University of
< Reading

Agreement in epidemic information
dissemination

Conference or Workshop Item

Accepted Version

Ayiad, M., Katti, A. and Di Fatta, G. (2016) Agreement in
epidemic information dissemination. In: International
Conference on Internet and Distributed Computing Systems,
28-30 Sept 2016, Wuhan, China, pp. 95-106. doi:
10.1007/978-3-319-45940-0_9 Available at
https://centaur.reading.ac.uk/69307/

It is advisable to refer to the publisher’s version if you intend to cite from the

work. See Guidance on citing.
Published version at: http://dx.doi.org/10.1007/978-3-319-45940-0_9

To link to this article DOI: http://dx.doi.org/10.1007/978-3-319-45940-0_9

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
Central Archive at the University of Reading

Reading’s research outputs online

The 9th International Conference on Internet and DistréglComputing Systems (IDCS 2016), Wuhan, China, Sept.,28336. (in press)

Agreement in Epidemic Information Dissemination

Mosab Ayiad, Amogh Katti and Giuseppe Di Fatta
Department of Computer Science, University of Reading
Reading, Berkshire, RG6 6AH, United Kingdom
Email: {m.m.ayiad@pgr., a.p.katti@pgr., g.difattd@ading.ac.uk

Abstract

Consensus is one of the fundamental problems in multi-agent systehastiibuted computing, in which agents or processing
nodes are required to reach global agreement on some data valisgomeaction, or synchronisation. In the absence of centralised
coordination, achieving global consensus is challenging especially iangignand large-scale distributed systems with faulty
processes. This paper presents a fully decentralised phase transitiooop to achieve global consensus on the convergence of
an underlying information dissemination process. The proposed apis based on Epidemic protocols, which are a randomised
communication and computation paradigm and provide excellent scalabititiaalt-tolerant properties. The experimental analysis
is based on simulations of a large-scale information dissemination pracesthe results show that global agreement can be
achieved without deterministic and global communication patterns, sutiioas based on centralised coordination.

Index Terms
distributed consensus, epidemic protocols, gossip-based protocgksslzale distributed computing, decentralised algorithms

I. INTRODUCTION

In distributed computing and multi-agent systems, nodesc@sses/agents) are often required to agree on some value o
some action. Achieving agreement in large-scale and dyndisiributed systems is a challenging task. Such challéoges
one of the fundamental problems in distributed computihg, g0-calledConsensus Probleffi]. A solution to the consensus
problem is often a critical component in many distributeglaations, e.g. transactions in distributed databasesidr election,
consent on replicas, synchronisation, load balancing.

In a typical formulation of the consensus problem, eachigpant holds a value and exchanges it with other partidgan
All participants then decideagred on a common output which must be one of the held values [2. dftallenge is to achieve
and detect agreement among all participa@lpal Consensysfrom only locally available information at each participa
when a centralised coordinator is not available.

Conceptually, the consensus problem involves the follgwpnoperties [1]. All non-faulty nodes should eventuallycidie
on some valueTermination. The selected value is the same for all non-faulty nodegdement The final decision should
be valid, i.e. within the set of proposed and exchanged safualidity). These properties rely on the safety and liveness of
the distributed system, where safety implies that the nog®er propose incorrect values and liveness implies thatoales
perform exactly as intended [1].

A basic Epidemic (a.k.aGossip-basedsystem consists of a large set of nodes that adopt a randdrnssmmunication
strategy to implement network services and applicatioqsddinic protocols are typically formulated as periodic qasses
with a fixed cycle length. At each cycle, each node sendsdtd etate to a random peer. During each cycle, a node redbiees
local state of some other peers and updates the local st@telo/r pairwise communication provides stochastic guaesrthat
the nodes in the system ultimately converge to a common [@atéwo fundamental global operations that can be impleiegn
by means of Epidemic processes are information disseraimgliroadcast) and data aggregation. In data aggregatitobalg
synopsis functiongverage count sum etc.) is computed in parallel and consistently at everyenod

A typical Epidemic algorithm is formulated by combining thppropriate aggregation function with a particular comimun
cation model, e.g. Push-Sum, Push-Pull Averaging, Symoetrsh-Sum [4, 5]. Aggregation algorithms may estimatecdd!
value across the neighbours, a group of nodes, or an entinre(Uniform Gossipiny [3]. To achieve Uniform Gossiping,
an Epidemic membership protocol is adopted to provide a gpaepling service [6].

Interestingly, Epidemic approaches for consensus obteral advantages over approaches based on determimstic a
centralised communication, as they inherited the faulertoice, scalability, decentralisation and lightweighdperties of
Epidemic protocols [7]. Moreover, it is found that Epidenaigorithms can support asynchronous applications bettethey
exhibit loose coupling and converge in lesser time with ptadae cost [4].

In this paper, we propose a novel Epidemic approach to theermus problem for information dissemination. For the
sake of simplicity and to emphasise the key features of thpgqsed solution, we adopt a simple Information Dissenomati
Application (DA) to simulate the underlying information propagation psscen which global consensus is required|Da,
each node generates and propagates information in the mketlméormation items are uniquely identified, though thensa
item identifier may be generated at several notl2A. must provide a mechanism to remove duplicates, to ensupagation
of the information to all nodes and to establish a systenevwadnsensus for each information item.

The rest of the paper is organised as follows. Section Il defthe model of the distributed system that has been adopted
in this work. Section Il describeDA, the information dissemination application. TH®A protocols are presented in Section
IV. The experimental results of the simulations are desctibnd discussed in Section V. Section VI discusses somiedela
work. Finally, conclusions and future work are drawn in 8stiVIl.

Il. MODEL OF THEDISTRIBUTED SYSTEM

The impossibility result8] (a.k.a. theFLP resul) refers to the impossibility of detecting consensus inriisted systems
of asynchronous and unreliable processes. Achieving osnseis not possible in an asynchronous distributed systgm w
no prior boundss and ¢ on, respectively, the communication delay and the relgtraress speed [2]. THELP result has
motivated the identification of the minimal properties oftdbuted systems that are necessary to solve the conspralem
[9]. Following the work in [2], the proposed solution in thimper is provided for a partial synchrony setting so thateupp
boundss and ¢ are defined but unknown to the nodes. The message exchangkjéststo random delays withiti and all
processes run at a bounded relative spgethd perform at least one operation in each cycle. The sironkadopt discrete
events scheduled with random offsets within fixed time wakr Cycled. Within each process, cycles are consecutive and do
not overlap. A uniformly distributed synchronisation @ffss used for starting each process [5]. Processes perfeparate
send and receive operations: no complex atomic commuaitaperations are required. As a consequence, interleagesage
exchanges exist and message order is neglected. No prooéssrlexclusive access is present.

The next section introduces the information disseminasipplication for which global consensus has to be provided.

I11. THE INFORMATION DISSEMINATION APPLICATION (IDA)

IDA is adopted to simulate the distributed generation of inftfam items for which propagation and global consensus is
required. In this section, we present the conceptual demighpractical scenario ¢DA for the generation and propagation of
the information items. In Section IV the proposed protodolspropagation and consensus are described in details.

Information items inIDA are assigned unique (sequential) identifiers (ID). At eaddte¢ a node generates a new item with
a given probability. A new item is given the next locally unglID with no global or centralised coordination. This wagnis
with a specific ID can be generated simultaneously at difter@des and ID duplication must be resolved.

At each node, an information item is associated with one i@&fetipossible state®ropagation Agreementind Commit The
state diagram is shown in Figure 1. The same item can be assdavith different states at different nodes. The ultingaael
is for each item to reach the final stateofmmi) at all nodes, which corresponds to global consensus oritdmat

Initially, each node is started with an empty informatiorctoaC. At each node, an information item is created at each
cycle with a given probability. The node at which the item isated is called theriginator. The item is represented by a
tuple, which includes the item ID, the originator ID and them state. The tuple of a newly generated item is added to the
local cacheC with initial statePropagation Each tuple also contains some numerical variables thatseéd by the consensus
protocol and are described in Section IV. Each node peradigidisseminates the items that are present in its locaheéat
in the system by sending it to a randomly chosen peer. When a remives a message with a remote information cache, it
updates its local cache by merging the local and remoteesntaiggregating identical items and resolving ID duplEate

Nodes have no explicit or prior knowledge of the system siz&hereby, each node runs a specific protocol to estimate the
current system size. This protocol is detailed in SectioAlV

The proposed consensus protocol is a concatenation of tideBT aggregation operations, which are used to estirhate t
number of nodes in the system which have a particular item spexific state, respectively, Bropagationand Agreement
When this estimated count corresponds to the system sizénvdtime tolerance, the state of the local copy of the item is
updated to the next statpiase transitioph This protocol is detailed in Section IV-B. The action taka the transition to the
Commitstate depends on the specific application and is out of theesobthis work.

IDA is a simplified and sufficiently general model which may finglagations in diverse domains, such as failure detection
and consensus, transactions in distributed databasesgroon replicas, etc.

The next section describes the protocols employed for thmatson of the system size and for the two phase transitions

IV. IDA PROTOCOLS

In IDA, a connected physical topology, routing and transportgoads with no packet loss are assumHidA employs three
protocols: the simple Node Cache ProtochICP) [5] for membership management; the System Size EstimaRiarocol
(SSEPR for the estimation of the current system sizeand the Phase Transition Protoc®TP for determining the state
transition of the local copies of information items.

The protocoINCP implements and exports the functigat Random Peer(), a peer sampling service with uniform random
probability (Uniform Gossiping). In the simulations, wevikaadoptedNCP with a random k-regular overlay topology initiali-
sation. Any other Epidemic Membership Protocols could dls@mployed and for further details 'CP we refer the reader
to [5]. IDA nodes have no knowledge of the system siz&@herefore, each node adopts an Epidemic aggregationgaiptbe

Propagation
count converged
to system size,

Agreemnt coat
converged to
system size

item received,
vp = m.vp + 1,
Wp = M. Wp,

Vg = M.Vq,

item created,
vp = 1,w, =1,
Ve = 0,w, =1

Fig. 1. IDA state diagram for an information item

System Size Estimation Protoc@$EP, to estimate the current system sizeThe Phase Transition Protoc®TP) provides
an Epidemic solution to the distributed consensus problaiowing a three-phase commit protocol approach. The jgmto
SSEPandPTP are described in the next two sections.

A. The System Size Estimation Protocol (SSEP)

The protocolSSEPimplements the Symmetric Push-Sum Protocol for data agtjoeeg[5]. Precisely, it estimates the global
function ’count. In Algorithm 1, the pair(v,w) is used, wherev is the aggregation value and the aggregation weight.
Initially, all node values are set tb, and weights are set t®, except for one node that has = 1. At each cycle, a node
i halves its pair value$v, w) and sends the pair to a random node/$R). When a node receives aJBH message from a
remote nodej, it halves its local value and weight and sends thenj {®uLL). Finally, it combines the local and remote
pairs and updates the estimated system size.

SSEPpropagates aggregation pairs in the system. The global $umwill be evenly distributed to all nodes converging
to % wheren is the system size. Similarly; is aggregated and distributed, and will convergd tdt each cycle, the local
estimation ofn. can be calculated by;. Although interleaved messages are present in the systelong as the mass invariant
holds in the systemg will quickly converge ton with a relative error as small as desired [3, 5]. The estithatestem size
will hold as long as the system size remains static [5, 7]. el@x, since the protocol is continuously executed, it cao al
adapt to changes in the system size. Nevertheless, theasiomubf dynamic network conditions (e.g., node churn) is @iu
the scope of this work.

B. The Phase Transition Protocol (PTP)

EachPTP instance maintains a local cachieof information items. The local cache is initially empty awil be used to
store items either created locally or received from otheteso Each item i@’ is represented by a tuple, as described in section
[ll. The tuple contains two aggregation paifs w). One aggregation pairpf, wp), is used to estimate the number of nodes
which have received the item, i.e. tiig)ropagation count. The second pairp{, w,), is used to estimate thi)greement
count, that is the number of nodes holding the item at therskpbase. The protocol is a cascade of two Epidemic aggoegati
based on the Symmetric Push-Sum Protocol for the globatifumésuni [5].

As shown in Algorithm 2, at each cycle, nodénalves the two aggregation pairs of each tuple€inThen, it sends a copy
of the localC' to a random peer. The protocBITP checks if an agreement is reached for the transition fromasgtio the
successive. On the event of receiving a message from a peealdorithm adds new items, updates the tuple of the items
already stored irC' and resolves duplicates by keeping either the oldest tupleeping the one with the lowest originator
ID if the tuples have the same creation time.

At the creation of a new information item at nodePTP selects the next unique identifier (line 4) and inserts a ngiet
into C (line 5). PTP obtains the estimated system sizefrom SSEPprotocol using the functiosize(). For eachr in C,
the criterion in line 14 decides upon the transition frémopagationto AgreementThe aggregation count is compared to the
estimated system size with a relative error tolerargeThe test requires a minimum number of consecutive cydés{)
within tolerance to ensure robust transition to the nextsphavoiding early false transitions. The transitionGommitis
associated with a similar test condition on thgreementcount. The transition t&cCommitis shown in lines 18-19. When
receiving a message with a remote cachR&P merges local and remote items in lines 25-32. Tuples relaiethe same

Algorithm 1. System Size Estimation Protocol (SSEP)

1 Initialisation:

2 v=1.0 at all nodes,w = 1.0 at one node andv = 0.0 at all other nodes
3 At each node: est =0.0// size estinmation

4 At each cycle at node i:
5 j < getRandomPeer()
6 V=755 W=735
7 send(j,v, w,reply = true) /| PUSH message

8 At event 'receive message m from ;' at node i:

9 if m.reply then

10 V=55 w= 55

1 send(j,v,w,reply = false) I/ PuLL nessage
2v=0v+mu, w=w-+muw

13 if w > 0.0 then est = =

14 Method size() : R
15 L return est

information item are aggregated in line 28, duplicate IDs @solved in line 30 and new items are added to the local cache
C in line 32.

V. SIMULATIONS AND EXPERIMENTAL RESULTS

Simulations are carried out usingePRSIM [10], a Java-based discrete-event P2P simulation topERBIM is flexible,
scalable and easy to configu®SER PTP and NCP protocols are implemented in dedicated modules fBERSIM.

The simulation common settings are as follows. Differemid@m seeds are used in each simulation run to validate
performance and enforce randomisation. The system defmdtisn = 10000 nodes and the maximum experiment length
is 100 cycles. Membership is managed BYCP, which maintains the overlay topology with= 10. The generation of new
items inPTP is interrupted after the completion 60% of the simulation cycles to observe the protocol perfornsaincthe
residual cycles.

Simulation cycles are time intervals of fixed length, whidopt the cycle structure used in [5]. For experimental pseso

we defineAt, a cycle length that is long enough for all nodes to finish seadeive and aggregate operations, such that
At = t1 +t5 +to +t3, Wheret; limits PUSH offsets,t, limits transmission delays, artg limits initial synchronisation offsets.
In At, the portionts + t5 is the maximum communication latency corresponding to thumd trip time on the diameter of the
network. However, some messages may take very long to giive At) and arrive in later cyclesQut of Cycle Message
Out of cycle messages slightly delay the convergenc8SEPand PTP protocols due to potential loss of aggregation mass.
Nevertheless, the aggregation mass is restored when oytlef messages reach destination.

All protocols are based on the event-driven engine BERSIM, where three common events are defined as follows.

1) The ACTIVATE EVENT occurs at every cycle. At the beginning of the simulatiore #évent is scheduled by a specific
initialiser to occur after a random offset withip. The event is then scheduled to occur at evsty The item generation
procedure and the phase transition tests are executedsavidit. The cyclic event stops when a maximum number of
cycles is reached.

2) The RUSHEVENT is scheduled at a random time< ¢, from the ACTIVATE EVENT. At this event, a node sends a&H
message to a random peer.

3) The MESSAGERECEIVE EVENT occurs when a node receives a message from a peer. At thistbeegncoming message
is processed.

The protocolSSEPIs tested with different system size values) @nd the convergence of the estimated system size is
monitored. Figure 2.a shows the percentage of nodes whict leally estimated. within an error toleranceej; while
Figure 2.b shows the average of the estimated size for absidéigure 2 confirms thd0% of nodes correctly estimate the
system sizen after a sufficient number of cycles.

The protocolPTP is tested with the generation of a single information iterd ahmultiple items. The diffusion of a single
item is shown in Figure 3, where the percentage of nodes taat lachieved a particular phase is illustrated. Additional

Algorithm 2: Phase Transition Protocol (PTP)

1 Require: size(), the SSEPestimation;e, an error tolerance;M IN, a minimum number of consecutive cycles; a local
cache of items” = {7 = (id, 0, t, vy, wp, V4, Wq, state), ...}, whereid is the item identifierp the originator identifier;
the creation time(v,, w,) the propagation pair(v,,w,) the agreement pair anetate the item state.

2 Initialisation: at each node: C «— {}

3 At event 'new item generated’ at node i:
4 id <— next locally unique identifier
5 C «— CU{(id,, current_cycle,1,1,0,1, PROPAGATION)}

6 At each cycle at node i:

7 j = getRandomPeer()

g foreach 7 € C do

o | 7=(rid, 0,1t g, Tge, Ta Tl
10 send(j,C,reply = true) I | PUSH nessage
11 foreach 7 € C do

, T.state)

12 switch 7.state do
13 case PROPAGATION
14 if size() > 0.0 and % < ¢ for at least MIN cyclesthen
15 T.state = AGREEMENT
16 TV =TV + 1
17 case AGREEMENT
18 if size() > 0.0 and ‘5”29;6-&) < e for at least M IN cyclesthen
19 T.state = COMMIT
/1 and nmay take sone application-specific action.

20 At event 'received m message from ;' at node i:
21 if m.reply then

2 foreach 7 € C do

23 L T = (rid, 7.0, T.t, T52, T52, Ta Tla
24 | send(j,C,reply = false) I/ PuLL message

25 foreach 7y € m.C do

, T.state)

26 if C contains 7; where 7g.id == 71.id then

/'l Resolve duplicate itemID
27 if (1o.t == 7.t and 9.0 == 711.0) then
28 71 = (11.id, 71.0, 71 .1,

T1.0p + T0.Vp, T1.Wp + T Wy, T1.Vg + T0-Va, T1.Wq + T0-Wq, Tl.state>

29 ese if (T().t ==T.t and T0-0 < 7'1.0) or (T().t < Tl.t) then
30 L T = <T0.id, 700, To.t7T().Up +1, To.’wp,To.Ua,To.wa,TQ.Stat€>
31 else

32 L C+—CuU {<T0.id, 70.0, ’7'0.t77'().’l)p + 1, T().’Ll)p,To.'l)a,To.wa,T().Stat€>}

100

80
[}
S

2 60
ks
>

g 40
K

20

0

100

n=100 —— i
[n=1000 — 1e+008
n=10000 |
n=100000 g ler006 |
n=1000000 E 10000 |/
£
/ / = 100 .
(5]
ks
% 1 100
< n= S
Z oo n=1000 ——
n=10000
0.0001 n=100000 1
n=1000000
> ‘ 1e-006 : :
20 40 60 80 100 0 20 40 60 80 100
Cycles Cycles
(a) Percentage of nodes convergechto (b) Average of size estimates
Fig. 2. System size estimation BSEPconverges to actual system size(e = 0.01)
100 - ‘
Propagation Phase ———
Agreement Phase ———
80 Commit Phase |
. / /
o5}
o
o
= 60
5 T
[}
(=)
8 l X |
S 40 |
o
[}
20
0
0 20 40 60 80 100
Cycles
Fig. 3. Percentage of nodes at each phase for a single informiggm in PTP (n = 10000, e = 0.001, MIN = 5)
100 100 ‘ Propagation ——
Agreement —+—
Commit

80

80

60

40

60

Number of cycles

40

[B B ———
2 2
0 0
3 5 7 10 3 5 7 10
MIN MIN
(8) e =0.01 (b) e = 0.001

80

60

40

20

5 7 10
MIN

(c) e = 0.0001

Fig. 4. Number of cycles to complete a phase transitioPT# for a single item varying the minimum number of consecutive eyd/ /N and for three
values of the error tolerance(n = 10000)

T T 1e+007 : .
Propagation Count —— * Propagation Count ———
_ 1e+015 Agreement Count ——<—] 164006 Agreement Count ——
A E |
S 164010 S 100000 f L
2 i
£ / \ £ 10000
8 100000 8 ; 4
= / \\ S 1000 i
3 g J f
kS N g 100 |
S f g ‘
\ 10 ‘\
1e-005 1 T
0 20 40 60 80 100 0 20 40 60 80 100
Cycles

Cycles

(a) Variance of estimates for a single item (b) Average oifivesties for a single item

1e+007 — :
Propagation Count ——

" Propagation Count ——— '
1e+015 M Agreement Count ———] 164006 Agreement Count ———
S €
S } 5 AN LA S
o 1e+010 5 100000 Ry T \\
b 2
g . g 10000
et 100000 / s 1000 ,
[<2} |
: S I
3 S 100 /
S < T

1 N 10 |
A N

20 40 60 80 100 0 20 40 60 80 100

Cycles Cycles
(c) Variance of estimates for multiple itenig)(distinct items) (d) Average of estimates for multiple itefh@ distinct items)

Fig. 5. Convergence of theropagationand Agreementount estimates i TP (n = 10000, ¢ = 0.001, MIN = 5)

1e-005
0

experiments on single item diffusion are conducted withessvvalues of tolerance and minimum number of consecutive
cyclesMIN. Figure 4 summarises the results and shows the number afsciaicomplete a phase transition for an item when
varying M IN and for a few values of. The number of cycles required to complete a phase tranditiearly increases with
both parameters.

The convergence of thBropagationcount and of theAgreementcount in PTP is demonstrated in Figure 5. For a single
information item, Figure 5.a shows the variance of the edt® over all nodes; while Figure 5.b shows the average of the
estimates in the system.

PTPis also tested for the propagation & distinct items in the presence of of item ID duplication. Ufig 5.c shows the
variance of the estimates over all items and all nodes; wkiderre 5.d shows the average of the estimates. It can beaéaafer
that the protocol correctly manages item ID duplicates &ad tount estimates in the nodes correctly converge to thiersy
sizen.

The proposed Epidemic three-phase approach provides @osota the consensus problem without any centralised ¢oord
nation. Global agreement and synchronisation can be ahieithout global deterministic communication patternarébver,
Epidemic protocols have excellent scalability and faaletance, which are important properties for large-scadtriduted

systems.
VI. RELATED WORK

Solutions for the consensus problem based on Epidemic apipes have been applied to various applications in disétbu
systems. The work in [11] proposed general consensus anagw/eonsensus algorithms for quantisation of states olorarsed
networks using the asynchronous Epidemic-based comntigrisaof agents. A survey on the consensus problem in mgéira
cooperative control is provided in [12]. The work in [13] ssEpidemic-based ping and time-out mechanism to detect and

propagate failures. Correctly operating processes reambenisus when all of them detect the failed ones. In [14],AdeRic-
based aggregation protocol is used to perform a global sgnidation and reduction operation for a fully decenteali&-Means
clustering without global communication patterns undedenchurn and message loss. The work in [15] investigateddiieur
methods to detect the convergence of Epidemic aggregatidrtteose methods could be used to build a consensus protocol
for data aggregation.

VIl. CONCLUSIONS

This paper presented a phase transition protoBdlFf to achieve global consensus on the convergence of infaymat
dissemination. The proposed solution assumes the minimogdepties needed to solve the consensus problem in partiall
synchronous distributed systems. The solution is basedpieBic protocols and so it inherits their advantages. Apgm
application scenariolDA) of global information dissemination is used to demonsttae key idea of Epidemic consensus in
large-scale distributed systems and could be extended e pwnplex scenarios, such as data aggregatiolDAg two main
algorithms are introduced, the protoc®SEPto estimate the system size and the protde®P to manage phase transitions
and achieve global agreement on each information item.

The experimental analysis based on simulations has shaatfTP is able to achieve global consensus on the propagation
of information items over a large number of nodes with no iGised coordination, no prior knowledge of system size, an
assumption of the a priori global uniqueness of the itemtiflers. However, the solution currently assumes that systze
holds during the consensus transition period and that neagesloss or churn are present. Future research may adadesss t
limitations, introduce optimisations of the performanoe @ommunication overhead. A further direction of futuresistigations
is the extension of Epidemic consensus to the data aggoegptoblem and to dynamic network conditions.

VIIl. A CKNOWLEDGEMENTS

The authors Mosab Ayiad and Amogh Katti are supported foir thRBD projects, respectively, by the Merit Scholarship
Program, Islamic Development Bank, and by the Felix Scishiar

REFERENCES

[1] R. Guerraoui, M. Hurfinn, A. Mostefaoui, R. Oliveira, M.aRRnal, and A. Schiper. “Consensus in Asynchronous
Distributed Systems: A Concise Guided Tour”. lAdvances in Distributed Systems: From Algorithms to System
Springer Berlin Heidelberg, 2000.

[2] C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in tlresence of Partial Synchrony”. Idournal of the ACM
35.2 (Apr. 1988).

[3] D.Kempe, A. Dobra, and J. Gehrke. “Gossip-based contipmaf aggregate information”. Irffoundations of Computer
Science, 2003. Proceedings.™Annual IEEE Symposium 08003.

[4] I. Rao, A. Harwood, and S. Karunasekera. “Impacts of Asyony on Epidemic-Style Aggregation Protocols”. In:
Parallel and Distributed Systems (ICPADS), IEEE"liternational Conference or2010.

[5] F. Blasa, S. Cafiero, G. Fortino, and G. Di Fatta. “SymiceRush-Sum Protocol for decentralised aggregation”. In:
Proceedings of AP2PS, the Third International ConferenceAdvances in P2P Systen2011.

[6] P.Poonpakdee and G. Di Fatta. “Expander Graph Qualityn@gation in Randomised Communication”. [Data Mining
Workshop (ICDMW), IEEE International Conference. @ec. 2014.

[7] M. Jelasity, A. Montresor, and O. Babaoglu. “GossipdzhsAggregation in Large Dynamic Networks”. I®CM
Transactions on Computer Syste@&3 (Aug. 2005).

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impod#ipiof Distributed Consensus with One Faulty Process”. In:
Journal of the ACM(1985).

[9] D. Dolev, C. Dwork, and L. Stockmeyer. “On the Minimal Sjhwonism Needed for Distributed Consensus”.Journal
of the ACM(1987).

[10] A. Montresor and M. Jelasity. “PeerSim: A scalable PRRutator”. In: Peer-to-Peer Computing. P2P’09. IEEE Ninth
International Conference orlEEE. 2009.

[11] K. Cai and H. Ishii. “Gossip consensus and averagingritlyms with quantization”. InAmerican Control Conference
(ACC), 2010.

[12] W. Ren, R. W. Beard, and E. M. Atkins. “A survey of consam@roblems in multi-agent coordination”. IRroceedings
of the 2005, American Control Conferenczine 2005.

[13] A. Katti, G. Di Fatta, T. Naughton, and C. Engelmann. dBble and Fault Tolerant Failure Detection and Consensus”
In: Proceedings of the 22 European MPI Users’ Group MeetindgeuroMPI *15. Bordeaux, France: ACM, 2015.

[14] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino. “Faoletant decentralised K-Means clustering for asynchrenou
large-scale networks”. InJournal of Parallel and Distributed Computing3.3 (2013).

[15] P. Poonpakdee, N. G. Orhon, and G. Di Fatta. “Convergddetection in Epidemic Aggregation”. lfEuro-Par 2013:
Parallel Processing Workshopkecture Notes in Computer Science. Springer, 2014.

