Â = (
α̂(1) · · · α̂(N)

)
, (64)

and δx = 1√
N−1

N∑
i=1

δxb
(i)◦α̂(i) =

[
Xb◦Â

]
1N , (65)

and α̂(i) is the n-element control vector associated with the ith
ensemble member, which are assembled into the n×N matrix
Â, and 1N is the column vector whose N elements all contain 1.
Equation (65) is an unpreconditioned form of L03 localization.
A preconditioned form can be devised with N alternative vectors

χ̂ (1) to χ̂ (N) assembled into the matrix V̂:

ĴEn4DVar(V̂) = 1

2

N∑
i=1

∥∥χ̂ (i)

∥∥2

I

+ 1

2

T∑
t=0

∥∥∥dt −HtM0,t

{
Xb◦(UCV̂

)}
1N

∥∥∥2

R−1
t

, (66)

where V̂ = (
χ̂ (1) · · · χ̂ (N)

)
, (67)

and δx = 1√
N − 1

N∑
i=1

δxb
(i) ◦ (

UCχ̂ (i)

)
,

=
{

Xb ◦ (
UCV̂

)}
1N , (68)

where χ̂ (i) (n-elements) is the preconditioned version of α̂(i),

V̂ (n×N) is the preconditioned version of Â and UC is an
n×n potentially full-rank square-root of C, the localization
matrix in (59). The relationships between the preconditioned
and unpreconditioned variables are α̂(i) = UCχ̂ (i) and Â = UCV̂.
The unpreconditioned and preconditioned forms are identical

provided that UCUCT = C (as in section 6.2).
In a similar way to the 4D-Var control variable δχ var

in section 2.3, the components of χ̂ (i) in (66) have unit
background covariance within and between control vectors,〈
χ̂ (i)χ̂

T
(j)

〉
b

= Iδij, where 〈•〉b indicates expectation over the

background distribution. The key to understanding the L03
formulation is given in Appendix E, which shows that the
background-error covariance matrix implied by (68) is, as for
B05, Pb

(N)◦C.
There are Nn control vector elements in total in this

formulation. Equation (68) is just an extension of (36), where
each control vector element in (36) itself becomes a vector.
Following Lorenc (2003), we choose to assemble the χ̂ (i) vectors

in a matrix (here V̂) as in (67). Other authors (e.g. Wang and
Lei, 2014; Lorenc et al., 2015) instead choose to assemble these
vectors as a long Nn-element vector, but the two representations
are equivalent.

6.4. Comments on localization

Compact representations B05 and L03 can help to reduce noise
in the sample error covariance matrix. However localization
(and inflation) are only a partial solution to the under-sampling
problem because the moderation functions can modify some
important properties of the raw ensemble, e.g. its balance
properties (Lorenc, 2003; Houtekamer and Mitchell, 2005;
Kepert, 2009; Greybush et al., 2011; Bannister, 2015). This is
one justification for developing the hybrid methods (section 5).
Hybrid methods still require localization so either B05 or L03 are
used in most hybrid systems (section 7 summarises localization
in most ensemble-related methods described so far).

In B05 and L03, the specification of the matrix UC remains,
which can still be a huge matrix. There are ways of modelling
UC instead of storing large matrices. The approach is identical
to that used to model the spatial component of B0 in Var,
e.g. using homogeneous and isotropic functions (Berre, 2000;
Bannister, 2008; Errera and Menard, 2012), or more generally
using using recursive filters (Hayden and Purser, 1995), wavelets
(Fisher, 2003; Deckmyn and Berre, 2005; Bannister, 2007), or
spectral localization (Buehner and Charron, 2007). Methods also
exist that generate adaptive moderation functions, which depend
upon the flow itself (Bishop and Hodyss 2007,2009a,2009b,2011).

The method of Buehner (2012) in particular is a cross between
spatial and spectral localization. It is useful in the context of
B05 localization, where, instead of (61), it first splits each δxb

(i)
into contributions from J wavebands by spectral filtering. For
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member i and waveband j this gives δε
j
(i) = S−1� jSδxb

(i), where

S is a spectral transform, and � j is the diagonal bandpass filter
associated with band j. Under this scheme, the alternative version
of (61) is

X̂b = 1√
N−1

(
diag(δε1

(1))UC1, . . . , diag(δε1
(N))UC1, . . .

diag(δεJ
(1))UCJ, . . . , diag(δεJ

(N))UCJ
)

, (69)

where UCj is a square-root of a localization matrix associated

with band j, i.e. UCjUCjT = Cj. This form allows band (i.e. scale-
selective) localization, which is useful because less localization (i.e.
larger localization length-scales) is needed for lower wavebands
(i.e. larger error scales) than for higher wavebands (Buehner,
2012). This method effectively increases the potential rank of the
background-error covariances by a factor of J, which results in the
need for fewer ensemble members for similar noise level (Buehner,
2012). This method is extended in (Buehner and Shlyaeva, 2015).

B05 and L03 localizations are equivalent, but their efficiencies
depend upon the chosen rank of UC. Consider for instance an
implementation of localization in pure En4DVar.

• The total number of control vector elements required for
B05 is NM, making up χ̂ ens in (62). Elements of χ̂ ens
are associated with NM perturbation vectors in X̂b. For
lower-rank implementations of UC (where M � n), B05
is the more efficient approach. B05 is used, for example, in
the Environment Canada global and regional deterministic
DA systems (Buehner et al., 2015a; Caron et al., 2015), and
also in the recent work of Liu and Xue (2016).

• The total number of control vector elements required
for L03 is Nn (comprising V̂ in (66)–(68)), which are
associated with the N perturbation vectors in Xb. For
full-rank implementations of UC, L03 is the more efficient
approach (since X̂b does not have to be stored) as long as
UC can be modelled efficiently. L03 is used, for example, in
the Met Office’s global hybrid system (Clayton et al., 2012).

We note that it is arguably more straightforward to account
for model error in 4DEnVar schemes that use B05 localization
(section 8).

7. Summary of the EnKF, pure EnVar, hybrid EnVar

We have presented many options for approximating the DA
problem which incorporate an ensemble in one way or another.
These have been classified as either pure ensemble (EnKF/S,
section 3), pure EnVar (essentially Var approaches to finding
the mean state of the pure ensemble system, section 4) and
hybrid EnVar (extending EnVar with added information from
the B0-matrix of Var, section 5). The B05 (section 6.2) and
L03 (section 6.3) localization formulations are now applied to
these DA systems to give the final forms of the equations that
operational DA can deal with. It is possible (within bounds) to
mix-and-match a DA method with a localization method, leaving
us with a relatively large number of combinations.

7.1. Localization in the EnKF

The most common way of localizing Pb
(N) in an EnKF ( 4© in

Figure 1) is by restricting the observations that are allowed to
affect each analysis point (discussion in section 6). However, to
localize in model space, B05 is the appropriate implicit method.
As described in section 6.2, a localized version of (28) is found
by replacing Pb → P̂b in the first line, which is equivalent to
replacing Xb → X̂b in the last line, where X̂b is defined in (61)
(not shown).

To avoid linearized operators in the resulting expression,
HX̂b can be approximated by the nonlinear operations

H(xb+δ̂xb
(i))−H(xb) (approximating the ith column of HX̂b,

where δ̂xb
(i) is the ith column of X̂b, and xb is the ensemble mean).

7.2. Model space localization in the EnKS

7.2.1. Localization in the EnKS (3D state vector)

The EnKS with a 3D state vector (where observations are predicted
by combining the forecast model with the observation operator
(29), 5© in Figure 1) may also be localized with B05; in fact it would
be difficult to use the observation space localization mentioned
in section 6 with this EnKS, as the presence of the forecast model
means that even point observations for t > 0 cannot be associated
with points in the model domain at t = 0. This localized EnKS is
found by a identical procedure to that described in section 7.1,
applied to (29) (not shown).

To avoid linearized operators in the resulting expression,

HMX̂b can be approximated by HM(xb+δ̂xb
(i))−HM(xb)

(approximating the ith column of HMX̂b).

7.2.2. Localization in the EnKS (4D state vector)

The EnKS with a 4D state vector ( 6© in Figure 1) uses Xb instead
of Xb (32), which eliminates the forecast model from within
the DA (33). The localization must also be extended to the
time dimension, C → C, so UC → UC, where C = UCUCT

. This
version of the localized EnKS is found by a similar procedure
to that described in sections 7.1 and 7.2.1, applied to (33), by

replacing Xb → X̂
b

(not shown).

As above, each column of HX̂
b

can be approximated by the

nonlinear operations H(xb+δ̂xb
(i))−H(xb) (approximating the

ith column of HX̂
b
).

7.2.3. Comments on the implied localized background-error
covariances in these systems

Due to the way that the different localizations work in the above
3D and 4D versions of the EnKS, they do not necessarily share
the same implied localized background-error covariances, even
when the forecast model is linear. In order to examine how they
differ, consider the implied error covariance matrix between fields
at time t. This is studied by looking at the analysis increment
(propagated to time t) due to observations at (only) t. Under
these conditions the analysis increment of the 3D state vector
form of the EnKS (29) (Xb → X̂b) is:

M0,t(xa
(i)−xb

(i))

=M0,tX̂b
(

HtM0,tX̂b
)T

×
{

Rt +HtM0,tX̂b
(
HtM0,tX̂b

)T
}−1

×
{
yo

(i)t −Ht

[
M0,t(xb

(i))
]}

=P̂b
(N)(t)HT

t

{
Rt +Ht P̂b

(N)(t)HT
t

}−1

×
{
yo

(i)t −Ht

[
M0,t(xb

(i))
]}

, (70)

where P̂b
(N)(t) = M0,tX̂bX̂bT

MT
0,t = M0,t P̂b

(N)MT
0,t , and where

P̂b
(N) = P̂b

(N)(0) = C◦Pb
(N). As usual, the hat (no hat) means

‘localized’ (‘unlocalized’). This analysis allows us to see that
P̂b

(N)(t) is the propagated localized background-error covariance
implied in the localized EnKS with 3D state vector, which is
just the localized covariance at t = 0 propagated with the linear
model.
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The analysis increment of the 4D state vector form of the

EnKS (33) (Xb → X̂
b
) due to observations at (only) t is now

studied. It exists at all times in the window, but the increment
at t can be isolated with the operator comprising T + 1 blocks,
each n × n: It = (

0 · · · I · · · 0
)
, where all blocks are 0,

except for the one corresponding to time t, which is I. Noting

that for this case HX̂
b = HtX̂b(t), and ItX̂

b = X̂b(t), the time t

analysis increment from (33) (Xb → X̂
b
) is

xa
(i)(t)−xb

(i)(t) = It

(
xa

(i)−xb
(i)

)
=X̂b(t)X̂bT

(t)HT
t

{
Rt +HtX̂b(t)X̂bT

(t)HT
t

}−1

×
{
yo

(i)(t)−Ht[xb
(i)(t)]

}
. (71)

This analysis allows us to see that the local-
ized covariance matrix implied here at time t is

X̂b(t)X̂bT
(t) = It

(
C◦Pb

(N)

)
IT

t = C(t)◦Pb
(N)(t). The differences

between this covariance and the one for the 3D state vector
are that (i) here no linearized model is used and (ii) the local-
ization at time t, C(t) here needs to be specified (via UC), rather
than being propagated from C(0). This difference also separates
the localized En4DVar and 4DEnVar schemes (below).

7.3. Localization and hybridization in En4DVar

In this section, En4DVar (the method in section 4.1 of finding the
mean of the EnKS variationally, making use of the linear models
of 4D-Var) is localized with B05 and with L03 (11© in Figure 1,
and 11© is for hybrid En3DVar). The equations shown are also
hybridized with the climatological B0.

7.3.1. B05 localization in hybrid En4DVar

The En4DVar equations hybridized and localized with B05 emerge
from a straightforward application of concepts in section 5.3 and
6.2 to (35). The cost function, CVT and gradient formulae for
this case are given as:

ĴHEn4DVar(δχvar, χ̂ ens)

= 1

2

∥∥δχ var

∥∥2
I +∥∥χ̂ ens

∥∥2
I + 1

2

∥∥d−HMδx
∥∥2

R−1 , (72)

δx =
√

1−βUδχ var+
√

βX̂bχ̂ ens, (73)

∇χ̂ ĥ
JHEn4DVar =

( ∇χvar̂
JHEn4DVar

∇χ̂enŝ
JHEn4DVar

)

=
(

δχvar−
√

1−βUTHT
MR−1

(
d−HMδx

)
χ̂ ens−

√
βX̂bT

HT
MR−1

(
d−HMδx

)
)

, (74)

where HM is defined in (31), d is defined after (33), and
we define the augmented (hybridized) control vector as χ̂h =
( δχvar χ̂ ens ), which has n+NM elements in total. Here χ̂ ens is
the NM-element vector associated with the N ensemble members
in Xb combined with the M localization members in UC (61). The
differences with the original form (35) due to localization (75)
include the extended length of the control vector (χ ens → χ̂ ens),
and Xb → X̂b.

7.3.2. L03 localization in hybrid En4DVar

The cost function for En4DVar with L03 localization (66) was
used as the example in section 6.3. Incorporating the hybrid
scheme from section 5.3 leads to the cost function, CVT and

gradient formulae for this case given as:

ĴHEn4DVar(δχ var, V̂)

= 1

2

∥∥δχvar

∥∥2
I + 1

2

N∑
i=1

∥∥χ̂ (i)

∥∥2
I + 1

2

∥∥d−HMδx
∥∥2

R−1 , (75)

δx =
√

1−βUδχ var+
√

β
{

Xb◦(UCV̂)
}

1N , (76)

∇χ̂ ĥ
JHEn4DVar =

(∇χvar̂
JHEn4DVar

∇V̂̂JHEn4DVar

)

=
(

δχvar−
√

1−βUTHT
MR−1

(
d−HMδx

)
V̂+√

βUCT
Xb◦(∇δxJ4DVar

o · · · ∇δxJ4DVar
o

)
)

, (77)

where we define the augmented (hybridized) control vector for
L03 as χ̂h = ( δχvar V̂ ), which has n+Nn elements in total.

Note that the ensemble part, V̂, comprises N n-element vectors
(χ̂ (i), assembled here as columns of matrix V̂, so it should strictly
be called a control matrix). The gradient of (75) with respect to
V̂ (forming the n×N sub-matrix) gives the lower part of (77),
which has matrix elements[∇V̂̂JHEn4DVar

]
ij

= ∂̂JHEn4DVar/∂(χ̂ (i))j.

Appendix B derives this part of the gradient, where( ∇δxJ4DVar
o · · · ∇δxJ4DVar

o

)
is the n×N matrix of repeated

columns of ∇δxJ4DVar
o , which is the gradient of the observation

term of the strong-constraint 4D-Var cost function (15). The 4D
nature of the problem is wrapped up in ∇δxJ4DVar

o .
This hybrid En4DVar system is essentially that of Clayton et al.

(2012), but with a number of differences in the detail. Clayton
et al. (2012) have an additional term in the cost function, Jc (a
term to penalize imbalance). Another is that Clayton et al. (2012)
perform localization in the space of ‘parameter perturbations’
instead of model variable perturbations. These parameters are
related to the model perturbations via relationships that include
balance relations. This is a way (in addition to Jc) of introducing
balance into the analysis increments which would have been
disrupted if localization was done directly in the space of model
variables.

7.4. Localization and hybridization in 4DEnVar

In this section, 4DEnVar (the method in section 4.2 of finding the
mean of the EnKS variationally, without the need for the linear
models) is localized with B05 and with L03 (13© in Figure 1). As
for En4DVar, the equations shown are also hybridized with B0.

7.4.1. B05 localization in hybrid 4DEnVar

The 4DEnVar equations hybridized and localized with B05 emerge
from an application of concepts in sections 5.3 and 6.2 to (40).
The cost function, CVT and gradient formulae for this case are
given as:

ĴH4DEnVar(δχ var, χ̂ ens)

= 1

2

∥∥δχvar

∥∥2
I + 1

2

∥∥χ̂ ens

∥∥2
I + 1

2

∥∥d−Hδx
∥∥2

R−1 , (78)

δx =
√

1−βUδχvar+
√

βX̂
b
χ̂ ens, (79)

∇χ̂ ĥ
JH4DEnVar =

( ∇χvar̂
JH4DEnVar

∇χ̂enŝ
JH4DEnVar

)

=
⎛⎝ δχ var−

√
1−βUTHTR−1

(
d−Hδx

)
χ̂ ens−

√
βX̂

bT
HTR−1

(
d−Hδx

)
⎞⎠, (80)
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where H is defined in (31), d is defined after (33), and
the hybridized control vector has the same structure as in
section 7.3.1.

Apart from the 4D nature of the ensemble-related matrices

like X̂
b
, notice that U (now underlined) now needs to be

a 4D operator to make up for the lack of the linearized
forecast model to propagate perturbations from t = 0. This is
an important difference between hybrid En4DVar and hybrid
4DEnVar. The are possible ways to structure U and some are listed
below.

• Let U be a persistence model of climatological perturbations
(Desroziers et al., 2014; Lorenc et al., 2015):

U =

⎛⎜⎝ I
...

I

⎞⎟⎠ U
, (81)

where U is the t = 0 CVT as used in (17) in
section 2.3. The preceding matrix contains T + 1
blocks, each comprising the n×n identity matrix. The
contribution from

√
1−βUδχvar in (79) then behaves

as 3D-FGAT (section 2.1.3 and Poterjoy and Zhang,
2015) and the climatological component of the implied
background-error covariance between any two state-vector
components is independent of time. Even though this
is classified as a 4D method, it does not exploit the
climatological covariance propagation property of 4D-
Var. This is the simplest option which is used with
most, if not all, applications of hybrid 4DEnVar at
present.

• A more sophisticated form of U is to extend a 3D
covariance model used to represent U to 4D. A strat-
egy for modelling 3D background-error covariances is
to exploit the normal modes of the system (e.g. Žagar
et al., 2004), where the control vector represents coef-
ficients that weight perturbations as linear combina-
tions of 3D normal modes. This could in principle
be extended to 4D (where columns of U would be
related to the evolving normal modes of the system)
although would be limited by linearity of the forecast
model.

• A further option is to replace the climatological
term of 4DEnVar with that of En4DVar, but use a
highly simplified model – e.g. with advection only,
Madv

0,t . The computational cost issues associated with
use of linear models (and adjoints) would remain,
but such a simple model would require little mainte-
nance.

It might also be possible to propagate the localization square-root
matrix in 4DEnVar (either with the full, linearized or simpli-
fied model). Column i of the square-root matrix UC (section
6.2, call uC

(i)) would then, e.g. comprise the pre-computed col-

umn vector uC
(i) =

(
uC

(i)(0), Madv
0,1 uC

(i)(0), . . . , Madv
T−1,T uC

(i)(T−1)
)

.

This, and ideas of P. Arbogast (2016; personal communica-
tion) are possible ways of dealing with the 4D aspects of
localization.

7.4.2. L03 localization in hybrid 4DEnVar

The hybrid 4DEnVar equations with L03 localization emerge
from an application of concepts in sections 5.3 and 6.3 to (40).
The cost function, CVT and gradient formulae for this case are

given as:

ĴH4DEnVar(δχ var, V̂)

= 1

2

∥∥δχvar

∥∥2
I + 1

2

N∑
i=1

∥∥χ̂ (i)

∥∥2

I
+ 1

2

∥∥d−Hδx
∥∥2

R−1 , (82)

δx =
√

1−βUδχvar+
√

β
{

Xb◦(UCV̂)
}

1N , (83)

∇χ̂ ĥ
JH4DEnVar =

(
∇χvar̂

JH4DEnVar

∇V̂̂JH4DEnVar

)
,

=
(

δχvar − √
1 − βUTHTR−1

(
d − Hδx

)
V̂+√

βUCT
Xb◦(∇δxJ4DVar

o · · · ∇δxJ4DVar
o

)), (84)

where the total control ‘vector’ χ̂h = (δχvar, C) has n+n(T+1)N
elements in total. In these forms, virtually all objects are
underlined, indicating that they are 4D. This is the way
that localized hybrid 4DEnVar avoids the Jacobian of the
forecast model (i.e. the forecast part of the problem is dealt
with in the preparation of Xb). The gradient ∇δxJ4DVar

o that
appears (as N repeated columns) in (84) is not found from
(15); that equation gives ∇δx(0), the gradient with respect to
the initial perturbation in 4D-Var. Instead ∇δxJ4DVar

o is the
following n(T+1)-element vector that does not require the model
adjoint:

∇δxJ4DVar
o =

⎛⎜⎝ ∇δx(0)J4DVar
o

...

∇δx(T)J4DVar
o

⎞⎟⎠

=

⎛⎜⎝ −HT
0 R−1

0 {d0−H0δx(0)}
...

−HT
T R−1

T {dT −HTδx(T)}

⎞⎟⎠ , (85)

where dt is defined by (12).
Note that V̂ is a much larger matrix than V̂ is in hybrid

En4DVar with L03 localization. The other difficulty over
En4DVar is that a 4D localization must be modelled via UC

(discussion in section 7.2.3). This, and the ‘U problem’ are
important outstanding issues in the development of hybrid
4DEnVar (the discussion in section 7.4.1 still stands for L03
localization).

7.4.3. Comments on the Jacobian of the observation operator
and on the implied localized background-error covariances in these
systems

Hybrid 4DEnVar in (78) and (82) retains the Jacobian H.

This could be avoided whenever HX̂
b

appears where it can
be approximated with differences between runs of the nonlinear
observation operator; e.g. for perturbations at time t at column i

of X̂
b

the approximation would be

Ht

{
xb(t) + δ̂xb

(i)(t)
}

− Ht

{
xb(t)

}
.

There is no obvious way of avoiding H elsewhere.
The ensemble part of the implied localized background-error

covariances between localized En4DVar and localized 4DEnVar
differ in the same way as those between the 3D and 4D versions of
the EnKS (section 7.2.3). Having a 3D state vector (where future
states are generated by the model within the DA), En4DVar has

the implied covariance at time t: P̂b
(N)(t) = M0,t

(
C◦Pb

(N)

)
MT

0,t

(quantities in the brackets are valid at t = 0), and having a
4D state vector, 4DEnVar has the implied covariance at time t:
P̂b

(N)(t) = C(t)◦Pb
(N)(t). This result is independent of whether
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Figure 2. How the background-error covariance matrix evolves throughout the assimilation window for various 4D methods. (a) 4D-Var, (b) En4DVar (or the EnKS
with 3D state vector), (c) 4DEnVar (or the EnKS with 4D state vector), (d) hybrid En4DVar and (e) hybrid 4DEnVar. For simplicity, model error is not considered,
and M is short for M0,t . In hybrid 4DEnVar (e), B is not evolved (as is current practice). The ellipses represent the background-error covariance ‘bubbles’ at times 0
and t, and the curves represent background ensemble members, where the thick black curve in each panel is the ensemble mean. In all Var techniques, only a single
analysis trajectory is conventionally found.

the B05 or the L03 formulation is used. Figure 2 gives a pictorial
representation of how the background-error covariances evolve
throughout the assimilation window in each 4D scheme discussed
in this article.

7.5. Summary of nomenclature

Figure 1 serves to summarize the nomenclature, including the
names recommended by (Lorenc, 2013) and in this article, and
alternative names. It also summarizes the basic features of the
localized schemes including the number of control variables (the
Figure caption gives more information). As is the case throughout
this article, we recognise, but do not elaborate on, the spectrum
of methods that count as an EnKF (e.g. ETKF, etc.).

8. Model error with (hybrid) En4DVar and 4DEnVar

No assimilation is optimum until it accounts correctly for all
sources of error. Model error is an important source, which is a
particular concern when the assimilation window is ‘long’. We
have already considered model error with weak-constraint 4D-
Var (section 2.1), and here we consider how model error might
be represented in En4DVar and 4DEnVar.

8.1. Model error in (hybrid) En4DVar

Accounting for model error in methods that use the linearized
model, e.g. hybrid En4DVar, may be achieved by augmenting
the control variable with the variables associated with model
error, δη(1), . . . , δη(T), adding a model error term as in (10),
and modifying the prediction operator of the observations at

time t. For instance hybrid En4DVar with B05 localization
(14© in Figure 1) has the modified model observations (based
on (8)):

yx
t =Ht{M0,t(xb)}

+ Ht

[
M0,t

(√
1−βUδχ var+

√
βX̂bχ̂ ens

)
+

t∑
τ=1

Mτ ,tδη(τ )

]
. (86)

The new terms accumulate the estimated model error
contributions up to and including time t. A similar procedure is
valid for L03 localization.∗∗

8.2. Model error in 4DEnVar

Accounting for model error in methods that do not use the
linearized model, like hybrid 4DEnVar, is more in line with the
requirements of many operational centres, but is arguably harder
to do and there are few examples in the literature. The key is to
build flexibility into a scheme to relax the need for the solution
to be synthesized from model trajectories over the window.
One possibility, based around the B05 localization is to allow a
different linear combination of members at each time (Amezcua
et al., 2017; Goodliff et al., 2017). Instead of one control vector
associated with the ensemble, χ̂ ens in (79), there would be T+1

∗∗In practice the preconditioned versions of the model error variables would
be used ((18) of section 2.3).
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such vectors. The versions of (78) and (79) become (87) and (88)
respectively,

ĴH4DEnVar
{
δχvar, χ̂ ens(0), . . . , χ̂ ens(T)

}
= 1

2

∥∥δχvar

∥∥2
I

+ 1

2

T∑
t=0

∥∥χ̂ ens(t)
∥∥2

I +
∥∥∥y−HM(xb) − Hδx

∥∥∥2

R−1

+ 1

2

∥∥∥X̂b(t)χ̂ ens(t)−Mt−1,tX̂b(t−1)χ̂ ens(t−1)
∥∥∥2

Q−1
t

, (87)

δx =
√

1−βUδχvar+
√

β

⎛⎜⎝ X̂b(0)χ̂ ens(0)
...

X̂b(T)χ̂ ens(T)

⎞⎟⎠, (88)

where there are n+(T+1)NM elements to the control vector
in total (or (T+1)NM for the non-hybrid version). The last
term of (87) penalizes model trajectory misfits, which have
covariance Qt .

There is an inconsistency in system (87) and (88), namely
that model error has been accounted for in the part associated
with χ̂ ens(t), but not in the part associated with δχ var (the
latter is akin to 3DFGAT). Clearly accounting for model error
effectively in hybrid 4DEnVar will require a great deal of
research.

Another point of interest is the nature of the 4D ensemble
comprising Xb (and hence the ‘localized’ version X̂b). Changing
only the linear combination of members at each time step does
not allow significant deviations from the ‘model attractor’, which
would be required when the model is in error. An obvious way
of dealing with this is to modify the way that the ensemble is
prepared by allowing the trajectories to deviate stochastically.
There are many well-documented ways of doing this (Palmer
and Williams, 2010), e.g. using multiple physical parametrization
schemes (Stensrud et al., 2000; Berner et al., 2011), using the
stochastic kinetic energy backscatter scheme (Shutts, 2005),
perturbing physics tendencies (Buizza et al., 1999; Bouttier et al.,
2012; Fresnay et al., 2012), or perturbing physics parameters
(Bowler et al., 2008; Hacker et al., 2011; Gebhardt et al., 2011; Vié
et al., 2012; Baker et al., 2014). Timing errors may be represented
by adding ensemble members with a slightly different validity
time to the background time (Gustafsson et al., 2014). Including
additive model error during model integration has been done
by many authors in the context of the EnKF to good effect (e.g.
Houtekamer et al., 2005; Hamill and Whitaker, 2005; Kalnay
et al., 2007).

9. Which method to use, and how do the methods compare
in use?

There is now a variety of known DA methods, so here we compare
the merits and the relative performance of each as reported in the
literature.

9.1. Factors to be considered

The decision on which DA method to use depends upon many
factors, some of which are listed here.

• Parallelizability: Methods that do not require time
integration within the DA algorithm have the edge on
parallelizability, since the forward and adjoint integrations
need to be done serially. Suitable methods include the
EnKS (4D state vector), 4DEnVar, and (hybrid) 4DEnVar.
Although the EnKS (3D state vector) and (hybrid)
En4DVar do time integration within the DA algorithm
this can be allocated to separate processors.

• Existing 4D-Var infrastructure. If linearized and adjoint
versions of the forecast model are already available (e.g.
used already in 4D-Var), then upgrading to (hybrid)
En4DVar may well be beneficial (section 9.2).

• Systems with highly nonlinear processes or frequently
upgraded forecast models. It is well known that highly
nonlinear models (e.g. with moist processes, switches,
etc.) present difficulties with linearizing. There are also
complications over linearizing models that have, for
example, semi-Lagrangian dynamical cores. Anyway most
models are time consuming to linearize and are expensive
to run, so methods that avoid the need for linearized and
adjoint models are desirable. Methods like the EnKS (4D
state vector) and (hybrid) 4DEnVar are desirable in this
case.

• Known background-error statistics. In systems that have
background-error covariance statistics that are easily
modelled and whose variability is negligible then 4D-Var
(strong- and weak-constraint) remains useful. This is not
normally the case for weather forecasting, even though
4D-Var is historically successful.

• Model error is important. If the model error accumulated
over the required assimilation time window is significant
compared to other sources of error that are accounted
for already, then a method with model error should
be considered. Of the methods shown in Figure 1,
weak-constraint 4D-Var (section 2.1.2), weak-constraint
(hybrid) EnVar (section 8), and the EnKF account for
model error. There are other possibilities, e.g. methods
that use a perfect model, but absorb model error into the
Rt-matrix (Howes, 2016).

• Deterministic or probabilistic. Probabilistic forecasts are
increasingly in demand (e.g. Palmer, 2012). If the
information contained in a single forecast is not adequate,
and measures of analysis and forecast uncertainty are
required, then the EnKF, EnKS (and other flavours) are
useful. Of course (hybrid) En4DVar and 4DEnVar need
an ensemble system running alongside them anyway. It is
possible to run these methods many times, by perturbing
inputs like the background state and the observations (Liu
and Xiao, 2013) or use a scheme like EVIL (section 5.5),
which does not need a separate ensemble.

• Non-instantaneous or ‘rate-of-change’ observations. If
observations are to be assimilated that are a function
of the state at multiple times (e.g. precipitation
accumulation) then methods that have 4D state vectors
are the natural choice, e.g. 4D-Var, EnKS and (hybrid)
En4DVar/4DEnVar. The equations describing these
systems will need to be modified to allow for such
observations.

9.2. Systems studied in literature and their relative performance

There are now a large number of studies testing and comparing
the DA methods discussed in this article. In this section we
summarize the main findings. We consider three kinds of study:
(i) investigations in simple models (Table 2),
(ii) investigations with operational-scale models, but with
simulated observations (Table 3), and
(iii) as (ii), but with real data (Table 4).
The nomenclature used here is consistent with Figure 1, even
though some articles use their own.

The main outcomes are that the 4D methods tend to be
better than 3D methods, hybrid methods tend to be better
than pure Var, ensemble, or EnVar methods, (and hybrids are
more robust when N is small) but 4DEnVar still needs some
development effort if it is to become better than En4DVar in
all systems; only one study found hybrid 4DEnVar gave better
performance than hybrid En4DVar (Gustafsson and Bojarova,
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Table 2. Studies made of some of the techniques in this article applied to simplified models.

Article Methods tested Model N Best performance Comments

Etherton and Bishop (2004) 3D-Var, hybrid En3DVar 2D turbulent barotropic
vorticity

16, 64 Hybrid En3DVar Model error included, and
using sub-optimal ensemble

Hunt et al. (2004) EnKF, 4DEnVar Lorenz 96 (Lorenz, 1996) 40 4DEnVar –
Wang et al. (2007a) Hybrid OI, EnKF Two-layer primitive

equation
5, 20, 50 hybrid OI for small N –

Liu et al. (2008) 3/4D-Var, EnKF, 4DEnVar 1D shallow-water 50 4DEnVar comparable
to 4D-Var

4DEnVar cheaper than 4D-
Var

Tian et al. (2008) 4D-Var, EnKF, 4DEnVar NCAR Land
(Oleson et al., 2004),
Lorenz 63
(Lorenz et al., 1963)

60 4DEnVar Based on ‘Proper Orthogonal
Decomposition’

Wang et al. (2009) EnSRF, hybrid En3DVar Two-layer primitive
equation

50, 200 Hybrid En3DVar Includes model error due to
unresolved scales

Zhang et al. (2009) 4D-Var, EnKF,
hybrid En4DVar

Lorenz 96 10, 40 Hybrid En4DVar Hybrid less sensitive to win-
dow length and N

Fairbairn et al. (2014) 4D-Var, EnKF, En4DVar,
4DEnVar

Lorenz 2005
(Lorenz, 2005)

3–150 En4DVar especially for
small N

4D-Var competitive when
model is imperfect

Penny (2014) LETKF, hybrid covariance,
hybrid gain

Lorenz 96 2–40 Hybrid cov/
hybrid gain

Hybrids allow smaller N

Goodliff et al. (2015) ETKF, ETKS, En4DVar,
4DEnVar, hybrid En4DVar

Lorenz 63 5, 10, 20, 50, 100 ETKS/
hybrid En4DVar

Hybrid En4DVar
best for short window
lengths

Poterjoy and Zhang (2015) Hybrid En4DVar,
hybrid 4DEnVar

Lorenz 96 5, 10, 20, 40 Hybrid En4DVar Methods similar in data-
dense areas

2014). However 4DEnVar is much cheaper to run than En4DVar
so, if the performance of 4DEnVar could be improved through
further work, it could then allow the cost savings in computation
to be shifted to models with higher resolution and with more
ensemble members. The results from the simplified systems are in
general in agreement with those from the full systems, confirming
the value of the simplified studies, and all studies have helped
ultimately guide centres to decide on which methods to use
operationally.

10. Summary of variational/ensemble methods used in NWP
centres

It is often reported that most, if not all, NWP centres have
the capability to combine their ensemble and variational systems.
Table 5 lists the capabilities of a number of leading (inter)national
NWP centres and research groups. Obviously this list is a snapshot
and the true capabilities will change as developments progress.

11. Summary and outlook

Data assimilation needs to work well to serve NWP. State-of-
the-art Var systems assume that background information obeys
Gaussian statistics, with a covariance, Pb, estimated from a quasi-
static representation, from an ensemble, or a combination of
both. The use of ensemble information in Var systems using the
raft of methods discussed in this article to give appropriate
flow dependence of Pb, has been challenging, but largely
successful.

This article is intended to be a pedagogical review of
Var methods and the practical ways of introducing ensemble
information into them to take advantage of the efficiency of
Var and the flow-dependence of an ensemble, while minimizing
their drawbacks (Buehner et al., 2015b, and section 1). Broadly
speaking, this is presently done in three ways.

1. Use the ensemble to recalibrate the (co)variances of the
B0-matrix used as an approximation for Pb in 4D-Var
(section 5.1).

2. Use the ensemble to define Pb by preconditioning the
control vector on the ensemble itself (so-called pure EnVar
methods). This describes the analysis increment as a linear
combination of ensemble perturbations (where the control
vector contains the coefficients) and implies a background-
error covariance matrix equal to the sample covariance of
the ensemble, Pb

(N). This can be done using methods that
exploit (En4DVar) or avoid (4DEnVar) the linear/adjoint
forecast model (section 4).

3. Average B0 with Pb
(N) (so-called hybrid EnVar). This is

usually done with an augmented control vector comprising
a part that is associated with the static part (as used in
traditional Var) and a part that is associated with the
ensemble (the same as that used in 1. here). Alternative
methods are reviewed such as the a hybrid gain method,
the EVIL method, and an ensemble reduced-rank Kalman
filter (section 5.3).

These methods use the Var machinery to solve a DA problem
and most require a separate ensemble system, which many NWP
centres have anyway for ensemble prediction purposes. Practical
methods that use ensemble information rely on localization to
mitigate some of the effects of sampling error. The mathematical
complexities that localization brings can mask the workings
of the equations and so the methods are shown first without
localization, but it is introduced later with two Schur product
methods documented by Buehner (2005) (B05) and Lorenc
(2003) (L03).

EnVar using 2. and 3. here has been shown to be fruitful and
the key reasons are summarized as:

• (Hybrid) En4DVar and (hybrid) 4DEnVar are efficient
ways of finding the deterministic (single) analysis.

• The methods provide flow-dependency to the Pb used in
the DA.
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Table 3. Studies made of some of the techniques in this article applied to operational-scale models, but with simulated or severely reduced observations.

Article Methods tested Model N Best performance Comments

Wang et al. (2008a) 3D-Var, hybrid En3DVar WRF (Skamarock et al.,
2005)

50 Hybrid En3DVar Benefit of hybrid especially
over data-sparse regions

Liu et al. (2009) 3/4DEnVar WRF 37 4DEnVar Humidity particularly sen-
sitive to sampling error

Buehner et al. (2010a) 3D-FGAT, 4D-Var,
En3/4DVar, 4DEnVar

GEM (EC)
(Cote et al., 1998)

72, 96 – Single obs./column expts.

Kleist and Ide (2015a) 3D-Var, hybrid 3DEnVar NCEP GFS (NCEP, 2015) 80 Hybrid 3DEnVar –

Kleist and Ide (2015b) 4D-Var, 4DEnVar,
hybrid 4DEnVar

NCEP GFS 40, 80 Hybrid 4DEnVar Improvement from 3D to
4D less than improvement
in (2015a)

Table 4. Studies made of some of the techniques in this article applied to operational-scale models with real observations.

Article Methods tested Model N Best performance Comments

Wang et al. (2008b) 3D-Var, hybrid En3DVar WRF 50 Hybrid En3DVar –
Buehner et al. (2010b) 3D-FGAT, 4D-Var,

En3/4DVar, 4DEnVar
GEM (EC) 96 En4DVar One month experiment

Hamill et al. (2011b) 3D-Var, EnKF, hybrid
En3DVar

NCEP GFS ? EnKF/ hybrid En3DVar –

Wang (2011) 3D-Var, hybrid En3DVar WRF 32 Hybrid En3DVar Hybrid was able to adjust hurricane
position

Clayton et al. (2012) 3/4D-Var,
hybrid En3/4DVar

Global UM (Davies
et al., 2005)

23 Hybrid En4DVar 4D has marginal improvement over
3D in hybrid

Zhang and Zhang (2012) 4D-Var, EnKF, hybrid
En4DVar

WRF 10, 40 Hybrid En4DVar Period of summer convection

Buehner et al. (2013) 3/4D-Var,
hybrid 3DEnVar,
hybrid 4DEnVar

GEM (EC) 192 Hybrid 4DEnVar Hybrid 4DEnVar is viable method

Kuhl et al. (2013) 4D-Var, hybrid En4DVar NOGAPS (Hogan
et al., 1991)

80 Hybrid En4DVar –

Liu and Xiao (2013) 3D-Var, 3D-FGAT,
3/4DEnVar

WRF 38 4DEnVar Includes ensemble of En4DVar

Schwartz et al. (2013) 3D-Var, hybrid En3DVar WRF 32 Hybrid En3DVar Hybrid best for one outer loop, 3D-
Var often best for three outer loops

Wang et al. (2013) 3D-Var, EnKF, En3DVar,
hybrid En3DVar

NCEP GFS 80 En3DVar Tested one-way and two-way cou-
pling

Zhang et al. (2013) 3D-Var, EnKF,
hybrid En3DVar,
hybrid En4DVar

WRF 10, 20, 40, 80 Hybrid En4DVar Hybrid En3DVar with half N
comparable to EnKF

Pan et al. (2014) 3D-Var, hybrid En3DVar WRF 40 Hybrid En3DVar Tested one-way and two-way cou-
pling

Poterjoy and Zhang (2014) 4D-Var, EnKF,
hybrid En4DVar

WRF 60 Hybrid En4DVar Tested period of tropical cyclogen-
esis and hurricane path

Gustafsson et al. (2014) 3D-Var, 4D-Var,
hybrid En3DVar,
hybrid En4DVar

HIRLAM Unden
et al. (2002)

20, 40 Hybrid En4DVar Marginal gain only

Gustafsson and Bojarova (2014) 4D-Var, hybrid En4DVar,
hybrid 4DEnVar

HIRLAM 20 Hybrid 4DEnVar –

Schwartz and Liu (2014) 3D-Var, EnSRF,
hybrid En3DVar

WRF 50 Hybrid En3DVar Hybrid best for precip. positions,
but methods otherwise comparable

Schwartz et al. (2014) 3D-Var, EnSRF,
hybrid En3DVar

WRF-Chem
(Schwartz et al.,
2012)

50 Hybrid En3DVar Aerosol assimilation

Wang and Lei (2014) En3/4DVar NCEP GFS 80 4DEnVar –
Buehner et al. (2015a) 4D-Var, hybrid 4DEnVar GEM (EC) 256 Hybrid 4DEnVar Cost savings allow higher resolution
Caron et al. (2015) 4D-Var, hybrid 4DEnVar Regional version of

GEM (EC)
192, 256 Hybrid 4DEnVar Hybrid 4DEnVar an order of

magnitude cheaper than 4D-Var
Lorenc et al. (2015) hybrid En3/4DVar,

Hybrid 3/4DEnVar
Global UM 44 Hybrid En4DVar –

• Although the En4DVar and 4DEnVar solutions are nom-
inally equivalent to the ensemble mean of the anal-
ogous EnKF system (these methods and their hybrid
counterparts allow an extension to the 4D domain),
they allow access to the full range of observation
operators, and allow other on-line features to be facilitated,
namely variational bias correction and variational
initialization.

• In (hybrid) En4DVar, the linearized forecast model (and

its adjoint) are used (as in 4D-Var), but this is avoided in

(hybrid) 4DEnVar. This is the purpose of developing the

latter as the linearization of the forecast model is time-

consuming to construct and maintain, is costly to run, and

is limited by the nature of the physical processes, especially

parametrizations with switches.
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Table 5. Current deterministic DA capabilities at a selection of NWP centres and groups worldwide according to published material.

System/ Model Current Local- N Key references
Group capability ization and comments

DWD ICON (global) (Zangl et al., 2015) Hybrid 3DEnVar B05 40 Rhodin (2015),
specifications based on unpub-
lished sources.

ECMWF IFS (global) (ECMWF, 2015) Recalibration of vars and corrs in
4D-Var

– 25 Bonavita et al. (2016), see sec-
tion 5.1

EC GEM (global) (Cote et al., 1998) Hybrid 4DEnVar B05 256 Buehner et al. (2015a),
Assim./forecast system known
as GDPS

EC GEM (regional) Hybrid 4DEnVar B05 256 Caron et al. (2015), Assim./forecast
system known as RDPS

HIRLAM HIRLAM (regional)
(Unden et al., 2002)

hybrid En4DVar, hybrid 4DEnVar L03 40 Gustafsson et al. (2014); Gustafsson
and Bojarova (2014)

Météo-France Arpège (global) (Courtier et al., 1991) Recalibration of vars in 4D-Var – 25 Berre et al. (2007); Raynaud et al.
(2011, 2012), Berre et al. (2015)

Met Office UM (global) (Davies et al., 2005) Hybrid En4DVar L03 23 Clayton et al. (2012)

NRL NOGAPS (global) (Hogan et al., 1991) Hybrid En4DVar B05 80 Kuhl et al. (2013); Bishop et al.
(2011)

NCEP GFS Hybrid 4DEnVar L03 80 Wang and Lei (2014); Kleist and Ide
(2015a,2015b)

NCEP WRF (Skamarock et al., 2005),
WRF-Chem (Schwartz et al., 2012)

4DEnVar, hybrid 3D-Var B05, L03 50, 37 Wang et al. (2008a); Liu et al.
(2009); Wang (2010) and Schwartz
et al. (2014)

PSU WRF Hybrid En4DVar L03 40 Zhang and Zhang (2012)

UoSF WRF 4DEnVar B05 38 Liu et al. (2009)

Arpège (Action de Recherche Petite Echelle Grande Echelle), DWD (Deutscher Wetterdienst), EC (Environment Canada), ECMWF (European Centre for Medium
Range Weather Forecasting), GEM (Global Environmental Multi-scale), GDPS (Global Deterministic Prediction System), GFS (Global Forecasting System),
HIRLAM (High Resolution Local Area Modelling), ICON (ICOsahedral Non-hydrostatic model), IFS (Integrated Forecasting System), NCAR (National Center
for Atmospheric Research), NCEP (National Centers for Environmental Prediction), NOGAPS (Navy Operational Global Atmospheric Prediction System), NRL
(Navy Research Laboratory), PSU (Pennsylvania State Univ.), UM (Unified Model), UoSF (Univ. of South Florida), WRF (Weather Research and Forecasting
model).

• As these methods use information from an ensemble, there
is still sensitivity to the ensemble size, N, especially when
it is small, but hybrid methods have been shown to reduce
the sensitivity to N.

• (Hybrid) EnVar methods are competitive with, or
outperform, the pure Var or ensemble counterparts.

There are outstanding issues that still need to be solved. For
instance in hybrid 4DEnVar the 4D ensemble is averaged with 3D-
FGAT and not with 4D-Var because the latter needs the linearized
model (section 7.4). Possible ways forward involve extensions to
U (the control variable transform) or to reintroduce a linear
model, albeit highly simplified (section 7.4.1). Furthermore in
(hybrid) 4DEnVar the way that 4D localization is done is thought
to be crucial to its effectiveness. It is relatively straightforward to
do 4D localization with functions that are separable in space and
time, but there are reasons why this is not appropriate (features
that are together at t = 0 – so unaffected by localization – would
remain correlated at t > 0, yet may be further apart, and so
would be wrongly damped by localization). Such a problem
may be dealt with by advecting the localization with similar
simplified linear model or by using an adaptive scheme (e.g.
Bishop and Hodyss, 2007,2009a,2009b,2011). How to account
for model error in (hybrid) 4DEnVar is also an ongoing problem
(section 8), especially if it introduces the need for a model
error covariance matrix (which brings us back to a covariance
calibration problem, as for B0).

There is scope to test the methods covered in this review
to situations where pure Var can struggle. One application is
quantitative precipitation forecasting at the convective scale.
There are already some encouraging results in this area: e.g.
hybrid En4DVar can outperform pure ensemble and Var
methods in summer convection (Zhang and Zhang, 2012), and
hybrid En3DVar is better than pure ensemble and Var methods
for analysing precipitation positions (Schwartz and Liu, 2014).

Furthermore hybrid 3DEnVar (unlike 3D-Var) can improve the
position of a hurricane (Wang, 2011). However, there are some
less encouraging studies showing that, for example, humidity is
particularly sensitive to sampling error and is not improved with
4DEnVar over 3DEnVar (Liu et al., 2009). Operational centres like
the Met Office use EnVar systems for their global models, but have
yet to develop similar systems for their regional models. It remains
an important question how much these techniques can improve
analyses and forecasts in their high-resolution regional models.
Environment Canada though has already shown that 4DEnVar
can lead to better forecasts of moisture-related quantities like
precipitable water and equitable threat score for precipitation
(Caron et al., 2015). It should also be noted that all of the methods
may be suitable for application to other geophysical problems
like coupled systems and estimating surface fluxes of chemical
species.

Finally a note on nomenclature. As the number of methods
grows, it becomes important to label each succinctly and
accurately. Lorenc (2013) has attempted to do this, and authors
have tended to follow. We support the view that the ‘hybrid’ label
should be used only for methods that combine ensemble and static
aspects in their background errors, but we do think that it should
be necessary to specify this when a method does use information
from both sources (unlike point 5. in Lorenc, 2013)); see Figure 1.
It is also useful to distinguish between 3D and 4D pure ensemble
methods. In this case it is sensible to specify 4D ensemble methods
as smoothers (EnKS) rather than as filters (EnKF). To add to the
complexity, there are also methods that run ensembles of 4D-Var
(Belo Pereira and Berre, 2006; Berre et al., 2007, 2009; Isaksen et al.,
2010) or of 4DEnVar (Fairbairn et al., 2014) and a nomenclature is
needed here. One suggestion is to use En-4DVar and En-4DEnVar
respectively to indicate that the ‘En’ (separated from the main
method with a hyphen) represents independent runs of the system
specified.
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Appendices

Appendix A: The vector derivative

Consider a quadratic function of the n-element vector x:

J(x) = ∥∥Hx+y
∥∥2

S−1 = 1

2
(Hx+y)TS−1(Hx+y), (A1)

where y (p-elements), H (p×n-elements) and the symmetric
matrix S (p×p-elements). Derivatives of such a function appear
frequently, and so we derive a general result. The vector derivative
is the following n-element vector:

∇xJ =

⎛⎜⎝ ∂J/∂x1
...

∂J/∂xn

⎞⎟⎠ , (A2)

where xi is the ith component of x. First decompose (A1) into a
function of its components xi:

J(x)= 1

2

p∑
i=1

(
n∑

l=1

Hilxl+yi

) p∑
j=1

(
S−1

)
ij

(
n∑

k=1

Hjkxk+yj

)
. (A3)

Differentiating this mechanically with respect to one arbitrary
element vm gives, by the product rule,

∂J

∂xm
=1

2

p∑
i=1

(
n∑

l=1

Hil
∂xl

∂xm

) p∑
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ij

(
n∑
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)

+ 1

2
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) p∑
j=1
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ij
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Hjkxk+yj

)

+ 1

2

p∑
i=1

(
n∑

l=1

Hilxl+yi

) p∑
j=1

(
S−1

)
ij

(
n∑

k=1

Hjkδkp

)

=1

2

p∑
i=1

Him

p∑
j=1

(
S−1

)
ij

(
n∑

k=1

Hjkxk+yj

)

+ 1

2

p∑
i=1

(
n∑

l=1

Hilxl+yi

) p∑
j=1

(
S−1

)
ij

Hjp. (A4)

In the second line of the last expression, re-index the summations
as i ←→ j and l → k. Noting that

(
S−1

)
ij

= (
S−1

)
ji
, this shows

that the two lines in the last expression are identical, so:

∂J

∂xm
=

p∑
i=1

Him

p∑
j=1

(
S−1

)
ij

(
n∑

k=1

Hjkxk+yj

)
. (A5)

This can be confirmed to be the decomposition of the mth element
of the matrix expression:

∇xJ = HTS−1(Hx + y). (A6)

Appendix B: The matrix derivative

Consider a quadratic function of the n×N matrix V:

J(V) =
1

2

{
H (X◦[UV]) 1N +y

}T
S−1

{
H (X◦[UV]) 1N +y

}
, (B1)

where y (p-elements), H (p×n-elements), X (n×N-elements), U
(n×n-elements), the symmetric matrix S (p×p-elements), and
1N (N-elements, each of value 1). This is the structure of cost
functions that use the L03 formulation of localizing ensemble-
derived background-error covariances ((66) in section 6.3). The
matrix derivative is defined as

∇VJ =

⎛⎜⎝ ∂J/∂V11 · · · ∂J/∂V1N
...

. . .
...

∂J/∂Vn1 · · · ∂J/∂VnN

⎞⎟⎠, (B2)

where Vij is the ijth element of V. In order to derive a
matrix expression for this gradient, we use the chain rule. Let
v = {X ◦ [UV]} 1N , where v has n elements. ∇VJ can be found
using the vector derivative result in Appendix A:

∇vJ = HTS−1
(

Hv + y
)
. (B3)

The chain rule allows the derivative with respect to Z to be found:

∂J

∂Vij
=

n∑
l=1

∂vl

∂Vij

∂J

∂vl
. (B4)

∂J/∂vl which appears in (B4) is the lth component of (B3), and
∂vl/∂Vij can be found by first expanding out the definition of v
in terms of V given above:

vl =
N∑

j′=1

Xlj′
n∑

i′=1

Uli′ Vi′j′ , (B5)

so
∂vl

∂Vij
=

N∑
j′=1

Xlj′
n∑

i′=1

Uli′
∂Vi′j′

∂Vij

=
N∑

j′=1

Xlj′
n∑

i′=1

Uli′δii′δjj′ = XljUli. (B6)

Substituting this into the chain rule gives:

∂J

∂Vij
=

n∑
l=1

XljUli
∂J

∂vl
, (B7)

which can be confirmed to be the ijth element of the matrix
expression:

∇VJ = UT
[
X ◦ (∇vJ · · · ∇vJ

)]
, (B8)

where
(∇vJ · · · ∇vJ

)
is the n×N matrix of repeated columns

of ∇vJ.

c© 2016 The Authors. Quarterly Journal of the Royal Meteorological Society
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Appendix C: The variational form of the Ensemble Kalman
Smoother

The correspondence between the EnKS formula (29) and the
minimizing state of (35) is demonstrated here. The gradient of
(35) with respect to χ ens is given in (37). Setting this is [AUTHOR:
as?] zero for the minimum gives the following solution:

χ ens =
[

I+
(

HMXb
)T

R−1HMXb

]−1(
HMXb

)T
R−1d. (C1)

(Recall the definitions HM and HM in (31), d is defined after
(35), R is the time-ordered observation-error covariance matrix,
and Xb is the matrix whose columns comprise the normalized

ensemble of 3D perturbations, (xb
(i)−xb)/

√
N−1). The model

space increment is found from (36):

δx=Xb

[
I+

(
HMXb

)T
R−1HMXb

]−1(
HMXb

)T
R−1d. (C2)

The standard Sherman–Morison–Woodbury identity (e.g.
Appendix A of Ehrendorfer, 2007):

(B−1 + HTR−1H)BHT = HTR−1(R + HBHT)

applied to (C2) with B → I, H → HMXb, and R → R gives:

δx = XbXbT
HT

M

(
R + HMXbXbT

HT
M

)−1
d. (C3)

The EnKS (29) produces an ensemble of analyses. Taking the
mean gives:

xa−xb =Xb
(

HMXb
)T

{
R + HMXb

(
HMXb

)T
}−1

×
{

yo − HM(xb)
}

. (C4)

This shows that, as long as the ensemble mean of the model

observations, HM(xb), is close to the model observations of
the deterministic background,HM(xb), then the minimization
problem (35) is equivalent to the mean state of the EnKS (29).

We are taking xb =xb (the ensemble mean) so the above result is
true in the special case when HM is linear.

Appendix D: The ‘B05’ method of localizing covariances – the
matrix of ‘localized’ ensemble members

A sample of N background perturbations (each of n-elements
and divided by

√
N−1) are held in the matrix Xb and a sample

of M ‘localization’ perturbations – see below. Each of n-elements
divided by

√
M − 1 are held in the matrix UC. [AUTHOR: Is

this the intended meaning?] The covariances of Xb and UC are
defined as:

Pb
(N) = XbXbT

, (D1)

C = UCUCT
. (D2)

What is the matrix of effective ensemble perturbations, X̂b, whose
covariance is the Schur product C◦Pb

(N)? We will show that this
is the following n×NM matrix:

X̂b = 1√
N−1

(
diag(δxb

(1))UC, . . . , diag(δxb
(N))UC

)
, (D3)

where δxb
(i)/

√
N−1 is the ith column of Xb and the diag operator

gives an n×n diagonal matrix whose diagonal elements comprise

the vector argument. There are NM columns of X̂b, which may be
thought of as NM effective ensemble members whose covariance

has the desired property. Evaluating X̂bX̂bT
from (D3) gives:

X̂bX̂bT= 1

N−1

(
diag(δxb

(1))UC, . . . , diag(δxb
(N))UC

)

×

⎛⎜⎜⎝
UCT

diag(δxb
(1))

...

UCT
diag(δxb

(N))

⎞⎟⎟⎠
= 1

N−1

N∑
k=1

diag(δxb
(k))UCUCT

diag(δxb
(k))

= 1

N−1

N∑
k=1

diag(δxb
(k))Cdiag(δxb

(k)). (D4)

The i, jth element of (D4) is given below, which is shown to be
the i, jth element of Pb

(N)◦C:(
X̂bX̂bT

)
ij

= 1

N−1

N∑
k=1

n∑
p=1

n∑
q=1

diag(δxb
(k))ipCpqdiag(δxb

(k))qj

= 1

N − 1

N∑
k=1

diag(δxb
(k))iiCijdiag(δxb

(k))jj

= 1

N − 1

[
N∑

k=1

(δxb
(k))i(δxb

(k))j

]
Cij

= Pb
ijCij.

∴ X̂bX̂bT = Pb ◦ C. (D5)

Appendix E: The ‘L03’ method of localizing covariances

This appendix shows that the CVT given in (68):

δx =
{

Xb ◦ (UCV̂
}

1N , (E1)

implies a background-error covariance matrix that is localized.
For N ensemble members and a state size n, here Xb

(n×N-elements) is the matrix of scaled background deviations

(i.e. Xb
ji = (xb

(i)−xb)j/
√

N−1), UC (n×n-elements) is a square-

root of localization matrix C, V̂ (n×N-elements) is the matrix
whose columns are the mutually uncorrelated control vectors χ̂ (j)

(i.e. V̂ij = (χ̂ (j))i –the ith component of the jth control vector),
and 1N is the N-element column vector of 1s. The kth element of
δx from (E1) is:

δxk =
N∑

m=1

Xb
km

n∑
l=1

UC
klV̂lm

= 1√
N − 1

N∑
m=1

(δxb
(m))k

n∑
l=1

UC
kl(χ̂ (m))l.

Calculating the covariance between elements k and k′ of δx:

〈δxkδxk′ 〉

= 1

N−1

〈(
N∑

m=1

(δxb
(m))k

n∑
l=1

UC
kl(χ̂ (m))l

)
(

N∑
m′=1

(δxb
(m′))k′

n∑
l′=1

UC
k′l′(χ̂ (m′))l′

)〉
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= 1

N−1

N∑
m=1

N∑
m′=1

(δxb
(m))k(δxb

(m′))k′

×
n∑

l=1

n∑
l′=1

UC
klU

C
k′l′
〈
(χ (m))l(χ (m′))l′

〉
= 1

N−1

N∑
m=1

N∑
m′=1

(δxb
(m))k(δxb

(m′))k′

×
n∑

l=1

n∑
l′=1

UC
klU

C
k′l′δmm′δll′

= 1

N−1

N∑
m=1

(δxb
(m))k(δxb

(m))k′
n∑

l=1

UC
klU

C
lk′

T

= Pb
(N)kk′ Ckk′ .

The left-hand side is matrix element k, k′ of
〈
δxδxT

〉
and the

right-hand side of the last line is matrix element k, k′ of Pb
(N) ◦ C.

This shows that the error covariance matrix implied by the CVT is
the error covariance matrix sampled from the forecast ensemble,
Pb

(N) localized with C.
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