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Abstract 12 

Apple scab, caused by Venturia inaequalis, can lead to large losses of marketable fruit if left 13 

uncontrolled. The disease appears in orchards during spring as lesions on leaves. These 14 

primary lesions are caused by spores released at bud burst from over-wintering sources; these 15 

spores can be sexually produced ascospores from the leaf litter or asexual conidia from 16 

mycelium in wood scab or within buds. We investigated the relative importance of conidia 17 

and ascospores as primary inoculum in an orchard in the United Kingdom. Potted trees not 18 

previously exposed to apple scab were placed next to (c. 1 m) orchard trees to trap air-19 

dispersed ascospores. Number and position of scab lesions were assessed on shoots from both 20 

the potted trees (infection by airborne ascospores) and neighbouring orchard trees (infection 21 

by both ascospores and splash-dispersed conidia overwintered in buds). The distribution and 22 

population similarity of scab lesions were compared in the two tree types by molecular 23 

analysis and through modelling of scab incidence and count data. Molecular analysis was 24 

inconclusive. Statistical modelling of results suggested that conidia may have contributed 25 

approximately 20-50% of the total primary inoculum in this orchard: incidence was estimated 26 

to be reduced by 20% on potted trees, and lesion number by 50%. These results indicate that, 27 

although conidia are still a minority contributor to primary inoculum, their contribution in 28 

this orchard is sufficient to review current management. This might also be true of orchards 29 

with a similar climate. 30 

 31 

Introduction 32 

Annual epidemics of apple scab, caused by the ascomycete Venturia inaequalis, lead to large 33 

losses of marketable fruit worldwide if uncontrolled. The V. inaequalis life cycle sees 34 

overwintered spores released in the spring to infect newly emerged leaves. Lesions from 35 

these infections produce conidia which are dispersed by water splash, leading to secondary 36 
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infections which in turn continue the secondary inoculum cycle throughout the growing 37 

season (MacHardy, 1996). There are two possible sources of over-wintered inoculum, one 38 

sexual and the other asexual. Ascospores, released during spring rainfall from leaf litter and 39 

wind dispersed, have traditionally been believed to be the most important primary inoculum 40 

of V. inaequalis. As a result the majority of research into apple scab control has focused on 41 

reducing leaf litter in orchards (Sutton et al., 2000; Vincent et al., 2004; Gomez et al., 2007) 42 

and inoculum forecasting based on ascospore development and release to aid the application 43 

of chemical control (Gadoury & MacHardy, 1986; Beresford & Manktelow, 1994; Berrie & 44 

Xu, 2003).  45 

 V. inaequalis can also overwinter as stromata on twigs or as viable inoculum (most likely 46 

conidia) between bud scales (Cook, 1974; Hill, 1975; Becker et al., 1992).. It is likely asexual 47 

conidia are either washed on to leaves near to the source of overwintered scab, or they 48 

germinate and form a lesion on or around the bud forming conidia that are then released and 49 

dispersed by water. As with conidia from lesions in the main epidemic phase, these conidia 50 

from over-wintered sources will infect within an area close to the initial lesion site. In 51 

contrast, airborne ascospores will be turbulently dispersed or advected over longer distances . 52 

Thus, we would expect more leaves to be infected within the same flower truss or extension 53 

shoot, and more aggregation in lesions on individual leaves, if conidia are the primary 54 

inoculum. Studies (Holb et al., 2004, 2005; Gao et al., 2009) suggest that these conidial 55 

sources may be a significant part of the primary inoculum. This is important because 56 

reduction of overwintering inoculum and early season control measures differ for the two 57 

sources and because relatively lower levels of sexual reproduction  (compared to all primary 58 

infections resulting from ascospores) in the population may affect the evolution of for 59 

pathogen virulence and fungicide resistance. 60 
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 If conidia contribute to primary inoculum it means that a proportion of the lesions present in 61 

an orchard are not recombinant products of meiosis. As a result the population as a whole 62 

will evolve at a different rate from the population of an orchard where ascospores are the sole 63 

primary inoculum since a certain proportion of the primary inoculum has identical genotypes 64 

to the previous year. The size of this change will depend on the genetic architecture of the 65 

trait under study.  Furthermore, if a race of scab with superior fitness caused by several 66 

weakly linked polymorphic loci develops in an orchard  it is likely to become dominant in the 67 

orchard faster, as more of the primary inoculum in successive seasons will be the favoured 68 

genotype. Fitness might be increased because of virulence towards resistant cultivars or 69 

resistance to a fungicide - 70 

 We aimed to investigate the relative importance of conidia and ascospores as sources of 71 

primary inoculum in an orchard in Southeast England. As previously stated, conidia are 72 

dispersed by water splash, but it is difficult to trap conidia from buds reliably in splash water 73 

in the early season. Instead, we placed potted trees in an orchard with a history of scab. Scab 74 

on potted trees not previously exposed to scab should result from ascospores because they are 75 

air-borne and travel longer distances, whereas scab on orchard trees may result from both 76 

ascospores and overwintered conidia. We compared scab incidence and clustering on the two 77 

types of recipient tree.  We inferred the relative importance of the two sources of initial 78 

infection under the assumptions that young leaves from both types of trees are equally 79 

susceptible, and that conidia and ascospores have an equal infection potential/efficiency. The 80 

latter assumption is realistic for temperatures in the spring in the Southeast England and the 81 

infection requirement for conidia and scab (MacHardy, 1996) . In addition, we compared the 82 

genetic structure of the V. inaequalis populations from potted and orchard trees using simple 83 

sequence repeat (SSR) markers. 84 

 85 
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Materials and methods 86 

Sampling and lesion assessments 87 

Orchard WM132 at East Malling Research (Kent, UK) has three consecutive rows of Malus x 88 

domestica ‘Cox’s Orange Pippin’ (Cox) next to 3 consecutive rows of Malus x domestica 89 

‘Royal Gala’ (Gala) on M9 rootstocks (rows 4 m apart); each row has 12 trees planted 1.75 m 90 

apart. This orchard is not sprayed with fungicides, but is pruned, and is c. 15 years old. Six 91 

potted trees of each of Cox and Gala on M9 rootstocks (c. 10-12 years old) in 10 litre pots 92 

were placed within the orchard trees of the same cultivar, two positions randomly chosen in 93 

each row, at bud burst in 2012, 2013 and 2014 (these positions remained the same for all 94 

three years); therefore observations were carried out between paired samples, a potted tree 95 

with a partner orchard tree. Potted trees had been kept in a polytunnel, except for the 96 

experimental exposure period, to prevent surface wetness and so prevent V. inaequalis 97 

infection (hence remove the possibility of overwintering conidia from previous years). The 98 

distance between the potted tree and the nearest orchard tree was c. 1 m; potted trees were 99 

secured to the post of an orchard tree but the trees were arranged and pruned so that no 100 

branches of a potted tree touched or were directly above a branch of the corresponding 101 

orchard tree. Trees of both types were around 180-200 cm tall, with lowest shoots about 102 

80cm above ground level. Potted trees were watered (approx. 500ml) three times a week, 103 

directly onto the compost in the pot. The potted trees were returned to a polytunnel after 104 

sufficient infection events (3 to 5 weeks depending on weather), but before the first 105 

generation of conidia (i.e. visible lesions resulting from infection by primary inoculum) was 106 

produced, to ensure that infection on the potted trees all resulted from primary sources. The 107 

number of potential infection periods were 12, 3 and 3 for 2012, 2013 and 2014, respectively.  108 

Two weeks later, up to 15 shoots (flower trusses) were randomly sampled from across each 109 

potted tree and the nearest orchard tree (all available shoots were sampled when less than 15 110 
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were available). The number of scab lesions was counted on both sides of every leaf and the 111 

position of infected leaves on the shoot noted. On the few occasions when the scab was 112 

severe enough that discrete lesions could not be defined an estimate of the percentage of leaf 113 

covered in scab was made and this converted to an estimated number of lesions (assuming a 114 

single lesion corresponds to 1% scabbed area, based on empirical experiences). From each 115 

infected leaf the most clearly separated scab lesion was selected and cut out with a 5 mm 116 

cork-borer, placed in a 2 ml micro tube, left to air dry at room temperature and then 117 

transferred to a -20°C freezer until DNA extraction.  118 

DNA extraction and screening 119 

DNA was extracted from six lesions (where possible) per tree, no more than one lesion from 120 

any one shoot. As lesions were relatively sparse, few lesions will have resulted from infection 121 

by more than one spore; the rate at which this occurred was estimable from the genotype 122 

data. Therefore, DNA was extracted directly from the lesion on the leaf disc. Two 4 mm ball 123 

bearings were added to the leaf disc in the microtube and disrupted in an MM2 oscillating 124 

mill (Retsch). DNA was then extracted using a DNeasy Plant Mini Kit (Qiagen) following 125 

the manufacturer’s instructions with all optional steps. DNA was quantified and quality-126 

checked using a Nanodrop 1000 spectrophotometer (Thermo Scientific) and stored at -20°C. 127 

 The SSR primers used (Table 1), PCR and thermal cycle conditions, as well as the procedure 128 

for genotyping were all carried out as set out in Passey et al. (2016). PCR was repeated on 129 

any samples with no product for an SSR marker, alongside a positive control(s), so as to 130 

score a null allele, rather than a failed PCR, for that primer pair. 131 

Statistical analysis 132 

Molecular data  133 

Allele frequencies were estimated using Powermarker software (Liu & Muse, 2005). 134 

Analysis was run with and without rare alleles (frequency ≤ 0.01; i.e. an allele appearing only 135 
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once in the orchard in any given year) as very rare alleles have little effect on genetic 136 

diversity (Hale et al., 2012). If two alleles were present at a locus it was assumed that the 137 

lesion had resulted from infection by more than one spore. If a sample had only one locus 138 

with two alleles one was randomly selected. If a sample had multiple loci with more than one 139 

allele then the sample was discarded. 140 

 We assessed differentiation between populations on the potted trees and the orchard trees by 141 

AMOVA (Analysis of Molecular Variance) in Arlequin version 3.5 (Excoffier & Lischer, 142 

2010). AMOVA significance tests, based on 1023 permutations, were carried out for ‘among 143 

tree type (Orchard vs. Potted)’ and ‘among cultivars (Cox vs. Gala)’.  144 

 Multi-locus Linkage Disequilibrium (LD) was estimated for scab populations on each tree 145 

type for each cultivar to determine whether associations between alleles were compatible 146 

with sexual reproduction. LD was calculated by a permutation test (1000 permutations) with 147 

Powermarker software. The null hypothesis of the test is that scab from a particular group is 148 

in linkage equilibrium, i.e. that the genotype frequency is equal to the product of the allele 149 

frequencies (Liu & Muse, 2005). 150 

Lesions on leaves 151 

AGGREGATION OF LESIONS. The density of lesions is expected to be higher on leaves of 152 

orchard trees than on potted trees because of additional overwintered conidia in the orchard 153 

trees. For the same reason, lesions are expected to be more aggregated within an individual 154 

leaf on orchard trees than potted trees. We assessed aggregation by fitting the distribution of 155 

lesion counts on leaves to a Poisson or negative binomial distribution, separately for potted or 156 

orchard trees . We used generalised linear modelling (GLM) to make the fits. In the GLM 157 

analysis, cultivar and year were treated as factors; their interaction was not included. Errors 158 

were assumed to follow either a Poisson or a negative binomial distribution. Then we used 159 
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the average residual deviance per degree of freedom to compare the goodness of fit of the two 160 

models.   The best fitting distribution was used in subsequent work, 161 

LESION DENSITY. We tested whether mean lesion counts per leaf were significantly 162 

greater for the orchard than for the potted trees using a hurdle model. A limitation of standard 163 

count models is that the zeros and the non-zeros (positives) are assumed to come from the 164 

same data-generating process; often this type of model cannot account for an excess of zero 165 

counts in the data. To overcome this shortcoming, two types of models have been proposed: 166 

hurdle models and zero-inflated models (Cameron & Trivedi, 1998, 2005). For hurdle models, 167 

a Bernoulli probability governs the binary outcome of whether a count variate has a zero or 168 

positive realisation, similar to the common logistic modelling in GLM. If the realisation is 169 

positive (i.e., the hurdle is crossed), positive count data are assumed to be governed by a 170 

truncated-at-zero count data model (e.g., Poisson or negative binomial model). On the other 171 

hand, zero-inflated models assume that the response variable is a mixture of a Bernoulli 172 

distribution and a discrete data–generating process (e.g. Poisson) distribution. Therefore, zero 173 

counts can result from a discrete data generating process as well as a Bernoulli process for the 174 

zero-inflated models but only from a Bernoulli process for hurdle models.  175 

We chose to use the hurdle models because they enable easy interpretation of differences 176 

between potted and orchard trees in the incidence of scabbed leaves and in average lesion 177 

counts per scabbed leaf. The incidence of scabbed leaves was modelled as a binomial process 178 

and lesion density per scabbed leaf as or a negative binomial process. When fitting hurdle 179 

models, the origin of leaves (potted or orchard trees) was used as a factor in both parts of the 180 

hurdle model: incidence (logistic model) and density (truncated positive counts model). In 181 

addition to the comparison between the potted and orchard trees, year, cultivar and locations 182 

in the orchard were included the analysis – but all represented by a single factor of tree pairs: 183 

six locations (pairs of trees) within the Cox or Gala section within each year [giving 36 levels 184 
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for the factor ‘tree pairs’]. Therefore the effects of years and cultivars were already accounted 185 

for by the ‘tree pairs’ factor. We did not include cultivar or year explicitly in the analysis 186 

because the purpose of the present study was to study the overall difference in scab 187 

development between the potted and orchard trees. GLM was carried out using the MASS 188 

package (Venables & Ripley, 2002) and hurdle models using the pscl package (Zeileis et al., 189 

2008) in R (version 3.2). 190 

Number of scabbed leaves per shoot  191 

The variance in the number of infected leaves on a shoot would be expected to be greater in 192 

orchard trees due to additional conidial infection localised on particular shoots.   For each tree, 193 

we have 12-15 shoots.  We cannot  directly compare variances between trees for two reasons.  194 

First, shoots have an unequal number of leaves. Second, the variance of the distribution 195 

depends on the mean by the nature of binomial distribution. Therefore, a permutation test, 196 

conditioned on the total number of scabbed leaves in a tree, was used to compare the number 197 

of infected leaves in each shoot with that expected under the assumption of a random 198 

distribution of infected leaves. For each tree, we first conducted the following analysis: (1) 199 

find the total number of scabbed leaves; (2) for trees with more than one infected leaf, 200 

randomly assigning the same number of infected leaves to the shoots [taking into account the 201 

number of leaves on each shoot], (3) calculating the variance among shoots on each tree in 202 

the number of scabbed leaves on a shoot, (4) repeating steps 1-3 999 times, (5) calculating the 203 

variance of the observed data [we have 1000 variance values for each tree now: 999 variances 204 

for simulated data sets and one for the observed], (6) calculating the rank of the observed 205 

variance in the 1000 values [if there were ties, using the average rank; rank was calculated in 206 

descending order, i.e. the largest value has a rank of 1], and (7) calculating the ratio of the 207 

observed variance to the mean of the 999 permutated values. Thus, for each tree the analysis 208 

resulted in two values: the rank (frequency with whichthe observed variance would be seen if 209 
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the pattern were random), and the relative size of the observed variance to the mean of a 210 

random pattern. Then, ANOVA was applied to assess whether the rank (ln-transformed) or 211 

the ratio of variances differed significantly between potted and orchard trees. For the same 212 

reasons as outlined above, only tree pairs and the type of tree were included as factors in 213 

ANOVA of permutated data. Permutation and ANOVA were implemented in R (version 3.2).  214 

 215 

Results 216 

Molecular data 217 

In total we screened 396 sampled leaf discs over the three years (2012-2014, Table 2): 202 218 

and 194 samples from potted and orchard trees, respectively. Populations with less than 36 219 

analysed samples were due to: a lack of scab (two potted Cox trees in 2013); samples failing 220 

to amplify; or, removal of samples from analysis because they had multiple alleles at more 221 

than one locus. A change of capillary in the ABI 3130xl, after the 2012 samples were 222 

analysed, led to a +2bp shift in markers Vica9/X, Vitc1/82 and Vitg9/129. This was 223 

ascertained by running a subset of the 2012 samples and crosschecking against their original 224 

allele sizes; an appropriate correction was made to the data. Tests were run with and without 225 

rare alleles (frequency ≤ 0.01) of the orchard population in a given year; however, there was 226 

no difference in results. Null alleles occur when a mutation in the flanking region of the 227 

sequence repeat stops the annealing of the primer and therefore stops amplification during 228 

PCR. Statistical tests were run twice, including the null as an extra allele for that marker or 229 

excluding the isolate. There were no differences that affected inferences. 230 

 AMOVA showed no evidence of difference between the orchard trees and the potted trees in 231 

any of the three years, nor any difference between the cultivars (P > 0.3). 232 

 In 2012 and 2014 all of the multi-locus LD tests showed that the populations were in linkage 233 

equilibrium, indicating random mating (Table 3). In 2013 the V. inaequalis populations on 234 



11 
 

Gala potted trees were in linkage equilibrium but the scab populations on the Cox potted and 235 

orchard and the Gala orchard trees were in LD (Table 3). 236 

 237 

Analysis of scab lesion distributions 238 

GENERAL RESULTS. Scab was much more severe on Gala than on Cox (Table 4; P < 239 

0.001): incidence of 5.7% (±0.003) (Cox) vs 21.6% (±0.006) (Gala) and average lesion 240 

counts per leaf of 0.16 (± 0.019) (Cox) vs 1.11 (± 0.067) (Gala). Scab development was more 241 

severe in 2012 and 2014 than in 2013 (Table 4). More scab was observed on orchard trees 242 

than on potted trees in 2012; however, slightly more scab was seen on potted trees in 2014 243 

than on orchard trees (Table 4). There were only slight differences in the overall scab 244 

incidence and density between potted and orchard trees in 2013 (Table 4). Average number 245 

of lesions on the scabbed leaves was 4.61 (± 0.224). Overall, there was a larger proportion of 246 

leaves with high scab counts on orchard trees than on potted trees, except for Gala in 2014 247 

(Fig. 1).  248 

LESION DISTRIBUTION. A Poisson distribution fitted the count data on potted trees fitted 249 

reasonably well (average residual deviance 1.58) but not the  for the orchard trees (average 250 

residual deviance 3.23). The lack of fit of a Poisson distribution can be seen in Fig. 1, 251 

particularly for the susceptible cv. Gala. Both sets of lesion data were equally well described 252 

by a negative binomial distribution: average residual deviances were 0.327 and 0.363 for the 253 

potted and orchard trees, respectively.  254 

 The aggregation of lesions on leaves was further confirmed on fitting the hurdle distributions. 255 

A hurdle model based on the negative binomial distribution fitted the data much better than 256 

the corresponding model with a Poisson distribution.  The hurdle model with a negative 257 

binomial error distribution was therefore adopted for further analysis.  258 
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LESION DENSITY. GLM analysis (using hurdle distributions) showed that the incidence of 259 

leaves with scab was significantly (P < 0.001) greater on the orchard trees than on the potted 260 

trees. For the negative binomial part of the model, the parameter estimate  for potted trees 261 

was 0.206 (±0.063) less than that of orchard trees; that is, the odds ratio of being scabbed for 262 

potted trees was c. 80% of corresponding orchard trees. Furthermore, average lesion counts 263 

on infected leaves were greater (P < 0.001) on the orchard trees than on the potted trees. 264 

Potted trees had an intercept 0.701 (±0.140) less than that of orchard trees; that is, the average 265 

lesion number on potted trees was about 50% of that on the corresponding orchard trees.  266 

 267 

Number of infected leaves per shoot 268 

The variance in the number of infected leaves on a shoot (expressed as ratio of the observed 269 

to the mean of the permuted values) and the rank in a list of random permutations of the 270 

observations both differed greatly between potted and orchard trees (Fig. 2). For both 271 

variance ratio and log-transform rank variables, residual plots did not suggest any apparent 272 

violations of ANOVA assumptions. For potted trees, the ratio of the observed variance in the 273 

number of infected leaves on a shoot within each tree to the mean of the permuted values was 274 

0.98, close to the expected value of 1.0. For the orchard trees, this ratio was much greater at 275 

1.63 (F1,39 = 27.2, P < 0.001).  The rank of the observed variance in a permuted dataset (Fig. 276 

2) was much greater in orchard trees (792) than in potted trees (467) (F1,39 = 25.1, P < 0.001; 277 

the average rank of variance of the permuted datasets was necessarily 500).   278 

  279 

Discussion 280 

Previous molecular comparisons of isolates from different cultivars within the same orchard 281 

indicated that conidia may overwinter in bud and/or wood scab and act, in addition to 282 

ascospores, as a source of primary inoculum (Xu et al., 2013). Several other studies have also 283 
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suggested overwintered conidia are a source of primary inoculum (Becker et al., 1992; Holb 284 

et al., 2004, 2005; Gao et al., 2009). In this study we showed that scab lesions on orchard 285 

trees were more aggregated on leaves and shoots than on adjacent potted trees not previously 286 

exposed to scab (i.e. not exposed to overwintered conidia). Both scab incidence and count 287 

data suggest that conidial primary inoculum may have contributed approximately 20-50% of 288 

the total inoculum: incidence was estimated to be reduced by 20% on potted trees, and lesion 289 

number by 50%, averaged over the three years of the study. This interpretation is under the 290 

assumptions that infection efficiency by both conidia and ascospores on orchard and potted 291 

trees is the same and that both potted and orchard trees are equally susceptible to infection. 292 

Infection efficiency in the spring temperatures that the orchard experienced was similar for 293 

ascospores and conidia (Reviewed by MacHardy, 1996). The initial infection process should 294 

have been completed when the potted  trees were returned to the polytunnel; subsequent 295 

temperature should not have affected the number of lesions , since we allowed sufficient time 296 

for all infections to become visible, predicted on the basis of the relationship of incubation 297 

time to temperature (MacHardy, 1996).   The likely causes of difference in susceptibility are 298 

“softer” tissue in potted plants and lack of resistance priming and induced resistance from 299 

phylloplane organisms in the potted plants.   Both would produce effects in the opposite 300 

direction to those observed. 301 

 The scab populations on potted and orchard trees were in linkage equilibrium in both 2012 302 

and 2014. This fits the hypotheses of either predominantly ascospore primary inoculum or no 303 

deviation from linkage equilibrium within the conidial primary inoculum, due presumably to 304 

no selective changes (detectable with the set of SSRs used) in the population the previous 305 

year. In 2013 the population of V. inaequalis on potted trees of Gala was in linkage 306 

equilibrium but the orchard trees were in linkage disequilibrium. This would be expected if 307 

conidia were an important part of the primary inoculum, as the scab on the potted trees would 308 
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be from sexually produced ascospores and therefore from independent sampling, whereas the 309 

scab on the orchard trees would be from both (freely recombinant) ascospores and clonal 310 

conidia. However, the populations of V. inaequalis on both potted and orchard trees of Cox 311 

were in linkage disequilibrium in 2013; the potted trees more significantly than the orchard 312 

trees.  This suggests that unexplained factors influenced our estimates of linkage 313 

disequilibrium, so no secure inferences can be drawn. .  314 

 Although wood scab in heavily infected orchards is commonly observed, it is believed that 315 

very few of these wood scab lesions produce viable conidia in spring, indicating that 316 

asexually overwintering scab is most likely to result from overwintering in buds (Becker et 317 

al., 1992). Although the present study was conducted in an unsprayed orchard (WM132), 318 

scab was not very severe and there was no evidence of wood scab present. Furthermore, 319 

commercial pruning was applied to the orchard; heavily infected shoots will be likely to have 320 

been removed. Thus, conidia that overwintered in the buds are probably the main source of 321 

overwintered conidium inoculum in the spring. 322 

We may conclude that ascospores are still the main source of primary inoculum (c. 80% in 323 

this specific orchard) in the spring for temperate growing regions such as Southeast England. 324 

Therefore, the current management practice of eliminating leaf debris in late autumn 325 

(MacHardy, 1996) needs to be retained. However conidia as primary inoculum cannot be 326 

ignored.  The relative importance of conidia and ascospores as primary inoculum is likely to 327 

vary between orchards and years. In this study we have not compared the differences 328 

between years, cultivar or position within an orchard as the aim was to assess the overall 329 

importance of conidia primary inoculum. There are many other factors that could affect the 330 

relative proportion of conidia as primary inoculum, including pruning, leaf degradation, in-331 

season control efficacy, cultivar, and epidemic severity. Most of the studies suggesting the 332 

importance of conidia as part of primary inoculum have been in areas with wet and mild 333 
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winters such as the United Kingdom (Present study; Cook, 1974; Hill, 1975), the Netherlands 334 

(Holb et al., 2004, 2005) and west Norway (Stensvand et al., 1996). Conditions in these 335 

regions are likely to be both more conducive to faster decomposition of leaf material, 336 

reducing ascospore levels, and more likely to allow survival of conidia or mycelia in buds 337 

than regions with colder winters. Warmer growing regions, where there is no winter chill 338 

necessary for pseudothecia development, only have clonal lineages of the apple scab 339 

pathogen (Boehm et al., 2003).  340 

 341 

Reducing the amount of inoculum in early season is paramount to good scab control. The 342 

main focus of forecast programmes designed to aid effective application of chemical control 343 

in spring is currently ascospore release. However, even with a perfect elimination of leaf 344 

debris, scab control in the early season is still essential as, based on this work, overwintered 345 

conidia are likely to be a source of primary inoculum. Consideration of release of conidia 346 

from bud scale should be incorporated into spray guidance programmes. Further, it might 347 

also be useful to spray when buds are forming, similar to a strategy being evaluated for 348 

reducing overwintering of powdery mildew in apple buds at East Malling.  349 

 In summary, we have shown that conidia play an important role as part of the primary 350 

inoculum of apple scab in the orchard studied; however, ascospores are still the predominant 351 

source. Due to the many factors that can affect the amount of overwintering conidia in 352 

orchards, the overall contribution of conidia as primary inoculum is expected to vary 353 

considerably with orchards and seasons. Sanitation practices are imperative,  for example 354 

good winter pruning and removal of leaf litter are both important. Early season sprays are 355 

necessary for successful control of scab whether the primary inoculum is from ascospores or 356 

overwintered conidia; however traditional spray programmes may have to be revisited in 357 

light of these findings. 358 
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Table 1 Sequences (5’-3’) for SSR primer pairs used to genotype apple scab isolates  

SSR Fluorescent label-Forward primer  Reverse Primer  

Allele 

range 

EMVi029a HEX-ACGAGTCCCAGGTCTCACAG TGTTGACGGTCACGGTGTAT 170-252 

Vica9/Xb FAM-TCGCGCATCACTATCTACAC AGACAGGAATGTGGTGGAAG 219-247 

Vica10/154b HEX-CCTCCTTCCTATTACTCTCG CTGAAGCGAACCTATGTCC 100-168 

Vicacg8/42b FAM-TGTCAGCCACGCTAGAAG CACCGGACGAATCATGC 200-240 

Vict1/130b FAM-GATTGGTGACGCATGTGT GCTGGAGATTGCGTAGAC 148-164 

Vitc1/82b HEX-ACTGTCTCTAGGCGAAAG ACTTGGAAGCTCGCTAAG 227-243 

Vitc2/16b FAM-ACATTGACGAAGACGAGC TACAATTGAGGCGTGTCC 153-169 

Vitg9/129b FAM-CTAATTCAACTCGCTGCGTC TTTCAGCCAGCTAACCTAGG 277-291 
aXu et al., 2009  
bGuérin et al., 2004  
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 447 

Table 3 Significance results in test for Linkage Disequilibrium of V. inaequalis 

populations of potted and orchard trees in different cultivars in an orchard in 

Southeast England 

 Population(s) 2012 2013 2014 

Cox Orchard 1.00 0.01 1.00 

Potted 1.00 < 0.001 1.00 

Gala Orchard 1.00 0.01 1.00 

Potted 1.00 1.00 1.00 

 448 
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 456 

  457 

Table 2 Number of leaf discs with scab lesions 

screened for SSR markers to compare 

populations from potted trap trees and orchard 

trees 

Type 2012 2013 2014 

 Cox Gala Cox Gala Cox Gala 

Potted 36 36 25 35 35 35 

Orchard 31 29 34 31 36 33 
 
 

Table 4 Incidence of leaves with scab and average 

number of lesions per leaf on orchard and potted trees 

of cvs. Cox and Gala in an orchard in Southeast 

England 

 2012 2013 2014 

Type Cox Gala Cox Gala Cox Gala 

 Number of leaves assessed 

Potted 1201 1105 738 687 1051 602 

Orchard 917 850 830 951 797 686 

 Incidence of leaves with scab 

Potted 0.063 0.171 0.049 0.180 0.049 0.261 

Orchard 0.108 0.301 0.047 0.181 0.017 0.230 

 Average lesion counts 

Potted 0.118 0.536 0.172 0.646 0.059 1.228 

Orchard 0.358 2.414 0.263 1.077 0.025 0.828 
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 458 

Figure 1. Distribution of apple scab lesions on individual leaves collected from potted trees 459 

(non-shaded bar) and corresponding orchard trees (shaded bar) of two cultivars in three years 460 

when both types of trees were exposed to the same conditions at the same locations. In 461 

addition the expected frequency assuming a Poisson (random) distribution for number of 462 

lesions on individual leaves is also shown (line). Observed data has a higher frequency than 463 

expected for leaves with no lesions and more than four lesions per leaf indicating aggregation 464 

of lesions within a single leaf.  465 

 466 

 467 

 468 

Figure 2. Plot of the ratio between the observed variance in the number of scabbed apple 469 

leaves in each shoot within each tree with the average variance of 999 permutations 470 

assuming random distribution of infected leaves, and the log of the rank of the observed 471 
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variance among the 1000 variance values (999 permutated and one observed; in the 472 

descending order – i.e. the largest has the rank of one). Depth of grey indicates overlaying of 473 

observations. The rank of observed variance was significantly different (P < 0.001) between 474 

orchard and potted trees in this Southeast England orchard. 475 

 476 


