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Abstract. The question of how to derive and present uncertainty information in climate data records (CDRs) has
received sustained attention within the European Space Agency Climate Change Initiative (CCI), a programme
to generate CDRs addressing a range of essential climate variables (ECVs) from satellite data. Here, we re-
view the nature, mathematics, practicalities, and communication of uncertainty information in CDRs from Earth
observations. This review paper argues that CDRs derived from satellite-based Earth observation (EO) should
include rigorous uncertainty information to support the application of the data in contexts such as policy, climate
modelling, and numerical weather prediction reanalysis. Uncertainty, error, and quality are distinct concepts, and
the case is made that CDR products should follow international metrological norms for presenting quantified un-
certainty. As a baseline for good practice, total standard uncertainty should be quantified per datum in a CDR,
meaning that uncertainty estimates should clearly discriminate more and less certain data. In this case, flags for
data quality should not duplicate uncertainty information, but instead describe complementary information (such
as the confidence in the uncertainty estimate provided or indicators of conditions violating the retrieval assump-
tions). The paper discusses the many sources of error in CDRs, noting that different errors may be correlated
across a wide range of timescales and space scales. Error effects that contribute negligibly to the total uncer-
tainty in a single-satellite measurement can be the dominant sources of uncertainty in a CDR on the large space
scales and long timescales that are highly relevant for some climate applications. For this reason, identifying and
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512 C. J. Merchant et al.: Uncertainty information in climate data records

characterizing the relevant sources of uncertainty for CDRs is particularly challenging. The characterization of
uncertainty caused by a given error effect involves assessing the magnitude of the effect, the shape of the error
distribution, and the propagation of the uncertainty to the geophysical variable in the CDR accounting for its
error correlation properties. Uncertainty estimates can and should be validated as part of CDR validation when
possible. These principles are quite general, but the approach to providing uncertainty information appropriate to
different ECVs is varied, as confirmed by a brief review across different ECVs in the CCI. User requirements for
uncertainty information can conflict with each other, and a variety of solutions and compromises are possible.
The concept of an ensemble CDR as a simple means of communicating rigorous uncertainty information to users
is discussed. Our review concludes by providing eight concrete recommendations for good practice in providing
and communicating uncertainty in EO-based climate data records.

1 Introduction

Few scientists would dispute the principle that an esti-
mate of uncertainty should be given with every measured
value. However, meaningful adherence to this simple prin-
ciple can be challenging, and in practice researchers com-
monly encounter datasets for which uncertainty informa-
tion is generic, misleading, or absent. Climate data records
(CDRs) are not immune to this problem, despite the fact
that climatic signals are usually subtle (e.g., Kennedy, 2014;
Mahlstein et al., 2012; Flannaghan et al., 2014; Barnett et al.,
2005), which adds to the importance of rigorous uncertainty
characterization in CDRs (e.g., Immler et al., 2010).

The question of how to derive and present uncertainty in-
formation in CDRs has received sustained attention within
the European Space Agency (ESA) Climate Change Initia-
tive (CCI; Hollman et al., 2013). Like the National Oceanic
and Atmospheric Administration CDR programme (Bates et
al., 2016), the CCI programme generates CDRs addressing a
range of essential climate variables (ECVs; Global Climate
Observing System, 2010; Bojinski et al., 2014). Here, we re-
view the nature, mathematics, practicalities, and communi-
cation of uncertainty information in CDRs from Earth obser-
vations. We highlight some of the challenges that developing
good uncertainty information presents and give examples of
recent progress drawn from the experience of several CCI
projects.

2 The requirement for uncertainty information

The environment and climate of Earth are changing (e.g.,
IPCC, 2013), and these changes reflect both profound hu-
man influences on the Earth system and natural variability.
Scientific progress in understanding contemporary changes
has great importance in constraining future changes that may
have far-reaching consequences for society. For public under-
standing, policy development, and climate assessments, cli-
matic changes and trends in recent decades need to be calcu-
lated. In this context, quantified observational uncertainties
are required that reflect the degree to which the observing
system is stable. The “system” here includes all components

that can affect the values in the CDR, from the platform and
sensor to software parameters and (where relevant) human
judgements. Stability is the time rate at which systematic er-
rors in the CDR may accumulate and needs to be understood
so that artefacts arising from the limitations of observing sys-
tems are not misinterpreted as real changes or trends.

There is major international scientific effort in modelling
the climate and its many component systems, and this is a
major application that requires CDRs with quantified uncer-
tainties. CDRs underpin climate model evaluation and im-
provement by providing references that can be used to iden-
tify model deficiencies. Model–data comparisons require ap-
propriate skepticism about both the model and the data, since
errors in both can be misleading (e.g., Notz, 2015; Mas-
sonnet et al., 2016). Modellers need confidence in discrim-
inating model–data discrepancies that unambiguously indi-
cate model deficiencies from those where observational er-
rors are significant. Feedback gathered by CDR producers
(e.g., Rayner et al., 2015) shows that modellers find it too
time consuming to develop a level of appreciation of obser-
vational datasets that allows them to make confident judge-
ments about such matters. For this reason, CDRs need to in-
clude validated uncertainty information that modellers trust
for contextualizing model–data discrepancies. Until this is
achieved, modellers will continue to rely on heuristics as be-
ing representative of observational uncertainty, a strategy that
may or may not be valid depending on the case in point.

Uncertainty in CDRs also matters for data assimilation.
Reanalysis runs of atmospheric forecasting models (e.g., Dee
et al., 2011; Kobayashi et al., 2015) provide useful, dynam-
ically consistent information about the climate system over
recent decades. The analyses include inferred fields of vari-
ables that are practically unobservable and/or were not his-
torically observed on a global scale. Reanalyses are among
the most widely used datasets in geosciences because of their
information content and spatio-temporal completeness. Re-
analyses are created by data assimilation, which brings ob-
servations and models together by using the observations
to constrain the evolution of the model towards reality. The
combination involves weighting the impact of different ob-
servations together and weighting the influence of observa-
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Figure 1. The benefit of pixel-level uncertainties in assimilating aerosol optical depth (AOD) estimated at 550 nm into the Monitoring
Atmospheric Composition and Climate (MACC) model. Each panel shows a distribution of AOD in the MACC model (in red) matched
to 29 528 AERONET ground-based AOD values (in blue): (left) no data assimilation; (centre) assimilation of MODIS retrievals; (right)
assimilation of AATSR retrievals. The AERONET-measured values have negligible uncertainty compared to satellite data. The MODIS data
were the dark target AOD dataset (collection 5.1), which was operational in MACC using fixed (generic) uncertainty estimates of 0.1 over land
and 0.05 over ocean. These values were chosen after bias correction and thorough testing of alternative uncertainty assumptions (Benedetti
et al., 2008). The AATSR dataset was from Aerosol CCI, and its pixel-level uncertainty estimates were used (with no bias correction). The
improved agreement in aerosol distribution suggests that the use of pixel-level uncertainties is beneficial.

tions relative to the internal evolution of the model. Ideally,
uncertainty estimates should be available for each observa-
tion so that more certain observations have more influence
on the analysis. Densely sampled, numerous data (such as
from satellites) can inappropriately overwhelm other obser-
vations if these data are subject to errors that correlate across
space and time and therefore do not “average out”. Ideally,
spatio-temporal correlation should be understood and repre-
sented in the observational covariance matrices that weight
satellite observations to avoid undue influence on the analy-
sis. The requirement for uncertainty information goes beyond
generic estimates at the dataset level: information is needed
on which data are more or less certain and how their errors
are structured in space and time. Where information provided
in CDRs about observational uncertainties is limited, generic
assumptions are generally made, leading to suboptimal out-
comes; an example is shown in Fig. 1.

3 Terminology: error, uncertainty, and quality

The terms “error” and “uncertainty” are often unhelpfully
conflated. Usage should follow international standards from
metrology (the science of measurement), which bring clarity
to thinking about and communicating uncertainty informa-
tion. Formal definitions are found in the International Vocab-
ulary of Metrology (Joint Committee for Guides in Metrol-
ogy, 2008a). Adopting the “error approach” therein to de-
scribe the process of measurement, we have the following:

– the measurand: a quantity to be measured;

– measurement: the process of experimentally obtaining
one or more measured values that can reasonably be at-
tributed to a quantity;

– the measured value: the result of a measurement ob-
tained to quantify the measurand:

– the error: the measured value minus the true value of
the measurand. In practice the error is unknowable, ex-
cept when the measured value can be compared with a
reference value of negligible uncertainty;

– and the uncertainty: a non-negative parameter charac-
terizing the dispersion (spread) of the quantity values
attributed to a measurand, given the measured value and
an understanding of the measurement.

Thus, a measured value results from the measurement of a
target quantity, called the measurand. It is only an estimate of
the measurand because various effects introduce errors into
the process of measurement. These errors are unknown. Un-
certainty information characterizes the distribution of values
that it is reasonable to attribute to the measurand, given both
the measured value and our characterization of effects caus-
ing error. Error is thus the “wrongness” of the measured value
(and is unknown). Uncertainty describes the “doubt” we have
about the measurand value, given the result of a measurement
and our estimate of the error distribution. A classic question
at a scientific meeting is the following: “What is the error
in your measurement?” This is perhaps asked after a plot has
been presented without “error” bars. The questioner is asking
for information about uncertainty, but the technically correct
answer to this question would be “I don’t know the error, and
if I did, I would correct for it”.

Note that these technical definitions correspond well to
the plain meaning of the words “error” (mistake) and “un-
certainty” (doubt) as used by non-scientists. In addition to
improving communication between scientists, careful usage
will help scientists communicate beyond their community.

It is common for satellite datasets to include quality flags
as a simple means to guide users in the usability and validity
of data. This raises questions about the relationship between
quality and uncertainty.

www.earth-syst-sci-data.net/9/511/2017/ Earth Syst. Sci. Data, 9, 511–527, 2017
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When a quantitative uncertainty estimate is provided for
each pixel or datum, as advocated here, quality and uncer-
tainty can be cleanly decoupled, giving different information
to the user. The quality indicator should indicate whether
both the measured value and its uncertainty estimate have
been obtained under conditions such that they are expected
to be quantitatively valid. With this approach, a highly un-
certain measured value is not of lower quality provided that
the high uncertainty is validly estimated. Data are flagged as
lower quality in circumstances that violate the assumptions
behind the measured value or its uncertainty estimate.

For example, consider a case in which the uncertainty es-
timates are known to be unrealistically small under certain
conditions of illumination by the Sun. There may be contam-
ination in the signal caused by stray radiance, for example,
and no means to quantify the contamination. For these sit-
uations, a quality indicator can be used to indicate that an
assumption or condition underlying the retrieval or the uncer-
tainty estimate provided is not valid, i.e., that stray radiance
may have biased the measured values by a non-negligible
amount not accounted for in the uncertainty estimate.

4 Traceability of uncertainty

In addition to precise language for describing measurement
uncertainty, metrology has developed a rigorous understand-
ing of the issues surrounding measurement uncertainty in the
context of developing and promulgating international mea-
surement standards, particularly the Système International
d’Unités (SI; Bureau International des Poids et Mesures,
2006). A key metrological concept is traceability through the
chain of processes from the primary standard to an end-point
measurement.

More generally, any measurement can be thought of as a
series of transformations from the event observed to some
final value. These include physical processes (such as the
emission of light by a gas), measurement techniques (such as
the observation of light by a detector), classifications (e.g.,
cloudy or clear sky), and mathematical analyses (e.g., in-
version algorithms). Each transformation may be influenced
by multiple effects that accumulate and propagate error. To
develop a full uncertainty budget, every effect that may in-
troduce error at any point in the chain needs to be con-
sidered, quantified (by one of various defined approaches),
documented, and (if not negligible) appropriately propagated
through the remainder of the chain.

Developing a more rigorous metrology of Earth observa-
tion (EO; Mittaz et al., 2017) is particularly important for
CDR generation compared to EO applications in general.
The applications of CDRs involve data analysis on a wide
range of space scales and timescales, from process studies
that are highly resolved in time and space, to decadal- and/or
continental-scale assessments of subtle climate changes. To
provide valid quantitative uncertainty information across this

Figure 2. Contribution to the overall uncertainty from different
error sources for different spatio-temporal scales of analysis of a
climate data record (CDR). Conceptually, this figure is generally
applicable to many climate CDRs. The particular case here is a
sea surface temperature (SST) CDR derived from a series of typ-
ical meteorological sensors. The effects causing errors are charac-
terized by their correlation properties: noise causes random errors
in SST that average out rapidly when analysing change on larger
or longer scales; retrieval errors for SST have a locally systematic
aspect and average out more gradually with scale; systematic er-
rors, particularly in calibration, for a single sensor become more
significant over time as the sensor ages and the calibration tends to
drift; and a long CDR is comprised of data from a series of sensors
which are, inevitably, imperfectly harmonized so that systematic se-
ries effects become important for the longest timescales of analy-
sis. Reproduced with permission from https://doi.org/10.6084/m9.
figshare.1483408, where full details of the scenario underlying the
figure are available.

range of scales, all sources of error need to be assessed,
and uncertainty propagation across scales needs to be rig-
orous. At larger scales of analysis, systematic effects that are
small contributors to uncertainty in individual measured val-
ues may become the dominant sources of uncertainty (see
Fig. 2).

Classic metrological concerns are firstly to assess and
quantify all known sources of error, and secondly to prop-
agate uncertainty rigorously through all steps to the end re-
sult. The analogy between the problems in EO-based clima-
tology and metrology has prompted a developing dialogue
and joint projects between these communities in recent years
(e.g., World Meteorological Organization and Bureau Inter-
nationale de Poids et Mesures, 2010; Woolliams et al., 2016).

5 Origin and characterization of errors

5.1 A sequence of transformations

A datum in a CDR is the end result of a sequence of trans-
formations. Consider a simplified scenario for the transfor-
mations involved in passive remote sensing using an infrared
radiometer to create a multi-mission CDR.

Earth Syst. Sci. Data, 9, 511–527, 2017 www.earth-syst-sci-data.net/9/511/2017/
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1. Infrared radiation emitted from a particular field of
view (originating from the Earth’s surface and the at-
mosphere path above it) is collected by the aperture of
a sensor and filtered during its passage through sensor
optics.

2. The filtered radiance falls on a solid-state detector, caus-
ing a voltage signal.

3. The voltage is amplified electronically.

4. The amplified signal is quantized to “counts” and
recorded.

5. The scene counts are compared with counts obtained
when viewing two reference targets whose tempera-
tures are measured; via this onboard calibration pro-
cess, channel-integrated brightness temperature is deter-
mined using various parameters and assumptions.

6. This brightness temperature is input to processing soft-
ware that retrieves a geophysical variable to generate
a CDR. This sixth step can itself be decomposed into
many transformations and dependencies.

a. Auxiliary information is also accessed by the pro-
cessor, which may include a wide range of informa-
tion. Some information is intrinsic to the observa-
tion and is highly certain (e.g., satellite view zenith
angle, time). External geophysical datasets may be
used, such as numerical weather prediction fields
or surface classification, and these may or may not
be provided with quantified uncertainties. All auxil-
iary information influences the CDR and gives rise
to uncertainty.

b. The processor typically involves a step to deter-
mine that the pixel properties are valid for the in-
tended retrieval (screening cloudy pixels, for exam-
ple). This influences the CDR through the sampling
distribution of the observations.

c. The set of observations is inverted to obtain an es-
timate of a geophysical quantity, such as an ECV.
This inversion may be sensitive to the auxiliary in-
formation and may vary in its complexity and de-
gree of non-linearity.

d. A multi-mission CDR is created from datasets for
several similar sensors by harmonizing discrepan-
cies between sensors (using sensor overlap periods
or other means), which modifies the datum to its
final value.

e. Many ECV estimates may be aggregated to a
coarser space–time grid for the purpose of (for ex-
ample) evaluating the results of a climate model
run.

Every step in the above sequence is a transformation sub-
ject to effects that introduce errors. Characterizing these ef-
fects is the significant core work required to develop good
uncertainty information in a CDR. The errors from each ef-
fect have certain properties which can be estimated to the de-
gree that the effect is understood. There are several aspects to
characterizing the errors from a given effect: the magnitude
of uncertainty at the source, the shape of the error distribu-
tion, how the uncertainty propagates to the resulting data, and
the correlation structure of the error from this source between
observations.

5.2 Magnitude of uncertainty

The magnitude of uncertainty characterizes the dispersion
(width) of the estimated distribution of errors. Standard un-
certainty is the standard deviation of the distribution, al-
though other coverage factors can also be used. The value of
the standard uncertainty can be estimated from basic princi-
ples in some cases. An example is the uncertainty introduced
by quantization of the signal, which in older sensors using
relatively few bits could be a significant source of noise. In
other cases, the uncertainty estimate may rely on empirical
information. For example, the noise from an amplifier circuit
may have been measured during pre-launch testing. Using
pre-launch noise levels in an uncertainty estimate involves
the assumption of stable behaviour of the amplifier during
and after launch; that assumption itself can be tested for con-
sistency with other instrument data or the noisiness apparent
when observing relatively uniform targets.

In generating CDRs, we often have to deal with the multi-
variate case because several channels are combined to esti-
mate a geophysical quantity. Errors in these channels are not
necessarily independent, and in this case the generalization
of the standard uncertainty is the error covariance matrix,
which has as many rows and columns as there are channels
(or other variates). The square root of an element on the di-
agonal of this matrix corresponds to the standard uncertainty
for a particular variate.

With reference to the scenario described in Sect. 5.1, sev-
eral sources of uncertainty can be identified with magnitudes
that must be estimated. For example, at step 4, the combined
effect of solid-state detector noise, amplifier noise, and digi-
tization causes an uncertainty in counts. This uncertainty can
be estimated by considering the dispersion of measured val-
ues when viewing a constant calibration reference. Another
example is the retrieval uncertainty associated with the in-
verse solution that provides the geophysical retrieval from
the satellite radiances (step 6c). Even with perfect data, the
process of retrieval is usually ambiguous (more than one geo-
physical state can be associated with identical radiances).
This component of uncertainty can be quantified by the sim-
ulation of retrieval outcomes compared to the simulation
“truth” if a forward model for the satellite observations is
available.

www.earth-syst-sci-data.net/9/511/2017/ Earth Syst. Sci. Data, 9, 511–527, 2017
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Figure 3. Distributions of single-pixel brightness temperature (BT) errors from a simulation for the detection and calibration system of an
advanced very high resolution radiometer (AVHRR) for channels of different wavelength (columns) and two scene temperatures (upper row
200 K scene, lower row 300 K scene). The unit of frequency of occurrence is per thousand.

5.3 Shape of the error distribution

If the error distribution is zero-mean Gaussian, then the stan-
dard uncertainty fully describes the error distribution aris-
ing from the effect. Not all effects cause Gaussian-distributed
errors. One example is the logarithmic distribution of radar
backscatter errors associated with speckle. Another example
is quantization (step 4 in the scenario in Sect. 5.1), as illus-
trated by Fig. 3, which shows a simulation of the distribu-
tions of brightness temperature for an Advanced Very High
Resolution Radiometer (AVHRR) viewing a pixel with true
scene temperatures of 230 and 300 K. This distribution was
obtained by simulating detector noise, amplifier noise, quan-
tization, and ideal (unbiased) onboard calibration. The sepa-
rated peaks are the effect of the AVHRR 10-bit digitization
of the detector and amplifier noise. Each separated spike has
a nearly Gaussian distribution with a spread that arises from
errors in the calibration process: the calibration applied for a
given observation arises from a finite sample of the calibra-
tion target views (an internal black body and a space view),
which therefore implies some statistical uncertainty. Cases
such as this require a numerical representation of error dis-
tributions and a Monte Carlo simulation for the propagation
of uncertainty (see the next subsection). When quantization
is negligible, which is often the case for contemporary sen-
sors, the Gaussian distribution realistically describes the sig-
nal noise and should be characterized by the standard devi-
ation of the error distribution, which is the standard uncer-
tainty.

5.4 Propagation of uncertainty

Uncertainty from effects associated with a particular trans-
formation ultimately propagate to the contents of the CDR.
Gaussian errors can be propagated through linear and nearly
linear transformations by standard analytic means (Joint
Committee for Guides in Metrology, 2008b). Let Y = f (X)
represent any of the transformations between admitting
Earth-leaving radiance into the aperture of a sensor and writ-
ing a datum in a climate data record. The function f de-
scribes how one or more inputs in vector X give rise to the
output(s) of the transformation in vector Y . The uncertainty
in the output(s) is characterized by an error covariance ma-
trix:

Uy = CyUxCT
y , (1)

where Ux is the error covariance matrix of the inputs, and Cy

is the matrix of sensitivity coefficients, in which ∂fi

∂xj
quanti-

fies the influence that the ith input in X has on the j th output
in Y . If there are several effects indexed by e, then

Ux =

∑
e

Ux,e. (2)

These analytic propagation equations are a first-order ap-
proximation and are strictly valid for Gaussian-distributed er-
rors that are sufficiently small that f is linear over the range
of likely errors.

For non-Gaussian distributions and/or transformations that
are significantly non-linear, Monte Carlo approaches are nec-
essary to propagate uncertainty. A common non-linear trans-
formation in generating some CDRs is threshold-based cate-
gorization of a set of observations, either because the CDR is
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comprised of a classification (such as land cover) or because
the retrieval of the geophysical variable is valid only for cer-
tain classes (such as cloud-free scenes). When observations
are near a threshold, errors can cause a change in classifica-
tion. Simulating the retrieval process many times can charac-
terize the propagation of uncertainty in observations into the
classification results.

5.5 Correlation structure

It is important to understand the correlation of errors because
failing to account for correlation generally leads to underes-
timation of uncertainty and unfounded confidence in the in-
terpretation of the CDR.

A common example of error correlation arises when a geo-
physical variable is retrieved from satellite imagery (step 6c
in Sect. 5.1). The estimation of geophysical quantities from
radiance measurements is usually an inverse problem in
which there is some ambiguity and dependence on auxiliary
parameters (whether explicit or hidden). Both ambiguity and
parameter dependence tend to cause retrieval errors that are
shared to some degree between nearby image pixels; i.e., the
errors are locally correlated. The correlation length scale for
such retrieval errors depends on the effect.

For example, aerosol optical depth may be estimated
across a particular scene in reflectance imagery assuming
a size distribution and refractive index that systematically
differ from reality; errors are therefore expected to be cor-
related between pixels on the scales of variation in true
aerosol properties. More generally, retrieval errors are corre-
lated on the space scales and timescales of atmospheric vari-
ability whenever retrieval ambiguity is related to atmospheric
conditions (e.g., Merchant and Embury, 2014; Buchwitz et
al., 2013). The errors may be de-correlated between differ-
ent overpasses (because atmospheric conditions change; e.g.,
Reuter et al., 2014) but are strongly related for adjacent pix-
els from a single-orbit overpass. Figure 4 illustrates this for
the case of a sea surface temperature retrieval (SST) with
simulated retrieval errors that are correlated geographically
and de-correlated in time.

Systematic effects cause errors with structure across a
whole dataset, or at least across large space scales and long
timescales within a dataset. The term “systematic error” is
sometimes loosely equated to “bias”, but the concept of a sys-
tematic effect is in truth more subtle, since a systematic effect
can produce zero-mean errors with no bias overall. System-
atic effects can be defined as those that cause errors which
one could in principle correct given the necessary quanti-
tative understanding. For example, a CDR may be derived
from a series of sensors with differing calibrations. Even if
the series is adjusted to compensate for inconsistency be-
tween the calibration of different sensors (step 6d), there is
uncertainty in doing this; errors in the adjustment parame-
ters potentially affect the entire data record from a particular
sensor. These systematic errors may correspond to an over-

Figure 4. Simulation of locally correlated errors in the retrieval of
sea surface temperature (SST) overlaid with surface pressure con-
tours to indicate length scales of atmospheric variability. The sim-
ulated retrieval errors are for a noise-free sensor with a calibration
that is perfectly known. The errors therefore arise solely from intrin-
sic ambiguity in inverting the observed radiances to SST. Note that
there is no simple relationship between the SST errors and the at-
mospheric features associated with synoptic weather systems. The
white areas indicate 100 % cloud cover. Reprinted from Merchant
and Embury (2014) with permission from Elsevier© (2014).

all bias, but more commonly they have some geographical
and/or temporal structure. However, in principle, given more
complete information, corrections for these errors could be
devised.

Local correlations and the correlation of errors from sys-
tematic effects need to be properly accounted for when cre-
ating “level 3” versions of CDRs, i.e., gridded products in-
volving the averaging of full-resolution data. If the correlated
nature of the errors is neglected, the uncertainty estimate for
the gridded data will be poor (usually an underestimate). In
averaging data subject only to independent random errors,
it is well known that the effect of the errors on the average
decreases with the square root of the number of contribut-
ing data, but local correlation decreases the averaging-out of
errors. In the extreme of pixel uncertainty dominated by an
error source that is fully common across a grid cell, there is
no reduction in uncertainty from averaging many pixels. The
impacts of error correlation on the uncertainty of the grid-
cell average can be evaluated using Eq. (1) with the required
off-diagonal terms in Ux . When a grid cell is not completely
sampled by the full-resolution data, there is an additional un-
certainty not quantified by Eq. (1) associated with the unob-
served part of the cell. See Reuter et al. (2010) and Bulgin
et al. (2016a) for examples of parameterization development
for subsampling uncertainty.

6 Which types of uncertainty information are used?

The previous section introduced four considerations that are
useful in thinking about the uncertainty from a given effect:
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the magnitude of uncertainty at the source, the shape of the
error distribution, how the uncertainty propagates to the re-
sulting data, and the correlation structure of the error from
this source between observations. These considerations ap-
ply quite generally. However, the nature of the responses de-
pends on the particularities of the CDR being considered.
There is a range of forms which uncertainty information can
take and a variety of empirical and theoretical methods used
to estimate uncertainty.

Quantitative measures of uncertainty describe the doubt
we have about the measurand, given the measured value, in
numerical terms. Conceptually, the provided numbers quan-
tify the dispersion (i.e., spread) of the estimated error prob-
ability distribution function (PDF). Options for characteriza-
tion are varied, including percentiles, confidence intervals,
maximum range of error, multiples of the standard deviation,
covariance matrices, distribution histograms, and misclassi-
fication rates.

Standard uncertainty is a highly informative measure when
the error distribution is close to Gaussian. For example, in
the case of sea surface temperature (SST), errors are reason-
ably well described by a Gaussian distribution with a stan-
dard deviation that can be modelled by uncertainty propa-
gation (Merchant and Le Borgne, 2004; Embury and Mer-
chant, 2012). Even in this relatively simple case, there are
subtleties. Sea water freezes at around−1.8 ◦C. Even though
the measurement error distribution remains Gaussian when
the retrieved temperature approaches the freezing point, the
distribution of credible SSTs becomes asymmetric given the
additional knowledge that SST below −1.8 ◦C is precluded.

The dispersion of errors is sometimes better described us-
ing fractional uncertainty. This approach is typically more
appropriate for data such as ocean chlorophyll concentra-
tion or atmospheric aerosol optical depth (AOD). In both
these cases there is a strict lower limit to valid data of zero,
and both the measured values and the standard uncertainty
can vary in value over orders of magnitude with larger un-
certainty in absolute terms when the measured values are
large. Quoting a fractional uncertainty is an appropriate ap-
proach and is equivalent to stating a standard uncertainty for
logarithm-transformed data. However, for values near zero,
standard uncertainty may be more representative. For exam-
ple, effects associated with surface brightness introduce an
uncertainty in AOD that is the dominant uncertainty for low-
aerosol scenes. Thus, the Global Climate Observing Sys-
tem (2010) recommends uncertainty modelling using a com-
bination of absolute and fractional uncertainty for CDRs of
aerosol optical depth.

Some CDRs refer to categorical ECVs, such as the sta-
tus of the land cover at a given place, whether the land at
a given location has recently burned, or whether the land is
covered by a glacier. Here an appropriate statement of un-
certainty can be probabilistic: how probable is it that the sta-
tus will be other than indicated? When the classification uses
a Bayesian approach, like the maximum likelihood estima-

tion, the probability to belong to the output class is naturally
available. For non-probabilistic classifiers (“random forest”
for instance), a proxy for class membership probability can
be defined as the number of trees in the ensemble voting for
the final class (Loosvelt et al., 2012). Similarly, the distance
to the optimal separating hyperplane in the feature space can
be used in support vector machine classifications (Giacco et
al., 2010).

Table 1 shows the variety of ECVs and the corresponding
uncertainty information in the CCI programme. The maturity
of the uncertainty information presently provided varies, and
for some cases uncertainty estimation is not yet achieved.

Most projects in the CCI programme adopted standard un-
certainty as the provided uncertainty information (Table 1),
which is a convergence that arose after sustained discussion
across the programme and which is in line with metrological
guidance. Exceptions include ECVs for which the geophys-
ical data are categorical rather than numerical as discussed
above. However, there is a wide range of methods employed
to develop this uncertainty information documented in the
varied contents of the uncertainty characterization reports
prepared for each CDR. (For these reports and other docu-
mentation, refer to http://cci.esa.int.)

7 Validation of uncertainty

Quantified uncertainty information provided in CDRs needs
to be validated, i.e., evaluated by independent means to es-
tablish quantitative realism and the credibility of the un-
certainty estimates. Many validation studies in the literature
consider the validation of measured values, but the validation
of attached uncertainty information is less common. Indeed,
where specific uncertainty estimates are not provided with
measured values, measured-value validation is often seen as
a method for deriving generic uncertainty information (based
on the validation discrepancies).

The primary means of validating uncertainty estimates
is to extend traditional measured-value validation in which
satellite and in situ reference data are compared. Validating
uncertainty information in a CDR is more challenging than
validating a measured value because it requires the quantifi-
cation of three contributions to the observed differences be-
tween the values measured from space and on the ground
(e.g., Wimmer et al., 2012; Dils et al., 2014):

– the uncertainty for each CDR data value (the uncertainty
estimate in the CDR product that is to be validated);

– the uncertainty for each reference measured value being
used as a validation point; and

– the magnitude of real geophysical variability caused by
the different nature of the satellite and validation mea-
surements.

The third contribution can require significant effort. Real
geophysical variability between measurements of nominally
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Table 1. Essential climate variables addressed in the ESA Climate Change Initiative.

Essential cli-
mate variable

Comments on nature
of variable

Product characteristics Uncertainty information
provided

Basis on which uncertainty
is estimated

Aerosol
optical depth
(AOD)

AOD is a continuous, non-
negative, log-normally dis-
tributed
variable

Satellite swath (10×10 km2

super pixels) and gridded
(1◦ grid daily and monthly)

Standard uncertainty given
for each pixel level in swath
product; averaged uncer-
tainty given for each cell in
gridded products

Propagation of sensor noise
through retrieval process;
context-specific (surface,
aerosol type) estimate of
retrieval uncertainty

Cloud proper-
ties

Cloud properties are
composed of several sub-
variables (temperature,
height, fraction) which are
continuous non-negative
variables

Satellite swath (≥ 5 km),
gridded (0.05◦ grid) and
averaged (0.5◦, daily,
monthly) estimates

Standard uncertainty given
at pixel level in gridded
swath product and averaged
for each cell in gridded
products

Propagation of sensor
noise through retrieval pro-
cess; (optimal estimation)
context-specific (surface)
estimate of retrieval un-
certainty; propagation of
uncertainty to grid boxes
accounting for correlation

Glaciers Glacier outlines derived
from optical satellite data
with manual intervention

Outlines are provided in
a vector format, scene by
scene; a geospatial database
addresses 200 000 glaciers
globally

Not regularly determined;
some tests have been pub-
lished

Various methods, including
multiple digitizing by ana-
lysts; appropriate validation
data are generally missing

Greenhouse
gases (XCO2,
XCH4)

XCO2 and XCH4 are de-
fined as atmospheric, dry-
air, column-averaged mole
fractions of CO2 and CH4

One file per day, including
XCO2 and XCH4, plus ad-
ditional information for sur-
face flux inversions; sound-
ings have surface footprints
of∼ 10 to∼ 60 km depend-
ing on sensor

Standard uncertainty of
XCO2 and XCH4 (per
sounding) plus averaging
kernels (AK) and a priori
concentration profiles

Propagation of sensor noise
(and a priori uncertainty)
through retrieval process
and error scaling to match
validation statistics

Land cover A categorical variable de-
scribes the terrestrial sur-
face annually in 22 dis-
crete classes (from the UN
Land Cover Classification
System)

Annual land cover maps at
300 m depicting land cover
change from 1992 to 2015

Class uncertainty is avail-
able at the map and class
level; standard uncertainty
of composite surface re-
flectance is provided at
pixel level

Class uncertainty is com-
puted from confusion ma-
trix built on independent
statistical validation pro-
cess

Ocean colour Variables of bio-optical rel-
evance with high dynamic
range (4 decades)

Chlorophyll a concentra-
tion, spectrally resolved in-
herent optical properties,
diffuse attenuation coeffi-
cient at 490 nm, member-
ship of optical classes

Standard uncertainty and
bias estimates for all prod-
ucts except backscattering
coefficient

Uncertainty assignment
based on product compar-
ison with match-up in situ
data for each optical class,
applied per pixel according
to class membership

Ozone Ozone total-column and
vertical profiles

Ozone profiles from limb
sounders with∼ 3 km verti-
cal and ∼ 300 km horizon-
tal resolution; ozone pro-
files from nadir sounders
with∼ 4 km vertical resolu-
tion; analysed and gridded
versions of profiles and to-
tal column

Standard uncertainty esti-
mates are given for each
ozone value in each record

Measurement noise propa-
gated through the retrieval
process and to the higher
levels of data products, ran-
domly varying parameter
errors; sampling uncertain-
ties
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Table 1. Continued.

Essential cli-
mate variable

Comments on nature
of variable

Product characteristics Uncertainty information
provided

Basis on which uncertainty
is estimated

Sea ice Sea ice concentration (SIC),
thickness (SIT)

SIC: daily, gridded data at
between ∼ 12 and ∼ 50 km
grid spacing; SIT: presently
Arctic winter only, monthly
100 km gridded freeboard
and thickness

SIC: standard uncer-
tainty estimated from
retrieval and gridding; SIT:
presently no uncertainty
provided

SIC: the retrieval uncer-
tainty is based on statisti-
cal spread of retrieval at tie
points of known SIC; pa-
rameterization for gridding
uncertainty

Sea level Sea level is continuously
variable in space and time;
global variations should be
consistent with the conser-
vation of water mass in the
climate system

Active remote sensing
along ground tracks;
analysed to monthly 0.25◦

grid

Standard uncertainty for
each sea level determina-
tion along ground tracks;
standard uncertainty in
inter-annual global mean
sea level (Ablain et al.,
2015)

Uncertainty is inferred by
generalized least squares,
where the error covariance
matrix is built from altime-
ter correction uncertainties

Sea surface
temperature
(SST)

Temperature is continuously
variable in space and time
with a lower bound at the
freezing temperature of sea
water

Satellite swath (≥ 1 km),
gridded (0.05◦ grid) and
gap-filled (0.05◦, daily)
SST estimates

Standard uncertainty given
at pixel level in swath
product and for each cell
in gridded and gap-filled
products; component un-
certainty contributions also
available

Propagation of sensor noise
through retrieval process;
context-specific estimate of
retrieval uncertainty; sam-
pling uncertainty estimate
in cell means

Soil moisture Microwave retrievals repre-
sent moisture content in a
thin surface layer (1–5 cm);
no data when soil is frozen,
snow-covered, or overlain
by very dense vegetation

Daily (00:00 UTC) gridded
(0.25◦) global data; three
data records: (i) merged ac-
tive, (ii) merged passive,
(iii) merged active passive
microwave data

Standard uncertainty given
for each soil moisture value
in each of the three data
records; additionally, qual-
ity flags are provided

Propagation of sensor noise
through retrieval process,
including context-specific
estimate of retrieval un-
certainty; uncertainties
introduced by sampling not
yet characterized

the same measurand arises for many reasons, depending on
the ECV considered. The spatial location of the measure-
ments can differ (including the tolerance for spatial mis-
match and the effect of point measurement vs. area aver-
age over a satellite pixel). The measurements are likely not
perfectly synchronized, and the geophysical state may have
evolved in the intervening time. Definitional differences are
common between measurands even when nominally equiv-
alent, such as a remotely sensed measurement being sensi-
tive to a weighted average of some vertical profile of a vari-
able, whereas the reference measurement is made at discrete
heights or depths. In some cases, validation must be per-
formed using reference data for a measurand that is closely
related, but not exactly the same (a definitional discrepancy).

In the case of satellite CDR data, xsat, containing stan-
dard uncertainty estimates, usat, the validation of the CDR
uncertainty information can be based on the distribution of
the ratio

xsat− xref√
u2

sat+ u2
ref+ u2

mis

, (3)

where xref is the value of the reference (validation) data, uref
is the uncertainty in the reference data, and umis is the geo-

physical variability arising from temporal, spatial, and def-
initional mismatch between the satellite and reference data.
If the uncertainties and variability are correctly quantified,
this ratio will be normally distributed with a standard devi-
ation equal to unity. The better the quality of the reference
data (the smaller uref) and the better the match of satellite
to validation data (the smaller umis), the more sensitive the
validation of usat.

An example validation of uncertainty based on this prin-
ciple is shown in Fig. 5. In this case, the data are cloud-
top height (CTH) from Cloud CCI retrievals driven by an
interpretation of the cloud top temperature in thermal im-
agery and matched to independent CTH measurements made
by CALIPSO using laser ranging. The CALIPSO validation
data have, in this case, negligible uncertainty; mismatch un-
certainty is also neglected. The plots therefore show the his-
togram of discrepancy in CTH between the two observations
divided by the uncertainty estimated in the Cloud CCI re-
trieval process. The Gaussian that best fits the main peak
is also shown with its calculated width. In the case of ice
clouds, the product uncertainty is underestimated by around
10 %. For liquid clouds, the analysis reveals a systematic ef-
fect. For both ice and liquid clouds, there are tails to the
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Figure 5. Example of uncertainty validation using the distribution of differences between matched cloud top heights measured by Cloud CCI
(data) and CALIPSO (CALIPSO values minus those from MODIS AQUA Cloud CCI) for a single day, 20 June 2008 (solid black); (left) for
ice clouds, (right) for liquid clouds. The plots show the histograms of the CTH error (the difference in retrieval compared to validation data
that is assumed to have negligible uncertainty) divided by the stated retrieval uncertainty. For ideal uncertainty estimates the full width at
half maximum (FWHM) of the fitted Gaussian distribution (dashed blue) would be 2.35.

distribution where the magnitude of disagreement exceeds
4 times the estimated uncertainty. This indicates that uncer-
tainty is underestimated for these cases, since such outliers
would be very rare if the estimated uncertainty were appro-
priate.

In addition to the extended validation described above,
triple collocation techniques (McColl et al., 2014) have been
used to assess uncertainty estimates in near-surface wind
speed (Stoffelen, 1998), soil moisture (Gruber et al., 2016),
and other remotely sensed variables. For valid quantitative
estimation or validation of uncertainty, this technique re-
quires three sources of collocatable data with errors that are
independent and random (both between the data sources and
within each data source) and assumes that sampling mis-
matches and differences in the definition of the measurands
between the three types of data are negligible. Other uncer-
tainty validation methods are briefly reviewed in Sofieva et
al. (2014). The uncertainty arising specifically from instru-
ment noise can be validated using an Earth target that is as-
sumed not to vary, e.g., white sands in New Mexico for re-
flectance validation. In this case, validation is not against in-
dependent measurements, but it is performed by using re-
peated observations by the same instrument. Such analy-
ses would be more robust if the geophysical standard could
be traced to a more controlled reference, which would re-
quire more support for repeated accurate measurements of
the Earth target from the ground (Loew et al., 2017). For
categorical ECVs, such as land cover type, a degree of un-
certainty validation can be obtained by verifying that the es-
timated misclassification rates in the product are stable with
respect to reasonable ranges of classification parameters. For
instance, if classification is based on training a classifier us-
ing a dataset split into calibration and validation (“train” and
“test”) subsets, the process can be repeated many times with
a different random division into train and test subsets, which
allows the dispersion in the misclassification rates to be char-
acterized.

8 Presenting uncertainty information in
climate datasets

When determining how uncertainty information is to be in-
cluded in the CDR, various requirements can conflict (Ta-
ble 2). The core conflict is between providing for applica-
tions that require only summary information that discrimi-
nates more and less uncertain data, and providing for appli-
cations that demand detail about uncertainties that is suffi-
cient to calculate uncertainty in the quantities derived from
the CDR (averages in space and time, temporal differences,
integrals, trends, and fluxes). Data producers themselves are
users of their low-level (e.g., full resolution, orbital) products
when they create higher-level products (e.g., gridded datasets
and gap-filled analyses). In order to provide realistic uncer-
tainty information at the higher level, they may require fine-
grained uncertainty information for the low-level CDR, such
as separate quantification of uncertainty at the pixel level
from effects with distinct spatio-temporal correlation prop-
erties. Such detailed information is complex for non-expert
users and is an unnecessary data volume for those with ap-
plications requiring, for example, only the total uncertainty.

The increase in data volume involved in providing uncer-
tainty information is far from a minor consideration. The vol-
ume of data required for a comprehensive description of un-
certainty, including the degree of error correlation, can be
many times the volume of the measured values. For exam-
ple, a full error covariance matrix for N measured values is
N×N . Data volume and processing limits are thus significant
obstacles to comprehensive brute-force calculations of uncer-
tainty. Insight and imagination are required to develop treat-
ments of uncertainty that meet the requirements for rigour
in CDR applications and are computationally tractable. Data
producers can develop different versions of products that are
light and heavy with respect to uncertainty information. Data
delivery systems can be developed that allow users to select
on download consistent uncertainty information to the degree
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Table 2. Generic requirements for uncertainty information in climate data records, illustrating potential contradictions between the require-
ments for different data applications.

Requirement Implications Conflicts & solutions

1. Minimize data volume for users
to download.

Provide only key summary information on un-
certainty, such as the total uncertainty (or the
means to calculate uncertainty) for each mea-
sured value.

Conflicts with need for detailed uncertainty in-
formation for some purposes (cf. 3, 4, and 5).
More complete uncertainty information can be
made available separately to core data products.

2. Data should be easy to read and
understand.

Use standard metrological vocabulary to ex-
press uncertainty. Uncertainty data should be
easy to associate with measured values.

Some established community standards and
conventions include uncertainty vocabulary that
is inconsistent with best practice. Work with
community standards to converge practices.

3. Provide sufficient uncertainty in-
formation to allow correct propa-
gation of uncertainty to spatial and
temporal averages of data.

Uncertainty components from errors with dif-
ferent spatial correlations need to be separately
quantified with correlation information (e.g.,
length scales, covariance matrix).

Increases data volume (cf. 1). Increases com-
plexity of dataset (cf. 2). Could provide two
versions of data, one with summary and the
other with comprehensive uncertainty informa-
tion, with guidance as to which is needed for
different purposes.

4. Provide information about
temporal stability of observations
and/or evolution of trend uncer-
tainty over time (up to decades).

Information is provided on temporal correlation
of errors, particularly arising from long-term
systematic effects.

Full spatio-temporal covariance matrix for CDR
is challenging to calculate or parameterize and
is likely infeasible to distribute. More general
estimates of overall stability can be made. En-
semble approaches have been proposed.

of detail they require. There is likely no single strategy that
is optimal for every ECV.

A user consultation meeting on uncertainty information in
SST CDRs (Rayner et al., 2015) explored these issues with a
range of users, including “power users”, in applications such
as data assimilation for reanalyses and centennial-scale cli-
mate modelling. An interesting conclusion from the work-
shop is that many users are interested in ensemble versions
of EO-based CDRs, despite the multiplied data volume this
implies. The purpose of the ensemble CDR is to represent the
effect of all error sources on all spatio-temporal scales. The
motivation behind the ensemble approach is two-fold (e.g.,
Morice et al., 2012). First, the user does not need to engage
deeply with the origins and correlation structure of errors in
the CDR or their implications for the application, since these
are captured in the differences between ensemble members.
Second, for some applications it is simpler to rerun a process
several times with different ensemble members than to prop-
agate uncertainties through the process, particularly when er-
ror structures exist across a wide range of scales. These mo-
tivations do not apply to every application, and the ensemble
approach is less attractive to users facing constraints on data
volume or processing power. The ensemble approach raises
issues and opportunities for the data provider. Uncertain aux-
iliary parameters for in the processing can be sampled across
their plausible range rather than relying on a single best es-
timate. However, the strategy for creating an ensemble re-
quires careful design, and there are subtleties to be addressed,
such as whether a “best” member is supplied, how large an
ensemble is appropriate, and what the ensemble spread rep-

resents. Within the CCI programme, the ensemble approach
has been adopted only experimentally thus far (e.g., Reuter
et al., 2013).

The producers of CDRs therefore have to reflect on the ex-
pected applications of their data and make a judgement about
the balance to strike between conflicting requirements, such
as ease of use versus the completeness of the uncertainty in-
formation. Nonetheless, the collective experience across the
CCI ECVs represented in Table 1 shows that the provision
of per-datum standard uncertainty has emerged as a rigor-
ous but simple approach adopted for all ECVs (other than
products comprised of classifications). The standard uncer-
tainty provided is generally the total from all sources of error,
although uncertainty components with different error corre-
lation structures are additionally provided in one case. Al-
though not sufficient for every possible application, quantify-
ing the total standard uncertainty per datum in a CDR product
emerges as a baseline standard for future good practice.

9 Good practice for uncertainty quantification

One perspective on what constitutes good practice in uncer-
tainty quantification has been embedded in recently proposed
metrics for CDR maturity. Building on the work of Bates
and Privette (2012) for the NOAA Climate Data Records
Program, Schulz et al. (2015) have proposed a system ma-
turity matrix (SMM) for assessing CDR-generating capac-
ity. The SMM includes criteria for assessing the maturity of
uncertainty characterization, including linkage to standards,
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Table 3. Criteria for scoring the maturity of aspects of a CDR generation system, including criteria for uncertainty characterization, taken
from the system maturity matrix of Schulz et al. (2015).

Climate data record (CDR) maturity evaluation guidelines

Maturity Standards Validation Uncertainty quantification

1 None None None

2 Standard uncertainty nomenclature is
identified or defined

Validation using external reference data
for limited locations and times

Limited information on uncertainty
arising from systematic and random ef-
fects in the measurement

3 Score 2+; standard uncertainty nomen-
clature is applied

Validation using external reference data
for global and temporal representative
locations and times

Comprehensive information on uncer-
tainty arising from systematic and ran-
dom effects in the measurement

4 Score 3+; procedures to establish SI
traceability are defined

Score 3+; (inter)comparison against
corresponding CDRs (other methods or
models)

Score 3+; quantitative estimates of un-
certainty provided within the product
characterizing more or less uncertain
data points

5 Score 4+; SI traceability partly estab-
lished

Score 4+; data provider participated in
one international data assessment

Score 4+; temporal and spatial error
covariance quantified

6 Score 5+; SI traceability established Score 4+; data provider participated
in multiple international data assess-
ments and incorporates feedback into
the product development cycle

Score 5+; comprehensive validation of
the quantitative uncertainty estimates
and error covariance

degree of validation, the approach to uncertainty quantifica-
tion, and the degree of automation of quality monitoring. The
originators are clear that the purpose of assessing a CDR sys-
tem against the SMM is to identify priorities for investment
in developing a CDR in support of routine climate informa-
tion and assessments. The overall maturity score is not an
indicator of the scientific value of a dataset, which could be
very high for a new variable obtained by a system with low
maturity.

For multiple factors in CDR generation, the SMM maps
the status of a CDR system on a scale from 1 (low maturity)
to 6 (high maturity). The content of the SSM relevant to un-
certainty, validation, and quality is reproduced as Table 3. A
score of 2 on the uncertainty quantification criterion corre-
sponds to the provision of limited information, such as esti-
mates of uncertainty that are generic (i.e., that describe the
typical uncertainty for the dataset as a whole). At the next
maturity score, the provided information is still at the level
of the dataset, but it is comprehensively described and quan-
tified, which suggests that the nature of the effects causing er-
ror is determined. To move to a score of 4, this understanding
is applied to develop uncertainty information in the product
that is specific to each datum and capable of discriminating
between more and less certain data. A score of 5 corresponds
to providing a quantification of the correlation structures in
errors via covariance information or other means. For prac-
tical purposes, since covariance matrices can be large, this
provision is not necessarily required to be within the product
per datum. However, feasible approaches may be found that

satisfy this maturity criterion at a per-datum level, such as
the decomposition of total uncertainty into dominant compo-
nents arising from effects with distinct, quantified correlation
structures (e.g., Bulgin et al., 2016b). The highest maturity
score of 6 is obtained when the estimated uncertainty mag-
nitudes and error correlation structures are thoroughly vali-
dated.

It is not the purpose of this paper to discuss the general
merits of the maturity matrix approach to evaluating CDR
systems. However, it is clear that if CDR producers address
uncertainty using the perspectives in this paper, they will
achieve a high maturity score in this aspect of the SMM.

This paper has demonstrated the complexity of developing
good uncertainty information for climate dataset users. The
aspiration to provide per-datum uncertainty estimates at all
product levels and all product versions at all spatio-temporal
scales is very challenging and not fully achieved. It is clear
that developing and validating uncertainty estimates involves
effort comparable to developing the retrieval itself. There is a
lot of diversity in the nature of CDRs and the errors present in
them. The details for good practice in describing the uncer-
tainty in CDRs vary accordingly. Nonetheless, it is useful to
state some general principles that emerge from the previous
sections.

1. Include quantitative uncertainty information within the
dataset. (Don’t expect users to find uncertainty informa-
tion by reading related papers.)
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2. Follow metrological practice for quantifying uncer-
tainty. The baseline good practice is to provide the total
standard uncertainty for numerical variables.

3. Uncertainty estimates (or the means to calculate them)
should be provided per datum in CDRs for which un-
certainty varies significantly so that the uncertainty in-
formation discriminates which data are more and less
certain.

4. Assuming per-datum uncertainty information is pro-
vided, avoid redundancy of this information with qual-
ity flags. Do not flag high-uncertainty data as “bad” if
a valid estimate of that high uncertainty is provided;
instead, use quality flags to indicate the level of con-
fidence in the validity of the provided uncertainty and
retrieval assumptions.

5. Define what uncertainty information is given in the
CDR in the product documentation.

6. Describe in the product documentation the main ef-
fects causing errors, how uncertainty varies within the
dataset, how errors may be correlated in time and space,
and under what circumstances estimated uncertainty
may be invalid (and flagged as such).

7. Use validation to evaluate both retrieved quantities and
associated uncertainty estimates.

8. Propagate uncertainty appropriately (accounting for er-
ror correlation) and consistently when creating aggre-
gated products.

10 Data availability

Examples in this paper draw on datasets from the ESA CCI
programme, which are available from http://cci.esa.int.

11 Conclusion

Quantifying and validating uncertainty information is chal-
lenging. The challenge is particularly great when using com-
plex observational systems to meet the data requirements for
climate applications. The form of uncertainty information
may differ according to the nature of the target essential cli-
mate variable. In general, however, the aim is to provide a
justified (validated) quantification of uncertainty that allows
users to know which data are more or less certain within the
product.

There are many sources of error (effects) that influence
the values populating a climate data record. Uncertainty is
not generally provided in fundamental climate data records
(level 1 products) in a form sufficient to support per-datum
propagation to estimate uncertainty in derived climate data
records, so there are constraints on what is practical. The ef-
forts of CDR producers must focus on identifying dominant

sources of error, bearing in mind that effects of a relatively
small magnitude in a single datum may be the dominant ef-
fect on a large space–time scale and therefore may be rele-
vant for climate applications. There is unavoidably a need to
develop a good understanding of many error sources and not
just “instrument noise”. At the same time, one cannot wait
for the perfect uncertainty budget: producers must provide
CDRs using the best available knowledge. When some error
sources are as yet unquantifiable, users benefit from simple,
accessible descriptions of the potential uncertainty not esti-
mated in the product.

The means of quantifying uncertainty vary across ECVs,
depending on factors such as the nature of the geophysical
retrieval (ranging across physics-based inversion methods,
to empirical relationships and manual interpretation) and the
availability of validation data. Uncertainty contributions may
be modelled using a detailed uncertainty budget or estimated
from the spread of outcomes across Monte Carlo simulations.
Again, pragmatism is often required to obtain a timely esti-
mate.

The idea of validation should encompass the validation
of the data and the uncertainty information associated with
data. The validation of uncertainties (and the measured val-
ues themselves) can be limited by the availability of refer-
ence data.

Uncertainty concepts can be confusing, and user needs
vary. CDR producers can help by providing versions of prod-
ucts with “simple” (but inevitably partial and approximate)
uncertainty information. Documentation must make clear
what the provided information is (and is not) telling users.
We have noted that ensemble methods may be able to pro-
vide users with conceptual simplicity and quantitative rigour,
although at the expense of practical issues in terms of data
volume.

The use of well-defined, internationally agreed standards
for naming and calculating uncertainty information in CDRs
is highly desirable wherever possible and will clarify interac-
tion with and feedback from user communities. These stan-
dards come from the field of metrology and cover most situa-
tions encountered in developing CDRs. Engagement between
Earth observers and metrologists is increasing. These interac-
tions will make progress on the aspects of EO that go beyond
the definitions developed for laboratory-based metrology. In
particular, quantifying uncertainty over large scales of space
and time (the low temporal and spatial frequencies in CDRs)
remains a major research challenge and involves an under-
standing of complex error correlation structures (effects that
cause neither independent random nor fixed systematic er-
rors). This area of research cannot be neglected because users
apply climate data to the full range of space–time scales
spanned by Earth observation. Significant progress needs to
be made in order to provide the users of climate data records
with the certainty they need regarding uncertainty.

Earth Syst. Sci. Data, 9, 511–527, 2017 www.earth-syst-sci-data.net/9/511/2017/

http://cci.esa.int


C. J. Merchant et al.: Uncertainty information in climate data records 525

Competing interests. The authors declare that they have no con-
flict of interest.

Acknowledgements. The primary funding for the work rep-
resented in this paper was through the European Space Agency
Climate Change Initiative Phases 1 and 2. Christopher J. Merchant
was additionally supported by the National Centre for Earth
Observation, UK Natural Environment Research Council. Further
contributions were developed within the project “Fidelity and Un-
certainty in Climate data records from Earth Observation”, which
received funding from the European Union Horizon 2020 Research
and Innovation Programme under grant agreement 638822. We
thank Angela Benedetti at the ECWMF for support in summarizing
the MACC data assimilation experiments. Max Reuter was partly
funded by the Bremen government and the University of Bremen.

Edited by: David Carlson
Reviewed by: two anonymous referees

References

Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini,
P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A.,
Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot,
N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D.,
Timms, G., and Benveniste, J.: Improved sea level record over the
satellite altimetry era (1993–2010) from the Climate Change Ini-
tiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-
11-67-2015, 2015.

Barnett, T., Zwiers, F., Hegerl, G., Allen, M., Crowley, T., Gillett,
N., Hasselmann, K., Jones, P., Santer, B., Schnur, R., Scott, P.,
Taylor, K., and Tett, S.: Detecting and Attributing External Influ-
ences on the Climate System: A Review of Recent Advances, J.
Climate, 18, 1291–1314, https://doi.org/10.1175/JCLI3329.1,
2005.

Bates, J., Privette, J., Kearns, E., Glance, W., and Zhao, X.: Sus-
tained Production of Multidecadal Climate Records: Lessons
from the NOAA Climate Data Record Program, B. Am. Mete-
orol. Soc., 97, 1573–1581, https://doi.org/10.1175/BAMS-D-15-
00015.1, 2016.

Bates, J. J. and Privette, J. L.: A maturity model for assessing the
completeness of climate data records, Eos T. Am. Geophys. Un.,
93, 441, https://doi.org/10.1029/2012EO440006, 2012.

Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R.
J., Fisher, M., Flentjes, H., Huneeus, N., Jones, L., Kaiser, J. W.,
Kinne, S., Mangold A., Razinger, M., Simmons A. J., Suttie, M.,
and the GEMS-AER team: Aerosol analysis and forecast in the
ECMWF Integrated Forecast System: Data assimilation, Tech-
nical Memoranda ECMWF 571., European Centre for Medium-
range Weather Forecasting, Reading, UK, 2008.

Bojinski, S., Verstraete, M., Peterson, T., Richter, C., Simmons, A.,
and Zemp, M.: The Concept of Essential Climate Variables in
Support of Climate Research, Applications, and Policy, B. Am.
Meteorol. Soc., 95, 1431–1443, https://doi.org/10.1175/BAMS-
D-13-00047.1, 2014.

Buchwitz, M., Reuter, M., Bovensmann, H., Pillai, D., Heymann, J.,
Schneising, O., Rozanov, V., Krings, T., Burrows, J. P., Boesch,

H., Gerbig, C., Meijer, Y., and Löscher, A.: Carbon Monitoring
Satellite (CarbonSat): assessment of atmospheric CO2 and CH4
retrieval errors by error parameterization, Atmos. Meas. Tech., 6,
3477–3500, https://doi.org/10.5194/amt-6-3477-2013, 2013.

Bulgin, C. E., Embury, O., and Merchant, C. J.: Sampling un-
certainty in gridded sea surface temperature products and Ad-
vanced Very High Resolution Radiometer (AVHRR) Global Area
Coverage (GAC) data, Remote Sens. Environ., 117, 287–294,
https://doi.org/10.1016/j.rse.2016.02.021, 2016a.

Bulgin, C. E., Embury, O., Corlett, G., and Merchant, C. J.: In-
dependent uncertainty estimates for coefficient based sea sur-
face temperature retrieval from the Along-Trck Scanning Ra-
diometer instruments, Remote Sens. Environ., 178, 213–222,
https://doi.org/10.1016/j.rse.2016.02.022, 2016b.

Bureau International des Poids et Mesures: The International Sys-
tem of Units (SI), 8th Edn., available at: http://www.bipm.org/en/
publications/si-brochure/ (last access: 21 February 2017), 2006.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Dils, B., Buchwitz, M., Reuter, M., Schneising, O., Boesch, H.,
Parker, R., Guerlet, S., Aben, I., Blumenstock, T., Burrows,
J. P., Butz, A., Deutscher, N. M., Frankenberg, C., Hase, F.,
Hasekamp, O. P., Heymann, J., De Mazière, M., Notholt, J., Suss-
mann, R., Warneke, T., Griffith, D., Sherlock, V., and Wunch,
D.: The Greenhouse Gas Climate Change Initiative (GHG-CCI):
comparative validation of GHG-CCI SCIAMACHY/ENVISAT
and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm
products with measurements from the TCCON, Atmos. Meas.
Tech., 7, 1723–1744, https://doi.org/10.5194/amt-7-1723-2014,
2014.

Embury, O. and Merchant, C. J.: A reprocessing for climate of sea
surface temperature from the Along-Track Scanning Radiome-
ters: a new retrieval scheme, Remote Sens. Environ., 116, 47–61,
https://doi.org/10.1016/j.rse.2010.11.020, 2012.

Flannaghan, T. J., Fueglistaler, S., Held, I. M., Po-Chedley, S.,
Wyman, B., and Zhao, M.: Tropical temperature trends in Atmo-
spheric General Circulation Model simulations and the impact of
uncertainties in observed SSTs, J. Geophys. Res.-Atmos., 119,
13327–13337, https://doi.org/10.1002/2014JD022365, 2014.

Giacco, F., Thiel, C., Pugliese, L., Scarpetta, S., and Marinaro, M.:
Uncertainty analysis for the classification of multispectral satel-
lite images using SVMs and SOMs, IEEE T. Geosci Remote
Sens., 48, 3769–3779, 2010.

Global Climate Observing System: Implementation Plan for the
Global Observing System for Climate in Support of the UN-
FCCC (2010 Update), GCOS-138 WMO-TD/No. 1523, 2010.

Gruber, A., Su, C. H., Zwieback, S., Crowd, W., Dorigo, W., and
Wagner, W.: Recent advances in (soil moisture) triple collocation
analysis, Int. J. Appl. Earth Obs., 45, 200–211, 2016.

www.earth-syst-sci-data.net/9/511/2017/ Earth Syst. Sci. Data, 9, 511–527, 2017

https://doi.org/10.5194/os-11-67-2015
https://doi.org/10.5194/os-11-67-2015
https://doi.org/10.1175/JCLI3329.1
https://doi.org/10.1175/BAMS-D-15-00015.1
https://doi.org/10.1175/BAMS-D-15-00015.1
https://doi.org/10.1029/2012EO440006
https://doi.org/10.1175/BAMS-D-13-00047.1
https://doi.org/10.1175/BAMS-D-13-00047.1
https://doi.org/10.5194/amt-6-3477-2013
https://doi.org/10.1016/j.rse.2016.02.021
https://doi.org/10.1016/j.rse.2016.02.022
http://www.bipm.org/en/publications/si-brochure/
http://www.bipm.org/en/publications/si-brochure/
https://doi.org/10.1002/qj.828
https://doi.org/10.5194/amt-7-1723-2014
https://doi.org/10.1016/j.rse.2010.11.020
https://doi.org/10.1002/2014JD022365


526 C. J. Merchant et al.: Uncertainty information in climate data records

Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz,
M., Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G.,
Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyen-
dranath, S., van Roozendael, M., and Wagner, W.: The ESA
Climate Change Initiative: Satellite Data Records for Essen-
tial Climate Variables, B. Am. Meteorol. Soc., 94, 1541–1552,
https://doi.org/10.1175/BAMS-D-11-00254.1, 2013.

Immler, F. J., Dykema, J., Gardiner, T., Whiteman, D. N., Thorne, P.
W., and Vömel, H.: Reference Quality Upper-Air Measurements:
guidance for developing GRUAN data products, Atmos. Meas.
Tech., 3, 1217–1231, https://doi.org/10.5194/amt-3-1217-2010,
2010.

IPCC: Climate Change 2013: The Physical Science Basis. Contri-
bution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker,
T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung,
J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge
University Press, Cambridge, UK and New York, NY, USA, 1535
pp., 2013.

Joint Committee for Guides in Metrology: International vocabulary
of metrology – Basic and general concepts and associated terms
(VIM), JCGM 200:2008, available at: http://www.bipm.org/en/
publications/guides/gum.html (last access: 21 February 2017),
2008a.

Joint Committee for Guides in Metrology: Evaluation of measure-
ment data – Guide to the expression of uncertainty in measure-
ment, JCGM 100:2008, available at: http://www.bipm.org/en/
publications/guides/gum.html (last access: 21 February 2017),
2008b.

Kennedy, J. J.: A review of uncertainty in in situ measurements and
data sets of sea surface temperature, Rev. Geophys., 52, 1–32,
https://doi.org/10.1002/2013RG000434, 2014.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda,
H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka,
K., and Takahashi, K.: The JRA-55 Reanalysis: General Spec-
ifications and Basic Characteristics, J. Meteorol. Soc. Jpn, 93,
5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.

Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J.,
Calbet, X., Donner, R. V., Ghent, D., Gruber, A., Kaminski,
T., Kinzel, J., Klepp, C., Lambert, J.-C., Schaepman-Strub,
G., and Schröder, M.: Validation practices for satellite based
earth observation data across communities, Rev. Geophys.,
https://doi.org/10.1002/2017RG000562, 2017.

Loosvelt, L., Peters, J., Skriver, H., De Baets, B., and Verhoest, N.
E.: Impact of reducing polarimetric SAR input on the uncertainty
of crop classifications based on the random forests algorithm,
IEEE T. Geosci. Remote Sens., 50, 4185–4200, 2012.

Mahlstein, I., Hegerl, G., and Solomon, S.: Emerging local warming
signals in observational data, Geophys. Res. Lett., 39, L21711,
https://doi.org/10.1029/2012GL053952, 2012.

Massonnet, F., Bellprat, O., Guemas, V., and Doblas-Reyes,
F. J.: Using climate models to estimate the quality of
global observational data sets, Science, 354, 452–455,
https://doi.org/10.1126/science.aaf6369, 2016.

McColl, K. A., Vogelzang, J., Konings, A. G., Entekhabi, D., Piles,
M., and Stoffelen, A.: Extended triple collocation: Estimating er-
rors and correlation coefficients with respect to an unknown tar-
get, Geophys. Res. Lett., 41, 6229–6236, 2014.

Merchant, C. J. and Embury, O.: Simulation and inversion of satel-
lite thermal measurements, in: Optical radiometry for ocean cli-
mate measurements. Experimental methods in the physical sci-
ences, edited by: Zibordi, G., Donlon, C. J., and Parr, A. C.,
Academic Press, 47, 489–526, https://doi.org/10.1016/B978-0-
12-417011-7.00015-5, 2014.

Merchant, C. J. and Le Borgne, P.: Retrieval of sea surface tempera-
ture from space based on modeling of infrared radiative transfer:
capabilities and limitations, J. Atmos. Ocean. Tech., 21, 1734–
1746, https://doi.org/10.1175/JTECH1667.1, 2004.

Mittaz, J., Woolliams, E., and Merchant, C. J.: Applying Principles
of Metrology to Historical Earth Observations from Satellites,
Metrologia, in preparation, 2017.

Morice, C. P., Kennedy, J. J., Rayner, N. A., and Jones, P.
D.: Quantifying uncertainties in global and regional temper-
ature change using an ensemble of observational estimates:
The HadCRUT4 data set, J. Geophys. Res., 117, D08101,
https://doi.org/10.1029/2011JD017187, 2012.

Notz, D.: How well must climate models agree with
observations?, Philos. T. R. Soc. A, 373, 20140164,
https://doi.org/10.1098/rsta.2014.0164, 2015.

Rayner, N. A., Merchant, C. J., and Corlett, G. K.: Commu-
nicating uncertainties in sea surface temperature, Eos, 96,
https://doi.org/10.1029/2015EO030289, 2015.

Reuter, M., Thomas, W., Mieruch, S., and Hollmann, R.: A method
for estimating the sampling error applied to CM-SAF monthly
mean cloud fractional cover data retrieved from MSG SEVIRI,
IEEE T. Geosci. Remote Sens., 48, 2469–2481, 2010.

Reuter, M., Bösch, H., Bovensmann, H., Bril, A., Buchwitz,
M., Butz, A., Burrows, J. P., O’Dell, C. W., Guerlet, S.,
Hasekamp, O., Heymann, J., Kikuchi, N., Oshchepkov, S.,
Parker, R., Pfeifer, S., Schneising, O., Yokota, T., and Yoshida,
Y.: A joint effort to deliver satellite retrieved atmospheric CO2
concentrations for surface flux inversions: the ensemble me-
dian algorithm EMMA, Atmos. Chem. Phys., 13, 1771–1780,
https://doi.org/10.5194/acp-13-1771-2013, 2013.

Reuter, M., Buchwitz, M., Hilker, M., Heymann, J., Schneising,
O., Pillai, D., Bovensmann, H., Burrows, J. P., Bösch, H.,
Parker, R., Butz, A., Hasekamp, O., O’Dell, C. W., Yoshida,
Y., Gerbig, C., Nehrkorn, T., Deutscher, N. M., Warneke, T.,
Notholt, J., Hase, F., Kivi, R., Sussmann, R., Machida, T., Mat-
sueda, H., and Sawa, Y.: Satellite-inferred European carbon sink
larger than expected, Atmos. Chem. Phys., 14, 13739–13753,
https://doi.org/10.5194/acp-14-13739-2014, 2014.

Schulz, J., John, V., Kaiser-Weiss, A., Roebeling, R., Tan, D.,
and Swinnen, E.: Core-Climax Climate Data Record Capac-
ity Assessment Report, CORE-CLIMAX Technical Report,
CC/EUM/REP/15/001, 253 pp., available at: http://www.
eumetsat.int/website/home/Data/ClimateService/index.html
(last access: 21 February 2017), 2015.

Sofieva, V. F., Tamminen, J., Kyrölä, E., Laeng, A., von Clar-
mann, T., Dalaudier, F., Hauchecorne, A., Bertaux, J.-L., Barrot,
G., Blanot, L., Fussen, D., and Vanhellemont, F.: Validation of
GOMOS ozone precision estimates in the stratosphere, Atmos.
Meas. Tech., 7, 2147–2158, https://doi.org/10.5194/amt-7-2147-
2014, 2014.

Stoffelen, A.: Toward the true near-surface wind speed: Error mod-
eling and calibration using triple collocation, J. Geophys. Res.-
Oceans, 103, 7755–7766, 1998.

Earth Syst. Sci. Data, 9, 511–527, 2017 www.earth-syst-sci-data.net/9/511/2017/

https://doi.org/10.1175/BAMS-D-11-00254.1
https://doi.org/10.5194/amt-3-1217-2010
http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html
http://www.bipm.org/en/publications/guides/gum.html
https://doi.org/10.1002/2013RG000434
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1002/2017RG000562
https://doi.org/10.1029/2012GL053952
https://doi.org/10.1126/science.aaf6369
https://doi.org/10.1016/B978-0-12-417011-7.00015-5
https://doi.org/10.1016/B978-0-12-417011-7.00015-5
https://doi.org/10.1175/JTECH1667.1
https://doi.org/10.1029/2011JD017187
https://doi.org/10.1098/rsta.2014.0164
https://doi.org/10.1029/2015EO030289
https://doi.org/10.5194/acp-13-1771-2013
https://doi.org/10.5194/acp-14-13739-2014
http://www.eumetsat.int/website/home/Data/ClimateService/index.html
http://www.eumetsat.int/website/home/Data/ClimateService/index.html
https://doi.org/10.5194/amt-7-2147-2014
https://doi.org/10.5194/amt-7-2147-2014


C. J. Merchant et al.: Uncertainty information in climate data records 527

Wimmer, W., Robinson I. S., and Donlon, C. J.: Long-term valida-
tion of AATSR SST data products using shipborne radiometry in
the Bay of Biscay and English Channel, Remote Sens. Environ.,
116, 17–31, https://doi.org/10.1016/j.rse.2011.03.022, 2012.

Woolliams, E., Mittaz, J., Merchant, C. J., and Dilo, A.:
Harmonization and Recalibration: A FIDUCEO perspective,
Global Space-based Inter-calibration System Quarterly, 10, 1–2,
https://doi.org/10.7289/V5GT5K7S, 2016.

World Meteorological Organisation and Bureau Internationale de
Poids et Mesures, Measurement Challenges for Global Ob-
servation Systems for Climate Change Monitoring: Trace-
ability, Stability and Uncertainty, WMO/TD-No. 1557, Rap-
port BIPM-2010/08, ISBN 13 978-92-822-2239-3, available
at: http://www.bipm.org/en/conference-centre/bipm-workshops/
wmo-bipm_workshop/ (last access: 21 February 2017), 2010.

www.earth-syst-sci-data.net/9/511/2017/ Earth Syst. Sci. Data, 9, 511–527, 2017

https://doi.org/10.1016/j.rse.2011.03.022
https://doi.org/10.7289/V5GT5K7S
http://www.bipm.org/en/conference-centre/bipm-workshops/wmo-bipm_workshop/
http://www.bipm.org/en/conference-centre/bipm-workshops/wmo-bipm_workshop/

	Abstract
	Introduction
	The requirement for uncertainty information
	Terminology: error, uncertainty, and quality
	Traceability of uncertainty
	Origin and characterization of errors
	A sequence of transformations
	Magnitude of uncertainty
	Shape of the error distribution
	Propagation of uncertainty
	Correlation structure

	Which types of uncertainty information are used?
	Validation of uncertainty
	Presenting uncertainty information in climate datasets
	Good practice for uncertainty quantification
	Data availability
	Conclusion
	Competing interests
	Acknowledgements
	References

