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Abstract. Two interglacial epochs are included in the suite
of Paleoclimate Modeling Intercomparison Project (PMIP4)
simulations in the Coupled Model Intercomparison Project
(CMIP6). The experimental protocols for simulations of the
mid-Holocene (midHolocene, 6000 years before present) and
the Last Interglacial (lig127k, 127 000 years before present)
are described here. These equilibrium simulations are de-
signed to examine the impact of changes in orbital forcing
at times when atmospheric greenhouse gas levels were sim-
ilar to those of the preindustrial period and the continental
configurations were almost identical to modern ones. These
simulations test our understanding of the interplay between
radiative forcing and atmospheric circulation, and the con-
nections among large-scale and regional climate changes giv-
ing rise to phenomena such as land–sea contrast and high-
latitude amplification in temperature changes, and responses
of the monsoons, as compared to today. They also provide an
opportunity, through carefully designed additional sensitivity
experiments, to quantify the strength of atmosphere, ocean,
cryosphere, and land-surface feedbacks. Sensitivity experi-
ments are proposed to investigate the role of freshwater forc-
ing in triggering abrupt climate changes within interglacial
epochs. These feedback experiments naturally lead to a fo-
cus on climate evolution during interglacial periods, which
will be examined through transient experiments. Analyses
of the sensitivity simulations will also focus on interactions
between extratropical and tropical circulation, and the rela-
tionship between changes in mean climate state and climate
variability on annual to multi-decadal timescales. The com-
parative abundance of paleoenvironmental data and of quan-
titative climate reconstructions for the Holocene and Last In-
terglacial make these two epochs ideal candidates for system-
atic evaluation of model performance, and such comparisons
will shed new light on the importance of external feedbacks
(e.g., vegetation, dust) and the ability of state-of-the-art mod-
els to simulate climate changes realistically.

1 Introduction

The modeling of paleoclimate, using physically based tools,
has long been used to understand and explain past environ-
mental and climate changes (Kutzbach and Street-Perrott,
1985), and is increasingly seen as a strong out-of-sample test
of the models that are used for the projection of future cli-
mate changes (Braconnot et al., 2012; Harrison et al., 2014,

2015; Schmidt et al., 2014). The Paleoclimate Modelling In-
tercomparison Project (PMIP) has served to coordinate pale-
oclimate experiments and data–model comparisons for sev-
eral decades (Braconnot et al., 2007a, b, 2012; Joussaume
and Taylor, 1995; Joussaume et al., 1999), and now spear-
heads the paleoclimate contribution to the current phase of
the Coupled Model Intercomparison Project (CMIP6, Eyring
et al., 2016).

This paper is part of a suite of five documenting the
PMIP4 contributions to CMIP6. Kageyama et al. (2016)
provide an overview of the five selected time periods and
the experiments. More specific information is given in the
contributions for the last millennium (past1000) by Jung-
claus et al. (2017), for the last glacial maximum (lgm) by
Kageyama et al. (2017), for the mid-Pliocene warm period
(midPliocene-eoi400) by Haywood et al. (2016), and the
present paper the mid-Holocene (midHolocene) and the pre-
vious interglacial (lig127k). PMIP4 has adopted the CMIP6
categorization where the highest-priority experiments are
classified as Tier 1, whereas additional sensitivity experi-
ments or dedicated studies are Tier 2 or Tier 3. The stan-
dard experiments for the five periods are all ranked Tier 1.
Tier 2 and 3 experiments absolutely require the correspond-
ing Tier 1 experiment for their analysis, so the groups must
perform the Tier 1 experiment first. Modeling groups are not
obliged to run all PMIP4-CMIP6 experiments. It is manda-
tory, however, for all participating groups to run at least one
of the experiments that were run in previous phases of PMIP
(i.e., midHolocene or lgm).

The two experiments described here focus on comparing
the most recent interglacial epochs and specifically the cur-
rent interglacial (the Holocene) and the previous interglacial
(the Last Interglacial, LIG) periods (Fig. 1). These two ex-
periments are of interest because they examine the response
of the climate system to relatively simple changes in forcing
compared to present. The main difference in forcing from
present was in the latitudinal and seasonal distribution of in-
coming solar radiation (insolation) caused by known changes
in the Earth’s orbit; greenhouse gas (GHG) concentrations
were similar to those of the preindustrial period and the
continental configurations were also very similar to modern
ones. Differences in orbital configuration between the two
interglacial periods (Berger, 1978) mean that the insolation
changes are stronger in the LIG than in the Holocene, but the
observational basis for evaluating model simulations is more
extensive in the Holocene than the LIG because of preserva-
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Figure 1. Forcing and climatic records across the Last Interglacial (LIG, left) and the Holocene (right). Records are displayed in pan-
els (a) to (j) as anomalies relative to their average value of the last 1000 years. (a) and (b): 21 June insolation across latitudes; (c) and (d): at-
mospheric CO2 concentration (Siegenthaler et al., 2005; Schneider et al., 2013; Monnin et al., 2001, 2004); (e) and (f): atmospheric CH4
concentration (Loulergue et al., 2008); (g) and (h): Antarctic surface air temperature reconstruction (Jouzel et al., 2007); (i) and (j): Greenland
ice δ18O: from the NEEM ice core (NEEM Community Members, 2013) in dark grey and from the NGRIP ice core (NorthGRIP Community
Members, 2004) in black. Note that NEEM ice δ18O is shifted by +2 ‰. (k) LIG maximum global mean sea level (GMSL) relative to the
present day; uncertainties in the amplitude are indicated by the shading (see Dutton et al., 2015a, for a review). Time of maximum varies
between reconstructions. No significant sea-level variations are reported throughout the Holocene compared to the present day. NGRIP ice
δ18O is displayed on the GICC05 annual layer-counted timescale (Svensson et al., 2008) over the last 20 ka and on the AICC2012 chronol-
ogy (Bazin et al., 2013; Veres et al., 2013) across the 119–110 ka time interval. All other ice core records are displayed on the AICC2012
chronology, which is coherent, by construction with the GICC05 timescale over the last 60 ka (Bazin et al., 2013; Veres et al., 2013). Vertical
yellow lines indicate 127 and 6 ka, the time intervals chosen to run the coordinated PMIP4-CMIP6 lig127k and midHolocene simulations.
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tion issues. Taken together, these two interglacial periods are
good test cases of our mechanistic understanding of the inter-
play between radiative forcing and atmospheric circulation,
and opportunities to examine connections among large-scale
and regional climate changes which give rise to phenomena
such as land–sea contrast and high-latitude amplification of
temperature changes, the regulation of atmospheric CO2 and
biogeochemical cycles, and the waxing and waning of the
monsoons.

The Tier 1 interglacial experiments for CMIP6 are time-
slice (or equilibrium) experiments at 6000 and 127 000 years
before present (where present is defined as 1950), hereafter
referred to as 6 ka (midHolocene) and 127 ka (lig127k). The
mid-Holocene interval has been the focus for model simula-
tions, model–model comparisons, paleodata synthesis, and
model–data comparison since the beginning of PMIP, and
this work has contributed to model evaluation and under-
standing of climate change in the last three major assess-
ments of the Intergovernmental Panel on Climate Change
(Flato et al., 2013; Folland et al., 2001; Hegerl et al., 2007;
Jansen et al., 2007; Masson-Delmotte et al., 2013). The
changes in insolation are characterized by enhanced seasonal
contrast in the Northern Hemisphere (NH) (and reduced sea-
sonal contrast in the Southern Hemisphere, SH), giving rise
to warmer NH summers and a significant enhancement of
the NH monsoons (COHMAP Members, 1988; Hély et al.,
2014; Lezine et al., 2011; Saraswat et al., 2013; Tierney et al.,
2017). Systematic benchmarking against pollen-based recon-
structions of climate variables and lake-level-based water-
balance reconstructions (Braconnot et al., 2007b, 2012; Coe
and Harrison, 2002; Harrison et al., 1998, 2014, 2015) has
highlighted the fact that climate models persistently under-
estimate changes in the monsoon precipitation and produce
too much continental drying (Harrison et al., 2015).

Given the long history of coordinated model experiments
for 6 ka, this period allows us to assess whether there is an
improvement in the ability of models to reproduce a cli-
mate state different from the modern one. For this reason,
the Tier 1 midHolocene experiment is one of two possible
“entry cards” for PMIP simulations in CMIP6 (Table 1): all
modeling groups contributing to PMIP4-CMIP6 must per-
form either the midHolocene experiment or a simulation of
the Last Glacial Maximum (Kageyama et al., 2016).

Although the LIG (129 to 116 ka) was discussed in the
First Assessment Report of the IPCC (Folland et al., 1990),
it gained more prominence in the IPCC Fourth and Fifth As-
sessment (AR4 and AR5) because of reconstructions high-
lighting that global mean sea level was at least 5 m higher
(but probably no more than 10 m higher) than present for
several thousand years (Dutton et al., 2015a; Jansen et al.,
2007; Masson-Delmotte et al., 2013). Thus the LIG is rec-
ognized as an important period for testing our knowledge of
climate–ice-sheet interactions in warm climate states. How-
ever, the ensemble of LIG simulations examined in the AR5
(Masson-Delmotte et al., 2013) was not wholly consistent:

the orbital forcing and GHG concentrations varied between
the simulations. While it has been suggested that differences
in regional temperatures between models might reflect differ-
ences in cryosphere feedback strength (Yin and Berger, 2012;
Otto-Bliesner et al., 2013) or differences in the simulation
of the Atlantic Meridional Overturning Circulation (AMOC)
(Bakker et al., 2013; Masson-Delmotte et al., 2013), dif-
ferences between models could also have arisen because of
differences in the experimental protocols. Furthermore, the
LIG simulations were mostly made with older and/or lower-
resolution versions of the models than were used for future
projections, making it more difficult to use the results to as-
sess model reliability (Lunt et al., 2013). The Tier 1 lig127k
experiment (Table 1) is designed to address the climate re-
sponses to stronger orbital forcing than the midHolocene ex-
periment using the same state-of-the-art models and follow-
ing a common experimental protocol. It will provide a ba-
sis to address the linkages between ice sheets and climate
change in collaboration with the Ice Sheet Model Intercom-
parison Project for CMIP6 (ISMIP6) (Nowicki et al., 2016).

The midHolocene and lig127k experiments are starting
points for examining interglacial climates. A number of other
experiments are proposed in the current phase of PMIP
(PMIP4) to facilitate diagnosis of these Tier 1 experiments.
The Tier 2 simulations will include sensitivity experiments
to examine the impact of uncertainties in boundary condi-
tions and the role of feedbacks in modulating the response
to orbital forcing. Ocean, vegetation, and dust feedbacks,
and the synergies between them, have been a focus in pre-
vious phases of PMIP (Braconnot et al., 1999; Dallmeyer
et al., 2010; Otto et al., 2009; Wohlfahrt et al., 2004), and
this allows us to design simple experimental protocols to
compare the strength of these feedbacks in different climate
models. Simulations with prescribed but adjusted vegetation
cover will be a major focus for both the Holocene and LIG
in PMIP4, and comparison of these simulations with ESM
simulations that include dynamic vegetation will allow ex-
ploration of the magnitude of land-surface biases in these
latter models. Changes in vegetation and land-surface hy-
drology are an important control on dust emissions (Tegen
et al., 2002; Engelstädter et al., 2003), which can affect the
strength of the West African Monsoon (Konare et al., 2008;
Pausata et al., 2016). The examination of the dust feedback
will be a new focus in PMIP4. In addition, the LIG provides
an ideal opportunity to examine the role of cryosphere feed-
backs through sensitivity experiments, which will be a focus
of additional experiments associated with both the Holocene
and the LIG. One such feedback is the release of freshwater
into the ocean and the role of such freshwater forcing in gen-
erating more abrupt climate changes than would be expected
for the smoothly varying changes in insolation forcing during
an interglacial (Goelzer et al., 2016a; Luan et al., 2015; Stone
et al., 2016). Understanding the role of feedbacks in general
in the generation of abrupt climate changes, and the need to
understand the relationship between mean climate changes
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Table 1. Forcings and boundary conditions. More details can be found in the section numbers indicated in parentheses.

1850 CE (DECK piControl)1 6 ka (midHolocene)2 127 ka (lig127k)2

Orbital parameters (Sect. 2.1) CMIP DECK piControl

Eccentricity 0.016764 0.018682 0.039378
Obliquity (degrees) 23.459 24.105 24.040
Perihelion – 180 100.33 0.87 275.41
Vernal equinox Fixed to noon on 21 March Fixed to noon on 21 March Fixed to noon on 21 March

Greenhouse gases (Sect. 2.2)

Carbon dioxide (ppm) 284.3 264.4 275
Methane (ppb) 808.2 597 685
Nitrous oxide (ppb) 273.0 262 255
Other GHGs CMIP DECK piControl 0 0

Solar constant (W m−2) (Sect. 2.1) TSI: 1360.747 Same as piControl Same as piControl

Paleogeography (Sect. 2.3) Modern Same as piControl Same as piControl

Ice sheets (Sect. 2.3) Modern Same as piControl Same as piControl

Vegetation (Sect. 2.4) CMIP DECK piControl Prescribed or interactive as Prescribed or interactive as
in piControl in piControl

Aerosols (Sect. 2.5): dust, volcanic, etc. CMIP DECK piControl Prescribed or interactive as Prescribed or interactive as
in piControl in piControl

1 More information on the CMIP DECK piControl and CMIP6 historical protocols can be found in the Geoscientific Model Development Special Issue on the Coupled Model
Intercomparison Project Phase 6 (CMIP6) Experimental Design and Organization and at http://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6.
2 Data sets for midHolocene and lig127k are available on the PMIP4 web page: https://pmip4.lsce.ipsl.fr/doku.php/exp_design:index.

and short-term (annual to multi-decadal) climate variability,
leads naturally to a desire to simulate the transient behavior
of the climate system – and such transient experiments are
proposed for both the Holocene and LIG time periods. New
results have highlighted the possibility of using reconstruc-
tion of past interannual variability from corals and mollusc
shells to assess the Holocene-simulated changes in variabil-
ity at the scale of the tropical Pacific Ocean (Emile-Geay et
al., 2016). Groups are also encouraged to run their models
with an active land and ocean carbon cycle to assess terres-
trial and ocean carbon storage and differences between the
two interglacial periods.

The aim of this paper is to present and explain the experi-
mental designs for both the PMIP4-CMIP6 Tier 1 interglacial
experiments, and for associated Tier 2 and Tier 3 sensitiv-
ity and transient experiments. Section 2 describes and dis-
cusses the PMIP4-CMIP6 midHolocene Tier 1/entry card and
lig127k Tier 1 simulations. Section 3 describes Tier 2 and
Tier 3 PMIP4 sensitivity studies that can be carried out to di-
agnose these Tier 1 simulations. Section 4 briefly describes
the paleodata resources, which can be used to evaluate the
simulations.

2 Experimental design for the Tier 1 PMIP4-CMIP6
midHolocene and lig127k simulations

The core or Tier 1 experiments for the Holocene and the
LIG are the midHolocene and lig127k simulations. The
CMIP DECK (Diagnostic, Evaluation and Characterization
of Klima) piControl for 1850 CE and the CMIP6 histori-
cal experiment (see Eyring et al., 2016, for a description of
these experiments) are the reference simulations to which
the paleo-experiments will be compared. Thus, the paleo-
experiments must use the same model components and fol-
low the same protocols for implementing external forcings
as are used in the piControl and historical simulations. The
midHolocene simulation is one of the PMIP entry cards in
the PMIP4-CMIP6 experiments, which means that groups
who run the lig127k simulation must also run either the mid-
Holocene or the lgm (Last Glacial Maximum) experiment
(Kageyama et al., 2016). The boundary conditions for the
midHolocene, lig127k, and piControl experiments are given
in Table 1, and more detailed information is given below.

2.1 Orbital configuration, solar constant, and
insolation anomalies

Earth’s orbital parameters (eccentricity, longitude of perihe-
lion, and obliquity) should be prescribed following Berger
and Loutre (1991). These parameters affect the seasonal and
latitudinal distribution and magnitude of solar energy re-

www.geosci-model-dev.net/10/3979/2017/ Geosci. Model Dev., 10, 3979–4003, 2017
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ceived at the top of the atmosphere and, in the case of obliq-
uity, the annual mean insolation at any given latitude (Berger
and Loutre, 1991). The DECK piControl simulations are to
use the orbital parameters appropriate for 1850 CE (Table 1)
(Eyring et al., 2016), when perihelion occurs close to the bo-
real winter solstice. The exact date slightly varies depending
on the internal model calendar and the number of days used
to define a year. Because of this and the fact that the length of
the seasons varies as a function of precession and eccentricity
(Joussaume and Braconnot, 1997), the vernal equinox must
be set to noon on 21 March in all the simulations (piControl,
midHolocene, and lig127k). The orbit at 6 ka was character-
ized by an eccentricity of 0.018682, similar to 1850 CE (Ta-
ble 1). Obliquity was larger (24.105◦) and perihelion at 6 ka
occurred near the boreal autumn equinox. The orbit at 127 ka
was characterized by larger eccentricity than at 1850 CE,
with perihelion occurring close to the boreal summer solstice
(Fig. 2). The tilt of the Earth’s axis was maximal at 131 ka
and remained higher than in 1850 CE through 125 ka; obliq-
uity at 127 ka was 24.04◦ (Table 1). The different orbital con-
figurations for the midHolocene and lig127k result in differ-
ent seasonal and latitudinal distribution of top-of-atmosphere
insolation compared to the DECK piControl (Fig. 3). Both
time periods show large positive insolation anomalies dur-
ing boreal summer. July–August anomalies between 40 and
50◦ N reach about 55–60 W m−2 at 127 ka and 25 W m−2 at
6 ka. The higher obliquity at 127 and 6 ka contributes to a
small but positive annual insolation anomaly compared to
the preindustrial at high latitudes in both hemispheres and a
slight insolation reduction in the tropics in the annual mean.
The global difference in insolation forcing between the inter-
glacial experiments and the preindustrial is negligible.

The solar constant prescribed for the midHolocene and
lig127k simulations is the same as in the DECK piControl
simulation, which is fixed at the mean value for the first two
solar cycles of the historical simulation (i.e., 1850–1871)
(Eyring et al., 2016). This value (1360.7 W m−2) is lower
than the value for the solar constant used by some models
in PMIP3 (1365 W m−2) and this leads to a global reduc-
tion of incoming solar radiation compared to the PMIP3 ex-
periments (Fig. 4). The slight differences in orbital param-
eters between the 1850 CE reference periods to be used for
PMIP4-CMIP6 and the 1950 CE reference used for PMIP3
leads to seasonal differences in forcing with a slight decrease
in boreal spring and increase in boreal autumn. The com-
bination of the two factors leads to an overall reduction:
the largest reduction occurs in boreal spring and is about
1.6 W m−2 between 10◦ S and 40◦ N.

2.2 Greenhouse gases

Ice-core records from Antarctica and Greenland provide
measurements of the well-mixed GHGs: CO2, CH4, and N2O
(Fig. 1). These measurements are given as mole fractions in
dry air and are noted as parts per million (ppm) or parts per

Figure 2. Orbital configurations for the piControl, midHolocene,
and lig127k experiments. Note that the aspect ratio between the
two axes of the ellipse has been magnified to better highlight the
differences between the periods. However, the change in ratio be-
tween the different periods is proportional to the real values. In
these graphs VE stands for vernal equinox, SS for summer solstice,
AE for autumnal equinox, and WS for winter solstice. The num-
bers along the ellipse are the number of days between solstices and
equinoxes.

billion (ppb), respectively. For simplicity, we use the term
“concentration” for these GHG levels. By 6 and 127 ka, the
concentrations of atmospheric CO2 and CH4 had increased
from their respective levels during the previous glacial peri-
ods, the Last Glacial Maximum and the penultimate glacia-
tion, to values comparable to preindustrial levels.

midHolocene. In PMIP4-CMIP6, we use a revised ver-
sion of an earlier trace gas reconstruction (Joos and Spahni,
2008). The CO2 concentration for the mid-Holocene is de-
rived from ice-core measurements from Dome C (Mon-
nin et al., 2001, 2004) and dated using the AICC2012
age scale (Veres et al., 2013). A smoothing spline (Bruno
and Joos, 1997; Enting, 1987) with a nominal cut-off pe-
riod of 3000 years was used to produce a continuous CO2
record. This yields a CO2 concentration of 264.4 ppm at

Geosci. Model Dev., 10, 3979–4003, 2017 www.geosci-model-dev.net/10/3979/2017/
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Figure 3. Latitude–month insolation anomalies (6 ka–1850, 127 ka–1850, 127–6 ka) computed using either the celestial calendar (a) or the
modern calendar (b), with vernal equinox on 21 March at noon, to compute monthly averages (W m−2).

(a) 

(b) 

2

1.6

1.2

0.8
0.4

0
-0.4

-0.8
-1.2

-1.6

-2

W m-2

Figure 4. Difference in incoming solar radiation at the top of
the atmosphere (W m−2) between the PMIP4 and PMIP3 proto-
cols, (a) considering the changes in Earth’s orbital parameters be-
tween 1850 and 1950 and the reduction of the solar constant from
1365 to 1360.7 between these two PMIP phases and (b) only the
changes in Earth’s orbital parameters, assuming a solar constant of
1365 W m−2.

6 ka. Methane has been measured in ice from Antarctic ice
cores EPICA Dome C (Flückiger et al., 2002), EPICA Dron-
ning Maud Land (EPICA Community Members, 2006) and
Talos Dome (Buiron et al., 2011). For Greenland, methane
data are from GRIP (Blunier et al., 1995; Chappellaz et

al., 1997; Spahni et al., 2003), GISP2 (Brook, 2009), and
GISP2D (Mitchell et al., 2013). Both are splined with a nom-
inal cut-off period of 200 years. This results in a concentra-
tion of 574 ppb for the Antarctic ice cores, representative of
high-latitude Southern Hemisphere air, and of 620 ppb for
the Greenland ice cores, representative of the high-latitude
Northern Hemisphere air, and an estimated global mean
value of 597 ppb. The N2O data around 6 ka are from a com-
pilation of published data from EPICA Dome C (Flückiger
et al., 2002; Spahni et al., 2005) and new, unpublished data
measured at the University of Bern using ice from Greenland
(NGRIP) and Talos Dome (TALDICE). The data are splined
with a nominal cut-off period of 700 years and the resulting
N2O concentration at 6 ka is 262 ppb.

The realistic GHG concentrations used for the mid-
Holocene PMIP4-CMIP6 experiment are different from
those used in the PMIP3 experiments (Braconnot et al.,
2012). The PMIP3 experiments were designed simply to ex-
amine the effects of changes in orbital forcing, and the CO2
concentrations were therefore kept the same as the value typ-
ically used in preindustrial experiments (280 ppm), although
other GHGs were prescribed from ice-core measurements.
The use of realistic values for all the GHGs in the PMIP4-
CMIP6 midHolocene experiment may improve comparisons
with paleoclimate reconstructions and will ensure that the
midHolocene experiment is consistent with planned tran-
sient Holocene simulations (see Sect. 3). However, the re-
duction in CO2 concentration from 280 to 264.4 ppm will re-
duce GHG forcing by about 0.3 W m−2 (Myhre et al., 1998),
which translates to a difference in global mean surface air
temperature of −0.24 ◦C when applying an equilibrium cli-
mate sensitivity of 3 ◦C for a nominal doubling of CO2.
Simulations with the IPSL model (Dufresne and co-authors,
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Figure 5. Impact of the changes in trace gases specified for 6 ka
between PMIP3 and PMIP4 on surface air temperature (◦C) and
precipitation (mm d−1) as estimated with the IPSLCM5A model.
Only significant values are plotted in colors.

2013) show that this change in the experimental protocol
between PMIP3 and PMIP4-CMIP6 yields a global mean
cooling of 0.24± 0.04 ◦C, as expected, with regional differ-
ences of up to 0.5 ◦C in parts of Eurasia and in South Africa
(Fig. 5). Although these differences are small overall, they
will need to be accounted for in comparisons between the
PMIP4-CMIP6 midHolocene simulations and previous gen-
erations of PMIP 6 ka simulations.

lig127k. The LIG GHG concentrations are available solely
from Antarctic ice cores. CO2 concentrations can only be de-
rived from Antarctic ice, because of potential in situ CO2
production in the Greenland ice sheet (Tschumi and Stauf-
fer, 2000). We also do not have any reliable CH4 and N2O
concentrations from Greenland in the LIG due to melt lay-
ers in the ice, as Greenland temperatures were significantly
warmer at that time compared to the mean of the past mil-
lennium (Fig. 1) (NEEM Community Members 2013). For
the lig127k simulation (Table 1), we adopt mean values for
127.5–126.5 ka on the AICC2012 age scale (Bazin et al.,
2013) from EPICA Dome C (Bereiter et al., 2015; Schnei-
der et al., 2013) for CO2, from EPICA Dome C and EPICA
Dronning Maud Land (Loulergue et al., 2008; Schilt et al.,
2010a) for CH4, as well as from EPICA Dome C and Ta-
los Dome (Schilt et al., 2010a, b) for N2O. The atmospheric
CO2 and N2O concentrations of 275 ppm and 255 ppb, re-
spectively, can be regarded as globally representative, while
the mean ice core CH4 concentration (662 ppb) is representa-
tive of high-latitude Southern Hemisphere air. A global mean
atmospheric CH4 concentration of 685 ppb is adopted for
127 ka, thereby assuming the same difference (23 ppb) be-

tween the global mean atmospheric CH4 and Antarctic ice
core CH4 values as for the mid-Holocene.

2.3 Paleogeography and ice sheets

midHolocene. Several lines of evidence indicate that the ice
sheets had their modern characteristics by the mid-Holocene,
except in a few places such as the Baffin Islands (Carlson
et al., 2008b; Clark et al., 2000). While the presence of a
relic of the Laurentide ice sheet may be the origin of model–
data mismatches in the climate of eastern North America
(Wohlfahrt et al., 2004), the effect is local and small. Cos-
mogenic surface exposure ages and threshold lake records
(Carlson et al., 2014; Larsen et al., 2015; Sinclair et al., 2016)
also suggest that by 6 ka, the Greenland ice sheet was simi-
lar in extent to present. The ice-sheet distribution and ele-
vations, land–sea mask, continental topography and oceanic
bathymetry should all be prescribed as the same as in piCon-
trol in the midHolocene simulation (Table 1).

lig127k. Evidence for the evolution of the ice sheets during
the LIG comes mainly from proximal marine records (Carl-
son and Winsor, 2012). The deposition of a detrital carbon-
ate layer in the Labrador Sea, dated to around 128 ka based
on geomagnetic secular variation (Winsor et al., 2012), sug-
gests that ice had retreated from Hudson Bay and is taken to
indicate the final demise of the Laurentide ice sheet (Carl-
son, 2008; Nicholl et al., 2012). The disappearance of the
Eurasian ice sheet is more difficult to constrain because either
the proximal marine records lack benthic δ18O data or the
benthic δ18O data show trends that are different from those
of open ocean records during the LIG (Bauch, 2013). The
cessation of deposition of ice-rafted debris (IRD) from the
Eurasian ice sheet has been dated to between 128 and 126 ka
using δ18O (Risebrobakken et al., 2006). However, sea-level
data (Dutton et al., 2015b) suggest that this ice sheet disap-
peared earlier and was likely gone by∼ 127 ka. Proximal ma-
rine records of the Greenland ice sheet document a gradual
retreat during the LIG, with minimum extent around 120 ka
(Carlson et al., 2008a; Colville et al., 2011; Stoner et al.,
1995; Winsor et al., 2012). However, Greenland-sourced IRD
reached a minimum similar to the Holocene before ∼ 127 ka
(Colville et al., 2011; Winsor et al., 2012).

The extent of the Antarctic ice sheet is not directly con-
strained by data proximal to the ice sheet at 127 ka. Given
higher-than-present sea levels, the gradual retreat of the
Greenland ice sheet, and the lack of other NH ice sheets, it
seems likely that the Antarctic ice sheet was smaller than
present by ∼ 127 ka (Colville et al., 2011; Dutton et al.,
2015a, b; Mercer, 1978). The existence of ∼ 250 ka Mt. Ere-
bus ash in the ANDRILL site in the Ross Sea could indicate a
smaller-than-present West Antarctic ice sheet (WAIS) some
time after∼ 250 ka (McKay et al., 2012). The ice-core record
from Mount Moulton, West Antarctica, could be consistent
with deglaciation of much of West Antarctica during the LIG,
and likely at 130–126 ka (Steig et al., 2015). Standalone ice-
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sheet model simulations forced by ocean warming suggest
the West Antarctic ice sheet to be a major contributor to
LIG global mean sea-level rise, with contributions also com-
ing from the marine-based portions of the East Antarctic ice
sheet (DeConto and Pollard, 2016). Contributions are 6.0–
7.5 m of the equivalent sea-level rise, which would explain
the global mean sea level being at least +6 m by ∼ 127 ka
(Dutton et al., 2015b). However, because of the difficulty in
implementing ice-to-ocean changes for the WAIS and the un-
certainties associated with dating the changes in the other ice
sheets, the paleogeography of the lig127k simulation will be
prescribed the same as in the DECK piControl simulation
(Table 1). In view of the greater uncertainty associated with
the prescription of ice sheets in the lig127k experiment, this
aspect of the boundary conditions will be a major focus of
sensitivity experiments (see Sect. 3).

2.4 Vegetation

There is abundant evidence for changes in vegetation distri-
bution during the mid-Holocene and the LIG (Goni et al.,
2005; Harrison and Bartlein, 2012; Hély et al., 2014; LIGA
Members, 1991; Prentice et al., 2000). However, there is in-
sufficient data coverage for many regions to be able to pro-
duce reliable global vegetation maps. Furthermore, given the
very different levels of complexity in the treatment of veg-
etation properties, phenology and dynamics in the current
generation of climate models, paleo-observations do not pro-
vide sufficient information to constrain their behavior in a
comparable way. The treatment of natural vegetation in the
midHolocene and lig127k simulations should therefore be the
same as in the DECK piControl simulation. That is, depend-
ing on what is done in the DECK piControl simulation, veg-
etation should either be prescribed to be the same as in that
simulation, or prescribed but with interactive phenology, or
predicted dynamically (Table 1). Uncertainties related to the
treatment of vegetation in the different simulations will be
analyzed through sensitivity experiments (see Sect. 3).

2.5 Aerosols: tropospheric dust and stratospheric
volcanic

Natural aerosols show large variations on glacial–interglacial
timescales, with low aerosol loadings during interglacials
compared to glacials, and during the peak of the interglacials
compared to the present day (Albani et al., 2015; deMeno-
cal et al., 2000; Kohfeld and Harrison, 2000; McGee et al.,
2013). Atmospheric dust affects radiative forcing at a re-
gional scale and can therefore affect precipitation and sur-
face hydrology (Miller et al., 2004; Yoshioka et al., 2007),
including the monsoons (Konare et al., 2008; Pausata et al.,
2016; Vinoj et al., 2014), as well as moderate snow albedo
feedbacks when sufficient dust is deposited (Krinner et al.,
2006). While model simulations that are observationally con-
strained by a global compilation of dust records suggest that

• 

• 

.. 

• 

(a) Dust sources (Albani)

• 

• 

.. . . . . . . .. . . . . . . . .. . . . . . . .. . . . . . . . . 

(b) midHolocene dust deposition flux (Albani)

(c) midHolocene I piControl ratio in dust deposition

• 

• 

• 

. . . 

• 

. piControl only 

. piControl & 

mid Holocene 

. midHolocene only 

1000. 

100. 

10. 

1 . 

0.1 

0.01 

0.001 

0.0001 

-2 -1 

gm a

10. 

5. 

1 

0.5 

0.1 

Ratio 

Figure 6. Maps of dust from observationally constrained sim-
ulations with the Community Climate System Model for the
midHolocene (Albani et al., 2015). (a) Active sources for dust
emissions for the midHolocene and the piControl (Albani et
al., 2016). (b) Dust deposition (g m−2 year−1) in the mid-
Holocene. (c) Ratio of midHolocene/piControl dust deposition.

the global dust budget was dominated by NH dynamics dur-
ing the midHolocene as it is today, the total loading as well as
regional patterns of dust loading were different (Albani et al.,
2015). This motivates the inclusion of changes in dust load-
ing in the midHolocene and lig127k simulations (Table 1,
Fig. 6).

As in the case of vegetation, the implementation of
changes in atmospheric aerosol in the midHolocene and
lig127k simulations should follow the treatment used for
the DECK piControl and historical simulations. Models
with an interactive representation of dust should prescribe
changes in soil erodibility or dust emissions to account for
the changes in dust sources during the interglacials. Al-
though the maps provided by PMIP for this purpose are for
mid-Holocene conditions and from the only model simu-
lation available (Albani et al., 2015), they should be used
for both the midHolocene and lig127k simulations. For each
model configuration, if atmospheric dust loading is pre-
scribed in the DECK piControl and historical simulations,
the midHolocene and lig127k simulations should use the
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three-dimensional monthly climatology of atmospheric dust
mass concentrations or aerosol optical depths available from
the same data-constrained simulations as the soil erodibility
maps. Also available are data sets of the dust shortwave and
longwave direct radiative forcing. If atmospheric dust load-
ing is not represented in the DECK piControl and historical
simulations, it should not be included in the midHolocene
and lig127k simulations. The impact of dust on the radiation
balance is sensitive to the optical properties prescribed (Perl-
witz et al., 2001); it is uncertain how optical properties might
change during interglacials (Potenza et al., 2016; Royer et
al., 1983). Uncertainties in the protocol and in the interplay
between dust and vegetation will be a focus of the analyses.

There is no observationally constrained estimate of the
volcanic stratospheric aerosol for either the mid-Holocene or
the LIG. The background volcanic stratospheric aerosol used
in the CMIP6 DECK piControl should be used for the mid-
Holocene and lig127k simulations. Other aerosols included
in the DECK piControl should similarly be included in the
midHolocene and lig127k simulations.

2.6 Setup and documentation of simulations

To provide initial conditions for the simulations, it is rec-
ommended that a spin-up simulation is performed departing
from the CMIP6 piControl experiment. The length of this
spin-up simulation will be model- and resource-dependent.
However, it should be long enough to minimize at least sur-
face climate trends.

The modeling groups are responsible for a comprehen-
sive documentation of the model system and the experiments.
Documentation should be provided via the ESDOC website
and tools provided by CMIP6 (http://es-doc.org/) to facilitate
communication with other CMIP6 projects. A PMIP4 special
issue in GMD and Climate of the Past has been opened where
the groups are encouraged to publish these documentations.

The documentation should include the following.

– The model version and specifications, like interactive
vegetation or interactive aerosol modules.

– A link to the DECK experiments performed with this
model version.

– Specification of the forcing data sets used and their im-
plementation in the model. The provision of figures and
tables giving monthly latitude insolation anomalies and
daily incoming solar radiation at the top of the atmo-
sphere (TOA) for 1 year should be provided because this
allows the implementation of the most critical forcing to
be checked.

– Information about the initial conditions and spin-up
technique used.

– We request information on drift in key variables for a
few hundred years at the end of the spin-up and the be-
ginning of the actual experiment. These variables are

– globally and annually averaged SSTs;

– deep ocean temperatures (global and annual aver-
age over depths below 2500 m);

– deep ocean salinity (global and annual average over
depths below 2500 m);

– top of atmosphere energy budget (global and annual
average);

– surface energy budget (global and annual average);

– northern sea ice (annual average over the Northern
Hemisphere);

– southern sea ice (annual average over the Southern
Hemisphere);

– northern surface air temperature (annual average
over the Northern Hemisphere);

– southern surface air temperature (annual average
over the Southern Hemisphere);

– Atlantic Meridional Overturning Circulation (max-
imum overturning stream function in the North
Atlantic basin between 0 and 80◦ N below 500 m
depth); and

– carbon budget (if relevant).

3 PMIP4-CMIP6 Tier 2 and Tier 3 simulations

The selection of only two intervals, midHolocene and
lig127k, for PMIP4-CMIP6 interglacial experiments is de-
signed to maximize both the multi-model ensemble size and
opportunities for model evaluation, since both periods have
been the focus for data synthesis. However, this means that
the experiments do not sample the diversity in the transient
forcings and responses during the LIG and the Holocene.
Although transient simulations for these two periods are in-
cluded in the suite of PMIP4 simulations (see Sect. 3.5), there
is utility in examining other interglacial climates using equi-
librium experiments parallel to the midHolocene and lig127k
simulations, particularly in order to provide additional sam-
ples of the response of the system to insolation forcing. Ad-
ditional Tier 2 experiments – the end of the LIG (116 ka) and
the early Holocene (9.5 ka) (see Sect. 3.1) – are proposed to
address this.

Uncertainties in the boundary and initial conditions for the
mid-Holocene and LIG mean that the PMIP4-CMIP6 mid-
Holocene and lig127k simulations may not capture impor-
tant feedbacks accurately. The major sources of uncertainty
in the boundary conditions are the prescription of modern
vegetation cover by some models, and the prescription of
modern ice sheets in the lig127k simulation. Both sources
of uncertainty can be addressed through Tier 2 sensitivity ex-
periments (see Sect. 3.2, 3.3). The equilibrium experiments
also do not address climate changes forced by the nonlinear
behavior of ice-sheet–ocean coupling, or the possibility that
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such feedbacks could give rise to abrupt changes in climate
superimposed on the more slowly varying insolation forc-
ing during the Holocene and the LIG. This will be addressed
through Tier 2 idealized simulations of specific freshwater-
forcing events, specifically the Heinrich 11 event at the be-
ginning of the LIG and the 8.2 ka event during the Holocene
(see Sect. 3.4). Understanding the interplay among different
components of the Earth system in determining the long-term
evolution of LIG and Holocene climate is the major goal of
the proposed Tier 3 transient experiments (Sect. 3.5) to be
carried out during PMIP4.

Further information and access to data sets are available on
the PMIP4 website and will be updated during the course of
the project (https://pmip4.lsce.ipsl.fr/doku.php/exp_design:
index).

3.1 Equilibrium response to alternative states of
orbital forcing

hol9.5k. The maximum expression of Holocene orbitally in-
duced differences in TOA insolation forcing from present oc-
curred during the early part of the Holocene, but the climate
at this time was still affected by the presence of a relic of the
Laurentide ice sheet (Carlson et al., 2008b). As a result, sum-
mer temperatures at mid to high latitudes were cooler than
during the mid-Holocene (Carlson et al., 2008b; Renssen et
al., 2009, 2012). The presence of the ice sheet delayed the
response to insolation forcing in monsoon regions (Lezine et
al., 2011; Marzin et al., 2013). It has also been suggested that
the remnant ice sheet may have counteracted the reduction of
ENSO variability in response to orbital forcing in the early
Holocene (Carre et al., 2014; Luan et al., 2015). Protocols
for early Holocene experiments were developed in previous
phases of PMIP (PMIP2, PMIP3), and provide the basis for
the proposed PMIP4 simulation for 9.5 ka. Since the phase
of precession at 9.5 ka is similar to that of 127 ka, this exper-
iment provides a basis for examination of the similarities in
seasonal changes between the two interglacials (Braconnot et
al., 2008). Following the experimental protocol for the mid-
Holocene simulation, orbital parameters should be changed
following Berger and Loutre (1991). The extent and topogra-
phy of the ice sheet should be prescribed using either ICE-6G
or GLAC-1D, as proposed by the PMIP deglaciation working
group (Ivanovic et al., 2016). GHG concentrations can also
be prescribed from the last deglaciation experiment (Table 2).

lig116k. Continental ice-sheet growth and associated sea-
level lowering started at ∼ 116 ka, marking the end of the
LIG (Stirling et al., 1998). Simulations with climate models
that include feedbacks among the atmosphere, ocean, land,
and sea ice are able to simulate sufficient cooling to ini-
tiate ice-sheet growth when forced with the 116 ka orbital
conditions, reducing NH summer insolation (Herrington and
Poulsen, 2012; Jochum et al., 2012). However, the result
is sensitive to the atmospheric CO2 concentration used. To
test the ability of the CMIP6 and PMIP4 models to simulate

glacial inception, we propose a sensitivity experiment using
orbital parameters for 116 ka (lig116k). The CO2 concentra-
tion should be prescribed as 273 ppm (Bereiter et al., 2015;
Schneider et al., 2013). All other forcings and boundary con-
ditions will remain the same as the lig127k simulation (Ta-
ble 2).

3.2 Sensitivity to prescribed vegetation

Except in the case of models with dynamic vegetation, the
midHolocene and lig127k simulations will be run with pre-
scribed preindustrial vegetation cover because of the lack of
a comprehensive and reliable global data set of vegetation
for the two periods. However, pollen and macro-fossil evi-
dence shows that boreal forest extended farther north than
today in the mid-Holocene (Bigelow and al., 2003; Prentice
et al., 2000; Binney et al., 2017) and, except in Alaska and
central Canada, extended to the Arctic coast during the LIG
(Edwards et al., 2003; LIGA, 1991; Lozhkin and Anderson,
1995). Pollen and other biogeographical/geomorphological
and paleohydrological evidence also indicates northward ex-
tension of vegetation into modern-day desert areas, particu-
larly in northern Africa, both in the mid-Holocene (Drake et
al., 2011; Hély et al., 2014; Larrasoana et al., 2013; Lezine et
al., 2011; Prentice et al., 2000; Tierney et al., 2017) and dur-
ing the maximum phase of the LIG (Castaneda et al., 2009;
Hooghiemstra et al., 1992). Given the impact of increased
woody cover on albedo and evapotranspiration, these vegeta-
tion changes should have profound impacts on the surface en-
ergy and water budgets and may help to explain mismatches
between simulated and reconstructed high-latitude (Muschi-
tiello et al., 2015) and monsoon climates (Braconnot et al.,
1999; Claussen and Gayler, 1997; Pausata et al., 2016) in
both time periods.

We propose sensitivity experiments for the midHolocene
and lig127k to explore the feedbacks between vegetation and
climate. Vegetation cover at the NH high latitudes should be
changed from tundra to boreal forest and the Sahara replaced
by evergreen shrub to 25◦ N and savanna/steppe poleward of
25◦ N. Ideally, these regional changes should be made sep-
arately in order to diagnose the interaction between high-
latitude and low-latitude climates, and a third experiment
could be made implementing both changes. In each exper-
iment, all other boundary conditions should be implemented
as in the baseline midHolocene and lig127k simulations (Ta-
ble 2).

Sensitivity experiments will also be required to character-
ize the uncertainties related to the prescription of dust fields
in the mid-Holocene and LIG simulations, but it is difficult
to anticipate the form of such experiments until the Tier 1
experiments are diagnosed. A first step could be to investi-
gate the vegetation feedback on emission in simulations with
interactive dust exploiting the vegetation sensitivity analyses.
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Table 2. Summary of PMIP4 Tier 2 and Tier3 sensitivity simulations complementing PMIP4/CMIP6 Tier 1 interglacial experiments. More
details can be found in the section numbers indicated in parentheses.

PMIP4-CMIP6 sensitivity experiments: Tier 2 simulations

Experiments Holocene Last Interglacial

Orbital forcing and trace gases (Sect. 3.1) hol9.5k: Early Holocene

– Orbital: 9.5 ka1

– Ice sheet: ICE-6G or GLAC-1D
reconstruction3

– GHG: same as for the deglaciation
experiment3

lig116k: Glacial inception

– Orbital: 116 ka2

– CO2: 273 ppm

– Other forcings and boundary condi-
tions: as for lig127k

Sensitivity to vegetation (Sect. 3.2) midHolocene-veg

– prescribed boreal forests in the Arc-
tic and shrub/savanna over the Sahara
(together and in turn)

lig127k-veg

– prescribed boreal forests in the Arc-
tic and shrub/savanna over the Sahara
(together and in turn)

Sensitivity to ice sheet (Sect. 3.3) lig127k-ais and lig127k-gris

– Antarctic ice sheet at its minimum
LIG extent

– Greenland ice sheet at its minimum
LIG extent

Test to freshwater flux (Sect. 3.4) hol8.2k: 8.2 ka event

– Meltwater flux of 2.5 Sv for 1 year
added to the Labrador Sea followed
by 0.13 Sv for 99 years

– Other forcings and boundary condi-
tions: as for hol9.5k

– Initial state: hol9.5k simulation

lig127k-H11: Heinrich 11 meltwater event

– Meltwater flux of 0.2 Sv to the North
Atlantic between 50 and 70◦ N for
1000 years

– Other forcings and boundary condi-
tions: as for lig127k

– Initial state: lig127k simulation

PMIP4-CMIP6 sensitivity experiments: Tier 3 simulations

Transient simulations (Sect. 3.5)
(Note: exploratory and flexible setup)

past6k: transient Holocene

– Transient evolution in Earth’s orbit
and trace gases

– Other boundary conditions (land use,
solar, volcanism) may be considered
by some groups

– Initial state: midHolocene

lig127to121k: transient LIG

– Transient evolution in Earth’s orbit
and trace gases

– Other boundary conditions (ice
sheets) may be considered by some
groups

– Initial state: lig127k

1 Orbital parameters for 9.5 ka: eccentricity= 0.0193, obliquity= 24.23, perihelion− 180= 303.
2 Orbital parameters for 116 ka: eccentricity= 0.0414, obliquity= 22.49, perihelion− 180= 94.17.
3 Ivanovic et al. (2016); available on the PMIP4 web page

3.3 Sensitivity to prescribed ice sheets

The midHolocene and lig127k simulations will be run with
prescribed modern ice sheets and paleogeography. However,
it is highly likely that the Antarctic ice sheet was smaller
than present by ∼ 127 ka, most probably because of the dis-

appearance of the WAIS, and that the Greenland ice sheet
was reduced in extent compared to present. Given that only
about 3–4 m sea-level rise is covered by contributions from
ocean thermal expansion (McKay et al., 2011), land-based
glaciers (Marzeion et al., 2012), and melting of the Green-
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land ice sheet (NEEM Community Members, 2013; Masson-
Delmotte et al., 2013), the remaining sea-level rise is most
likely to be linked to a mass loss from the Antarctic ice
sheet. We propose a sensitivity experiment (lig127k-ais) to
test the impact of a smaller-than-present Antarctic ice sheet,
using a reduced ice-sheet configuration obtained from of-
fline simulations with their own models or the model results
such as those from DeConto and Pollard (2016) or Sutter et
al. (2016). These authors used a dynamic ice-sheet model,
forced with climate model output and calibrated to repro-
duce LIG sea-level estimates, to simulate the Antarctic ice
sheet at 128 ka. All other boundary conditions should be
implemented as in the baseline lig127k simulation. An ad-
ditional sensitivity simulation (lig127k-gris) to complement
the lig127k simulations is proposed in which the Greenland
ice sheet is configured to its minimum LIG extent is also of
interest, using configurations obtained from offline simula-
tions, for example from ISMIP6.

3.4 Freshwater forcing

Sensitivity to the H11 meltwater event during the early
LIG. Heinrich layers in the North Atlantic, containing high
concentrations of IRD, record multiple examples of pro-
longed iceberg discharge during the past 500 ka (Hemming,
2004; Marino et al., 2015; McManus et al., 1999). Heinrich
event 11 (H11) is a well-documented example that occurred
from ∼ 135 to 128 ka (Marino et al., 2015). The associated
freshwater flux has been estimated as peaking at ∼ 0.3 Sv
at ∼ 132.5 ka and tapering off thereafter (Marino et al.,
2015), and is broadly consistent with an estimate of 0.19 Sv
at 130 ka based on coral records (Carlson, 2008). There
is also evidence of a rapid sea-level rise associated with
this meltwater pulse, estimated at ∼ 70 m or 28± 8 m ka−1

(∼ 0.32± 0.09 Sv) during the deglacial transition (Grant et
al., 2012). Model simulations have shown that the freshwater
forcing of H11, including its cessation, may be important for
explaining the evolution of climate through the early part of
the LIG (Goelzer et al., 2016a, b; Holden et al., 2010; Loutre
et al., 2014; Stone et al., 2016). We propose a sensitivity ex-
periment (lig127k-H11) to examine the impact of the H11
event. The insolation anomalies at 130 ka are similar to those
at 127 ka. Therefore the experiment can be made by adding
a persistent flux of 0.2 Sv to the North Atlantic between 50
and 70◦ N for 1000 years, with all other boundary conditions
implemented as in the baseline lig127k simulation (Table 2).

Sensitivity to the 8.2 ka freshwater event during the early
Holocene. While the climate impact of the 8.2 ka event is
well documented, the magnitude of the freshwater forcing
and its duration are less well constrained. There are generally
thought to be two components to the freshwater forcing in the
early Holocene, a background flux from the Laurentide ice
sheet (Hillaire-Marcel et al., 2007; Licciardi et al., 1999) and
catastrophic flux from the drainage of Lake Agassiz (Bar-
ber et al., 1999; Clarke et al., 2004; Teller et al., 2002). Lake

Agassiz appears to have drained in several flood events of rel-
atively short duration, but with an estimated total discharge
into the Labrador Sea of ca. 151 400 km3 (Andrews et al.,
1995, 1999; Clarke et al., 2004, 2009; Ellison et al., 2006;
Hillaire-Marcel et al., 2007; Kerwin, 1996; Lajeunesse and
St-Onge, 2008; Lewis et al., 2012; Roy et al., 2011). The
background flux is smaller (ca. 0.13 Sv) but persistent for
several hundred years (Carlson et al., 2008b, 2009; Clarke
et al., 2009; Hillaire-Marcel et al., 2007). The proposed sen-
sitivity experiment (hol8.2k) can use the orbital, ice-sheet,
and GHG boundary conditions of the 9.5 ka experiment. The
“Lake+ Ice_100 years” scenario of Wagner et al. (2013) is
more consistent with ice dynamics and the data of Carlson et
al. (2009) than the shorter 1-year flood scenarios (Morrill et
al., 2013) and should be adopted for this sensitivity experi-
ment. That is, modeling groups should impose a single input
of 2.5 Sv for 1 year followed by a background freshwater
flux of 0.13 Sv for 99 years (Table 2). This freshwater flux is
added to the Labrador Sea, but modeling groups can choose
whether to add it uniformly over the whole of the Labrador
Sea or only over part of the area.

These simulations should be run a minimum of 100 years
after the end of the pulse and if possible even longer, prefer-
ably until the Atlantic Meridional Overturning Circulation
(AMOC) has recovered to its initial state.

3.5 Transient Holocene and LIG simulations

Transient simulations provide an opportunity to examine the
time-dependent evolution of climate in response to forcings
and feedbacks. Transient simulations of the last deglacia-
tion are a major focus in PMIP4 (Ivanovic et al., 2016).
These simulations will be run for the period 21 to 9 ka with
time-varying orbital forcing, greenhouse gases, ice sheets
and other geographical changes. The later part of this exper-
iment is obviously of interest for comparison with the early
Holocene experiments. However, we are also proposing tran-
sient simulations focusing on the Holocene and the LIG.

Using the PMIP-CMIP6 midHolocene simulation as a
starting point, we propose a transient simulation of the
last 6000 years (past6k). In this simulation, both orbital
parameters and GHGs will be changed following Berger
and Loutre (1991) and ice-core measurements (as described
in Sect. 2.2). Changes in paleotopography over the past
6 ka are small and, for simplicity and consistency with the
midHolocene simulation, we propose using modern values
throughout. Vegetation and aerosols will also be fixed at
preindustrial values, except for groups running fully dy-
namic vegetation and/or aerosol models where the initial
state of these components will be derived from their mid-
Holocene simulation. Alternatively, some groups may start
the Holocene transient simulation from the end of the last
deglaciation experiment at 9 ka, incorporating changes in
the evolution of ice sheets and paleotopography consistent
with that experiment. A proposed LIG transient simulation
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(lig127to121k) will be run from 127 to 121 ka, using appro-
priate changes in orbital forcing and trace gases but with all
other boundary conditions specified as in the lig127k simu-
lation. These simulations as well as simulations planned by
some modeling groups with climate–ice-sheet models will
be important as input for addressing the role of coupling be-
tween climate and the ice sheets.

4 Paleoenvironmental data and climate reconstructions
for comparison to model simulations

The ability to evaluate the realism of the Tier 1 PMIP4-
CMIP6 simulations and the various sensitivity experiments is
central to PMIP. Some paleoenvironmental observations can
be used for direct comparison with model outputs, including,
e.g., simulated water balance against lake-level reconstruc-
tions (e.g., Coe and Harrison, 2002) or simulated vegeta-
tion patterns against pollen-based vegetation reconstructions
(e.g., Perez Sanz et al., 2014). Such qualitative comparisons
are often adequate to evaluate simulations when, as is the
case with regional climate changes in the mid-Holocene and
LIG, the changes are large and regionally coherent (Harrison
and Bartlein, 2012). There are also quantitative reconstruc-
tions of climate variables from a wide variety of archives.
There are uncertainties associated with such reconstructions,
both statistical and resulting from an incomplete understand-
ing of the climate controls on specific types of records, and
these uncertainties need to be taken into account in compar-
isons with simulations. However, an increasing number of
process-based models can be used to translate climate model
outputs into explicit simulations of specific paleo-records
(Emile-Geay and Tingley, 2016; Li et al., 2014; Thompson
et al., 2011), allowing uncertainties in process understand-
ing to be made explicit. Drawing on ongoing work for the
LGM and the use of ocean biochemistry, tracer and isotopic
modeling, efforts will be made to isolate key features of the
ocean reconstructions that should be reproduced by climate
models.

The major analytical focus for the Holocene experiments
is on systematic benchmarking (Harrison et al., 2015) of the
midHolocene simulation, analysis of feedbacks, and eluci-
dation of the relationship between mean climate state and
interannual to centennial variability. Analysis of the mid-
Holocene simulation and associated sensitivity experiments
benefits from the fact that there has been a major focus on
data synthesis for this time period (Bartlein et al., 2011;
Bigelow and al., 2003; Daniau et al., 2012; Emile-Geay et
al., 2016; Hessler et al., 2014; Kohfeld and Harrison, 2000;
Leduc et al., 2010; Marchant et al., 2009; Marlon et al.,
2013; Pickett et al., 2004; Prentice et al., 2000). Thus the
number of records and spatial coverage of quantitative re-
constructions are relatively extensive (Bartlein et al., 2011;
Hessler et al., 2014). There are gaps in coverage from con-
tinental regions, particularly in the SH, but this situation is

likely to improve in the near future (Flantua et al., 2015;
Herbert and Harrison, 2016). Knowledge of ocean conditions
during the mid-Holocene is poor and likely to remain so,
in part because of incomplete understanding of the causes
of differences between sea-surface temperature reconstruc-
tions based on different biological groups and in part because
the signal-to-noise ratio in the reconstructions is small due
to other methodological uncertainties (Hessler et al., 2014;
Jonkers and Kucera, 2015; Rosell-Mele and Prahl, 2013).
There are several sources of information about short-term
climate variability during the Holocene, including tree-ring
records, speleothems, corals and molluscs. However, there
are major gaps in data coverage from the tropical oceans that
challenge our understanding of ENSO variability; the distri-
bution of speleothem records is limited to karst areas; and
few tropical trees show clear-cut seasonality in growth. More
comprehensive syntheses of these data are needed, and there
are major challenges in combining the different data sources
to yield large-scale reconstructions of climate variability. It
will also be necessary to develop appropriate methods to use
these data for comparison with simulations, focusing on tem-
poral statistics and teleconnection patterns (Emile-Geay et
al., 2016; Emile-Geay and Tingley, 2016).

There are many individual records documenting the evo-
lution of climate through the Holocene, including quantita-
tive climate reconstructions (Wanner et al., 2008). Synthetic
products have either focused on reconstructions of global
temperature changes (Clark et al., 2012; Marcott et al., 2013;
Shakun et al., 2012), or are available as geographically ex-
plicit data sets only for a limited number of climate vari-
ables in a few regions such as North America or Europe
(Davis et al., 2003; Gajewski, 2015; Mauri et al., 2014; Viau
and Gajewski, 2009; Viau et al., 2006). The only excep-
tion to this is the Global Lake Status Data Base (Kohfeld
and Harrison, 2000), which provides qualitative estimates
of the change in lake water balance through time globally.
The reliability of global temperature estimates depends on
the representativeness of the data included; this point has
been made abundantly clear from comparisons of records of
hemispheric temperature changes during the last millennium
(Fernández-Donado et al., 2013; Moberg, 2013). Currently
available reconstructions of global temperature changes dur-
ing the Holocene are heavily biased towards marine records,
making it imperative that the reliability of these records is as-
sessed using continental reconstructions (Davis et al., 2015;
Liu et al., 2014). The lack of geographically explicit recon-
structions for tropical regions and the SH would limit analy-
sis of the Holocene transient simulations, but efforts are un-
derway to improve this situation.

The LIG is the most suitable of the pre-Holocene inter-
glacial periods as a focus in PMIP4-CMIP6 because of the
relative wealth of data compared to earlier interglacial peri-
ods. However, there is an order of magnitude less informa-
tion than for the Holocene, and there are larger uncertainties
in dating of specific events. This means that the LIG data–
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model comparisons will focus on large-scale features, such
as the strength of the high-latitude amplification of warming
and the role of snow and sea-ice feedbacks in this warming.
There will also be a major focus on the tropical water cy-
cle. These analyses will exploit available data sets for the
LIG which mostly document surface sea and air tempera-
tures across the globe (Anderson et al., 2006; Brewer et al.,
2008; Capron et al., 2014; Hoffman et al., 2017; McKay et
al., 2011; Turney and Jones, 2010), although recent efforts
also synthesize reconstructions of sea-ice changes (Esper and
Gersonde, 2014; Sime et al., 2013), of the deep ocean circu-
lation (Oliver et al., 2010), and to a lesser extent the tropi-
cal hydrological cycle (Govin et al., 2014). In addition, sev-
eral existing maps are reporting vegetation changes at the NH
high latitudes (Bennike et al., 2001) and changes in lake area
in the Sahara (Petit-Maire, 1999).

There are also syntheses of quantitative climate recon-
structions for the LIG (Turney and Jones, 2010; McKay et
al., 2011; Capron et al., 2014; Hoffman et al., 2017), which
have been used for model evaluation (e.g., Lunt et al., 2013;
Otto-Bliesner et al., 2013). A critical evaluation of these LIG
data syntheses is available in Capron et al. (2017), and we
summarize here key aspects of the comparison. The ma-
jor limitation in using the data syntheses by Turney and
Jones (2010) and McKay et al. (2011) for analysis of the
lig127k simulations and associated sensitivity experiments is
that they are compilations of information about the maximum
warmth during the LIG. Given that warming was not syn-
chronous globally (Bauch and Erlenkeuser, 2008; Cortese et
al., 2007; NEEM Community Members, 2013; Govin et al.,
2012; Masson-Delmotte et al., 2010; Mor et al., 2012; Win-
sor et al., 2012), these syntheses do not represent a specific
time slice. A more recent compilation by Capron et al. (2014)
has used harmonized chronologies for ice and marine records
to produce records of the change in high-latitude tempera-
ture compared to present for four 2000-year long time slabs,
and this approach has been expanded to include the fifth time
slab (128–126 ka) for comparison with the lig127k simula-
tion (Capron et al., 2017). Following a similar strategy, Hoff-
man et al. (2017) propose the first global marine compila-
tion with harmonized chronologies for the LIG, with time
slabs available at 129 and 125 ka but not 127 ka (note that
a high-latitude subset of the Hoffman et al. (2017) compi-
lation at 127 ka is available in Capron et al., 2017). How-
ever, even though these compilations are based on harmo-
nized chronologies, dating uncertainties during the LIG can
still be several thousand years depending on the type of
archive and the dating methods (Govin et al., 2015). Further-
more, the different response scales of different components
of the climate system mean that records from the 128–126 ka
time slab may still bear the imprint of the previous deglacia-
tion (Fig. 1) (Capron et al., 2017). In any case, and as with
the early Holocene experiments, the lig127k simulation will
not solely reflect the insolation forcing. It is therefore rec-
ommended that data–model comparisons focus on using the

temporal evolution of climate, as captured in the available
Capron et al. (2014) and the Hoffman et al. (2017) time se-
ries, to assess the plausibility of the lig127k simulation.

The public-access reconstruction data sets currently avail-
able for the mid-Holocene and LIG serve different functions
and address different aspects of the climate system. Model-
ing groups running mid-Holocene and LIG simulations, or
sensitivity experiments, are encouraged to use multiple re-
construction data sets for a full diagnosis of the simulations.
Many of these data sets provide measures of the uncertainty
of the reconstructions and data–model comparisons should
be designed to take these uncertainties into account.

5 Conclusions

The PMIP4-CMIP6 midHolocene and lig127k simulations
provide an opportunity to examine the impact of two differ-
ent changes in radiative forcing on climate at times when
other forcings were relatively similar to present. Together
with planned sensitivity experiments, this focus on the two
interglacials will allow us to explore the role of feedbacks in
the climate system and to quantify their contribution to large-
scale phenomena relevant to future projections such as land–
sea contrast and high-latitude amplification of temperature
changes. They will also allow us to address the implications
of changes in forcing and feedbacks for the tropical circula-
tion and monsoons – again an issue that is relevant to inter-
preting future projections. Given that both periods have been
foci for model–model and data–model comparisons during
previous phases of PMIP, a major focus during CMIP6 will
be on evaluating the realism of the midHolocene and lig127k
simulations using a wide range of paleoenvironmental data
and paleoclimate reconstructions. This evaluation will be a
direct out-of-sample test of the reliability of state-of-the-art
models to simulate climate changes, and particularly the cli-
mate warming.

Neither one of these interglacial simulations is a perfect
analog for the future, and each interglacial has distinct dif-
ferences in forcings and in the initial state of the climate sys-
tem. In a sense this is advantageous because it allows us to
investigate the response of the system under different con-
ditions. Sensitivity studies allow us to assess which results
may be directly transferrable to future climate projections. In
the case of the midHolocene simulations, we have the advan-
tageous ability to assess Earth’s response to elevated boreal
summer insolation alone, with which we can compare model
results against a plethora of observations. Estimated boreal
summer warming for this period is roughly equivalent to the
summer warming simulated for the mid to late 21st century.
In the case of the lig127k simulations, we have another ad-
vantageous end member where boreal summer insolation was
even greater than the middle Holocene and that forced even-
tually higher-than-present sea levels. Higher temperatures in
the polar regions, particularly during the summer months,
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directly influence sea ice and the ice sheets. The data evi-
dence provides a means of evaluating whether we are captur-
ing this sensitivity correctly in models being used for projec-
tions of future climate change. Consequently, this provides
a potential imperfect analog for the end of this century and
beyond. For example, Blaschek et al. (2015) found that the
influence of freshwater forcing due to Greenland ice-sheet
melting is the same, regardless of the background climate.
In other cases, the response may be more strongly dependent
upon the initial state, such as the response of polar amplifica-
tion in Greenland, which was found to be sensitive to the pre-
scribed ice-sheet elevation (Masson-Delmotte et al., 2006).

PMIP4 will collaborate with other CMIP6 projects (Ka-
gayema et al., 2016). The output from the lig127k simula-
tion, for example, will be used to force standalone ice-sheet
experiments (ism-lig127k-std) in ISMIP6. This will comple-
ment the suite of standalone ISMIP6 ice-sheet experiments
(Nowicki et al., 2016; http://www.climate-cryosphere.org/
activities/targeted/ismip6) for the recent past and future and
will add to increase our understanding of the ice-sheet sensi-
tivity to climate changes. The PMIP4-CMIP6 midHolocene
and lig127k simulations, and associated sensitivity experi-
ments, are also relevant to analyses of sea-ice feedbacks to
climate in SIMIP (Notz et al., 2016) and to assessments
of the role of dust forcing by AerChemMIP (Collins et al.,
2017). Beyond CMIP6, the planned PMIP4-CMIP6 inter-
glacial simulations are relevant to the Grand Challenges set
by the World Climate Research Programme (WCRP). Both
the midHolocene and the lig127k simulations are relevant to
the Grand Challenge “Clouds, Circulation and Climate Sen-
sitivity”, which has a major focus on the controls on the
monsoon circulation. Also, the lig127k simulation is par-
ticularly relevant to the Grand Challenge “Melting Ice and
Global Consequences”, which addresses the stability of the
ice sheets. Those simulations carried out with biogeochemi-
cal cycles enabled are relevant to the Grand Challenge “Car-
bon Feedbacks in the Climate System”.

Data availability. The forcing and boundary condition data sets
described in this paper are available in the PMIP4 reposi-
tory (2017) https://pmip4.lsce.ipsl.fr/doku.php/exp_design:index.
After final acceptance of this paper, they will be made avail-
able also through Input4MIPs (https://esgf-node.llnl.gov/projects/
input4mips/; see the “Input4MIPs summary” living document there
on the progress of this process).

The Tier 1 midHolocene and lig127k simulations are part
of the CMIP6 experiment family and data will be distributed
through the official CMIP6 channels via the Earth System
Grid Federation (ESGF, https://earthsystemcog.org/projects/wip/
CMIP6DataRequest). A minimum of 100 years of output is required
to be uploaded for each simulation (usually the final 100 years of
the simulation). However, given the increasing interest in analyzing
multi-decadal variability (e.g., Wittenberg, 2009) and the availabil-
ity of reconstructions of ENSO (El Niño–Southern Oscillation) and

other modes of variability (see Sect. 4), modeling groups are en-
couraged to provide outputs for at least 500 years if possible.

In addition, the difference in orbital configuration between
127 ka, 6 ka and preindustrial means that there are differences in
month and season length that should be accounted for in calculat-
ing seasonal changes (Kutzbach and Gallimore, 1988). To be able
to account for this effect when comparing the simulations to the
paleoclimate reconstructions, daily outputs of at least surface 2 m
temperature (tas), precipitation (pr) and 10 m winds (uas) should
be archived. If not possible, a less accurate but probably adequate
approach would be to use a program that provides an approximate
estimate of monthly means on the fixed-angular celestial calendar
from the fixed-day calendar.

Data from PMIP4-only Tier 2 and 3 simulations must be pro-
cessed following the same standards as Tier 1 for data processing
(e.g., CMOR standards) and should be distributed via the PMIP4
ESGF or the CMIP6 ESGF Tier 2 and Tier 3 databases. Model-
ing groups producing these simulations are responsible for securing
suitable space on ESGF nodes. These experiments will follow the
same naming, variable convention and format, and documentation
requests as the Tier 1 PMIP4-CMIP6 experiment so as to be com-
pliant with ESGF database requirements.

The list of variables requested for the PMIP4-CMIP6 pa-
leoclimate experiments can be found here: http://clipc-services.
ceda.ac.uk/dreq/u/PMIP.html. This request is presently processed
by the CMIP6 Working Group for Coupled Modeling Infras-
tructure Panel (WIP) into tables, which define the variables in-
cluded in the data request to the modeling groups for data
to be contributed to the archive. The most up-to-date list in-
cluding all variables requested for CMIP6 can be found at
the WIP site: http://proj.badc.rl.ac.uk/svn/exarch/CMIP6dreq/tags/
latest/dreqPy/docs/CMIP6_MIP_tables.xlsx.

The last two columns in each row list MIPs associated with each
variable. The first column in this pair lists the MIPs, which request
the variable in one or more experiments. The second column lists
the MIPs proposing experiments in which this variable is requested.

As the Supplement to this paper we provide version 1.00.05
(April 2017). We note, however, that this document is still in de-
velopment and that inconsistencies may still exist.

The only variables defined specifically in PMIP are those de-
scribing oxygen isotopes for model systems that calculate these data
interactively (Kageyama et al., 2016).

This list represents what is currently available from the official
CMIP6 source (http://proj.badc.rl.ac.uk/svn/exarch/CMIP6dreq/
tags/latest/dreqPy/docs/CMIP6_MIP_tables.xlsx).

For updates, users should refer to the website with the
PMIP data request (https://pmip4.lsce.ipsl.fr/doku.php/database:
pmip4request#the_pmip4_request).

The Supplement related to this article is available
online at https://doi.org/10.5194/gmd-10-3979-2017-
supplement.
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