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Abstract 19 

Green roof plants can reduce local air temperatures and heat load to a building in the summer, 20 

improving thermal comfort of residents. Little is known, however, about how different plants compare 21 

in their potential to provide these two ecosystem services. Consequently, this study investigated 22 

whether some plants can offer more potential summertime environmental cooling and substrate 23 

insulation than others. Over two summers (2012/2013), canopies of two succulent and four broad-24 

leaved plant genotypes, with contrasting plant traits, were monitored alongside bare substrate in 25 

Reading, UK. Plants were studied outdoors within small plots (1.5 x 1.5 x 0.1 m). Continuous 26 

monitoring took place during warm days and nights and included variables (leaf surface temperatures) 27 

and fluxes (long-wave radiation, sensible heat flux and transpiration) that are indicative of cooling 28 

potential. The strength of substrate insulation was estimated by comparing the ground heat flux below 29 

the canopies to that of the bare substrate. Plant traits (leaf colour or thickness), structural parameters 30 

(height and leaf area index, LAI), radiative properties (albedo and emissivity), and stomatal 31 

conductance were also measured to help explain the differences in cooling potential among the 32 

species. Non-succulent canopies, in particular light-coloured ones, with high leaf stomatal 33 

conductance and high LAI provided maximum potential for substrate insulation and environmental 34 

cooling in hot periods, particularly compared to bare substrate and thick-leaved succulents. These 35 

results suggest that succulent plants are not best suited to provide significant summertime 36 

environmental cooling and substrate insulation and that others (e.g. Salvia and Stachys) might be 37 

preferable where the delivery of these benefits is a priority. Our findings highlight that, in addition to 38 

survival, aesthetics and cost, the plants’ ability to deliver a range of ecosystem services should be 39 

considered in the plant selection/green roof planning process. 40 

 41 
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Highlights 44 

 Plant canopy traits strongly affect cooling and insulation by roof substrates.   45 

 Salvia and Stachys potentially provide superior summer cooling/substrate insulation. 46 

 Thick-leaved succulents do not offer more summer cooling/insulation than bare soil. 47 

 Dark-leaved plants offered good substrate insulation, but not aerial cooling potential.48 
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1. Introduction 50 

Urban landscapes are typically warmer than adjacent rural areas [1]. This phenomenon, (the urban 51 

heat island, UHI), is partly due to anthropogenic activities which generate heat that becomes trapped 52 

within the urban fabric. It is also due to a widespread use of impervious materials, which alter the 53 

thermal and radiative properties of the land surface, significantly influencing the surface energy 54 

balance [2,3]. In urbanised areas, latent heat flux (i.e. evapotranspiration) is thus reduced compared to 55 

more rural, vegetated areas, while heat storage and the resulting re-emission of heat as long-wave 56 

radiation or sensible heat are increased. The heat absorbed, stored and re-released as long-wave 57 

radiation by the urban fabric to the atmosphere can also be intercepted by air pollutants and redirected 58 

back to the urban environment, contributing to further warming [3].  59 

The UHI generally has a negative impact on human thermal comfort and health, and this impact is 60 

predicted to increase due to a warming climate. For example, by the 2080s, mean summertime 61 

maximum air temperatures in southern England are estimated to rise by an average of 5.4oC, 62 

compared to 1961-1990 [4]. Heat wave events, which amplify human mortality rates, are also 63 

expected to increase in intensity, duration and frequency [5]. Residents in urban areas will be 64 

particularly susceptible to such events, owing to the already enhanced temperatures associated with 65 

the UHI effect.  66 

Plants in cities have an important role in reducing local summertime air temperatures and can mitigate 67 

local UHI [6–9]. However, the area available in highly urbanised cities for green infrastructure 68 

expansion is scarce. Roofs can occupy around 30% of the horizontal surface within a city [10], 69 

making them prime spaces to be vegetated. In addition to being able to reduce local air temperatures 70 

[11], plants on roofs (i.e. green roofs) can further reduce the energy load to the buildings during the 71 

day in summer, thereby leading to a reduced reliance on artificial air conditioning, thus saving energy 72 

[12,13].  73 
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Such ecosystem services (i.e. both in terms of summertime air temperature regulation and the plants’ 74 

ability to reduce the summertime conductive heat load, thus increasing the insulation of the rooftop) 75 

can be provided by a variety of mechanisms. Plants hold, and can subsequently release, relatively 76 

large volumes of water. The vapourisation of liquid water consumes about 2450 J per g of water [14]. 77 

This latent energy is retained in the water molecules that exit through the leaf stomata [15], allowing 78 

radiation absorbed by well-watered plants to dissipate without an increase in air temperature within 79 

the immediate environment. Plants on roofs may also absorb less heat than bare roof surfaces [12], 80 

due to higher reflectance, at least compared to dark surface materials such as bitumen or slate. 81 

Additionally, plants in urban areas partially absorb the long-wave energy re-emitted by the adjacent 82 

built surfaces [16] as well as shade a built surface [17]. Thus, when placed on roofs they can reduce 83 

the radiation received by the roof surface. A model simulating the thermal behaviour of green roofs 84 

when several parameters, including LAI, were manipulated, found that an increase in LAI from 2 to 5 85 

led to a decrease of almost 250 W m-2 in solar radiation transmitted to the roof surface [18]. When 86 

combined, these features lead to green roofs (consisting of the canopy and the below-canopy rooftop) 87 

being considerably cooler in the summer than their non-green counterparts. This will result in a 88 

decrease in the heat conducted to the inner parts of the building, but also reduces the release of 89 

sensible heat and long-wave radiation by the roof, thereby decreasing the extent of warming to the 90 

wider urban environment.  91 

While plants differ in their surface temperature when compared to inert roof materials, variations in 92 

leaf characteristics and canopy structure, substrate factors and physiological traits can vary the 93 

thermal properties of canopies associated with different species. Leaf temperature is strongly 94 

influenced by substrate moisture content and leaf stomatal conductance [19,20]. Morphological traits 95 

such as leaf colour, thickness and pubescence also influence leaf temperature [20,21]. 96 

Many green roofs are planted with succulents such as Sedum, as they tolerate the dry conditions 97 

common on extensive green roofs [22,23]. However if sustainable irrigation was possible, other low-98 

growing plants with higher water requirements could survive too [24]. More water-demanding plants, 99 

if possessing the ‘right’ traits, could potentially generate greater environmental cooling and substrate 100 
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insulation in the summer than succulents. A previous study within a Mediterranean climate, however, 101 

could not justify the use of green roofs (with succulent, grass, perennial or small shrub covering) 102 

solely on the basis of beneficial cooling effects, particularly taking into account the water use and 103 

associated costs [25]. In contrast though, in climates where natural precipitation is higher and evenly 104 

distributed over the seasons, the economic benefits of using more water-demanding plants (in terms of 105 

reduced air conditioning, for example) may outweigh costs linked to supplementary irrigation. 106 

Despite preliminary evaluations on how different roof plant communities affect the surrounding 107 

environment and the thermal performance of a roof [26–29], there is still a lack of knowledge on how 108 

key plant traits influence the energy balance of the combined substrate/vegetation layer and the 109 

implications for using different plants to provide direct cooling or insulation services.  110 

The main aim of this research was to determine the extent to which plant genotype affects the 111 

thermodynamic properties of the substrate-vegetation system during summer. A range of plants 112 

potential useful for green roof situations, were evaluated within the context of the UK’s temperate 113 

maritime climate. This study deliberately does not account for any factors (e.g. roof/building material, 114 

roof orientation, building energy efficiency etc.) that may influence the cooling attributes of green 115 

roofs per se. Such an experimental set-up would struggle to be comprehensive and would be too 116 

complicated from an in-depth monitoring point of view, thereby limiting the amount, and potentially 117 

compromising the quality, of the micrometeorological and plant physiological data. To achieve our 118 

aim, six genotypes (two succulent and four broad-leaved) with contrasting leaf stomatal conductance 119 

rates and variations in leaf colour, pubescence or thickness were selected. Canopies were compared 120 

over two summers with regards to their surface temperatures, outgoing long-wave radiation, and their 121 

surface energy balance (net radiation and turbulent heat fluxes, as well as substrate heat flux). 122 

Additional comparisons were made with bare substrate (i.e. non-vegetated plots), which acted as an 123 

experimental control.  124 

Improved understanding of the combined effect of these traits will allow urban planners, architects 125 

and green roof professionals to base their future choice of plants not only on genotypes’ survival and 126 

aesthetical value, but also on their ability to maximise important ecosystem services.  127 
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[Insert Nomenclature list] 128 

2. Materials and Methods 129 

2.1. Plant material 130 

All plants in the experiment were herbaceous/sub-shrub forms (Figure 1) with potential to be 131 

integrated in green roofs, particularly if additional irrigation is provided during times of prolonged 132 

water deficit. These were (with key leaf characteristics in parenthesis): 133 

 Heuchera ‘Obsidian’ (non-pubescent, purple)  134 

 Heuchera ‘Electra’ (non-pubescent, yellow) 135 

 Salvia officinalis ‘Berggarten’ (pubescent with grey-green hue) 136 

 Stachys byzantina (pubescent with pale grey hue) 137 

 Sempervivum ‘Reinhard’ (non-pubescent, succulent, light to dark green hue) 138 

 Sedum mix (a mat of Sedum species used as an industry standard; non-pubescent, succulent 139 

leaves, light-green hue).  140 

Individual plants were either propagated in-house or acquired from UK nurseries, as plugs or 9 cm 141 

potted plants. Sedum mix was acquired as a green roof mat from a commercial supplier (Q lawns, 142 

Hockwold-cum-Wilton, UK). Non-succulent plants were replanted into 2 L containers to aid further 143 

establishment, at least one month before being planted into the experimental plots.  144 

[Insert Figure 1] 145 

2.2. Experimental setup 146 

Experiments were carried out in the summers of 2012 (24 July to 21 September) and 2013 (15 July to 147 

31 August), on the outdoor experimental grounds at the University of Reading (UK). In 2012, 148 

fourteen timber frames were constructed (1.5 x 1.5 x 0.1 m) and positioned 1.1 m apart. These were 149 

placed in an open space at ground level rather than on top of building roofs to minimise any ancillary 150 

thermal effects due to building function and infrastructure (parapets, air cooling vents, chimney flues, 151 

etc.) and for ease of access. All frames were lined with polyethylene pond liner and filled with a 0.1 m 152 
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layer of John Innes compost No. 2. Field capacity and permanent wilting point of a similar substrate 153 

were respectively measured at 0.32 and 0.07 g g-1  [30]; equivalent to 0.42 and 0.09 m3 m-3 when 154 

assuming a substrate bulk density of 1.3 g cm-3, an average of values presented for soils and composts 155 

with comparable compositions [31,32]. Each treatment was replicated twice, i.e. two ‘mono-culture’ 156 

plots of each genotype. Plant genotypes were randomly allocated to the plots and planted at least 10 157 

days before measurements started, to achieve 100% of coverage (or in the case of Sempervivum 80%, 158 

due to the small size of the plants). The Sedum mix mat was cut to fit the plot with the underneath 159 

membrane removed, to ensure direct contact with the substrate. 160 

Two of the frames were left with just bare substrate so that plant canopies could be compared to an 161 

unplanted ‘control’ surface. A layer of bare substrate was used instead of a rigid inert surface, as it has 162 

similar hydraulic (i.e. in relation to water retention and transfer) and thermal properties to the 163 

substrate layers located below the plant canopies.  164 

In 2013, two additional timber frames were constructed and a new treatment was added. These vacant 165 

plots were planted with shorter specimens of Salvia, where shoot tips were pinched out to promote a 166 

bushier, lower habit. Consequently, in 2013, Salvias planted in that year were approximately half the 167 

height of Salvias planted in 2012; these treatments were used to assess the effect of canopy height on 168 

the variables studied. 169 

Plots and surrounding areas were kept weed free, and any emerging flower heads removed from the 170 

plants to ensure that only the leaf canopy effect was accounted for (flower heads only accounted for a 171 

very small area).   172 

Environmental and temperature measurements, described in Table 1, represent mean values over a 10 173 

minute period (averaged from measurements made every 10 seconds). Sensors (full list in Table 1) 174 

were attached to DL2e loggers (Delta-T Devices Ltd., Cambridge, UK) and a DataHog2 logger (Skye 175 

Instruments Ltd., Llandrindod Wells, UK), which were covered by well-ventilated white plastic boxes 176 

to protect from intense radiation. In addition, incoming long-wave radiation (Li) and wind speed (Uz,) 177 

at 2 m from the ground were monitored at the University’s meteorological station, located 600 m from 178 

the experimental plots. 179 
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Leaf temperature, Ts, was measured using thermocouples (Table 1, Figure 2) attached to the underside 180 

of individual leaves mostly with a plastic paper clip [33] thus ensuring the thermocouple was located 181 

within the leaf boundary layer (i.e. the air layer in contact with the leaf surface). For succulent and 182 

Stachys leaves, which are small or easily broken, thermocouples were attached by threading [34]. In 183 

all cases, selected leaves were young, exposed and fully expanded, and located in the upper layer of 184 

the canopy. In 2013, plant coverage of yellow Heuchera was reduced to < 50% due to winter losses, 185 

thus one of the thermocouples within each plot with yellow Heuchera was used to measure leaf 186 

temperature whilst the other was used to measure substrate temperature.  187 

Thermocouples and thermistors were calibrated at the start of each experimental season in a hot water 188 

bath and were measuring within 0.30oC of each other.  189 

The instantaneous measurements of plant and substrate parameters/variables carried out over the 190 

course of the experiment (i.e. substrate moisture, SMC; leaf stomatal conductance, gs; albedo, α; 191 

spectral reflectance; leaf area index, LAI and canopy height, h) are described in Table 2 (also see 192 

Figure 2). In addition to the discrete measurements (Table 2), SMC was also continuously recorded 193 

hourly on four randomly selected plots, with SM200 sensors (Delta-T Devices Ltd., Cambridge, UK). 194 

Both the discrete and continuous SMC measurements were used to estimate continuous SMC 195 

variations in each treatment, information needed to estimate substrate heat flux and to guide irrigation 196 

requirements. 197 

Leaf emissivity, ε, which plays an important role in net radiation calculation via the outgoing long-198 

wave radiation term, was determined in a laboratory test in 2012. Four leaves from each genotype 199 

were evaluated, except for Sempervivum where the shape of its leaves prohibited the measurement. 200 

For each leaf, ε was calculated based on the temperatures extracted from a thermal image, recorded 201 

with an infrared imaging camera FLIR i5 (FLIR Systems UK, West Malling, UK) whilst the leaf was 202 

floating in a well-stirred water bath [35]. In all cases, ε was around 0.97. The fact that all leaf 203 

emissivities were similar suggests that any differences in Ts between genotypes which we 204 

subsequently determined were caused by differences in α, gs and/or leaf traits that affect aerodynamic 205 

transfer.  206 
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[Insert Table 1, Table 2 and Figure 2] 207 

2.3. Watering requirements 208 

In both summers, all plots, including the bare ones, were manually irrigated whenever a plot’s mean 209 

SMC fell below 0.15 m3 m-3. Water applied was adjusted so that mean SMC after irrigation was 210 

around 0.32 m3 m-3. Salvia received the highest irrigation water quantity in both years and 211 

Sempervivum the lowest. The total water received by the canopies in 2013 (quantities given are a 212 

combination of both precipitation and supplementary watering) was approximately: 134 L/m2 for 213 

Salvia planted in 2012, 127 L/m2 for Salvia planted in 2013, 126 L/m2 for purple Heuchera, 105 L/m2 214 

for Stachys, 99 L/m2 for Sedum, 93 L/m2 for yellow Heuchera (in plots partially covered) and 77 L/m2 215 

for Sempervivum. 216 

When plots were irrigated, the soil around their frame was also irrigated to reduce micro-scale 217 

advection typical of small-sized plot design experiments surrounded by soil with different moisture 218 

concentrations [36].  219 

2.4. Calculation of the outgoing long-wave radiation and surface energy balance 220 

Net radiation, outgoing long-wave radiation and heat fluxes were calculated for every 10 minutes and 221 

averaged hourly. Net radiation, Rn, was calculated as: 222 

Rn = Si + Li - So - Lo,            (1)  223 

where Si and Li are the short-wave and long-wave radiation received by the surface, and So and Lo are 224 

the short-wave and long-wave radiation reflected and emitted by the surface.  225 

At night, So was assumed to be 0 W m-2.  226 

Continuous daytime So values were not available, but representative estimates of albedo, α, were 227 

obtained (see Table 2) to derive So. Using these data, between 10:00-16:00 h, So was calculated as: 228 

So  = α Si             (2) 229 

Between 06:00-10:00 h and 16:00-20:00 h, α was either assumed to be equal to the mean α values 230 

between 10:00-16:00 h (when mean Si < 200 W m2), or assumed to increase linearly with a decreasing 231 

sun angle (when mean Si > 200 W m2 ) [37]. Based on values presented by Monteith and Szeicz [37], 232 
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during sunny periods, maximum α (at 06:00 or 20:00 h) was set to a value that was 0.05 higher than 233 

the mean α for the period between 10:00-16:00 h for canopies, or to 0.03 for bare substrate. 234 

Lo was calculated according to Stefan-Boltzmann’s law: 235 

Lo =  ε σ (Ts)4 + (1 – ε) Li ,           (3)                                             236 

where σ is the Stefan-Boltzmann constant. Ts, the mean leaf/surface temperature of each plot, was 237 

calculated as the mean of temperatures measured by the thermocouples and ε was assumed to be on 238 

average 0.95 for the bare substrate (based on the ranges presented for bare soils by Rubio et al. [38]), 239 

0.97 for canopies with LAI > 1, as measured, and 0.96 for canopies with LAI < 1. 240 

Sensible heat flux, H, was calculated as:  241 

,                        (4)  242 

where Ta is the air temperature recorded at 2 m from the ground, ρa is the air density, Cp is the air 243 

specific heat and ra is the aerodynamic resistance, calculated as: 244 

,                    (5)                                  245 

where z is the height of wind and temperature measurements, d is the zero plane displacement height, 246 

zom is the surface roughness length for momentum transfer, zoh is the surface roughness length for heat 247 

and vapour transfer, k is the von Karman’s constant (0.41) and Uz is the wind speed. In this equation 248 

the effect of atmospheric stability has been neglected as this effect is relatively small.  249 

Roughness parameters d, zom and zoh were calculated as a function of surface cover height:  250 

d = 2/3 h            (6) 251 

zom = 0.123 h            (7)  252 

zoh = 0.1 zom                   (8)   253 

The height of bare substrate was set to 0.01 m, leading to a zom for bare substrate of 0.001 m [39]. 254 

Substrate heat flux, G, was estimated by Fourier’s law:  255 

,                          (9) 256 
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here ∆T is the substrate temperature difference between two depths (at 0.01 m and 0.06 m) and ∆z is 257 

the distance between those two depths. The substrate thermal conductivity, , was calculated based on 258 

the assumed value of substrate bulk density, the quartz content and the estimated continuous SMC, as 259 

per Lu et al. [32]. Using Eq. 9 with substrate temperatures measured at 0.01 m and 0.06 m means that 260 

the heat stored in the first 0.01 m of substrate was not accounted for. Calculating this storage would 261 

require an estimate of heat capacity, Ch, but SMC (required to calculate Ch) in such a thin layer cannot 262 

be easily determined. Alternatively one could use substrate temperature at 0 m (i.e. the substrate 263 

surface temperature) to calculate the temperature difference in Eq. 9, but this variable was only 264 

measured in uncovered (bare) plots. However, this storage term was assumed to be relatively small, in 265 

particular below vegetation. Furthermore, the plots, albeit lined with polyethylene membranes, were 266 

not thermally insulated from the ground below them. Thermistors were placed at 0.06 m from the 267 

substrate surface (and 0.04 m from the membranes) to reduce the influence that the heat flux from the 268 

ground below may have had on the calculated G. We use G to assess substrate insulation potential of 269 

the green roof plant species. We define substrate insulation potential as the reduction in (surface) 270 

ground heat flux by vegetation cover compared to bare substrate. 271 

Latent heat flux, LE, was calculated as the residual of the energy balance: 272 

 LE = Rn - H - G                                           (10) 273 

With these calculations, any advection and storage of heat in the canopy biomass and within the 274 

canopy air that might have occurred were embedded in the LE and H heat fluxes terms. 275 

2.5. Statistical analysis  276 

Statistical analysis was performed with GenStat 16th Edition (VSN International Ltd., Hemel 277 

Hempstead, UK). Differences in gs within a season were assessed with analysis of variance 278 

(ANOVA), on the basis of the least significant difference (LSD; 5% level). Two contrasting groups of 279 

data (i.e. day and night) were selected for the analysis of differences in calculated Ts, Lo, Rn and heat 280 

fluxes: i). ten (2012)/nine (2013) rain-free days with Tmax > 24oC and ii). ten rain-free nights with Tmin 281 

> 12oC. For daytime data, the statistical analysis was only performed over intervals of four hours, 282 

when differences between treatments reached their maximum: i.e. between 12:00-16:00 h for Ts and Lo 283 
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or 11:00-15:00 h for Rn and heat fluxes. For the night periods, differences were statistically analysed 284 

between 20:00-24:00 h, when the effect of the UHI is highest [1].  285 

Data from each selected group/period were analysed using residual maximum likelihood (REML) 286 

analysis. All p-values presented in this paper were extracted from each REML analysis and an 287 

estimated LSD, as per Andrist-Rangel et al. [40], was used to assess treatment differences. As means 288 

considered were based on a number of days (and hours within a day), this should have mostly reduced 289 

errors associated with the measurements/calculations.  290 

3. Results 291 

3.1. Environmental and substrate moisture content (SMC) conditions 292 

For the period in which data collection coincided in both seasons (24 July to 31 August) mean daily 293 

Tmax/Tmin in 2012 and 2013 were 22.5oC/12.6oC and 23.1oC/13.2oC, respectively. Temperatures for the 294 

first thirteen days of the experimental season in 2013 were, however, part of heatwave-like weather 295 

experienced in the UK in July 2013 (mean daily Tmax/Tmin for that period were 27.6oC/15.2oC).  296 

Despite Sempervivum’s plots receiving the lowest amount of water, their SMC was generally the 297 

highest (as a result of their low transpiration), particularly in 2013, where Sempervivum’s SMC was 298 

mostly ≥ 0.30 m3 m-3. For the remaining treatments, mean SMC varied between 0.15-0.32 m3 m-3, in 299 

both years (data not shown). 300 

3.2. Plant structure 301 

Of the genotypes tested, Salvia planted in 2012 was the tallest (Table 3) with a high LAI recorded in 302 

both years. The specimens of this species planted in 2013 were shorter, but also had relatively high 303 

LAI values. Sempervivum and Sedum had the shortest stature with relatively low LAI, although the 304 

LAI of Sempervivum increased between the two years (Table 3). In contrast, both Stachys and yellow 305 

Heuchera plots had lower LAI in the second year compared to the first. In plots with yellow 306 

Heuchera, the LAI reduction between 2012 and 2013 was particularly dramatic; this was due to many 307 

plants perishing during winter. By 2013, the yellow Heuchera plots had the lowest LAI (Table 3). 308 
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3.3.  Short-wave reflectance (albedo, α, and spectral reflectance) 309 

The α of most plant plots remained unaltered throughout the two-year period (Table 3). There was, 310 

however, a marked reduction in α of yellow Heuchera plots, with its 2012 value of 0.27 falling to 0.14 311 

in 2013. Again, this is the result of the severe reduction in plant cover, which left bare substrate, with 312 

its lower α, in particular when wet, exposed. The α of Sempervivum plots was also slightly altered 313 

from 2012 to 2013, increasing from 0.14 to 0.17 (Table 3), as in 2013 Sempervivum plants were 314 

covering the substrate fully. In uncovered plots, the average α was lower in 2012 than in 2013 (Table 315 

3), probably due to small SMC differences during the days when α was measured. 316 

An evaluation of spectral reflectance (in the short-wave spectrum) in 2012 showed that the yellow 317 

Heuchera plants reflected more radiation than other canopies in the visible wavelengths whilst the 318 

purple Heuchera plants reflected less (400-700 nm; Figure 3). At longer wavelengths (700 to 1250 319 

nm; the near infrared region), reflectance was generally greater; differences between genotypes were 320 

more spread in these wavelengths than in the visible spectrum, where only Heucheras plants had 321 

different reflectance (Figure 3). Bare substrate on average reflected less radiation than the plants 322 

throughout most of the short-wave spectrum; however, in the visible part of the spectrum, bare 323 

substrate reflected more than purple Heuchera plants.  324 

[Insert Table 3 and Figure 3] 325 

3.4. Leaf stomatal conductance (gs) 326 

Salvia had the highest mean gs values, with the new Salvia treatment planted in 2013 having a similar 327 

mean gs to that of Salvia planted in 2012. Sedum had the lowest gs (p<0.001), with mean values 328 

differing by 249 mmol m-2 s-1 in 2012 and 185 mmol m-2 s-1 in 2013 from those of Salvia planted in 329 

2012 (Figure 4). Due to time restrictions, the number of gs measurements executed in 2013 was 330 

substantially lower than in 2012, this might have contributed (along with differences in the stages of 331 

plant maturity or differences in the environmental conditions at the time of measuring) to most 332 

treatments having slightly lower mean gs values in 2013 than in 2012. Despite this, the order of 333 

magnitude of the mean gs for the five species has not changed between the two years (Figure 4). 334 

[Insert Figure 4] 335 
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3.5. Surface temperature (Ts) and outgoing long-wave radiation (Lo) 336 

Ts and related Lo in 2012 and 2013 are presented in Figure 5 (showing days with Tmax > 24oC, when 337 

the differences in Ts and Lo were greatest). During the day, particularly between 12:00-16:00 h, plots 338 

with Salvia or Stachys had the lowest Ts, and Lo, whereas plots with Sempervivum or bare substrate 339 

had the highest (p>0.001); differences between mean values during that period reached up to 10oC 340 

and 12% (or ~65 W m-2) for Ts and Lo, respectively. Values for Ts, and related values for Lo, of purple 341 

Heuchera and Sedum were generally in-between the values of the other four treatments. The 342 

differences between mean Ts and Lo for purple Heuchera or Sedum plots and those with Salvia 343 

reached up to 5oC and 6% (or ~30 W m-2), respectively. In 2012, Ts and Lo values for yellow 344 

Heuchera plots were similar to those obtained for Salvia and Stachys plots (Figures 5a and c). In 345 

contrast, in 2013 after the loss of many of the yellow Heuchera plants, mean Ts and Lo in yellow 346 

Heuchera plots between 12:00-16:00 h were up by 4oC and 5% (or ~25 W m-2), respectively, 347 

compared to plots with Salvia and Stachys (Figures 5b and d).  348 

Between 20:00-24:00 h, differences in Ts and Lo among treatments, while statistically significant in 349 

2013 (p<0.001, data not shown), were within 2oC or ~10 W m-2. As expected, as a result of a lack of 350 

short-wave radiation and transpiration during night-time, Ts and Lo differences between the species 351 

were much smaller than during the day. Similar behaviour should be observed for these plants if they 352 

were installed on green roofs. 353 

3.6. Energy balance 354 

3.6.1. Net radiation (Rn) 355 

Differences in Rn between treatments were generally less pronounced than the Lo differences. This 356 

was due to the small α differences between most plant treatments (Table 3), which resulted in small 357 

differences in So (data not shown), that counterbalanced the Lo differences. In 2012, Rn differences 358 

between treatments were not significant (p=0.137, Figure 6a). In contrast, in 2013, Rn differences 359 

were larger between 11:00-15:00 h, with Sempervivum plots having significantly lower mean Rn 360 

(11%) than plots with Stachys and Sedum (p<0.001, Figure 6b).  361 
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3.6.2. Sensible heat flux (H) 362 

Despite clear differences between most curves being visible in Figs 6c and 6d, treatments had no 363 

overall significant effect on H between 11:00-15:00 h in 2012 (p=0.308, Figure 6c). However,  H 364 

differences were statistically significant in 2013 (p<0.001, Figure 6d). Stachys and Salvia had lowest 365 

H values during daylight hours, whereas Sempervivum and purple Heuchera had the highest. 366 

3.6.3. Substrate heat flux (G) and substrate insulation potential 367 

Between 11:00-15:00 h, G was significantly different between treatments for both years (p<0.001, 368 

Figures 6e and f). Greatest G values were associated with the bare substrate. During 2013 (Figure 6f), 369 

the plots with yellow Heuchera, Sempervivum and Sedum had high daytime G, in comparison to plots 370 

covered by other canopies. Therefore, in terms of substrate insulation potential, which we defined as 371 

the reduction in (surface) ground heat flux by vegetation cover compared to bare substrate, Heuchera, 372 

Sempervivum and Sedum had the lowest potential and the other (non-succulent) species the highest. 373 

3.6.4. Latent heat flux (LE) 374 

Despite noticeable differences in LE being apparent for a number of treatments between 11:00-15:00 375 

h in 2012 (p=0.071, Figure 6g), they were only statistically significant in 2013 (p<0.001, Figure 6h). 376 

This is largely caused by the fact that these curves are based on hourly averages for 10 (year 2012) 377 

and 9 (year 2013) days, respectively, so that there will be a relatively large standard deviation (not 378 

shown in plots, but influencing the p-values) for each hour, for each treatment. In 2013 in particular, 379 

the overall differences in H and G between treatments led to Salvia and Stachys plots having a 380 

significantly greater LE (as derived from Eq. 10) than plots with Sempervivum, bare substrate and 381 

both Heucheras.  382 

[Insert Figure 5] 383 

3.6.5. Overall ranking in daytime energy fluxes 384 

For the most part, differences between treatments tended to be more significant in 2013, reflecting 385 

increased canopy maturity and hence increased substrate coverage. The exception was yellow 386 
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Heuchera, where the winter deaths of plants increased the proportion of bare substrate in the plots, 387 

with subsequent effects on the plots’ thermodynamic behaviour.  388 

Overall, Salvia and Stachys had proportionally low values of H and G; and conversely, high values of 389 

LE. The opposite was true for bare substrate and Sempervivum. As a consequence, the partitioning of 390 

Rn into the different heat fluxes differed between treatments. In 2013, for example, the amount of Rn 391 

used for H, G and LE between 11:00-15:00 h in Salvia plots planted in 2012 was respectively on 392 

average 0%, 3% and 96% whilst for Sempervivum plots, those percentages were respectively 25%, 393 

18% and 57% (Table 4). The percentage of Rn allocated to each of the heat fluxes was intermediate in 394 

Sedum and Heuchera plots. Although plots with purple Heuchera had similar H values to those with 395 

Sempervivum, purple Heuchera plots had one of the lowest diurnal G in 2013. In the second year, 396 

purple Heuchera plots had on average a ~65 W m-2 reduction in G, compared to Sempervivum plots 397 

(Figure 6f). Consequently, in 2013, the amount of Rn used for G in plots with purple Heuchera was on 398 

average 15% lower than in those with Sempervivum, and so in purple Heuchera plots, this extra 399 

amount of energy received was instead mainly released as LE (Table 4). 400 

In 2012, yellow Heuchera plots showed some of the lowest H and G and highest LE between 11:00-401 

15:00 h, data similar to Salvia and Stachys (Figures 6c, e, g and Table 4). However, in 2013, due to 402 

plant death, yellow Heuchera plots had on average ~65 W m-2 greater H and G and ~130 W m-2 lower 403 

LE than plots with Salvia planted in 2012 (Figures 6d,f,h). Therefore, in 2013 the percentage of Rn 404 

used for H, G and LE in yellow Heuchera plots differed on average by +14%, +15% and -29%, 405 

respectively, from the percentages allocated for H, G and LE in plots with Salvia (Table 4).   406 

Sedum plots, on the other hand, had in both years H and LE values that were in-between those 407 

calculated for Salvia and Stachys and for Sempervivum and purple Heuchera. However, G values in 408 

Sedum plots were closer to those derived for Sempervivum plots than for Salvia and Stachys plots 409 

(Figures 6e and f). For example, in 2013, G between 11:00-15:00 h was on average up to ~45 W m-2 410 

greater in Sedum plots than in Salvia plots. This contributed to a 9% increase in the amount of Rn used 411 

for G in plots with Sedum, compared to those with Salvia planted in 2012. Accordingly, the energy 412 



 

 

 

18 

 

 

 

used by Sedum plots for LE was reduced on average by 20%, compared to Salvia plots in that year 413 

(Table 4).  414 

3.6.6. Overall ranking in night-time energy fluxes  415 

At night, (20:00-24:00 h), there were no significant treatment differences in LE (p>0.152, data not 416 

shown), and the absolute differences in Rn, H and G, although significant (p<0.001, data not shown) 417 

were lower than those shown during the day. For nights with Tmin > 12oC, most vegetated plots, except 418 

those with Sempervivum and yellow Heuchera (in 2013), were gaining more H than plots with bare 419 

substrate. Furthermore, as expected, at night the upward G (i.e. heat loss) for bare substrate was 420 

significantly higher than the G calculated for plots that were completely covered by canopies (hence 421 

excluding yellow Heuchera in 2013). Average differences in H and G between vegetated plots and 422 

bare substrate plots from 20:00-24:00 h reached ~25 W m-2 and ~45 W m-2, respectively. Average 423 

differences in H and G between vegetated plots alone within the same period were smaller: ~20 W m-2 424 

and ~30 W m-2, respectively.  425 

 [Insert Figure 6 and Table 4] 426 

4. Discussion 427 

Previous studies suggest that by extending the area covered by irrigated green roofs within a city, 428 

local daytime LE in the summer can be increased. Consequently, there is a reduction in both the heat 429 

that is absorbed/stored within buildings and the heat that is returned to the atmosphere (as sensible 430 

heat and long-wave radiation) [41,42] and hence, local air temperatures are lower. Thus, the presence 431 

of rooftop vegetation provides important air temperature reduction and building insulation during 432 

summer. Despite this study not being conducted at roof top level and having plots sizes smaller than 433 

typical extensive green roofs, the findings are notable in that they demonstrate that certain plants have 434 

the potential to offer more environmental cooling and substrate insulation than others. This challenges 435 

conventional thinking on the way most green roofs are currently designed, as plants (on extensive and 436 

semi-extensive roofs, with shallow occasionally irrigated substrates) are mostly selected for their 437 

survival potential and not for their ability to provide valuable ecosystem services. In essence, many 438 
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existing green roofs could be underperforming with regards to insulating against incoming solar 439 

radiation, and reducing air temperatures around buildings. 440 

4.1. Differences in summertime environmental cooling and substrate insulation potential between 441 

treatments during the warmest period of the day 442 

Canopies formed by non-succulent, light-coloured plants with high gs (Figure 3) and high LAI (e.g. 443 

Salvia, regardless of its canopy height, and Stachys) showed the greatest potential for daytime 444 

environmental cooling. This was evident in the lowest surface temperatures, and related lowest Lo and 445 

H (Figure 5 and 6) and in the highest LE values for plots with these species (Figure 6). These canopies 446 

also showed the greatest potential to offer more substrate insulation in hot periods, by having the 447 

lowest G (Figure 6). In contrast, succulent plants with low gs and extremely thick leaves (e.g. 448 

Sempervivum) showed the lowest substrate insulation potential, and offered no environmental cooling 449 

service compared to bare substrate. A thin layer of substrate can in itself offer more thermal insulation 450 

to roofs than common standard roof materials [43] and has significantly lower daytime surface 451 

temperatures than materials such as concrete, gravel or black membrane [11]. As such, the use of 452 

plants which offer greater reduction in substrate heat flux, heat-deflecting and evapotranspiration 453 

potential than bare substrate is likely to considerably improve the cooling performance of a roof 454 

surface compared to conventional roof systems during the summer months. Consequently, if 455 

occasional irrigation (even in climates such as that of the UK/northern Europe where summer rainfall 456 

is fairly regular) is supplied such that Salvia, Stachys and species with similar traits can thrive on a 457 

roof environment, then their (and similar) canopies could be ideal candidates in helping reduce the 458 

heat load to buildings and perhaps the negative effects of the UHI at a local scale. Due to the small 459 

size of the plots used in this study and a number of other confounding factors, including typical air 460 

movement characteristics around the building envelope, the implications of these differences cannot 461 

yet be assessed at the building and urban scales. However, this could be a subject for follow-on 462 

empirical evaluations, where these data could be used to provide more accurate plant-based 463 

parameters within existing urban heat models (see Conclusions). 464 
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The cooling and insulating properties of other canopies (Heuchera and Sedum) were intermediate. 465 

The potential of the yellow-leaved Heuchera to offer the same summertime substrate insulation and 466 

environmental cooling as Salvia and Stachys was evident in 2012. This was due to this genotype 467 

possessing a high α and moderate LAI and gs. This Heuchera cultivar, however, was not as resilient as 468 

Salvia and Stachys, suffering tissue damage and die-back during the winter of 2012/2013, so by the 469 

summer of 2013 plots were only partially covered. During 2013, plots with yellow Heuchera had 470 

therefore higher Lo, H and G and lower LE than those plots covered by Salvia and Stachys, with 471 

values actually approaching those of bare substrate. Plants that are poorly adapted to harsh conditions 472 

should, therefore, be avoided in unprotected spaces such as rooftops, despite having traits that would 473 

in theory lead to maximum environmental cooling and substrate insulation in the summer.  474 

In contrast, purple Heuchera survived well in all weather conditions in our experiment. Data here 475 

suggests that purple-leaved, non-succulent plants could insulate the substrate from external heat to the 476 

same extent as Salvia and Stachys. G in purple Heuchera plots was similar to that in Salvia and 477 

Stachys plots once plants reached a certain height (Figure 6). This was possibly because an air gap 478 

was created between the lower leaves of the canopy and the substrate in 2013 [27], thereby reducing 479 

the temperature gradient between leaves, substrate surface and within the substrate, i.e. the driving 480 

force for G. However, plants with dark-coloured leaves are best avoided as they do not offer 481 

additional environmental cooling. Although the α of purple and green leaves was within the same 482 

range in this case, the spectral reflectance showed that purple leaves absorbed more visible radiation 483 

than others. There is a large amount of energy per quantum in the visible wavelengths [44], hence 484 

purple Heuchera leaves were consistently absorbing more energy than green or yellow ones. This 485 

contributes to greater warming of purple leaves than other non-succulent leaf types [20]. In highly 486 

urbanised regions, the effect that green roofs may have on temperatures of the surrounding 487 

environment (air and urban fabric) can become important. Accordingly, cultivars that offer both 488 

maximum environmental cooling and minimum substrate warming in the summer should be preferred.  489 

Sedum, the most commonly used plants on extensive green roofs, was shown to be less effective than 490 

other plants in its environmental cooling and substrate insulation potential, with the other succulent, 491 
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Sempervivum, performing even worse. These plants are popular due to their xerophytic traits and an 492 

ability to survive on very shallow substrate on green roofs without supplementary irrigation. Not 493 

surprisingly, however, their characteristic small leaves, designed to minimise water loss, compromise 494 

their suitability where cooling and shading are important. Although often marketed for their 495 

ecosystem service potential, the results presented here indicate that, while Sedum offers a small 496 

cooling/insulation benefit over bare substrate (and most likely a modestly larger benefit compared to 497 

roofing material), they do not perform as well as some other plants. Particularly in terms of substrate 498 

insulation potential, Salvia outperformed Sedum, as G was reduced by up to ~45 W m-2 in plots with 499 

Salvia compared to plots with Sedum. Although these findings need to be confirmed at the building 500 

scale, they indicate that plants such as Salvia would be better suited than Sedum carpets to be used in 501 

green roofs where reducing the building heat load in the summer is a priority. 502 

4.2. Main plant traits linked to cooling of the surrounding environment and substrate insulation 503 

during the day 504 

Lo, H and LE are dependent on surface temperatures but also influence the surface temperatures 505 

themselves. Consequently, those plant traits that contribute most to lowering leaf temperatures during 506 

hot periods also play the largest role in reducing the Lo and H and increasing the LE release into their 507 

surroundings, hence leading to enhanced environmental cooling. Based on our findings [see also 20], 508 

it can be suggested that there are a number of specific traits that are key for the reduction of heat 509 

release into the environment. They include high values of gs, high LAI, light leaf colour and low 510 

values of leaf thickness. Additionally, as shown by this study and by indirect evidence from other 511 

studies [e.g. 29], some of these traits also ensure the largest reduction in G, and so the highest ability 512 

to potentially provide summertime substrate insulation; (i) in particular high LAI, through increased 513 

shading, and (ii) high gs, by reducing the energy available for G, as a result of large LE.  514 

4.3. Differences in night-time cooling/insulation potential between treatments 515 

Although night-time surface temperatures and heat flux differences were less pronounced than during 516 

the day, surface temperatures for Salvia, Purple Heuchera and Stachys between 20:00-24:00 h were 517 
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still significantly lower than for bare substrate or Sempervivum. This indicates that the environmental 518 

cooling potentially offered by canopies such as Salvia and Stachys during the day may extend to the 519 

early night period. 520 

In contrast, at night during the summer, bare substrate allowed more heat to be released (Figure 6e 521 

and f) from the substrate layer than the majority of vegetated plots. This inevitably suggests that if the 522 

canopies studied were covering a rooftop, less heat would escape the building at night under green 523 

roof vegetation, leading to reduced regulation of temperatures inside the building during hot nights. 524 

However, semi-extensive roofs - for which the plants we studied would be suitable - are more likely 525 

to be deployed on commercial buildings, where daytime temperatures are the main issue. We 526 

therefore argue that there is an overall summer insulation benefit to using vegetation. 527 

4.4. Research limitations 528 

The heat fluxes calculated within this study, particularly LE which was derived from other 529 

estimations, may be subject to errors linked to the data collection or the assumptions made during the 530 

calculations. A potential shortcoming of the results we reported may be linked with the fact that an 531 

explicit advective term (i.e. characterized by the horizontal divergence of H, when H is negative and 532 

large enough that a downward H is produced at the ground during the daytime [36,45]) was not 533 

included in the energy balance calculations. Instead, advection is implicitly embedded in the LE 534 

estimation. To test whether the relative differences among the latent fluxes for the different plant 535 

species would remain once an advective term was taken into consideration, further calculations were 536 

carried out based on the (micro) advection theory and equations provided in [36] (data not shown). 537 

Comparisons between both LE estimations revealed some differences in the absolute flux values but 538 

not in the ranking of Salvia, Stachys and Sedum (Sempervivum and bare substrate were excluded as 539 

we did not have surface resistances required to calculate the advective LE term).  540 

Another point to consider is the fact that air will gradually change its properties to achieve a new 541 

equilibrium when flowing over a (vegetated) surface, and so non-equilibrium conditions were likely 542 

for our small experimental surfaces. Furthermore, small plots such as the ones used here are prone to 543 

edge effects [46]. If the air arriving at the edge of the plot is drier and warmer than the air that would 544 



 

 

 

23 

 

 

 

be in equilibrium with a similarly vegetated plot of sufficient size, then the horizontal transport of heat 545 

may overwhelm any local effects of evaporative cooling. Energy exchanges identified in small plots 546 

may not therefore be entirely representative of those observed in real life situations [36]. 547 

Other potential sources of error lay with the measurements themselves. One example is seen in the 548 

wind speed measurements, used in the estimation of H via ra. Here wind speed values from the 549 

University of Reading’s registered meteorological station (approx. 600 m away from the experimental 550 

plots) were used, rather than the data from the somewhat less sophisticated weather station at the 551 

experimental plots. The University meteorological station is located in a more exposed area than the 552 

experimental plots, so although wind speeds at both sites were broadly in agreement, wind speeds at 553 

the meteorological station were slightly higher. Any errors due to an overestimation of wind speed 554 

were, however, equally applied to all treatments. In addition, any inaccuracies in other measurements 555 

due to limited instrument precision may also have resulted in other slight under/overestimations. 556 

Errors in the calculations, due to an error in the measurement of variables such as Ta, Li and Si should 557 

also be similar for all treatments. The errors linked to temperature measurements made with different 558 

individual thermocouples attached to leaves or substrate surface and thermistors placed within the 559 

substrate layer could indeed have influenced the relative differences in fluxes found, as the 560 

temperatures measured by the sensors could have differed by up to 0.3oC (based on the identified 561 

precision error). However, we suggest that the overall differences in surface temperatures and fluxes 562 

between treatments were large enough to indicate that different canopies will have different substrate 563 

insulation and environmental cooling ability. 564 

We therefore argue that although most limitations we outlined will have had some influence on the 565 

absolute flux values, they did not change the relative differences between treatments on which our 566 

conclusions are based.  567 

5. Conclusions 568 

Climate change predictions suggest that heat waves will increase in frequency and intensity in the 569 

future, so the summertime temperature regulation provided by plants on green roofs, and indeed 570 

elsewhere, green walls, street trees etc. [47], will become increasingly valuable. This study indicates 571 
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that different types of plants significantly differ in their cooling and insulation benefits during hot 572 

periods, when it is most needed. Our results suggest that plants such as Salvia and Stachys, which 573 

possess key traits required for a reduction in Lo, H and G and an increase in LE (i.e. have typically 574 

high gs when sufficiently watered, high LAI, leaves with light leaf colour and reflective, and thin 575 

leaves) may have an important role to play a role in cooling the surrounding environment and 576 

improving the daytime thermal insulation of buildings in the summer, and thus should be given more 577 

consideration when planning green roof plant communities. 578 

Looking ahead, the implications for the energy consumption of buildings and for the overall 579 

temperatures in the urban environment of using the studied plant species on green roofs still need to 580 

be assessed. It is well known that typical green roof interventions have the potential to reduce heat 581 

entering buildings and reduce the energy used to regulate internal building temperatures in the 582 

summer, although recently the unequivocal thermal benefits of green roofs have been challenged, for 583 

example by [13]. Notwithstanding, on the basis of our study we hypothesise that plants such as Salvia 584 

and Stachys, which offer added substrate insulation potential during the day in the summer compared 585 

to typical green roof cover, could lead to a considerable decrease in the heat gained by a building 586 

during that period, when covering its roof. An extrapolation of these preliminary findings to total 587 

savings in the energy consumed by a building would need to account also for the winter effects, the 588 

local climate and the building construction, among other aspects. This hypothesis needs therefore to 589 

be confirmed by a broader-scale evaluation. Models such as EnergyPlus have been developed to 590 

predict energy consumptions in buildings. These models have been used to test the performance of 591 

green roofs based on the parameterisation of substrate and plant characteristics, such as substrate 592 

thermal properties, substrate depth, gs, h, LAI and α [13,48]. Now that we have collected a detailed set 593 

of plant parameters for a range of contrasting canopies, we propose that future research could use 594 

available models to investigate the level of such savings for buildings under a range of climate 595 

conditions. Furthermore, a number of models are available to study the impact of greening on the 596 

microclimate within the urban environment (e.g. ENVI-met, [49]) and, using our data, these could be 597 
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used next to assess the green roof area necessary to make a significant impact on air temperatures at a 598 

city scale, initially in a temperate climate.  599 

Based on the evidence we collected, we argue that new urban planning policies should take much 600 

greater consideration of plant choice, when attempting to maximise ecosystem services provision. Not 601 

all components of green infrastructure provide the same benefits, and plant genotype choice within 602 

this infrastructure, can strongly determine the type and level of benefits provided. This paper deals 603 

with green roof scenarios, but we are aware of parallel work on trees which suggests that some 604 

species have four times the cooling potential of others [50]. This paper challenges the notion that 605 

Sedum and other succulents commonly used on green roofs are able to provide a viable summer 606 

cooling and insulating benefit, and suggests that alternative species, with greater functionality, are 607 

preferable. This involves providing these new genotypes with adequate ‘support’ systems (e.g. 608 

supplementary irrigation) if that is what is required to ensure effective environmental cooling and 609 

substrate insulation in the summer. Our ongoing research is looking into sustainable ways to provide 610 

the water required by these more water-demanding plants and the added costs of such installation. 611 

Indeed, through more appropriate choice of plants and by extending the scale of plantings, positive 612 

impacts at a city scale may be feasible. 613 
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 738 

Legends of figures  739 

 740 

Figure 1. Photographs of plant canopies used in the experiment, taken in the early summer of 2012. A. 741 
Heuchera ‘Obsidian’, B. Heuchera ‘Electra’, C. Salvia officinalis ‘Berggarten’, D. Stachys byzantina, E. 742 
Sempervivum ‘Reinhard’ and F. Sedum mix.  743 

 744 

Figure 2. Schematic representation exemplifying where measurements were made within a plot. 745 

 746 

Figure 3. Mean spectral reflectance within the short-wave spectrum for all treatments analysed in 2012, 747 
measured during a day in August with Tmax = 18oC.  748 

 749 

Figure 4. Mean leaf stomatal conductance (gs) for all treatments measured; gs is the average of thirty 750 
mean gs values per treatment in 2012 (degrees of freedom (d.f.) = 149) and twelve gs values per treatment 751 
(or eight for Heuchera yellow) in 2013 (d.f. = 67). LSDs are shown at the top of the figure. 752 

 753 

Figure 5. Mean diurnal cycle of estimated surface temperature (Ts) and outgoing long-wave radiation (Lo) 754 
for treatments evaluated in 2012 and 2013. Data presented are a mean of 10 days with Tmax > 24oC. LSDs 755 
associated with the REML analysis for the periods delimited by the vertical lines were: a. 4.19 and b. 756 
2.81oC, c. 25.84 and d. 17.07 W m-2.  757 

 758 

Figure 6. Mean diurnal cycle of estimated net radiation (Rn) sensible heat flux (H), substrate heat flux (G) 759 
and latent heat flux (LE) for treatments evaluated in 2012 and 2013. Data presented are a mean of 10 760 
days (2012) and 9 days (2013) with Tmax > 24oC. LSDs associated with the REML analysis for the periods 761 
delimited by the vertical lines were: a. 32.34, b. 18.20, c. 80.28, d. 45.40, e. 55.42, f. 53.64, g. 124.66 and h. 762 
77.24 W m-2. 763 

 764 

 765 

 766 

 767 

 768 

 769 

 770 
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 772 

Nomenclature list and Tables 773 

 774 

Nomenclature 

ANOVA analysis of variance 

Cp air specific heat (1010 J kg−1K−1) 

d zero plane displacement height (m) 

G substrate heat flux (W m-2) 

gs leaf stomatal conductance to water  

vapour (mmol m-2 s-1) 

H sensible heat flux (W m-2) 

h surface height (m) 

k von Karman’s constant (0.41) 

LAI leaf area index 

LE latent heat flux (W m-2) 

Li incoming long-wave radiation (W m-2)  

Lo outgoing long-wave radiation (W m-2) 

LSD least significant difference 

ra aerodynamic resistance (s m-1) 

REML residual maximum likelihood 

Rn net radiation (W m-2) 

Si incoming short-wave radiation (W m-2) 

So outgoing short-wave radiation (W m-2) 

SMC substrate moisture content (m3 m-3) 

T  substrate temperature (oC) 

Ta air temperature at 2 m (oC) 
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Tmax maximum air temperature (oC) 

Tmin minimum air temperature (oC) 

Ts leaf/substrate surface temperature (oC) 

Uz  wind speed at 2 m (m s-1) 

z  height/depth of sensors 

zoh surface roughness length for heat and vapour transfer (m) 

zom surface roughness length for momentum transfer (m) 

 

Greek symbols 

α albedo  

ε surface emissivity 

λ substrate thermal conductivity (W m-1 K-1) 

σ Stefan-Boltzmann constant (5.67 x 10-8 W m-2 K-4) 

ρa air density (1.2 kg m−3) 
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Table 1. Detail of the methodology used while monitoring environmental conditions and surface and 

substrate temperatures. 

Type of measurement Position  Equipment Number of sensors  

Ambient air temperature 

(Ta) and humidity 
2 m from ground 

Screened RHT2n 

sensor (Delta-T 

Devices Ltd., 

Cambridge, UK) 

1 

Incoming short-wave 

radiation (Si) 
0.5 m from ground 

Pyranometer SKS 

1110 (Skye 

Instruments Ltd., 

Llandrindod Wells, 

UK) 

1 

Surface temperature (Ts)  

Leaf temperature: on the 

underside of the leaf.  

Bare substrate 

temperature: 0.005 m 

below the surface  

Copper-constantan 

thermocouples (T 

fine PTFE insulated 

twin twisted wires, 

in house 

construction) 

2 per plot 

Substrate temperature 

(T) 

At 0.01 m and 0.06 m 

below the substrate 

surface 

Thermistors (Fenwal 

UUA32J2, in house 

construction) 

2 per plot 

 

 

 

 

 

 

 



 

 

 

33 

 

 

 

Table 2. Information on the methodology used to occasionally measure various plant and substrate 

parameters/variables. 

Type of 

measurement 
Equipment Frequency Method applied 

Substrate moisture 

content (SMC)  

SM200 probe attached to 

a HH2 Moisture Meter 

(Delta‐T Devices, 

Cambridge, UK) 

Daily, once (or twice 

when plots were 

irrigated)  

4 measurements per plot 

Leaf stomatal 

conductance to 

water vapour (gs) of 

non-succulent 

leaves and leaves of 

Sedum spurium 

(with flat leaves) 

LCi infra-red gas 

analyser with a broad 

leaf chamber (ADC 

Bioscientific Ltd., 

Hoddesdon, UK). 

Ambient CO2 

concentration was 375 ± 

10 mm3 dm-3 

30 times in 2012 and 

12 times in 2013 (or 

8 for yellow 

Heuchera, due to a 

reduction of leaves 

compared to 2012) 

10 leaves per treatment, 

on each sampling 

occasion. Between 

10:00-17:00 h 

Albedo (α) 

Kipp & Zonen CNR4 

radiometer (Campbell 

Scientific Ltd., 

Shepshed, UK), 

positioned 0.1 m above 

the surface (field of view 

of 180o) 

Three cloudless days 

in each summer 

Measurements recorded 

every minute, for approx. 

20 minutes, for each 

treatment. Between 

10:00-16:00 h 

Spectral reflectance 

(400 and 1250 nm) 

GER 3700 

spectroradiometer with 

fibre optic lens, with 

field of view 10o 

(Geophysical and 

Environmental Research 

Corp., Millbrook, USA), 

positioned 0.5 m above 

the ground  

Once in 2012 
10 measurements per 

treatment, around noon 

Leaf area index 

(LAI)  

Leaf area meter (Delta‐T 

Devices, Cambridge, 

UK) 

Beginning and end of 

experiment, each 

summer 

Leaves collected within a 

square frame (0.15 x 0.15 

m) in each plot 

Canopy height (h) Tape measure 
Once half-way of 

both experiments 

In the centre of each plot, 

from substrate to the tip 

of the highest leaf 
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Table 3. Mean values of albedo (α), leaf area index (LAI) and height (h) for all the treatments evaluated 

in 2012 and 2013. The standard errors associated with α and LAI means are also presented.  

Treatments 

α LAI h (m) 

2012 2013 2012 2013 2012 2013 

Bare substrate 0.09 ± 0.003 0.13 ± 0.001     

Salvia 

(planted  2012) 
0.21 ± 0.001 0.23 ± 0.001 5.5 ± 0.21 5.6 ± 0.33 0.35 0.60 

Salvia 

(planted  2013) 
 0.22 ± 0.002  5.1 ± 0.31  0.25 

Stachys 0.20 ± 0.001 0.19 ± 0.001 5.5 ± 0.12 3.0 ± 0.27 0.25 0.50 

Heuchera 

yellow 
0.27 ± 0.001 0.14 ± 0.003 4.5 ± 0.45 0.7 ± 0.21 0.18 0.12 

Heuchera 

purple 
0.20 ± 0.002 0.20 ± 0.002 5.5 ± 0.25 5.1 ± 0.19 0.20 0.30 

Sedum 0.19 ± 0.001 0.17 ± 0.001 3.0 ± 0.32 2.6 ± 0.23 0.10 0.15 

Sempervivum 0.14 ± 0.001 0.17 ± 0.001 2.6 ± 0.17 3.9 ± 0.03 0.05 0.05 
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Table 4. Mean percentage of net radiation (Rn) received by each treatment allocated to the sensible (H), 

substrate (G) and latent (LE) heat fluxes. Mean percentages were calculated based on estimated mean 

absolute Rn, H, G and LE values for the period between 11:00-15:00 h for 10 days in 2012 and 9 days in 

2013, all with Tmax > 24oC.  

Treatments 
2012 - % Rn converted into 2013 - % Rn converted into 

H G LE H G LE 

Bare substrate 15 33 51 13 26 62 

Salvia (planted 2012) 7 3 90 0 3 96 

Salvia (planted 2013)    6 3 91 

Stachys 12 2 86 1 6 93 

Heuchera yellow 9 3 88 14 18 68 

 Heuchera purple 28 10 62 25 2 73 

Sedum 17 11 72 11 13 76 

Sempervivum 27 11 63 25 18 57 

  

 


