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ABSTRACT
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During volcanic eruptions, Volcanic Ash Advisory Centres issue ash advi-

sories for aviation showing the forecasted outermost extent of the ash cloud.

During the 2010 Icelandic volcano Eyjafjallajökull eruption, the UK Met Of-

fice produced supplementary forecasts of quantitative ash concentration, due

to demand from airlines. Additionally, satellite retrievals of estimated vol-

canic ash concentration are now available. To test how these additional graph-

ical representations of volcanic ash affect flight decisions, whether users infer

uncertainty in graphical forecasts of volcanic ash, and how decisions are made

when given conflicting forecasts, a survey was conducted of 25 delegates rep-

resenting UK research and airline operations dealing with volcanic ash. Re-

spondents were more risk-seeking with safer flight paths and risk-averse with

riskier flight paths when given location and concentration forecasts compared

to when given only the outermost extent of the ash. Respondents representing

operations were more risk-seeking than respondents representing research.

Additionally, most respondents’ hand-drawn no-fly zones were larger than

the areas of unsafe ash concentrations in the forecasts. This conservatism

implies that respondents inferred uncertainty from the volcanic ash concen-

tration forecasts. When given conflicting forecasts, respondents became more

conservative than when given a single forecast. The respondents were also

more risk-seeking with high-risk flight paths and more risk-averse with low-

risk flight paths when given conflicting forecasts than when given a single

forecast. The results show that concentration forecasts seem to reduce flight

cancellations while maintaining safety. Open discussion with the respondents

suggested that definitions of “uncertainty” may differ between research and

operations.
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1. Introduction43

a. Background44

Volcanic ash is a significant hazard to aviation. For example, volcanic ash contains silica parti-45

cles, which melt when ingested into airplane engines. This can cause temporary engine failure and46

permanent engine damage. Although avoiding flying through volcanic ash reduces risk of engine47

damage or failure, it also disrupts air traffic, resulting in substantial financial losses for the aviation48

industry. For example, the 2010 eruption of Icelandic volcano Eyjafjallajökull disrupted airspace49

over Europe for 13 days with over 95,000 flights grounded. This cost an estimated e3.3 billion in50

losses to the airline industry (Mazzocchi et al. 2010). One reason the event was so disruptive was51

that it occurred in the highly congested European airspace: 879 million people traveled by air in52

the European Union in 2014 (European Commission 2016). The 2010 eruption was not necessarily53

a rare event: a study of historic eruptions in Iceland over the past 1,100 years shows that volcanic54

eruptions occur 20–25 times every 100 years, with approximately three-quarters of these erup-55

tions being explosive (Thordarson and Larsen 2007). Some of these eruptions can release much56

more ash into the atmosphere and erupt for longer (months to years) than the 2010 Eyjafjallajökull57

eruption (Thordarson and Larsen 2007). Globally, volcanic eruptions occur nearly daily.58

The decision to fly or not during volcanic eruptions is solely the responsibility of the airline59

operator, not the Civil Aviation Authority (CAA, Safety and Airspace Regulation Group 2014).60

However, the CAA does require a safety risk assessment to be conducted before the operator is61

allowed to fly in airspace contaminated by volcanic ash. The safety risk assessment ensures that62

the operator has a safety management system, has a proven safety record, has the ability to evaluate63

volcanic ash risk, has documented procedures (such as how to avoid ash en-route), has received64

training in unusual circumstances and emergencies, and understands the impact of volcanic ash on65
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the aircraft. The safety risk assessment must then be approved by the CAA (Safety and Airspace66

Regulation Group 2014).67

The other requirement the CAA places on flights in airspace affected by volcanic ash is that68

operators are required to use Volcanic Ash Advisory Centre (VAAC) advisories, which are pro-69

duced both graphically and in a text format. The London VAAC, based at the UK Met Office, is70

responsible for issuing volcanic ash advisories for the United Kingdom, Republic of Ireland, Ice-71

land, and Scandinavia. The volcanic ash advisories, approved by the International Civil Aviation72

Organization, forecast the furthest extent of the ash cloud on three pre-approved flying altitudes.73

b. Past literature74

Questions of decision making in natural hazards have been widely studied, involving participants75

who are both experts and non-experts. Experts may behave differently from non-experts because76

of their familiarity with the hazard, data presentation, and the types of decisions that are made in77

the face of these hazards. Indeed, experts have been shown to have different risk perceptions than78

non-experts in hazards such as flash flooding (Morss et al. 2016) and therefore may be expected79

to behave differently in decision tasks.80

However, similar to non-experts, experts can succumb to cognitive biases such as positive versus81

negative framing (e.g., Taylor et al. 1997) and anchoring (e.g., Whyte and Sebenius 1997; Englich82

et al. 2006). Additionally, some studies suggest that experts may not behave differently in decision-83

tasks than non-experts. In a study of decision making with different types of wind forecasts, both84

expert and novice forecasters had similar results: they performed most accurately when using a85

box plot, succumbed to anchoring when the worst-case scenario forecast was presented, and chose86

a box plot as easiest to use as a forecast aid (Nadav-Greenberg et al. 2008a).87
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Other studies suggest that the classification of a participant as “expert” may not be as important88

as other factors. In a decision-task study of military personnel, the amount of direct experience in89

a Combat Operations Center significantly affected decisions whereas rank and years of service did90

not (St. John et al. 2000). In another decision task, numeracy (which can vary widely across expert91

groups) predicted how well participants performed when given probabilistic information (Peters92

et al. 2006). Because there is not necessarily a distinction between how experts and non-experts93

perform in decision tasks, literature using both groups as participants have guided our research94

questions (discussed in section 1c).95

Both experts and non-experts are able to process and use forecast information that is inherently96

uncertain to make decisions. For example, a non-expert student sample was able to understand97

basic hurricane track information (Wu et al. 2014). Additionally, evidence suggests that experts98

(e.g., St. John et al. 2000; Aerts et al. 2003; Riveiro et al. 2014) and non-experts (e.g., Morss et al.99

2010; Correll and Gleicher 2014) interpret probabilities well enough to inform decisions when100

given uncertainty information on topics such as military tactics, land use, air traffic control, voter101

preference, snowfall predictions, and payout expected by a fund. Even with unfamiliar hazards or102

information, risk judgments can improve when training is provided (e.g., McCloy et al. 2007).103

Although experts and non-experts can understand and use natural hazard information in decision104

making, their decisions may change based on how the information is presented. For example, for105

flood risk, a sample of non-experts indicated that, “within 40 years, there’s a 33% probability of a106

flood” was riskier than “each year, there’s a 1% probability of a flood,” even though they represent107

the same likelihood of flooding (Keller et al. 2006). Similarly, the way information is shown for108

other hazards such as wind, hurricanes, snow, and precipitation has been shown to affect decisions109

in experts (e.g., Nadav-Greenberg et al. 2008b; Cox et al. 2013) and non-experts (e.g., Ibrekk and110

Morgan 1987; Abraham et al. 2015; Ruginski et al. 2015). However, in one study on hurricanes,111

7



non-experts perceived no significant difference in the likelihood of a hurricane striking a location112

when the hurricane forecasts showed the forecast track only, uncertainty cone only, or forecast113

track with an uncertainty cone (Wu et al. 2014). These studies suggest that further research needs114

to be conducted on the effect of information design on decision making.115

One subset of research on decision making investigates whether giving more detailed infor-116

mation about a natural hazard affects respondents’ decisions. Providing probabilistic forecast117

information rather than deterministic forecast information has been shown to encourage more eco-118

nomically rational decisions for both experts (e.g., Kirschenbaum and Arruda 1994; St. John et al.119

2000; Nadav-Greenberg et al. 2008b; Riveiro et al. 2014) and non-experts (e.g., Joslyn et al. 2007;120

Nadav-Greenberg and Joslyn 2009; Roulston and Kaplan 2009; Joslyn and LeClerc 2012). Elab-121

oration of the impact of a hazard also affects decisions: more serious volcanic eruption impacts122

encouraged more members of a community to take protective action (Ekker et al. 1988).123

Increasing the resolution of the hazard information has also been tested. In the United States,124

reducing the size of tornado warnings from county-level to be polygons within and between coun-125

ties had an effect on protective action, with more non-experts choosing to take protective action126

when given smaller warning polygons proximate to their locations (Nagele and Trainor 2012).127

When testing between deterministic and probabilistic tornado warning graphics, Ash et al. (2014)128

found that probabilistic forecasts encouraged non-expert protective action in the highest risk ar-129

eas. In addition, non-experts indicated a non-zero probability of a tornado occurring just outside130

the warning areas, whereas with the deterministic polygon, the risk was perceived as localised to131

within the polygon (Ash et al. 2014). Providing airline pilots more information about the predicted132

future location of nearby aircraft encouraged safer decisions to prevent collisions (Wickens et al.133

2000). These studies suggest that providing more information about a hazard encourages safer and134

more economically rational decisions.135
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Another important aspect of decision research is how users interpret deterministic forecasts136

when no uncertainty is provided. When given a deterministic forecast and decision task for either137

managing reservoir levels given a rain forecast or protecting crops given a temperature forecast,138

non-experts took protective action even when the forecast was on the safe side of the given thresh-139

old, inferring there was uncertainty in the forecast (Morss et al. 2010). In another study, when140

non-experts were only given a deterministic windspeed or temperature forecast, they forecasted141

much lower values than those given in the forecast, indicating they adjusted the forecast, perhaps142

based on the amount of uncertainty they perceived in the forecast (Joslyn et al. 2011). Non-experts143

also inferred additional uncertainty information into a probability of an event occurring in a one-144

week period, suggesting that the event was more likely toward the end than the beginning of the145

week (Doyle et al. 2014). These studies indicate that experts and non-experts infer uncertainty146

into text-based deterministic forecasts when it is not explicitly stated.147

Uncertainty can also be inferred in graphical forecasts. For example, non-experts tend to infer148

a normal distribution of probabilities into a deterministic forecast, with a higher probability in the149

middle of a graphically defined area and lower probabilities toward the outside in both temperature150

forecasts (e.g., Tak et al. 2015) and tornado warnings (e.g., Sherman-Morris and Brown 2012; Ash151

et al. 2014; Lindell et al. 2016). However, in some circumstances, such as with tornadoes, the152

highest risk areas are at the edges, not in the middle of the polygon (Ash et al. 2014). Another153

way in which inferred uncertainty is evident is in the perception of risk just outside the warning or154

forecast area. Some studies have shown that non-experts acknowledge a low, but non-zero tornado155

probability just outside of tornado warning areas (e.g., Nagele and Trainor 2012; Lindell et al.156

2016) and the hurricane cone of uncertainty graphic (e.g., Wu et al. 2014). However, other studies157

on the hurricane cone of uncertainty graphic suggest that non-experts gain little understanding158

of the uncertainty in hurricane track forecasts from the polygon graphic either because they are159
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too focused on the forecast track line (e.g. Broad et al. 2007) or because they only interpret the160

direction of hurricane motion from the graphic (e.g., Wu et al. 2015). When inferring uncertainty161

into deterministic graphical forecasts, users may be inferring uncertainty incorrectly, which may162

lead to unsafe decisions.163

c. Research questions164

The combination of previous decision-based research and the 2010 Eyjafjallajökull eruption165

brought up three questions, which are the focus of this paper. First, during the 2010 Eyjafjal-166

lajökull eruption, the UK Met Office began producing supplementary forecasts of ash concen-167

tration in addition to the official VAAC forecasts showing the furthest extent of the ash cloud168

(Webster et al. 2012). Additionally, satellite retrievals of volcanic ash concentrations are becom-169

ing available. These changes in availability of graphical representations raised the question: how170

are different representations of ash concentration interpreted and used to make decisions by the171

aviation industry as well as the researchers who created these graphics?172

Past research suggests that increasing the amount of information given about hazards leads to173

decisions that are safer and more economically rational. Therefore, the responses to the UK Met174

Office supplementary volcanic ash concentration forecasts and satellite retrievals of volcanic ash175

concentration may encourage safer decisions while still reducing the number of unnecessary flight176

cancellations. However, previous research has not tested how including more information graphi-177

cally affects decision making in a volcanic ash context.178

The second research question addressed in this article is: without uncertainty (e.g., uncertainty179

in 3D location or concentration of volcanic ash) being explicitly represented graphically in vol-180

canic ash forecasts, how much uncertainty are users inferring from the forecasts? Does inferring181

uncertainty result in risky or over-conservative flight decisions? Past research suggests that users182
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may infer uncertainty into both text-based and graphical deterministic forecasts, but they may183

make different inferences for volcanic ash. Therefore, it is important to understand how users184

make inferences about uncertainty from volcanic ash forecasts.185

During the 2010 Eyjafjallajökull eruption, more than one VAAC provided volcanic ash forecasts,186

which were sometimes slightly different due to differences in the model being used and assump-187

tions made about the state of the volcano. This problem inspired our third research question: how188

are operational decisions made when experts are given conflicting forecasts? Little research has189

been conducted on this topic, although it has been shown previously that experts do seek multiple190

sources of information to confirm their decisions (e.g., Morss et al. 2015).191

To answer these questions, a survey was conducted at the National Environmental Research192

Council (NERC) Volcanic Ash Workshop in London on 22 February 2016. The workshop brought193

together 25 delegates representing research and airline operations (including pilots, engine man-194

ufacturers, airline representatives, and the Civil Aviation Authority) to discuss recent advances in195

volcanic ash forecasting and observations, ongoing challenges, and visualizations.196

2. Methods197

a. Participants198

The Volcanic Ash Workshop was a one-day meeting in London, funded by the National Environ-199

mental Research Council (NERC) on 22 February 2016, designed to encourage discussion about200

volcanic ash from both academic and private sectors. The participants invited to the workshop201

were a mixture of airline operators, policymakers, and researchers (both academic and embedded202

in the aviation industry). Invitations to the workshop were extended to colleagues the co-authors203

had worked with previously on the topic of volcanic ash with further invitations being extended204
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by the recommendations of those invited. Out of 78 individuals invited to the Volcanic Ash Work-205

shop, 25 attended (excluding the co-authors and organizers). The final survey was completed by206

all 25 delegates. All attendees of the Volcanic Ash Workshop, except for the co-authors of this207

paper, agreed to participate in the survey.208

Of the 25 respondents, 16 represented research (the majority of researchers were working at a209

university, but some were researchers embedded in institutions such as the UK Met Office) and210

9 represented operations (including flight planners, airline manufacturers, airline representatives,211

pilots, and employees of the CAA). The level of job experience ranged from 2–18 years with a212

mean of 7 years. The respondents ranged in age from 28–69 with a mean age of 46. Most (80%)213

respondents were male. Although the 25-respondent sample size for this decision-making survey214

is small, expert groups are naturally smaller than public samples.215

Because the sample size was small, comparing responses between other variables, such as age216

and gender, was not possible either because the sample size would be too small for one group or217

because no meaningful divisions between participants could be made. Comparisons between job218

experience were tested between those with less than or equal to five years of job experience and219

those with more than five years of job experience. The responses for these two groups were not220

significantly different.221

b. Materials222

This study was given favorable ethical opinion for conduct by the University Research Ethics223

Committee. The survey used in this study was piloted with five PhD students from the Univer-224

sity of Reading Meteorology Department. The survey was distributed once the delegates arrived.225

The delegates were informed that participation was entirely voluntary, however every delegate226

participated. Respondents were given approximately 45 minutes to complete the survey. After227
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they had completed the survey, there were a series of presentations from operations specialists228

and researchers discussing current challenges and recent advances in volcanic ash forecasting and229

observations. At the end of the day, there was an open group discussion about forecasting and230

communicating uncertainty of volcanic ash in aviation.231

The survey consisted of four sections: low-, medium-, and high-risk flight decisions across three232

different graphic types; drawing no-fly zones onto four volcanic ash forecasts; four flight deci-233

sions given conflicting information; and sociodemographic information. The four sections were234

presented in the same order for each respondent, however the order of the graphics or forecasts235

were randomized within each section.236

In the first section, respondents were given four flight paths overlaid onto a volcanic ash forecast237

(Fig. ??a). The respondents then determined if they would approve the flight paths. The four238

flight paths were high risk (flight path A, going through the center of the volcanic ash plume),239

medium–high risk (flight path B, going through the polygon and going just outside the high levels240

of concentration in the filled contour and satellite graphics, described further below), medium–low241

risk (flight path C, going through the polygon and going just inside medium levels of concentration242

in the filled contour and satellite graphics), and low risk (flight path D, skimming the outside of243

the volcanic ash plume). Respondents were given the same flight paths and forecasts for three244

different graphic types: polygon, filled contour, and satellite.245

The polygon graphic was similar to the official VAAC forecasts, showing the outermost extent246

of volcanic ash. The VAAC graphic is created by forecasters using an atmospheric dispersion247

model, local observations, reports from pilots, and satellite data (described below) (Millington248

et al. 2012). Operationally, these forecasts are presented in both graphical and text format so they249

can be transmitted to pilots mid-flight. Due to character limits in the text forecasts, the VAAC250

official polygons have limited complexity.251
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The filled contour graphic was similar to the forecast distributed by the UK Met Office since252

the 2010 Eyjafjallajökull eruption and showed both ash location and concentration. Similar to253

the polygon graphic, the filled contour graphic is created by forecasters using an atmospheric254

dispersion model, local observations, reports from pilots, and satellite data (Millington et al. 2012).255

Concentration levels for the filled contour graphic were shown in three bands: 200–2000, 2000–256

4000, and > 4000 µg m−3, similar to what is used operationally.257

The satellite graphic simulated satellite ash retrievals. To produce this graphic operationally,258

difference in brightness temperature from satellite observations are used at three different wave-259

lengths. Then, using data from a numerical weather prediction model and a radiative transfer260

model, ash column loading (the sum of all volcanic ash in a column), ash cloud height, and ash261

particle size are modeled. These quantities are dependent not only on the numerical weather pre-262

diction and a radiative transfer models, but also on the assumed refractive index of the ash. The263

satellite representation in the survey was artificially created and had six levels of concentration264

(500, 1000, 2000, 3000, 4000, and 5000 µg m−3), rather than three for the filled contour represen-265

tation.266

It is of note that the level of ash concentration that was safe to fly through was debated as267

the 2010 Eyjafjallajökull eruption continued (for more information on the timeline of events,268

please see http://www.caa.co.uk/Safety-initiatives-and-resources/Safety-projects/Volcanic-ash/A-269

history-of-ash-and-aviation/). Further research has since been conducted on the effects of vol-270

canic ash on airplane engines to further clarify what amount of volcanic ash is considered safe271

(e.g., Clarkson et al. 2016).272

The purpose of the first section of the survey was twofold. First, by comparing decisions for273

different levels of risk for the same graphic, we could determine the risk appetite for each re-274

spondent. Second, by comparing the same flight path across different graphical representations,275
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we determined how different graphical representations affected decision making. The responses276

were checked for consistency. Responses of one respondent, who appeared to misunderstand the277

task, were removed from the numerical analysis of this section only because their flight decisions278

shifted towards approval as ash concentrations increased. The respondent’s qualitative feedback279

in this section and quantitative and qualitative responses from the other sections were included in280

this paper.281

To establish context for responses from the first section, respondents were asked their famil-282

iarity with, trust in, and preferences for the three representations: polygon, filled contour, and283

satellite. Familiarity and trust were measured by rulers on 10-cm visual analogue scales ranging284

from “Never seen before” (0 cm) to “Have seen frequently” (10 cm) for familiarity and “Not at all285

trustworthy” (0 cm) to “Extremely trustworthy” (10 cm) for trust. Preference was measured as a286

multiple choice question.287

The second section tested how much uncertainty respondents perceived in the filled contour and288

satellite graphical representations as well as whether including a gap in the forecast ash concentra-289

tion influenced their perception of uncertainty. In the second section, respondents were given four290

different forecasts and were asked to draw no-fly zones directly on the forecast. The forecasts were291

shown for two different graphical representations (filled contour and satellite) and two different292

shapes of volcanic ash plume. The two shapes of volcanic ash plume were a “solid” ash plume293

with concentric concentration levels and a “gap” ash plume with two areas of high volcanic ash294

concentration and lower concentrations between them (Fig. ??b).295

To measure the perception of uncertainty in the second section, each no-fly zone map was296

scanned into Adobe Illustrator (a vector graphics software package). The boundary edge of the297

no-fly zones drawn by each participant were then traced as vector paths and sorted into individual298
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layers. With all of the no-fly zones digitized as vectors, their areas were calculated and the no-fly299

zones were overlaid and compared visually in grouped layers.300

The purpose of the third section of the survey was to investigate the impact of conflicting forecast301

information on decision making by analyzing the respondents’ flight decisions and confidence302

levels. Respondents were given the same flight path overlaid onto two different filled contour303

forecasts, described as being issued simultaneously, and were asked whether they would approve304

the flight path. The forecasts were coded based on what color contours the flight paths went305

through: blue–blue, grey–grey, red–blue, and red–grey (Fig. ??c). Additionally, respondents were306

asked what further information would help them make a decision to fly or not fly given conflicting307

forecasts.308

For all the flight decisions, respondents were told that the forecast was issued three hours ago309

and valid now, when flights would take off. They were also told they had permission to fly through310

medium concentrations of volcanic ash (2000–4000 µg m−3) corresponding to the blue and grey311

areas in the filled contour representation and the green, yellow, and orange areas in the satellite312

representation (Fig. ??). This information was important because the safe level of ash concen-313

tration varies according to each airline’s safety assessment, required by the CAA. None of the314

representations explicitly showed uncertainty, even though uncertainty was inherent in all three315

representations. For all flight decisions, respondents were also asked how confident they were316

in their decision, which was marked on a 10-cm visual analogue scale ranging from “Not at all317

confident” (0 cm) to “Extremely confident,” (10 cm) and was measured using a ruler. All decision318

questions were also followed by an open-ended question asking what information influenced their319

decision.320

The fourth section gathered respondents’ job title (used to determine if the respondent worked321

in research or operations), length of time in current job, age, and gender.322
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3. Results323

a. How do graphical representations of volcanic ash affect operational decisions?324

Comparing flight decisions between graphical representations, fewer respondents approved325

high-risk flight paths (Fig. ??a) and more respondents approved low- and medium–low-risk flight326

paths (Fig. ??c and d) for the filled contour and satellite representations than the polygon rep-327

resentation. In the high-risk flight path, 17% of respondents approved the flight when given the328

polygon representation compared with 0% for the filled contour and 4% for the satellite repre-329

sentations (Fig. ??a). In the low-risk flight path, 71% of respondents approved the flight when330

given the polygon representation compared with 83% for the filled contour and 83% for the satel-331

lite representations (Fig. ??d). In other words, given concentration and location information, the332

respondents were more risk-averse for the riskier flight paths and risk-seeking for the safer flight333

paths. The exception was the medium–high-risk flight path, where both the polygon and filled con-334

tour representations encouraged risk-seeking decisions and the satellite representation encouraged335

risk-averse decisions (29% approved the flight path for both polygon and filled contour represen-336

tations compared with 21% for satellite representation) (Fig. ??b).337

The filled contour and satellite representations also increased confidence in the respondents’338

decisions (Fig. ??e–h). The mean confidence across all flight paths, was 6.3 for the polygon,339

7.1 for the filled contour, and 7.2 for the satellite. Across all flight paths, there was a significant340

difference at the 5% level between mean confidence ratings across the different types of graphical341

representation (ANOVA, F = 3.2, p = 0.04).342

In an open-ended question about what information influenced their flight decisions, over 50%343

of respondents indicated they needed more information to help them make a decision when given344
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the polygon representation, compared with 20% for the filled contour and 16% for the satellite345

representation.346

Respondents were asked in an open-ended format what further information they would need347

from each graphical representation to be more confident in their decisions. The responses varied348

widely and included altitude information, observations, past model performance, meteorologi-349

cal information, higher resolution, and uncertainty information. Interestingly, nine of the sixteen350

respondents representing research mentioned needing uncertainty, probability, accuracy, or confi-351

dence information whereas no respondents representing operations mentioned any of the above.352

Separating the flight decisions by occupation, respondents working in operations (n =9) were353

more risk-seeking than those in research (n =15), with a higher percentage of respondents choos-354

ing to approve the flight path for all levels of risk (52% of the decisions of respondents in opera-355

tions compared with 38% of the decisions of respondents in research, Fig. ??a). This relationship356

was not statistically significant, perhaps because of the small sample size (t-test, t = 1.4, p= 0.18).357

Respondents representing operations were more confident in their decisions across all flight paths358

(means 7.4–9.0) than those in research (means 5.1–7.4, Fig. ??b). The difference in mean con-359

fidence between respondents in operations and research was significant at the 5% level (t-test,360

t = 4.6, p < 0.001).361

The respondents were most familiar with the filled contour (mean 6.7) and polygon (mean 6.1)362

representations and least familiar with the satellite representation (mean 5.3, Fig. ??a). However,363

the respondents trusted the satellite representation (mean 6.6) more than the polygon (mean 5.4)364

and filled contour (mean 4.8) representations (Fig. ??b). Respondents in operations (n =9) and365

research (n=16) had different familiarity in the graphical representations. Respondents in research366

were most familiar with the filled contour representation (mean 6.0), followed by the satellite367

(mean 5.1) and polygon (mean 4.9) representations, compared with those in operations who were368
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most familiar with the polygon (mean 8.3), followed by filled contour (mean 7.9), and satellite369

representations (mean 5.6, Fig. ??a).370

Respondents trusted the satellite graphical representation the most (mean 6.6) followed by the371

polygon (mean 5.4) and filled contour (mean 4.8) representations. Respondents in operations372

trusted all graphical representations (mean 6.4) more than those in research (mean 5.1, Fig. ??b).373

The difference in mean trust between operations and research was not statistically significant at374

the 5% level (t-test, t = 1.3, p = 0.22).375

Product preferences varied among the respondents and whether they represented research or376

operations. Respondents in research preferred filled contour (45%) and satellite representations377

(45%) while respondents in operations preferred the satellite representation (42%, Fig. ??c).378

Only respondents representing operations preferred “other” representations and specified graphics379

showing ash column loading and observational data. Ash column loading, which shows the sum380

of all the volcanic ash in a column, is similar to the satellite representation given in the survey,381

which showed the peak concentration in the column.382

b. Do users infer uncertainty in graphical forecasts of volcanic ash?383

When given a single volcanic ash forecast and four flight paths of differing risk (section 1 of384

the survey, Fig. ??a), the respondents were conservative in their decisions. Only 79% of the low-385

risk flight paths (Path D), which travelled through safe concentrations of volcanic ash across all386

graphical representations, were approved (Fig. ??d). This conservatism suggests that respondents387

infer uncertainty in the forecasts, otherwise 100% of respondents would approve the low-risk flight388

paths.389

Respondents were asked to draw a no-fly zone around two different shapes of volcanic ash390

forecasts, one showing a gap between high concentrations of volcanic ash (simulating potential391
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error in satellite retrieval of volcanic ash concentrations, as described in section 2) and one with392

a single area of high volcanic ash concentration (section 2 of the survey, Fig. ??b). Six of the393

twenty-four respondents drew their no-fly zones to allow flights through the gap between the two394

areas of high volcanic ash concentrations, shown by overlaying the no-fly zones (Fig. ??). Four of395

these six respondents were in operations.396

To quantify the differences in the perception of forecast uncertainty for the gap and solid fore-397

casts, the areas of the no-fly zones drawn by respondents were calculated. Respondents tended to398

draw no-fly zones with larger areas for the gap (mean 1214 mm2) than for the solid (mean 1013399

mm2) forecasts (Fig. ??b). However, the difference in means between solid and gap forecasts400

were not significantly different at the 95% level (t-test, t =−1.0 p = 0.32). The areas drawn in the401

different conditions may have been influenced by the larger area red zone in the gap (357 mm2)402

than the solid (241 mm2) forecast.403

Most of the respondents’ no-fly zone areas were larger than the areas of the red zones on the404

forecasts, again suggesting that the respondents inferred uncertainty from the forecasts. For the405

gap forecasts, the hand-drawn no-fly zones were between 7% smaller and 866% larger than the red406

zone (mean size was 231% larger than the red zone). For the solid forecasts, the hand-drawn no-fly407

zones were between 31% smaller and 1,182% larger than the red zone (mean size was 305% larger408

than the red zone). Only two respondents drew no-fly zones that were within 10% of the size of409

the red zone for the gap forecast and only three for the solid forecast. Because so few respondents410

drew no-fly zones that were within 10% of the size of the red zones for both forecasts, we assume411

that the no-fly zones were intentionally drawn larger than the red zone.412

There was little difference in confidence in no-fly zones for the gap than the solid forecasts (Fig.413

??c). The mean confidence in the no-fly zone for the gap forecasts was 5.1 compared with 5.3 for414

20



the solid forecasts. Again, the mean confidence was not significantly different between the solid415

and gap no-fly zones (t-test, t = 0.3, p = 0.73)416

The combination of being conservative in decisions and drawing larger no-fly zones suggests417

that respondents infer uncertainty in forecasts. This will be discussed further in section 4.418

c. How do users make decisions when given conflicting forecasts?419

In the third section of the survey, respondents were given conflicting forecasts for the same420

flight path and asked if they would approve the flight path (Fig. ??c). Recall that respondents were421

informed they could fly through blue and grey regions on the map, but not red regions.422

When given conflicting forecasts, respondents were overall more risk-averse for the lower-risk423

decisions (neither forecast indicates the flight path travels through unsafe concentrations, blue–424

blue and grey–grey) and risk-seeking for the higher-risk decisions (one forecast indicates the flight425

path travels through unsafe concentrations, red–blue and red–grey, Fig. ??a) compared with the426

single forecast decisions from section 1 of the survey. For the lower-risk forecasts, only 52% of427

respondents would approve the flights in the blue–blue forecast and 52% would approve the flights428

in the grey–grey forecast (Fig. ??a), more conservative than when given a single forecast (79% and429

61% would approve the low- and medium–low-risk forecasts, Fig. ??d and c, respectively). For430

the higher-risk forecasts, 16% would approve the flights in the red–blue forecast and 20% would431

approve flights in the red–grey forecasts (Fig. ??a) (26% and 7% would approve the medium–high-432

and high-risk single forecasts, Fig. ??a and b, respectively).433

Respondents representing operations were more risk-seeking than those in research. For the434

higher-risk forecasts, 22% of respondents representing operations would approve the flights in435

the red–blue forecast and 22% in the red–grey forecasts compared with 13% and 19% of those436

in research, respectively. In the lower-risk forecasts, 67% of respondents in operations would437
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approve the grey–grey forecast compared with 44% of those in research. The only exception was438

the lowest-risk decision (blue–blue), where 44% of respondents representing operations approved439

the flight path compared with 56% of those in research (Fig. ??a), as was the case for single440

forecasts (see section 3a). The difference in mean decision was not statistically significant at the441

5% level (t-test, t = 0.4, p = 0.71).442

Confidence levels were lower for decisions given conflicting forecast information than for those443

with a single forecast (Fig. ??e–h compared with Fig. ??b). For all respondents, mean confidence444

levels for decisions given conflicting forecasts ranged from 5.7–6.3, compared with 6.2–7.8 for445

single forecasts. This relationship was not statistically significant, perhaps due to small sample446

size (t-test, t =−1.6, p = 0.12). Respondents in operations were more confident in their decisions447

when given multiple forecasts (mean 6.7–8.4) than those in research (mean 4.6–5.9, Fig. ??b),448

as was the case for single forecasts (see section 3a). The difference in mean confidence between449

operations and research was significant at the 5% level (t-test, t = 2.7, p = 0.01).450

After each conflicting forecast, respondents were asked, in an open-ended format, what infor-451

mation influenced their decisions. When given conflicting forecasts, 64% of respondents indicated452

they needed more information compared with 52% of respondents in the single forecast decisions.453

Respondents were then asked what further information they needed to help them make decisions454

given conflicting forecasts. There were a wide range of suggestions, including observational data,455

past model performance, meteorological information including wind speed and direction, informa-456

tion on model input, more model ensemble members, information about damage to engines, and457

uncertainty information. Of the ten respondents requesting uncertainty information for conflicting458

forecasts, nine represented research.459
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4. Discussion460

The survey results suggested that giving volcanic ash concentration information in addition to461

the location of the outermost extent of the volcanic ash made the respondents more risk-averse462

in high-risk decisions and more risk-seeking in low-risk decisions. In an open-ended follow up463

question, respondents asked for further information more often when only given the outermost464

extent of the volcanic ash than when provided with ash concentration information. One of the465

main concerns respondents representing operations raised during the discussion at the end of the466

workshop was airline traffic disruption due to volcanic ash eruptions. Airlines want to maintain467

their high levels of safety while reducing the number of flight cancellations and diversions. In468

that context, our results suggest that providing volcanic ash concentration information is useful469

to operations because it encourages decisions to fly through safe volcanic ash concentrations and470

discourages decisions to fly through higher, potentially dangerous volcanic ash concentrations471

for aircraft. Providing more forecast information (specifically, providing probabilistic forecast472

information) had similar effects in other decision-making studies (e.g., Joslyn et al. 2007; Nadav-473

Greenberg and Joslyn 2009; Roulston and Kaplan 2009; Joslyn and LeClerc 2012). Similarly,474

providing probabilistic contours graphically in tornado warnings increased protective action in the475

highest probability areas when compared with a polygon only (Ash et al. 2014).476

Although ash concentration information seemed to improve the respondents’ decisions, provid-477

ing conflicting volcanic ash concentration forecasts, which can be the case in operations when478

multiple VAACs are producing forecasts on the same eruption, had the opposite effect. Given two479

conflicting forecasts, respondents’ decisions were more risk-seeking in high-risk situations com-480

pared with high-risk decisions given a single forecast. Respondents were also less confident in481

their decisions when given conflicting forecasts and asked for more information more often than482
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when given a single forecast. However, during the discussion at the end of the workshop, one483

respondent representing operations said their company uses both the official VAAC forecasts as484

well as proprietary volcanic ash forecasts. If these two forecasts differ, the respondent said they485

would only ever increase their no-fly zones, never decrease them. This comment is not supported486

by the quantitative results from the survey. The action of seeking multiple sources to confirm487

decisions occurred with stakeholders in flash flooding as well (Morss et al. 2015). Seeking mul-488

tiple sources, however, puts decision makers at risk of confirmation bias (preferring information489

that supports their previously held beliefs, e.g., Jonas et al. 2001). Further research into decision490

making given conflicting information is necessary, especially since stakeholders facing different491

hazards similarly seek multiple forecasts.492

The question of what further information would help decision making given conflicting forecasts493

yielded a wide range of responses for a small sample of respondents, meaning there is no one-494

size-fits-all approach to providing volcanic ash information. Thompson et al. (2015), who studied495

preferences of volcanic hazard map representations for stakeholders in New Zealand, also found496

that user needs varied widely and one map could not meet all needs. Instead, Thompson et al.497

(2015) suggest that multiple maps be used that communicate a consistent message in different498

ways to suit all users’ needs.499

An additional concern was that respondents were least familiar with, but most trusting in, the500

satellite graphical representation. The concern with respondents trusting an unfamiliar graphical501

representation is a lack of knowledge in the ways in which the representation is unreliable. For502

example, the satellite retrievals are not direct observations; they have been produced by using503

brightness temperatures from satellite observations and data from numerical weather prediction504

and radiative transfer models (e.g., Francis et al. 2012). Satellite retrievals may be affected by505

errors in the models, meteorological cloud, or the angle at which the satellite is viewing the cloud506
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(Millington et al. 2012). Additionally, satellite retrievals are not forecasts, but instead suggest507

where ash was located in the past. These locations, of course, can change over time, which is not508

currently represented in the satellite representation. Lack of understanding of the limitations of the509

satellite graphic or any other graphical representation may result in poor decision making. There-510

fore, further training on the limitations of forecasts and the satellite graphic and its shortcomings511

could be provided to end-users. Providing training on information has previously been shown to512

help risk judgements (e.g., McCloy et al. 2007).513

One suggestion of changes to volcanic ash forecasts, especially from respondents representing514

research, was to include uncertainty information. Results from the survey indicated that respon-515

dents made their own adjustments for uncertainty in the volcanic ash forecasts. For example, the516

respondents were conservative overall in their decision making, with one-fifth of respondents not517

approving flight paths through safe levels of volcanic ash concentrations, perhaps inferring uncer-518

tainty in the location and concentration of volcanic ash. Additionally, when asked to draw no-fly519

zones around forecasts, the areas of most respondents’ no-fly zones were larger than the areas of520

unsafe ash concentrations. Similarly, when a non-expert sample made decisions given determinis-521

tic rain and temperature forecasts, some took protective action even when the forecast was on the522

safe side of the threshold, again inferring uncertainty (Morss et al. 2010). Although respondents523

were told in the survey instructions the levels of ash concentrations considered safe, respondents524

may have inferred more uncertainty due to the debate over what concentration of volcanic ash was525

safe during the 2010 Eyjafjallajökull eruption and ongoing research into the effects of volcanic ash526

on airplane engines (e.g., Clarkson et al. 2016). Respondents may also have inferred uncertainty527

due to other reasons, such as not trusting the forecast.528

One problem with users inferring uncertainty is that there may actually be more or less uncer-529

tainty in the forecast depending on the conditions that day than the respondents are assuming. For530
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example, the wide range of sizes of no-fly zones implies there is no universally assumed amount of531

uncertainty in the forecasts, which could inhibit decision making. This is one explanation for the532

fact that respondents representing operations were more risk-seeking and confident than those rep-533

resenting research, approving flight paths closer to the center of the ash plume and through higher534

concentrations of volcanic ash and being more likely to allow flights through the gap between high535

concentrations of volcanic ash. If the respondents representing operations inferred less uncertainty536

in the forecast, they would make decisions to fly closer to high concentrations of volcanic ash and537

be more confident of the boundaries shown in the forecasts. One way to investigate this issue is538

to test decision making given graphical representations including uncertainty information and to539

train users on how to interpret such information. Past research suggests that including probabilis-540

tic information in forecasts helps decision making (e.g., Roulston and Kaplan 2009; Joslyn and541

LeClerc 2012; Ash et al. 2014).542

Although research indicates that uncertainty information in forecasts helps decision making, re-543

spondents in operations stated they do not want uncertainty information. During the discussion544

at the end of the workshop, respondents were asked if uncertainty information would be useful545

if provided in volcanic ash forecasts. Respondents in research were keen to provide uncertainty546

information, which could be possible using ensemble forecasts or emulators of ash dispersion547

models (Harvey et al. 2016). However, respondents in operations said they preferred deterministic548

forecasts. One respondent in operations said, “I have a fundamental problem using forecast un-549

certainty. If the best people in the world (VAACs) are not confident, are you really going to take550

the risk?” This was verified by an open-ended survey question where all of the respondents who551

specifically stated that uncertainty information would make them more confident in their decisions552

were in research. In a separate open-ended question, nine of the ten respondents who stated uncer-553

tainty information would help them make decisions given conflicting forecasts were in research.554
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Because there are so many operational decisions to be made in a short time during a volcanic555

eruption, respondents in operations were concerned that digesting uncertainty information would556

take too much time.557

Experts in volcanic ash are not the only community to prefer deterministic forecasts. Nobert558

et al. (2010) found that flood managers also preferred deterministic forecasts, stating that they559

were not convinced probabilistic information could be made useful. Perhaps providing examples560

of graphics with uncertainty and practicing implementing them in training on real eruptions in561

Southeast Asia and Alaska would provide a better understanding of whether uncertainty informa-562

tion would be useful in forecasts and also provide opportunities for verification.563

Interestingly, there seemed to be a difference in definition of “uncertainty information” between564

the respondents in operations and research. When the respondent in operations mentioned that565

their company paid for a proprietary volcanic ash forecast to compare with the official VAAC566

forecasts, the researchers in the room interpreted this action as one way to represent uncertainty:567

by providing multiple outputs for comparison. The operators did not interpret this action as seeking568

uncertainty information. This suggests there needs to be more conversation and perhaps a different569

choice of vocabulary when discussing uncertainty between operations and research. Terms such as570

“probabilistic forecasts”, “multiple model outputs”, and “confidence” might elicit different, more571

meaningful conversations between the groups than the vague umbrella term, “uncertainty.”572

It is important to note that each airline operator is responsible for decision making in volcanic573

ash eruptions. These decisions are based on the safety risk assessment submitted to the CAA574

(Safety and Airspace Regulation Group 2014). Any changes to official graphics would require575

new safety assessments to be conducted by each airline. Therefore, it would take a long time to576

implement volcanic ash forecasts including uncertainty for the aviation community. This makes577
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volcanic ash and its impact on aviation different from most industries, where communication and578

decision-making practices can change more quickly.579

5. Conclusions580

To discuss issues in forecasts and observations of volcanic ash and its effect on aviation, a group581

of 25 respondents from the United Kingdom representing operations and research were invited582

to a workshop in London. During the workshop, the respondents completed a survey consisting583

of numerous decisions given different representations of volcanic ash forecasts. The survey was584

designed to determine how different graphical representations of volcanic ash forecast affect flight585

planning decisions, if users infer uncertainty in graphical volcanic ash forecasts, and how flight586

decisions are made given conflicting volcanic ash forecasts.587

When given forecasts containing ash concentration information in addition to the predicted loca-588

tion of the outermost extent of volcanic ash cloud, respondents became more risk-seeking in flight589

paths further from the center of the ash plume and more risk-averse in flight paths closer to the590

center of the ash plume. Additionally, fewer respondents mentioned they needed more informa-591

tion to help make their decisions when given the volcanic ash concentration forecasts. Therefore,592

our results indicated providing ash concentration information seems to encourage better decision593

making by reducing the number of flight cancellations, delays, and diversions when it is safe to fly.594

However, the respondents were most trusting in and least familiar with the satellite data, indicating595

more training is needed on the uses and shortcomings of the satellite representation.596

Overall, the respondents were conservative in their decision making, with only 80% of flights597

through safe concentrations approved given a single forecast and only 50% of flights through598

safe concentrations approved given conflicting forecasts. In addition, the respondents drew no-599

fly zones that were larger than the areas of unsafe ash concentrations (no-fly zones drawn by600
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users had means of 243 and 331% larger than the gap and solid forecast unsafe concentration601

zones, respectively). This implied that the respondents inferred uncertainty in the deterministic602

volcanic ash forecasts. Respondents representing operations were more risk-seeking and confident603

than those representing research in their flight decisions, perhaps because the two groups inferred604

different levels of uncertainty in the forecasts.605

When given two conflicting forecasts, respondents became more conservative, being less likely606

to approve flight paths. However, respondents were more risk-seeking in high-risk flight paths607

(when one forecast suggested the flight would travel through unsafe concentrations) and more608

risk-averse in low-risk flight paths (when neither forecast suggested the flight would travel through609

unsafe concentrations) when given conflicting forecasts compared with single forecasts. Despite610

this observation, during the discussion following the survey, respondents indicated that when given611

conflicting information, they only ever increase their no-fly zone or become more risk-averse. This612

anecdotal evidence contradicts the findings from the survey and indicates inaccurate perception of613

the process amongst users. Because conflicting forecasts can be present in many natural hazards,614

further research in decision making given conflicting information is warranted.615

There was no one-size-fits-all approach to volcanic ash forecasts, with many different sugges-616

tions for additional information to include in the forecasts. When discussing including uncer-617

tainty in graphical representations of volcanic ash forecasts, respondents representing operations618

stated that they only wanted deterministic information, not uncertainty information. However,619

there seemed to be a difference in the definition of “uncertainty” between the researchers and op-620

erations, warranting further conversation and collaboration between the operations and research621

communities. Continuing this collaboration and encouraging similar collaborations across hazards622

and user groups will help develop meaningful ways to convert environmental data into information623

useful to decision makers.624
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(a)	Part	1		
Given	the	
following	
forecasts,	
would	you	
approve	
the	flight	
paths?	

(b)	Part	2	
Given	the	
following	
forecasts,	
draw	a		
no-fly	
zone.	

(c)	Part	3		
Given	the	
following	
forecasts	
from	two	
models,	
would	you	
approve	
the	flight	
path?	

Blue—Blue		 Grey—Grey		

Red—Grey		Red—Blue		

Polygon	 Filled	Contour	 Satellite	

Filled	Contour—Solid		 Filled	Contour—Gap	 Satellite—Gap	Satellite—Solid	

FIG. 1. Survey questions and graphical representations used for decision making for (a) part 1, (b) part 2, and

(c) part 3 of the survey. (a) The same four flight paths were overlaid onto the polygon, filled contour, and satellite

representations of the same volcanic ash forecast. Respondents were asked if they would approve each forecast

and their confidence in their decisions. (b) Two forecasts (solid and gap) were represented in two ways (filled

contour and satellite). Respondents were asked to draw a no-fly zone on the forecasts and their confidence in their

no-fly zones. (c) Respondents were given conflicting forecasts for the same flight path and were asked if they

would approve each forecast and their confidence in their decisions. The flight paths went through the following

colored concentration contours: blue–blue, grey–grey, red–blue, or red–grey. For all figures, respondents were

told it was safe to fly through medium concentrations of volcanic ash (2000–4000 µg m−3) corresponding to the

blue and grey areas in the filled contour representation and the green, yellow, and orange areas in the satellite

representation

762

763

764

765

766

767

768

769

770

771

772

38



Levels	of	confidence	

Percent	of	delegates	who	approved	flight	path	

FIG. 2. Percent of respondents who approved flight [(a), (b), (c), and (d)] and levels of confidence [(e), (f),

(g), (h)] for different flight paths by graphical representation. The polygon, filled contour, and satellite graphical

representations are shown as green, red, and indigo, respectively. Path A (High Risk) is shown in (a) and (e);

Path B (Medium–High Risk) is shown in (b) and (f); Path C (Medium–Low Risk) is shown in (c) and (g); Path

D (Low Risk) is shown in (d) and (h). Graphical representations used for this section of the survey are shown in

Fig. ??a. Levels of confidence are rated on a scale from 0 (“Not at all confident”) to 10 (“Extremely confident”).

The upper and lower whiskers represent the maximum and minimum values, respectively. The top and bottom

of the box represent the 75th and 25th percentiles, respectively. The bar in the box represents the median. The

star represents the mean. Circles on either side of the whiskers are outliers.
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FIG. 3. (a) Percent of respondents who approved flight and (b) levels of confidence for different flight paths

by occupation in either research (green) or operations (red). Graphical representations used for this section of

the survey are shown in Fig. ??a. Levels of confidence are rated on a scale from 0 (“Not at all confident”) to 10

(“Extremely confident”). The box plot (b) is formatted as in Fig. ??.
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FIG. 4. (a) Familiarity with, (b) trust in, and (c) preferences of graphical representations by occupation in

either research (green) or operations (red). Levels of familiarity and trust are rated on a scale from 0 (‘Never

seen before” or “Not at all trustworthy”) to 10 (“Have seen frequently” or “Extremely trustworthy”). The box

plots are formatted as in Fig. ??.
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(a)	
Solid	Gap	

2	

Area	of	No-Fly	Zone	 Confidence	in	No-Fly	Zone	(c)	(b)	

Heat	map	of	overlaid	no-fly	zones	

FIG. 5. (a) Heat map showing overlaid no-fly zones drawn by the respondents for the gap and solid forecasts.

Darker colors indicate more respondents drawing a no-fly zone over that area. The black outlines show where

respondents were told it was unsafe to fly. (b) Calculated areas of the no-fly zones in square millimeters by

forecast type of either gap (green) or solid (red) (c) Levels of confidence in the no-fly zones by forecast type of

either gap (green) or solid (red). Graphical representations used for this section of the survey are shown in Fig.

??b. The box plots are formatted as in Fig. ??.
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FIG. 6. (a) Percent of respondents who approved flight and (b) levels of confidence for flight paths given

conflicting forecasts by occupation in either research (green) or operations (red). Graphical representations used

for this section of the survey are shown in Fig. ??c. Levels of confidence are rated on a scale from 0 (“Not at all

confident”) to 10 (“Extremely confident”). The box plot (b) is formatted as in Fig. ??.
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