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KdV cnoidal waves in a traffic flow model with periodic boundaries

Laura Hattam ∗

Abstract

An optimal-velocity (OV) model describes car motion on a single lane road. In particular,

near to the boundary signifying the onset of traffic jams, this model reduces to a perturbed

Korteweg-de Vries (KdV) equation using asymptotic analysis. Previously, the KdV soliton

solution has then been found and compared to numerical results (see Muramatsu and Nagatani

(1999)). Here, we instead apply modulation theory to this perturbed KdV equation to obtain at

leading order, the modulated cnoidal wave solution. At the next order, the Whitham equations

are derived, which have been modified due to the equation perturbation terms. Next, from this

modulation system, a family of spatially periodic cnoidal waves are identified that characterise

vehicle headway distance. Then, for this set of solutions, we establish the relationship between

the wave speed, the modulation term and the driver sensitivity. This analysis is confirmed with

comparisons to numerical solutions of the OV model. As well, the long-time behaviour of these

solutions is investigated.

1 Introduction

The study of traffic flow has uncovered some interesting phenomena such as the propagation of

nonlinear density waves representing congestion. To determine traffic behaviour, a variety of mod-

elling techniques are used, which include the application of car following, cellular automation, gas

kinetic and hydro dynamical models. Refer to Nagatani (2002) for a discussion of the different

methods.

Here, we concentrate on a car following model that governs vehicle motion on a single lane road

with periodic boundaries. The OV model proposed by Newell (1961) is applied, which is

dxj(t+ τ)

dt
= V (xj+1(t)− xj(t)), (1)

where xj(t) is the position of car j at time t, τ is the delay time of the driver, V is the optimal

velocity and j = 0, 1, 2, . . . , N for N cars on the road.
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We will examine (1) when it reduces to a perturbed KdV equation. This occurs only within a

certain stability zone, which is referred to as ‘metastable’. It is well-known that the unperturbed

KdV equation has the travelling wave solution, the cnoidal wave of modulus m, where m ∈ (0, 1)

(see Korteweg and de Vries (1895)). If m→ 1, this becomes the soliton solution.

Muramatsu and Nagatani (1999) explored this traffic flow problem with open boundaries. They

derived a perturbed KdV equation from an OV model and then obtained the KdV soliton solution.

This result was compared to numerical simulations with good agreement. As well, these solutions

were shown to disappear after some time. Zhu and Dai (2008) instead applied periodic boundary

conditions to study the metastable dynamics. Numerically they found large amplitude waves with

narrow peaks of both upward and downward form. Nonlinear theory was next used to find the

perturbed KdV equation and the soliton solution was highlighted to explain the numerical waves

exhibited. Note however that this solution does not satisfy periodic boundaries and therefore,

further analysis is needed.

Additionally, Yu et al. (2010) and Zhou et al. (2014) performed numerical examinations of traffic

OV models. This revealed steady travelling waves in the metastable zone that are similar in form to

the KdV cnoidal wave of modulus m. The modulation term appears to be constant here since the

wave amplitude, mean height and period remain fixed over the domain. Therefore, it is possible that

other KdV solutions do occur in the OV model besides the soliton. Hence, further asymptotic work

is required to establish the connection between the numerically observed travelling density waves

and the nonlinear analysis. To achieve this, we will apply modulation theory to the perturbed KdV

equation so that the entire family of possible solutions to the reduced traffic model are obtained.

Whitham (1974) developed modulation theory for the KdV equation, which was a multi-scale

method that gave modulated wavetrain solutions. A system of first order partial differential equa-

tions describing the modulations was also found, now known as the ‘Whitham Equations’. Gure-

vich and Pitaevskii (1987) extended the modulation theory to include Burgers damping, where the

Whitham equations with additional terms to account for friction were formed. Myint and Grimshaw

(1995) instead incorporated an arbitrary damping term, and then considered three different types

of damping to analyse the subsequent wavetrain solutions. Later, Kamchatnov (2004) presented

a generalised technique to obtain modified Whitham equations for the perturbed KdV equation.

These previous studies will be used here. Then, by assuming steady travelling waves exist, we will

demonstrate how a perturbed Whitham system can be reduced to a single differential equation for

the modulation term.

This paper concentrates on the identification of steady solutions of the modulation equations, in

particular, when the modulation term is fixed since these appear numerically. More specifically,

in Section 2, we outline the traffic OV model and the asymptotic analysis used to then obtain a

2



perturbed KdV equation. Next, in Section 3, modulation theory is applied to this equation and as

a result, the modified Whitham equations are derived. Then, steady solutions of these equations

are pursued in Section 4. This analysis is next related to the traffic problem in Section 5. Lastly,

in Section 6, numerical simulations of the OV model are compared to the asymptotic solutions. As

well, the long-time dynamics are examined.

2 Traffic Flow Model

We outline the transformation of (1) into a perturbed KdV equation within the metastable zone.

Firstly, a Taylor series expansion of (1) gives

d2∆xj
dt2

= â

(
V (∆xj+1(t))− V (∆xj(t))−

d∆xj
dt

)
, (2)

where â = 1/τ is the driver’s sensitivity and ∆xj = xj+1 − xj is the vehicle headway. Bando et al.

(1995) proposed this model, as well as the optimal velocity function,

V (∆xj(t)) =
vmax

2
(tanh(∆xj − hc) + tanh(hc)) , (3)

where hc is the safety distance and vmax is the maximal velocity. We choose vmax = 2 and hc = 4

for convenience.

Ge et al. (2005) discussed three OV models that describe car motion. Here, their Model B is

applied, which uses (2) and (3), and has the linear stability criteria

τ ≤ τs =
1

2V ′(h)
. (4)

If this condition is satisfied, then the steady solution ∆xj(t) = h is stable, where h is the uniform

headway. Additionally, the curve given by τ = τs is labelled the ‘neutral stability line’ as it

represents the boundary between no traffic jams and jams.

Next, Ge et al. (2005) detailed the application of an asymptotic method to reduce (2) to a

perturbed KdV equation, which used the change of variables

x = −ε

√
6

V ′(h)
(j + V

′
(h)t), t̄ = ε3

√
6

V ′(h)
t, ε2 = 1− (τ/τs), 0 < ε� 1, (5)

and let

∆xj(t) = h+
ε2

V ′′(h)
u. (6)

Consequently, (2) became

ut̄ + νuux + λuxxx + εV̄ (u) = 0, (7)
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where

V̄ (u) = µuxx + γuxxxx + η
(
u2
)
xx
, (8)

and

λ = 1, ν = 1, µ = −
√

3V ′(h)

2
, γ =

3

2

√
3

2V ′(h)
, η =

1

2

√
3

2V ′(h)
. (9)

This is a perturbed KdV equation as ε is small. We have introduced here the parameters λ, ν, µ, γ, η

so that the perturbation analysis in Sections 3 and 4 is generalised. Then, this is related to our

traffic problem in Sections 5 and 6.

Since 0 < ε� 1, τ is chosen such that the solutions to (7) are positioned very close to the neutral

stability line, however, they will still satisfy (4). Therefore, as t becomes very large, the headway

will tend to steady state h. This region is classified as metastable. Soliton density waves within

this zone have been shown numerically to propagate for long times and eventually disappear (refer

to Muramatsu and Nagatani (1999)). We however will demonstrate that a large set of long-time

persisting cnoidal wave solutions exist. Here, it is only periodic boundaries that are considered,

therefore spatially periodic solutions are sought. It should be noted that reference throughout to

the spatial domain corresponds to j ∈ [0, N ]. So, to implement periodic boundary conditions, we

ensure

∆x0(t) = ∆xN (t),
∂∆xj(t)

∂j

∣∣∣∣
j=0

=
∂∆xj(t)

∂j

∣∣∣∣
j=N

, t ≥ 0. (10)

3 The Modulation Equations

Previous studies, such as Myint and Grimshaw (1995) and Kamchatnov (2004), have derived mod-

ulation theory for the perturbed KdV equation. From these workings, we know that if

u (x, t̄) = u0(θ,X, T ) +O(ε),

and

θ =
1

ε
Θ(X,T ), X = εx, T = εt̄, ω = −ΘT , k = ΘX , c = ω/k, (11)

where c is the wave speed, then

u0 = ab+ d+ a cn2(β(θ − θ0);m), (12)
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where

a =
12λ

ν
(mkβ)2, (13a)

d =
c

ν
− a

3m2

(
2−m2 − 3

E(m)

K(m)

)
, (13b)

b =
1−m2

m2
− E(m)

m2K(m)
, (13c)

β =K(m)/P. (13d)

This is the cnoidal wave solution with period 2P in θ, where P is a fixed constant. The parameters

m, a, b, d, k, θ0, β are slowly varying, dependent on the slow variables X and T . The function

cn is the Jacobi elliptic function and K(m), E(m) are the elliptic integrals of the first and second

kind respectively. Additionally, this solution satisfies

λk2

ν
u2

0,θ = 2D̂ + 2Ĉu0 + Uu2
0 −

1

3
u3

0, (14)

where Ĉ and D̂ are integration constants and U = c/ν. These constants can be expressed in terms

of the cnoidal wave parameters,

Ĉ = −1

3
(ab+ d)3 +

1

2
U(ab+ d)2 − a2

6m2
(1−m2)(ab+ d), (15a)

D̂ =
1

2
(ab+ d)2 − U(ab+ d) +

a2

6m2
(1−m2). (15b)

The Whitham modulation equations for the perturbed KdV equation are also determined using

previous findings (see Myint and Grimshaw (1995) and Kamchatnov (2004)). This is a third order

system written in terms of the Riemann invariants r1, r2, r3, which describe the slow variation of

(12),
∂ri
∂T

+Qi
∂ri
∂X

= Mi, (16)

where

Qi = νU +
ν

6

k

∂rik
, i = 1, 2, 3, U =

1

6
(r1 + r2 + r3), m2 =

r2 − r1

r3 − r1
,
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and

M1 =− k

2P (∂r1k)(r3 − r1)(r2 − r1)
×(∫ P

−P
u0V̄ (u0)dθ − 1

2
(r2 + r3 − r1)

∫ P

−P
V̄ (u0)dθ

)
,

M2 =− k

2P (∂r2k)(r3 − r2)(r1 − r2)
×(∫ P

−P
u0V̄ (u0)dθ − 1

2
(r1 + r3 − r2)

∫ P

−P
V̄ (u0)dθ

)
,

M3 =− k

2P (∂r3k)(r1 − r3)(r2 − r3)
×(∫ P

−P
u0V̄ (u0)dθ − 1

2
(r1 + r2 − r3)

∫ P

−P
V̄ (u0)dθ

)
.

Now, we apply this analysis to the perturbed KdV equation (7), where V̄ is defined by (8). So,

using (14),

1

2P

∫ P

−P
u0V̄ (u0)dθ =

1

2P

∫ P

−P
u0(µk2u0,θθ + γk4u0,θθθθ + ηk2(u2

0)θθ)dθ

=− µk2 1

2P

∫ P

−P
u2

0,θdθ + γk4 1

2P

∫ P

−P
u0u0,θθθθdθ

+ ηk2 1

2P

∫ P

−P
u0

(
−2λk2

ν
u0,θθθθ + 2Uu0,θθ

)
dθ

=−
(
µk2 + 2Uηk2

) 1

2P

∫ P

−P
u2

0,θdθ +

(
γk4 − 2λη

ν
k4

)
1

2P

∫ P

−P
u2

0,θθdθ.

Next, omitting the details, it can be shown that by manipulating (14),

1

2P

λk2

ν

∫ P

−P
u2

0,θdθ =
2

5
(3D̂ + 2Ĉd+ U(Ĉ + Ud)),

1

2P

λ2k4

ν2

∫ P

−P
u2

0,θθ =
1

7

(
6D̂d+ 8Ĉ2 + U(−6D̂ + 6Ĉd+ 2UĈ + 2U2d)

)
.

As well, since u0 and its derivatives with respect to θ are periodic over 2P , then∫ P

−P
V̄ (u0)dθ =

∫ P

−P
(µk2u0,θθ + γk4u0,θθθθ + ηk2(u2

0)θθ)dθ = 0.

As a result,

Mi = −
k
∫ P
−P u0V̄ (u0)dθ

2P∂rik
∏
i 6=j(ri − rj)

, (17)
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where

1

2P

∫ P

−P
u0V̄ (u0)dθ =−

(
µk2 + 2Uηk2

) 2ν

5λk2
(3D̂ + 2Ĉd+ U(Ĉ + Ud))

+

(
γk4 − 2λη

ν
k4

)
ν2

7λ2k4

(
6D̂d+ 8Ĉ2 + U(−6D̂ + 6Ĉd+ 2UĈ + 2U2d)

)
.

(18)

Thus, the Whitham system for the traffic flow problem outlined in Section 2 has been identified.

4 Steady Solutions

The differential equations have been derived that govern the modulation of our leading order cnoidal

wave solution (12). We now seek steady solutions to the system (16)-(17) by setting the wave speed,

c, to a constant. Here, the workings of El et al. (2005) are followed, where steady solutions were

found to the fourth order Whitham system for the Kaup-Boussinesq-Burgers equation. This method

is now adapted to analyse our third order system.

Initially, the equation perturbation terms, V̄ , are undefined so that the analysis is generalised.

Consequently, a technique is detailed to reduce any perturbed third order modulation system to a

single differential equation for the modulation term (assuming
∫ P
−P V̄ (u0)dθ = 0).

Now, if c is some constant,
∂

∂T
= −ω d

dΘ
,

∂

∂X
= k

d

dΘ
.

and
∂ri
∂T

+Qi
∂ri
∂X

= (−kνU + kνU + kQ̃i)
dri
dΘ

= Mi,

where

Q̃i = Qi − νU =
ν

6

k

∂rik
, Mi = − kM̃

2∂rik
∏
i 6=j(ri − rj)

, M̃ = 2

(
1

2P

∫ P

−P
u0V̄ (u0)dθ

)
.

Therefore,
dri
dΘ

=
Mi

kQ̃i
=

M̂

Πi 6=j(ri − rj)
, M̂ = − 3

kν
M̃. (19)

Now let

P (r) = Π3
i=1(r − ri) = r3 − s1r

2 + s2r − s3, (20)

where

s1 = r1 + r2 + r3, s2 = r1r2 + r1r3 + r2r3, s3 = r1r2r3. (21)

Then,

ds1

dΘ
=

d

dΘ
(r1 + r2 + r3) =

(
3∑
i=1

1

Πi 6=j(ri − rj)

)
M̂ = 0.
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As well,

ds2

dΘ
=

d

dΘ
(r1r2 + r1r3 + r2r3) =

(
3∑
i=1

∑′
j rj

Πi 6=j(ri − rj)

)
M̂ = 0.

Hence, s1 and s2 are any real constants. Next,

ds3

dΘ
=

d

dΘ
(r1r2r3) = s3

(
3∑
i=1

1

ri
· 1

Πi 6=j(ri − rj)

)
M̂ = s3 ·

1

s3
· M̂ = M̂. (22)

Note that the three identities

n∑
i=1

1

Πi 6=j(ri − rj)
= 0,

n∑
i=1

∑′
j rj

Πi 6=j(ri − rj)
= 0,

n∑
i=1

1

ri
· 1

Πi 6=j(ri − rj)
=

(−1)n−1

Πn
i ri

,

were used to determine si,Θ, which are from El et al. (2005).

Now, we know that

λk2

ν
u2

0,θ =− 1

3
(u0 −

1

2
(r1 + r2 − r3))(u0 −

1

2
(r1 + r3 − r2))(u0 −

1

2
(r2 + r3 − r1)),

=2D̂ + 2Ĉu0 + Uu2
0 −

1

3
u3

0.

This becomes, if u0 = −ũ0 + s1/2 = −ũ0 + (r1 + r2 + r3)/2 and using (20),

λk2

ν
ũ2

0,θ =
1

3
(ũ0 − r3)(ũ0 − r2)(ũ0 − r1)

=
1

3
P (ũ0) =

1

3
(ũ3

0 − s1ũ
2
0 + s2ũ0 − s3),

=2D̂ + 2Ĉ(−ũ0 + s1/2) + U(−ũ0 + s1/2)2 − 1

3
(−ũ0 + s1/2)3.

(23)

Equating like terms of (23), we find

U =
s1

6
, Ĉ = −s2

6
+
s2

1

24
, D̂ = −s3

6
+
s1

48
(4s2 − s2

1). (24)

As an aside, the integration constant, Ĉ, can be written as a function of a and m only using

(13b) and (13c). After some detail, (15a) takes the form

Ĉ =
a2

18m4
(m4 −m2 + 1)− s2

1

72
.

Therefore, from (24),

−s2

6
+
s2

1

24
=

a2

18m4
(m4 −m2 + 1)− s2

1

72
.

Rearranging this,

a(m) = κ1/2

√
18m4

m4 −m2 + 1
, (25)
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where

κ =
s2

1

18
− s2

6
> 0, (26)

which is some constant since s1, s2 are constants. From (25), (13b) takes the form

d(m) =
s1

6
−
√
κ

3

√
18

m4 −m2 + 1

(
2−m2 − 3

E(m)

K(m)

)
. (27)

Next, from (13c), (25) and (27), we can express D̂ as a function of m only. With some simplification,

(15b) can be written

D̂ =

√
2

3

(
κ

m4 −m2 + 1

)3/2

(−2m6 + 3m4 + 3m2 − 2) +
s1s2

36
− 11s3

1

1296
.

Combining this with our second definition for D̂, see (24),

−s3

6
+
s1

48
(4s2 − s2

1) =

√
2

3

(
κ

m4 −m2 + 1

)3/2

(−2m6 + 3m4 + 3m2 − 2) +
s1s2

36
− 11s3

1

1296
.

This gives us an expression for s3 in terms of m only,

s3(m) = − 1

27

(
s2

1 − 3s2

m4 −m2 + 1

)3/2

(−2m6 + 3m4 + 3m2 − 2) +
s1s2

3
− 2s3

1

27
, (28)

and then,
ds3

dm
=

(s2
1 − 3s2)3/2m3(m2 − 1)

(m4 −m2 + 1)5/2
. (29)

Thus, from (22),

dm

dΘ
= − 3

kν

(
ds3

dm

)−1

M̃ = − 3

kν

(m4 −m2 + 1)5/2

(s2
1 − 3s2)3/2m3(m2 − 1)

M̃, (30)

where

M̃ = 2

(
1

2P

∫ P

−P
u0V̄ (u0)dθ

)
.

The differential equation (30) describes the slow modulations of the cnoidal wave (12) as it propa-

gates with constant speed c, for some given V̄ (where θ = Θ/ε). Now, to concentrate on the traffic

problem detailed in Section 2, V̄ is defined using (8). So then

M̃ =−
(
µk2 + 2Uηk2

) 4ν

5λk2
(3D̂ + 2Ĉd+ U(Ĉ + Ud))

+

(
γk4 − 2λη

ν
k4

)
2ν2

7λ2k4

(
6D̂d+ 8Ĉ2 + U(−6D̂ + 6Ĉd+ 2UĈ + 2U2d)

)
.

(31)

As we seek solutions that satisfy periodic boundaries, one way to achieve this is to set mΘ = 0,

and therefore, M̃ = 0. As a result, the modulation term m, and therefore, the wave amplitude,
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period and mean height will remain constant over the solution domain. The choice of constant m

is motivated by the numerical simulations conducted by Zhu and Dai (2008), Yu et al. (2010) and

Zhou et al. (2014) already discussed. Hattam and Clarke (2015) also used this technique of fixing

m to obtain spatially periodic solutions to the periodically forced steady KdV-Burgers equation.

The period of these solutions was equal to or an integer multiple of the forcing term’s period.

Now, let us express our parameters in terms of m, s1 and κ such that

a =
√
κH1(m), d =

s1

6
+
√
κH3(m), Ĉ = κ− s2

1

72
, D̂ = κ3/2H2(m)− s1

6

(
κ− s2

1

216

)
, (32)

where

H1(m) =

(
18m4

1−m2 +m4

)1/2

,

H2(m) =
H1(m)3

162m6
(−2 + 3m2 + 3m4 − 2m6),

H3(m) =
H1(m)

3m2

(
3E(m)

K(m)
+m2 − 2

)
.

Substituting the definitions given by (32) into (31) and simplifying, (31) reduces to

M̃ = −2
(
µ+

s1

3
η
) 2νκ3/2

5λ
(3H2(m) + 2H3(m)) + 2

(
γ − 2λη

ν

)
ν2κ2

7λ2
(6H2(m)H3(m) + 8).

Therefore, to ensure mΘ = 0, then

−
(
µ+

s1

3
η
) 2νκ3/2

5λ
(3H2(m) + 2H3(m)) +

(
γ − 2λη

ν

)
ν2κ2

7λ2
(6H2(m)H3(m) + 8) = 0. (33)

If (33) holds then the leading order solution will be periodic since it becomes the cnoidal wave of

constant modulus m i.e. the period, amplitude and mean value remain unchanged for all θ.

Given m and c are some constants, then ω and k will also be constants (Θ = kX − ωT ), where

k(m) =

√
νa(m)

12λ

P

mK(m)
. (34)

This gives, with (25),

κ =
s2

1

18
− s2

6
=

(
kK(m)

P

)4(12λ

ν

)2 (m4 −m2 + 1)

18
. (35)

Rearranging (33) and using (35), we obtain

s1 =
180

7ρ̄(m)

(
k

P

)2(γ
η
− 2λ

ν

)
− 3µ

η
, (36)
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where

ρ̄(m) =
H1(m)

(mK(m))2

(
3H2(m) + 2H3(m)

3H2(m)H3(m) + 4

)
.

This relation determines the speed c = (νs1)/6 of our cnoidal wave solutions for some choice of

fixed m, (k/P ) and equation parameters λ, ν, µ, γ, η. Hence, a family of periodic solutions to

(7)-(8) exist in the limit 0 < ε� 1 when (36) holds.

5 Application to the Traffic Flow Model

The analysis outlined in Sections 3 and 4 is now related to the traffic flow model (2). It is therefore

necessary to express the leading order solution in terms of the model (2) variables, j and t. As

well, the equation parameters λ, ν, µ, γ, η are now defined using (9).

Without any loss of generality, we firstly set k = 1 (θ = x) and then, c = ω. So, our travelling

wave solution in terms of car j’s headway at time t is

∆xj(t) = h+
ε2

V ′′(h)
u0(j, t) +O(ε3), (37)

where, using (5),

u0(j, t) =a(m)b(m) + d(m)

+ a(m) cn2

(
K(m)

P

(√
12(τs − τ)

(
j + t

(
V
′
(h) +

s1

6

(
τs − τ
τs

)))
+ θ0

)
;m

)
.

(38)

The solution parameter s1 is chosen such that (36) is satisfied and m is fixed. The solution

parameters b, a and d are defined by (13c), (25) and (27) respectively. The speed of this wave is

wave speed = V
′
(h) +

s1

6

(
τs − τ
τs

)
. (39)

Note that the solutions highlighted in Section 4 are periodic in the θ direction, however, they are

not necessarily periodic over the spatial domain j ∈ [0, N ]. Let us set

nT̂ = N.

If n is equal to some positive integer then the corresponding solution satisfies periodic boundaries.

Consequently, n is the number of oscillations over j ∈ [0, N ] and the solution period in the j

direction is T̂ = (2P )/
√

12(τs − τ). Hence,

P =
N

2n

√
12(τs − τ). (40)
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The periodic boundary conditions (10) hold if P is defined using (40), where n = 1, 2, . . .

There exist a large number of possible travelling wave solutions that satisfy (36) and (40). To

restrict our analysis, we will seek solutions similar to that found numerically by Zhu and Dai (2008),

such that

∆x0,N (t0) = h,
∂∆x0,N (t0)

∂j
= 0, (41)

and therefore,

u0(j = 0, N ; t = t0) = 0,
∂u0

∂j
(j = 0, N ; t = t0) = 0,

where we set t0 = 0 without any loss of generality.

So that (41) is met, let us set θ0 = P (θ0 is arbitrary at leading order) and ab + d = 0, which

gives, using (25) and (27),

s1(m) = −6

(
a(m)b(m) +

a(m)

3m2

(
3
E(m)

K(m)
+m2 − 2

))
. (42)

Now, combining (36) and (42), and after some manipulation, we arrive at a definition for the

driver’s delay time,

τ =
2n2

3N2V ′(h)

(
15

7ρ̄(m)
+ 6m2K(m)2

(
b+

1

3m2

(
3E(m)

K(m)
+m2 − 2

)))
+

1

2V ′(h)
. (43)

So, τ and therefore â = 1/τ (refer to (2)) are dependent upon (n/N), m and V
′
(h). Figure 1

depicts the driver’s sensitivity â as a function of m for h = 3.5 or 4.5 (left) and h = 2.5 or 5.5

(right). Each curve signifies when a cnoidal wave solution satisfying (41) occurs for some value of

integer n and when N = 100 (for 100 cars on the road). Only when â > âs will a solution exist

(ε > 0). It is apparent that as â grows, the modulation term m increases for some fixed n.

From (42) and (43), it is evident that the wave speed (39) is determined by also specifying (n/N),

m and V
′
(h). The plot of the wave speed is displayed in Figure 2 for h = 3.5 or 4.5 (left) and

h = 2.5 or 5.5 (right) as a function of the modulus m, with each curve corresponding to some choice

of n and N = 100. This figure reveals that the wave speed increases with m for some choice of n.

Hence, as the driver’s sensitivity becomes larger, the traffic density wave propagates with greater

speed.

6 Stability

The spatially periodic asymptotic solutions, given by (37)-(38), are plotted in Figures 3-7. So that

(41) holds, the parameters P , s1 and τ are defined using (40), (42) and (43) respectively. Now that

the relation between the solution properties and the driver’s sensitivity â is established, the OV

12



Figure 1: The drivers sensitivity, â, which appears in the OV model (2), is determined by m and n. Each

curve represents â(m) = 1/τ(m) for some choice of n, where τ is given by (43), N = 100, black: n = 1,

green: n = 3, red: n = 5, blue: n = 10, purple: n = 20, light blue: n = 30. Left: h = 3.5, 4.5, âs = 1.5729.

Right: h = 2.5, 5.5, âs = 0.36141.

Figure 2: The wave speed (39) of the cnoidal wave solution (38) as a function of the modulus m, for some

choice of n, where N = 100, black: n = 1, green: n = 3, red: n = 5, blue: n = 10, purple: n = 20, light blue:

n = 30. Left: h = 3.5, 4.5. Right: h = 2.5, 5.5.

13



model (2) can be solved with MATLAB’s ode45, and then the asymptotic and numerical results

compared. Periodic boundary conditions (10) are also imposed. The initial condition used for the

simulation is defined by (37)-(38) at t = 0. As well, the comparisons between the asymptotic and

the numerical solution are performed over varying time intervals, with their long-time behaviour

examined.

In Figure 3, the solution for h = 3.5, â = 1.59, ε = 0.10372, N = 100 and n = 1 is shown,

where an upward density wave is depicted. The top panel of Figure 3 compares the asymptotic

solution, given by (37)-(38), to the numerical findings for t ∈ [0, 100]. The middle panel displays

the headway profile for car j = 0, N , where the solid black curve represents the asymptotic solution

and the dotted red curve is the ode45 solution. These plots suggest excellent agreement. Next,

the simulation is solved over a large time domain to examine numerical stability. The result is

given along the bottom panel of Figure 3 (at around t = 1000 and t = 10000), where the headway

profiles for car j = 0, N is displayed. It is evident that numerically, the density wave persists for

a considerably long time, although eventually a slight phase shift and a reduction in amplitude

develops. It will eventually disappear. This is expected since all the depicted solutions satisfy the

linear stability criteria (4). Hence, all disturbances will dissolve as t → ∞ and ∆xj will tend to

steady state h, as discussed in Section 2. These observations are consistent with the numerical

findings of Muramatsu and Nagatani (1999) for solutions in the metastable zone, although they

considered open boundaries.

Next, in Figure 4, the driver’s sensitivity is increased to â = 1.65 (ε = 0.21617), and consequently,

the solution is larger in amplitude, with a narrower peak (since m is increased to be extremely close

to 1). This is of a form similar to a soliton, although, as it is actually a cnoidal wave, the periodic

boundary conditions are satisfied. Zhu and Dai (2008) found numerically solutions of this form

when they considered periodic boundaries, however they referred to these as solitons. The top

panel compares the numerical and asymptotic findings for t ∈ [0, 100]. The bottom panel depicts

the headway profiles of car j = 0, N for t ∈ [0, 100] (left) and t ∈ [800, 1000] (right). The asymptotic

and numerical solutions are in good agreement. However, as ε is larger, the excellent match observed

for â = 1.59 is not achieved here. Moreover, as a result of increasing ε, the solution will disappear

significantly faster since a notable phase shift and amplitude reduction appears around t = 900.

This behaviour can be attributed to a greater wave speed.

In Figure 5, again solutions for n = 1, N = 100 are examined except now h = 4.5. The same

choice of m and wave speed used for h = 3.5 will apply here. The top panel relates to â = 1.59

(ε = 0.10372) and the bottom to â = 1.65 (ε = 0.21617). Asymptotic solutions for t ∈ [0, 100] are

shown on the left, and on the right, the asymptotic solutions for car j = 0, N are compared to the

numerical findings. The agreement between these two solutions and the long-time behaviour are
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Figure 3: Spatially periodic headway solutions for cars j = 0, 1, . . . , 100, with h = 3.5, â = 1.59, ε = 0.10372,

m = 0.999998947, n = 1, wave speed= 0.79961. Top left: Asymptotic headway solution given by (37)-(38).

Top right: MATLAB ode45 headway solution to (2) with the initial condition defined by (37)-(38). Middle:

Headway profile for car j = 0, 100, where the asymptotic solution corresponds to the solid black curve and

the ode45 solution is represented by the dotted red curve. Bottom: Headway profile for car j = 0, 100 and

t ∈ [800, 1000] (left), t ∈ [9800, 10000] (right), where the asymptotic solution corresponds to the solid black

curve and the ode45 solution is represented by the dotted red curve.

15



0

10

20

30

40

50

60

70

80

90

100
0

10

20

30

40

50

60

70

80

90

100

3.45

3.5

3.55

3.6

3.65

3.7

3.75

Time

Car Number

H
e
a
d
w

a
y

0

10

20

30

40

50

60

70

80

90

100
0

10

20

30

40

50

60

70

80

90

100

3.45

3.5

3.55

3.6

3.65

3.7

3.75

Time

Car Number

H
e
a
d
w

a
y

Figure 4: Spatially periodic headway solutions for cars j = 0, 1, . . . , 100, with h = 3.5, â = 1.65, ε = 0.21617,

m = 0.999999999999963, n = 1, wave speed= 0.84357. Top left: Asymptotic headway solution given by

(37)-(38). Top right: MATLAB ode45 headway solution to (2) with the initial condition defined by (37)-

(38). Bottom: Headway profile for car j = 0, 100 and t ∈ [0, 100] (left), t ∈ [800, 1000] (right), where the

asymptotic solution corresponds to the solid black curve and the ode45 solution is represented by the dotted

red curve.
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Figure 5: Spatially periodic headway solutions for cars j = 0, 1, . . . , 100, with h = 4.5, n = 1. Top:

â = 1.59, ε = 0.10372, m = 0.999998947, wave speed= 0.79961. Bottom: â = 1.65, ε = 0.21617, m =

0.999999999999963, wave speed= 0.84357. Top/Bottom left: Asymptotic headway solution given by (37)-

(38). Top/Bottom right: Headway profile for car j = 0, 100, where the asymptotic solution corresponds to

the solid black curve and the ode45 solution to (2) is represented by the dotted red curve.

consistent with the discussions for h = 3.5. However, now the solution is a downward form density

wave since h > hc = 4. Zhu and Dai (2008) made similar observations, explaining that if h < hc,

vehicle j slows down to avoid crashing into vehicle j + 1. As a result, an upward form density

wave occurs. Whereas, if h > hc, vehicle j speeds up to the maximal velocity and consequently,

a downward form density wave emerges. Given the traffic density is defined as the inverse of the

headway, then the upward and downward waves represent clusters of faster and slower moving

vehicles respectively. Hence, downward waves represent traffic congestion.

Now, we investigate the solutions with n = 2, h = 3.5, N = 100 so that two density waves

propagate, see Figure 6. The top panel corresponds to â = 1.59 (ε = 0.10372), and the bottom to

â = 1.65 (ε = 0.21617). As exhibited when n = 1, upward and downward waves form when h < hc

and h > hc respectively, although solutions with h > hc are not depicted here. On the left, the
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Figure 6: Spatially periodic headway solutions for cars j = 0, 1, . . . , 100, with h = 3.5, n = 2. Top: â = 1.59,

ε = 0.10372, m = 0.99724797, wave speed= 0.79967. Bottom: â = 1.65, ε = 0.21617, m = 0.99999946,

wave speed= 0.84362. Top/Bottom left: Asymptotic headway solution given by (37)-(38). Top/Bottom right:

Headway profile for car j = 0, 100, where the asymptotic solution corresponds to the solid black curve and

the ode45 solution to (2) is represented by the dotted red curve.

asymptotic solution over the domain t ∈ [0, 100] is displayed and on the right, a comparison between

the numerical and asymptotic findings for car j = 0, N is given. There is good agreement between

the two results, especially when ε = 0.10372, which is expected. Once again, these travelling wave

solutions will eventually dissolve at very large t, with the â = 1.59 result persisting for a far greater

time due to a smaller wave speed. Furthermore, the amplitude is notably larger and narrower for

ε = 0.21617, which is a result of increasing m.

Such studies as Yu et al. (2010) highlighted numerical density waves with multiple oscillations over

the same spatial domain. To obtain this solution type, n can continue to be increased. Analysing

these solutions, it becomes apparent that as n grows, for some fixed â, the amplitude and wave

speed slightly increases. As well, these solutions are found to have a similar long-time behaviour as

that demonstrated for n = 1. As an example, Figure 7 depicts an asymptotic solution with three
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Figure 7: Spatially periodic headway solutions for cars j = 0, 1, . . . , 100, with h = 3.5, â = 1.59, ε = 0.10372,

n = 3, m = 0.9728972, wave speed= 0.80039. Left: Asymptotic headway solution given by (37)-(38). Right:

Headway profile for car j = 0, 100, where the asymptotic solution corresponds to the solid black curve and

the ode45 solution to (2) is represented by the dotted red curve.

oscillations and where â = 1.59, N = 100, h = 3.5.

7 Conclusion

The evolution of traffic behaviour was determined using the OV model (2). Previous studies have

examined this model numerically and analytically, with the stability regimes well-outlined (refer to

Ge et al. (2005)). Here, we concentrated on the metastable zone that corresponded to the onset of

traffic jams and where (2) reduced to the perturbed KdV equation (7). Modulation theory detailed

by Myint and Grimshaw (1995) and Kamchatnov (2004) was then applied to (7). As a result, at

leading order, the cnoidal wave solution was obtained and at the next order, the Whitham system

was derived, which was altered due to the perturbation terms of (7). Therefore, all possible solutions

due to modulation theory were identified. Next, we chose to focus on a particular solution type,

where steady travelling wave solutions were sought by ensuring the wave speed remained constant.

Consequently, the three Whitham equations were transformed into a single equation for the slow

variation of the modulation term, m, defined by (30). Setting (30) to zero so that m was fixed

over the solution domain then led to the identification of periodic cnoidal wave solutions. The

resulting solutions had constant amplitude, mean height and period, which were of a similar form

to the numerical waves depicted by, for instance, Yu et al. (2010). This analysis was next applied

to the traffic flow problem by defining the leading order solution in terms of car j = 1, . . . , N

and imposing the periodic boundary conditions along j ∈ [0, N ]. Thus, a family of travelling
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wave solutions were highlighted, where the choice of m and the number of oscillations over the

spatial domain were shown to determine the driver’s sensitivity, â, and the wave speed. Due to

determining these relationships, numerical solutions of the OV model were calculated and compared

to the asymptotic headway solutions. Overall, a good agreement between the two solutions was

observed. Moreover, the long-time dynamics were explored. This revealed that the numerical

density waves dissolved after a considerable length of time, which was consistent with the linear

stability analysis detailed in Section 2. This paper has provided an extension of other workings

that only considered traffic soliton solutions (for example see Muramatsu and Nagatani (1999) and

Zhu and Dai (2008)). Instead here modulation theory was used to establish the existence of cnoidal

waves in the traffic model (2), with the wave properties related to the model parameters.
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