
Agreement in epidemic information
dissemination
Conference or Workshop Item

Accepted Version

Ayiad, M., Katti, A. and Di Fatta, G. (2016) Agreement in
epidemic information dissemination. In: International
Conference on Internet and Distributed Computing Systems,
28-30 Sept 2016, Wuhan, China, pp. 95-106. doi:
10.1007/978-3-319-45940-0_9 Available at
https://centaur.reading.ac.uk/69307/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .
Published version at: http://dx.doi.org/10.1007/978-3-319-45940-0_9
To link to this article DOI: http://dx.doi.org/10.1007/978-3-319-45940-0_9

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

The 9th International Conference on Internet and Distributed Computing Systems (IDCS 2016), Wuhan, China, Sept. 28-30, 2016. (in press)

Agreement in Epidemic Information Dissemination
Mosab Ayiad, Amogh Katti and Giuseppe Di Fatta
Department of Computer Science, University of Reading

Reading, Berkshire, RG6 6AH, United Kingdom
Email: {m.m.ayiad@pgr., a.p.katti@pgr., g.difatta@}reading.ac.uk

Abstract

Consensus is one of the fundamental problems in multi-agent systems and distributed computing, in which agents or processing
nodes are required to reach global agreement on some data value, decision, action, or synchronisation. In the absence of centralised
coordination, achieving global consensus is challenging especially in dynamic and large-scale distributed systems with faulty
processes. This paper presents a fully decentralised phase transition protocol to achieve global consensus on the convergence of
an underlying information dissemination process. The proposed approach is based on Epidemic protocols, which are a randomised
communication and computation paradigm and provide excellent scalability and fault-tolerant properties. The experimental analysis
is based on simulations of a large-scale information dissemination processand the results show that global agreement can be
achieved without deterministic and global communication patterns, such asthose based on centralised coordination.

Index Terms

distributed consensus, epidemic protocols, gossip-based protocols, large-scale distributed computing, decentralised algorithms

I. I NTRODUCTION

In distributed computing and multi-agent systems, nodes (processes/agents) are often required to agree on some value or
some action. Achieving agreement in large-scale and dynamic distributed systems is a challenging task. Such challengeforms
one of the fundamental problems in distributed computing, the so-calledConsensus Problem[1]. A solution to the consensus
problem is often a critical component in many distributed applications, e.g. transactions in distributed databases, leader election,
consent on replicas, synchronisation, load balancing.

In a typical formulation of the consensus problem, each participant holds a value and exchanges it with other participants.
All participants then decide (agree) on a common output which must be one of the held values [2]. The challenge is to achieve
and detect agreement among all participants (Global Consensus) from only locally available information at each participant
when a centralised coordinator is not available.

Conceptually, the consensus problem involves the following properties [1]. All non-faulty nodes should eventually decide
on some value (Termination). The selected value is the same for all non-faulty nodes (Agreement). The final decision should
be valid, i.e. within the set of proposed and exchanged values (Validity). These properties rely on the safety and liveness of
the distributed system, where safety implies that the nodesnever propose incorrect values and liveness implies that all nodes
perform exactly as intended [1].

A basic Epidemic (a.k.a.Gossip-based) system consists of a large set of nodes that adopt a randomised communication
strategy to implement network services and applications. Epidemic protocols are typically formulated as periodic processes
with a fixed cycle length. At each cycle, each node sends its local state to a random peer. During each cycle, a node receivesthe
local state of some other peers and updates the local state. Random pairwise communication provides stochastic guarantees that
the nodes in the system ultimately converge to a common state[3]. Two fundamental global operations that can be implemented
by means of Epidemic processes are information dissemination (broadcast) and data aggregation. In data aggregation a global
synopsis function (average, count, sum, etc.) is computed in parallel and consistently at every node.

A typical Epidemic algorithm is formulated by combining theappropriate aggregation function with a particular communi-
cation model, e.g. Push-Sum, Push-Pull Averaging, Symmetric Push-Sum [4, 5]. Aggregation algorithms may estimate a global
value across the neighbours, a group of nodes, or an entire network (Uniform Gossiping) [3]. To achieve Uniform Gossiping,
an Epidemic membership protocol is adopted to provide a peersampling service [6].

Interestingly, Epidemic approaches for consensus obtain several advantages over approaches based on deterministic and
centralised communication, as they inherited the fault tolerance, scalability, decentralisation and lightweight properties of
Epidemic protocols [7]. Moreover, it is found that Epidemicalgorithms can support asynchronous applications better,as they
exhibit loose coupling and converge in lesser time with acceptable cost [4].

In this paper, we propose a novel Epidemic approach to the consensus problem for information dissemination. For the
sake of simplicity and to emphasise the key features of the proposed solution, we adopt a simple Information Dissemination
Application (IDA) to simulate the underlying information propagation process on which global consensus is required. InIDA,
each node generates and propagates information in the network. Information items are uniquely identified, though the same
item identifier may be generated at several nodes.IDA must provide a mechanism to remove duplicates, to ensure propagation
of the information to all nodes and to establish a system-wide consensus for each information item.

The rest of the paper is organised as follows. Section II defines the model of the distributed system that has been adopted
in this work. Section III describesIDA, the information dissemination application. TheIDA protocols are presented in Section
IV. The experimental results of the simulations are described and discussed in Section V. Section VI discusses some related
work. Finally, conclusions and future work are drawn in Section VII.

II. M ODEL OF THEDISTRIBUTED SYSTEM

The impossibility result[8] (a.k.a. theFLP result) refers to the impossibility of detecting consensus in distributed systems
of asynchronous and unreliable processes. Achieving consensus is not possible in an asynchronous distributed system with
no prior boundsδ and φ on, respectively, the communication delay and the relativeprocess speed [2]. TheFLP result has
motivated the identification of the minimal properties of distributed systems that are necessary to solve the consensusproblem
[9]. Following the work in [2], the proposed solution in thispaper is provided for a partial synchrony setting so that upper
boundsδ andφ are defined but unknown to the nodes. The message exchange is subject to random delays withinδ and all
processes run at a bounded relative speedφ and perform at least one operation in each cycle. The simulations adopt discrete
events scheduled with random offsets within fixed time intervals (cycles). Within each process, cycles are consecutive and do
not overlap. A uniformly distributed synchronisation offset is used for starting each process [5]. Processes perform separate
send and receive operations: no complex atomic communication operations are required. As a consequence, interleaved message
exchanges exist and message order is neglected. No process lock or exclusive access is present.

The next section introduces the information disseminationapplication for which global consensus has to be provided.

III. T HE INFORMATION DISSEMINATION APPLICATION (IDA)

IDA is adopted to simulate the distributed generation of information items for which propagation and global consensus is
required. In this section, we present the conceptual designand practical scenario ofIDA for the generation and propagation of
the information items. In Section IV the proposed protocolsfor propagation and consensus are described in details.

Information items inIDA are assigned unique (sequential) identifiers (ID). At each cycle, a node generates a new item with
a given probability. A new item is given the next locally unique ID with no global or centralised coordination. This way, items
with a specific ID can be generated simultaneously at different nodes and ID duplication must be resolved.

At each node, an information item is associated with one of three possible states:Propagation, AgreementandCommit. The
state diagram is shown in Figure 1. The same item can be associated with different states at different nodes. The ultimategoal
is for each item to reach the final state (Commit) at all nodes, which corresponds to global consensus on thatitem.

Initially, each node is started with an empty information cacheC. At each node, an information item is created at each
cycle with a given probability. The node at which the item is created is called theoriginator. The item is represented by a
tuple, which includes the item ID, the originator ID and the item state. The tuple of a newly generated item is added to the
local cacheC with initial statePropagation. Each tuple also contains some numerical variables that areused by the consensus
protocol and are described in Section IV. Each node periodically disseminates the items that are present in its local cacheC

in the system by sending it to a randomly chosen peer. When a node receives a message with a remote information cache, it
updates its local cache by merging the local and remote entries, aggregating identical items and resolving ID duplicates.

Nodes have no explicit or prior knowledge of the system sizen. Thereby, each node runs a specific protocol to estimate the
current system size. This protocol is detailed in Section IV-A.

The proposed consensus protocol is a concatenation of two Epidemic aggregation operations, which are used to estimate the
number of nodes in the system which have a particular item in aspecific state, respectively, atPropagationand Agreement.
When this estimated count corresponds to the system size within some tolerance, the state of the local copy of the item is
updated to the next state (phase transition). This protocol is detailed in Section IV-B. The action taken at the transition to the
Commitstate depends on the specific application and is out of the scope of this work.

IDA is a simplified and sufficiently general model which may find applications in diverse domains, such as failure detection
and consensus, transactions in distributed databases, consent on replicas, etc.

The next section describes the protocols employed for the estimation of the system size and for the two phase transitions.

IV. IDA P ROTOCOLS

In IDA, a connected physical topology, routing and transport protocols with no packet loss are assumed.IDA employs three
protocols: the simple Node Cache Protocol (NCP) [5] for membership management; the System Size EstimationProtocol
(SSEP) for the estimation of the current system sizen and the Phase Transition Protocol (PTP) for determining the state
transition of the local copies of information items.

The protocolNCP implements and exports the functiongetRandomPeer(), a peer sampling service with uniform random
probability (Uniform Gossiping). In the simulations, we have adoptedNCP with a random k-regular overlay topology initiali-
sation. Any other Epidemic Membership Protocols could alsobe employed and for further details onNCP we refer the reader
to [5]. IDA nodes have no knowledge of the system sizen. Therefore, each node adopts an Epidemic aggregation protocol, the

Propagation
(vp, wp)

Agreement
(va, wa)

Commit

item received,
vp = m.vp + 1,
wp = m.wp,
va = m.va,
wa = m.wa

item created,
vp = 1, wp = 1,
va = 0, wa = 1

Propagation
count converged
to system size,
va = va + 1

Agreemnt count
converged to
system size

Fig. 1. IDA state diagram for an information item

System Size Estimation Protocol (SSEP), to estimate the current system sizen. The Phase Transition Protocol (PTP) provides
an Epidemic solution to the distributed consensus problem following a three-phase commit protocol approach. The protocols
SSEPandPTP are described in the next two sections.

A. The System Size Estimation Protocol (SSEP)

The protocolSSEPimplements the Symmetric Push-Sum Protocol for data aggregation [5]. Precisely, it estimates the global
function ’count’. In Algorithm 1, the pair(v, w) is used, wherev is the aggregation value andw the aggregation weight.
Initially, all node values are set to1, and weights are set to0, except for one node that hasw = 1. At each cycle, a node
i halves its pair values(v, w) and sends the pair to a random node (PUSH). When a node receives a PUSH message from a
remote nodej, it halves its local value and weight and sends them toj (PULL). Finally, it combines the local and remote
pairs and updates the estimated system size.

SSEPpropagates aggregation pairs in the system. The global sum of w will be evenly distributed to all nodes converging
to 1

n
, wheren is the system size. Similarly,v is aggregated and distributed, and will converge to1. At each cycle, the local

estimation ofn can be calculated byv
w

. Although interleaved messages are present in the system, as long as the mass invariant
holds in the system,v

w
will quickly converge ton with a relative error as small as desired [3, 5]. The estimated system size

will hold as long as the system size remains static [5, 7]. However, since the protocol is continuously executed, it can also
adapt to changes in the system size. Nevertheless, the simulation of dynamic network conditions (e.g., node churn) is out of
the scope of this work.

B. The Phase Transition Protocol (PTP)

EachPTP instance maintains a local cacheC of information items. The local cache is initially empty andwill be used to
store items either created locally or received from other nodes. Each item inC is represented by a tuple, as described in section
III. The tuple contains two aggregation pairs(v, w). One aggregation pair, (vp, wp), is used to estimate the number of nodes
which have received the item, i.e. the(p)ropagation count. The second pair, (va, wa), is used to estimate the(a)greement

count, that is the number of nodes holding the item at the second phase. The protocol is a cascade of two Epidemic aggregations
based on the Symmetric Push-Sum Protocol for the global function ’sum’ [5].

As shown in Algorithm 2, at each cycle, nodei halves the two aggregation pairs of each tuple inC. Then, it sends a copy
of the localC to a random peer. The protocolPTP checks if an agreement is reached for the transition from a phase to the
successive. On the event of receiving a message from a peer, the algorithm adds new items, updates the tuple of the items
already stored inC and resolves duplicates by keeping either the oldest tuple or keeping the one with the lowest originator
ID if the tuples have the same creation time.

At the creation of a new information item at nodei, PTP selects the next unique identifier (line 4) and inserts a new tuple
into C (line 5). PTP obtains the estimated system sizen from SSEPprotocol using the functionsize(). For eachτ in C,
the criterion in line 14 decides upon the transition fromPropagationto Agreement. The aggregation count is compared to the
estimated system size with a relative error tolerance (ǫ). The test requires a minimum number of consecutive cycles (MIN)
within tolerance to ensure robust transition to the next phase, avoiding early false transitions. The transition toCommit is
associated with a similar test condition on theAgreementcount. The transition toCommit is shown in lines 18-19. When
receiving a message with a remote cache,PTP merges local and remote items in lines 25-32. Tuples relatedto the same

Algorithm 1: System Size Estimation Protocol (SSEP)

1 Initialisation:
2 v = 1.0 at all nodes,w = 1.0 at one node andw = 0.0 at all other nodes
3 At each nodei: est = 0.0 // size estimation

4 At each cycle at node i:
5 j ← getRandomPeer()
6 v = v

2.0 ; w = w
2.0

7 send(j, v, w, reply = true) // PUSH message

8 At event ’receive message m from j’ at node i:
9 if m.reply then

10 v = v
2.0 ; w = w

2.0
11 send(j, v, w, reply = false) // PULL message

12 v = v +m.v; w = w +m.w

13 if w > 0.0 then est = v
w

14 Method size() : R
15 return est

information item are aggregated in line 28, duplicate IDs are resolved in line 30 and new items are added to the local cache
C in line 32.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

Simulations are carried out using PEERSIM [10], a Java-based discrete-event P2P simulation tool. PEERSIM is flexible,
scalable and easy to configure.SSEP, PTP andNCP protocols are implemented in dedicated modules for PEERSIM .

The simulation common settings are as follows. Different random seeds are used in each simulation run to validate
performance and enforce randomisation. The system defaultsize isn = 10000 nodes and the maximum experiment length
is 100 cycles. Membership is managed byNCP, which maintains the overlay topology withk = 10. The generation of new
items in PTP is interrupted after the completion of50% of the simulation cycles to observe the protocol performance in the
residual cycles.

Simulation cycles are time intervals of fixed length, which adopt the cycle structure used in [5]. For experimental purposes,
we define∆t, a cycle length that is long enough for all nodes to finish send, receive and aggregate operations, such that
∆t = t1+ t2+ t2+ t3, wheret1 limits PUSH offsets,t2 limits transmission delays, andt3 limits initial synchronisation offsets.
In ∆t, the portiont2 + t2 is the maximum communication latency corresponding to the round trip time on the diameter of the
network. However, some messages may take very long to arrive(δ > ∆t) and arrive in later cycles (Out of Cycle Message).
Out of cycle messages slightly delay the convergence inSSEPand PTP protocols due to potential loss of aggregation mass.
Nevertheless, the aggregation mass is restored when out of cycle messages reach destination.

All protocols are based on the event-driven engine of PEERSIM , where three common events are defined as follows.

1) The ACTIVATE EVENT occurs at every cycle. At the beginning of the simulation, the event is scheduled by a specific
initialiser to occur after a random offset withint3. The event is then scheduled to occur at every∆t. The item generation
procedure and the phase transition tests are executed at this event. The cyclic event stops when a maximum number of
cycles is reached.

2) The PUSH EVENT is scheduled at a random timet < t1 from the ACTIVATE EVENT. At this event, a node sends a PUSH

message to a random peer.
3) The MESSAGERECEIVE EVENT occurs when a node receives a message from a peer. At this event the incoming message

is processed.

The protocolSSEPis tested with different system size values (n) and the convergence of the estimated system size is
monitored. Figure 2.a shows the percentage of nodes which have locally estimatedn within an error tolerance (ǫ); while
Figure 2.b shows the average of the estimated size for all nodes. Figure 2 confirms that100% of nodes correctly estimate the
system sizen after a sufficient number of cycles.

The protocolPTP is tested with the generation of a single information item and of multiple items. The diffusion of a single
item is shown in Figure 3, where the percentage of nodes that have achieved a particular phase is illustrated. Additional

Algorithm 2: Phase Transition Protocol (PTP)

1 Require: size(), the SSEPestimation;ǫ, an error tolerance;MIN , a minimum number of consecutive cycles; a local
cache of itemsC = {τ = 〈id, o, t, vp, wp, va, wa, state〉, ...}, whereid is the item identifier,o the originator identifier,t
the creation time,(vp, wp) the propagation pair,(va, wa) the agreement pair andstate the item state.

2 Initialisation: at each nodei: C ←− {}

3 At event ’new item generated’ at node i:
4 id←− next locally unique identifier
5 C ←− C ∪ {〈id, i, current cycle, 1, 1, 0, 1, PROPAGATION〉}

6 At each cycle at node i:
7 j = getRandomPeer()
8 foreach τ ∈ C do
9 τ = 〈τ.id, τ.o, τ.t,

τ.vp

2 ,
τ.wp

2 , τ.va

2 , τ.wa

2 , τ.state〉

10 send(j, C, reply = true) // PUSH message
11 foreach τ ∈ C do
12 switch τ.state do
13 case PROPAGATION

14 if size() > 0.0 and

∣

∣

∣

∣

size()−
τ.vp

τ.wp

size()

∣

∣

∣

∣

≤ ǫ for at leastMIN cyclesthen

15 τ.state = AGREEMENT

16 τ.va = τ.va + 1

17 case AGREEMENT

18 if size() > 0.0 and
∣

∣

∣

size()− τ.va

τ.wa

size()

∣

∣

∣
≤ ǫ for at leastMIN cyclesthen

19 τ.state = COMMIT

// and may take some application-specific action.

20 At event ’received m message from j’ at node i:
21 if m.reply then
22 foreach τ ∈ C do
23 τ = 〈τ.id, τ.o, τ.t,

τ.vp

2 ,
τ.wp

2 , τ.va

2 , τ.wa

2 , τ.state〉

24 send(j, C, reply = false) // PULL message

25 foreach τ0 ∈ m.C do
26 if C contains τ1 where τ0.id == τ1.id then

// Resolve duplicate item ID
27 if (τ0.t == τ1.t and τ0.o == τ1.o) then
28 τ1 = 〈τ1.id, τ1.o, τ1.t,

τ1.vp + τ0.vp, τ1.wp + τ0.wp, τ1.va + τ0.va, τ1.wa + τ0.wa, τ1.state〉
29 else if (τ0.t == τ1.t and τ0.o < τ1.o) or (τ0.t < τ1.t) then
30 τ1 = 〈τ0.id, τ0.o, τ0.t, τ0.vp + 1, τ0.wp, τ0.va, τ0.wa, τ0.state〉

31 else
32 C ←− C ∪ {〈τ0.id, τ0.o, τ0.t, τ0.vp + 1, τ0.wp, τ0.va, τ0.wa, τ0.state〉}

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ge
 o

f n
od

es

Cycles

n=100
n=1000

n=10000
n=100000

n=1000000

1e-006

0.0001

0.01

1

100

10000

1e+006

1e+008

 0 20 40 60 80 100

A
ve

ra
ge

 o
f e

st
im

at
ed

 s
iz

e

Cycles

n=100
n=1000

n=10000
n=100000

n=1000000

(a) Percentage of nodes converged ton (b) Average of size estimates

Fig. 2. System size estimation inSSEPconverges to actual system sizen (ǫ = 0.01)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
er

ce
nt

ag
e

of
 n

od
es

Cycles

Propagation Phase
Agreement Phase

Commit Phase

Fig. 3. Percentage of nodes at each phase for a single information item in PTP (n = 10000, ǫ = 0.001, MIN = 5)

 0

 20

 40

 60

 80

 100

 3 5 7 10

N
um

be
r

of
 c

yc
le

s

MIN

 0

 20

 40

 60

 80

 100

 3 5 7 10

MIN

 0

 20

 40

 60

 80

 100

 3 5 7 10

MIN

Propagation
Agreement

Commit

(a) ǫ = 0.01 (b) ǫ = 0.001 (c) ǫ = 0.0001

Fig. 4. Number of cycles to complete a phase transition inPTP for a single item varying the minimum number of consecutive cyclesMIN and for three
values of the error toleranceǫ (n = 10000)

1e-005

1

100000

1e+010

1e+015

 0 20 40 60 80 100

V
ar

ia
nc

e
of

 e
st

im
at

ed
 c

ou
nt

Cycles

Propagation Count
Agreement Count

1

10

100

1000

10000

100000

1e+006

1e+007

 0 20 40 60 80 100

A
ve

ra
ge

 o
f e

st
im

at
ed

 c
ou

nt

Cycles

Propagation Count
Agreement Count

(a) Variance of estimates for a single item (b) Average of estimates for a single item

1e-005

1

100000

1e+010

1e+015

 0 20 40 60 80 100

V
ar

ia
nc

e
of

 e
st

im
at

ed
 c

ou
nt

Cycles

Propagation Count
Agreement Count

1

10

100

1000

10000

100000

1e+006

1e+007

 0 20 40 60 80 100

A
ve

ra
ge

 o
f e

st
im

at
ed

 c
ou

nt

Cycles

Propagation Count
Agreement Count

(c) Variance of estimates for multiple items (50 distinct items) (d) Average of estimates for multiple items(50 distinct items)

Fig. 5. Convergence of thePropagationandAgreementcount estimates inPTP (n = 10000, ǫ = 0.001, MIN = 5)

experiments on single item diffusion are conducted with several values of toleranceǫ and minimum number of consecutive
cyclesMIN . Figure 4 summarises the results and shows the number of cycles to complete a phase transition for an item when
varyingMIN and for a few values ofǫ. The number of cycles required to complete a phase transition linearly increases with
both parameters.

The convergence of thePropagationcount and of theAgreementcount in PTP is demonstrated in Figure 5. For a single
information item, Figure 5.a shows the variance of the estimates over all nodes; while Figure 5.b shows the average of the
estimates in the system.

PTP is also tested for the propagation of50 distinct items in the presence of of item ID duplication. Figure 5.c shows the
variance of the estimates over all items and all nodes; whileFigure 5.d shows the average of the estimates. It can be inferred
that the protocol correctly manages item ID duplicates and that count estimates in the nodes correctly converge to the system
sizen.

The proposed Epidemic three-phase approach provides a solution to the consensus problem without any centralised coordi-
nation. Global agreement and synchronisation can be achieved without global deterministic communication patterns. Moreover,
Epidemic protocols have excellent scalability and fault-tolerance, which are important properties for large-scale distributed
systems.

VI. RELATED WORK

Solutions for the consensus problem based on Epidemic approaches have been applied to various applications in distributed
systems. The work in [11] proposed general consensus and average consensus algorithms for quantisation of states in randomised
networks using the asynchronous Epidemic-based communications of agents. A survey on the consensus problem in multi-agent
cooperative control is provided in [12]. The work in [13] uses Epidemic-based ping and time-out mechanism to detect and

propagate failures. Correctly operating processes reach consensus when all of them detect the failed ones. In [14], an Epidemic-
based aggregation protocol is used to perform a global synchronisation and reduction operation for a fully decentralised K-Means
clustering without global communication patterns under node churn and message loss. The work in [15] investigated heuristic
methods to detect the convergence of Epidemic aggregation and those methods could be used to build a consensus protocol
for data aggregation.

VII. C ONCLUSIONS

This paper presented a phase transition protocol (PTP) to achieve global consensus on the convergence of information
dissemination. The proposed solution assumes the minimal properties needed to solve the consensus problem in partially
synchronous distributed systems. The solution is based on Epidemic protocols and so it inherits their advantages. A simple
application scenario (IDA) of global information dissemination is used to demonstrate the key idea of Epidemic consensus in
large-scale distributed systems and could be extended in more complex scenarios, such as data aggregation. InIDA, two main
algorithms are introduced, the protocolSSEPto estimate the system size and the protocolPTP to manage phase transitions
and achieve global agreement on each information item.

The experimental analysis based on simulations has shown that PTP is able to achieve global consensus on the propagation
of information items over a large number of nodes with no centralised coordination, no prior knowledge of system size, and no
assumption of the a priori global uniqueness of the item identifiers. However, the solution currently assumes that system size
holds during the consensus transition period and that no message loss or churn are present. Future research may address these
limitations, introduce optimisations of the performance and communication overhead. A further direction of future investigations
is the extension of Epidemic consensus to the data aggregation problem and to dynamic network conditions.

VIII. A CKNOWLEDGEMENTS

The authors Mosab Ayiad and Amogh Katti are supported for their PhD projects, respectively, by the Merit Scholarship
Program, Islamic Development Bank, and by the Felix Scholarship.

REFERENCES

[1] R. Guerraoui, M. Hurfinn, A. Mostefaoui, R. Oliveira, M. Raynal, and A. Schiper. “Consensus in Asynchronous
Distributed Systems: A Concise Guided Tour”. In:Advances in Distributed Systems: From Algorithms to Systems.
Springer Berlin Heidelberg, 2000.

[2] C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in the Presence of Partial Synchrony”. In:Journal of the ACM
35.2 (Apr. 1988).

[3] D. Kempe, A. Dobra, and J. Gehrke. “Gossip-based computation of aggregate information”. In:Foundations of Computer
Science, 2003. Proceedings. 44th Annual IEEE Symposium on. 2003.

[4] I. Rao, A. Harwood, and S. Karunasekera. “Impacts of Asynchrony on Epidemic-Style Aggregation Protocols”. In:
Parallel and Distributed Systems (ICPADS), IEEE 16th International Conference on. 2010.

[5] F. Blasa, S. Cafiero, G. Fortino, and G. Di Fatta. “Symmetric Push-Sum Protocol for decentralised aggregation”. In:
Proceedings of AP2PS, the Third International Conference on Advances in P2P Systems. 2011.

[6] P. Poonpakdee and G. Di Fatta. “Expander Graph Quality Optimisation in Randomised Communication”. In:Data Mining
Workshop (ICDMW), IEEE International Conference on. Dec. 2014.

[7] M. Jelasity, A. Montresor, and O. Babaoglu. “Gossip-based Aggregation in Large Dynamic Networks”. In:ACM
Transactions on Computer Systems23.3 (Aug. 2005).

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of Distributed Consensus with One Faulty Process”. In:
Journal of the ACM(1985).

[9] D. Dolev, C. Dwork, and L. Stockmeyer. “On the Minimal Synchronism Needed for Distributed Consensus”. In:Journal
of the ACM(1987).

[10] A. Montresor and M. Jelasity. “PeerSim: A scalable P2P simulator”. In: Peer-to-Peer Computing. P2P’09. IEEE Ninth
International Conference on. IEEE. 2009.

[11] K. Cai and H. Ishii. “Gossip consensus and averaging algorithms with quantization”. In:American Control Conference
(ACC), 2010.

[12] W. Ren, R. W. Beard, and E. M. Atkins. “A survey of consensus problems in multi-agent coordination”. In:Proceedings
of the 2005, American Control Conference. June 2005.

[13] A. Katti, G. Di Fatta, T. Naughton, and C. Engelmann. “Scalable and Fault Tolerant Failure Detection and Consensus”.
In: Proceedings of the 22Nd European MPI Users’ Group Meeting. EuroMPI ’15. Bordeaux, France: ACM, 2015.

[14] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino. “Fault tolerant decentralised K-Means clustering for asynchronous
large-scale networks”. In:Journal of Parallel and Distributed Computing73.3 (2013).

[15] P. Poonpakdee, N. G. Orhon, and G. Di Fatta. “Convergence Detection in Epidemic Aggregation”. In:Euro-Par 2013:
Parallel Processing Workshops. Lecture Notes in Computer Science. Springer, 2014.

