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 89 

Abstract  90 

Quaternary records provide an opportunity to examine the nature of the vegetation and fire 91 

responses to rapid past climate changes comparable in velocity and magnitude to those expected in 92 

the 21st century. The best documented examples of rapid climate change in the past are the warming 93 

events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which 94 

were sufficiently large to have had a potential feedback through changes in albedo and greenhouse  95 

gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O 96 

cycles used independently constructed age models, making it difficult to compare the changes 97 

between different sites and regions. Here we present the ACER (Abrupt Climate Changes and 98 

Environmental Responses) global database which includes 93 pollen records from the last glacial 99 

period (73-15 ka) with a temporal resolution better than 1,000 years, 32 of which also provide 100 

charcoal records. A harmonized and consistent chronology based on radiometric dating (14C, 101 

234U/230Th, OSL, 40Ar/39Ar dated tephra layers) has been constructed for 86 of these records, although 102 

in some cases additional information was derived using common control points based on event 103 

stratigraphy. The ACER database compiles metadata including geospatial and dating information, 104 

pollen and charcoal counts and pollen percentages of the characteristic biomes, and is archived in 105 

Microsoft AccessTM at https://doi.org/10.1594/PANGAEA.870867. 106 
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 107 

1. Introduction  108 

There is considerable concern that the velocity of projected 21st century climate change is 109 

too fast to allow terrestrial organisms to migrate to climatically suitable locations for their survival 110 

(Loarie et al., 2009; Burrows et al., 2011; Ordonez et al., 2013; Burrows et al., 2014). The expected 111 

magnitude and velocity of 21st century climate warming is comparable to abrupt climate changes 112 

depicted in the geologic records, specifically the extremely rapid warming that occurred multiple 113 

times during the last glacial period (Marine Isotope Stages 4 through 2, MIS 4-MIS2, 73,500–14,700 114 

calendar years, 73.5–14.7 ka). The estimated increases in Greenland atmospheric temperature were 115 

5–16°C [Capron et al., 2010] and the duration of the warming events between 10 to 200 years 116 

[Steffensen et al., 2008]. These events are a component of longer-term millennial-scale climatic 117 

variability, a pervasive feature through the Pleistocene [Weirauch et al., 2008] which were originally 118 

identified from Greenland ice archives [Dansgaard et al., 1984] and in North Atlantic Ocean records 119 

[Bond and Lotti, 1995; Heinrich, 1988] and termed Dansgaard-Oeschger (D-O) cycles and Heinrich 120 

events (HE) respectively. 121 

D-O events are registered worldwide, although the response to D-O warming events is 122 

diverse and regionally specific (see e.g. [Fletcher et al., 2010; Harrison and Sanchez Goñi, 2010; 123 

Sanchez Goñi et al., 2008]) and not a linear response to either the magnitude or the duration of the 124 

climate change in Greenland. Given that the magnitude, length and regional expression of the 125 

component phases of each of the D-O cycles varies [Johnsen et al., 1992; Sanchez Goñi et al., 2008], 126 

they provide a suite of case studies that can be used to investigate the impact of abrupt climate 127 

change on terrestrial ecosystems. 128 

The ACER (Abrupt Climate change and Environmental Responses) project was launched in 129 

2008 with the aim of creating a global database of pollen and charcoal records from the last glacial 130 

(73 - 15 ka, kyr cal BP) which would allow us to reconstruct the regional vegetation and fire changes 131 

in response to glacial millennial-scale variability, and evaluate the simulated regional climates 132 
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resulting from freshwater changes under glacial conditions. Although there are 232 pollen records 133 

covering the last glacial period worldwide, only 93 have sufficient resolution and dating control to 134 

show millennial-scale variability [Harrison and Sanchez Goñi, 2010].  It was necessary to re-evaluate 135 

and harmonize the chronologies of these individual records to be able to compare patterns of change 136 

from different regions. In this paper, we present the ACER pollen and charcoal database, including 137 

the methodology used for chronological harmonization and explore the potential of this dataset by 138 

comparing two harmonized pollen sequences with other palaeoclimatic records. Such a comparison 139 

illustrates the novel opportunities for the spatial analyses of global climate events using this research 140 

tool. 141 

 142 
 143 
2. Data and methods 144 

2.1. Compilation of the records  145 

The ACER pollen and charcoal database includes records covering part or all of the last glacial 146 

period and with a sampling resolution better than 1,000 years. These records were collected as raw 147 

data, through direct contact with researchers or from the freely available European and African 148 

Pollen Databases. Four records were digitized from publications using the GrapherTM 12 (Golden 149 

Software, LLC) because the original data were either lost (Kalaloch: [Heusser, 1972] and Tagua Tagua 150 

[Heusser, 1990]) or are not publicly available (Lac du Bouchet [Reille et al., 1998] and Les Echets [de 151 

Beaulieu and Reille, 1984]).  These digitized records are available as pollen percentages rather than 152 

raw counts. All the records are listed and described in Table S1 (supplementary material). 153 

 154 

2.2. Harmonization of database chronologies  155 

 The chronology of each of the records was originally built as a separate entity. In order to 156 

produce harmonized chronologies for the ACER database, decisions had to be made about the types 157 

of dates to use, the reference age for modern, the choice of calibration curve, the treatment of 158 

radiocarbon age reservoirs, and the software used for age-model construction.  159 
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 Radiometric ages (14C, 235U/230Th, OSL, 40Ar/39Ar) and radiometrically-dated tephras are 160 

given preference in the construction of the age models. The tephra ages were obtained either 161 

through direct 40Ar/39Ar dating of the tephra or 14C dating of adjacent organic material (Table 1). 162 

When a radiometric or tephra date was obtained on a unit of sediment, the depth of the mid-point of 163 

this unit was used for the date in the age modelling. Both the age estimate and the associated errors 164 

(standard deviation) are required for age-model construction. When the positive and negative 165 

standard deviations were different, the larger value was used for age-model construction. In cases 166 

where the error measurements on the radiometric dates were unknown (e.g. site F2-92-P29), no 167 

attempt was made to construct a harmonized age model.  168 

Measured 14C ages were transformed to calendar ages, to account for the variations in the 169 

atmospheric 14C/12C ratio through time. Radiocarbon ages from marine sequences were corrected 170 

before calibration to account for the reservoir effect whereby dates have old ages because of the 171 

delay in exchange rates between atmospheric CO2 and ocean bicarbonate and the mixing of young 172 

surface waters with upwelled old deep waters. We used the IntCal13 and Marine13 calibration 173 

curves for terrestrial and marine 14C dates, respectively [Reimer et al., 2013], which are the 174 

calibration curves approved by the radiocarbon community [Hajdas, 2014]. Although studies have 175 

shown that the radiocarbon ages of tree rings from the Southern Hemisphere (SH) are ca 40 yr older 176 

than Northern Hemisphere (NH) trees formed at the same time [Hogg et al., 2013], this difference is 177 

smaller than the laboratory errors on most of the 14C dates and, since the Marine13 calibration curve 178 

does not distinguish between SH and NH sites, we use the NH IntCal13 calibration curve for all the 179 

records.  180 

 The Marine13 calibration curve includes a default 400 yr reservoir correction. We adjusted 181 

this correction factor for all the twenty six marine records included in the database using the regional 182 

marine reservoir age (ΔR) in the Marine Reservoir Correction Database 183 

(http://calib.qub.ac.uk/marine/). For twenty marine records, the correction factor was based on a 184 

maximum of the 20 closest sites within 1,000 km to a specific site; for the remaining 6 marine 185 
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records this factor was based on a maximum of the 20 closest sites within 3,000 km. When ΔRs were 186 

homogeneous, a value ± 100 years, over this area we used the mean of the 10 sites within 100 km to 187 

provide a reservoir correction for the site. When there was heterogeneity in ΔR values within the 188 

3,000 km target area, we selected only the sites with homogeneous ΔR within 100-200 km. Temporal 189 

variations of ∆R were not taken  into account since they are currently not well established for many 190 

locations. 191 

For periods beyond the limit of 14C dating (~45 ka) and for the few records without 192 

radiometric dating, additional chronological control points were obtained based on “event 193 

stratigraphy”, specifically the identification of D-O warming events and Marine Isotope Stage (MIS) 194 

boundaries (Table 1). No assumption was made that core tops were modern for both marine and 195 

terrestrial cores. The ages of D-O warming events and those of the MIS boundaries were based on 196 

the stratigraphy of core MD95-2042, southern Iberian margin (Table 1). The similarity of the 197 

planktonic foraminifera δ18O record from MD95-2042 to the δ18O record from Greenland allowed to 198 

match ages of individual D-O cycles, while the benthic foraminifera δ18O record from MD95-204 199 

allowed to match ages of MIS boundaries [Shackleton et al., 2000]. Both D-O and MIS ages were 200 

directly transferred to the MD95-2042 pollen record. The chronology of this pollen record was in turn 201 

transferred to the other European pollen records assuming synchronous afforestation during D-O 202 

warming. The uncertainties for the event-based ages up to D-O 17 are from data summarized in 203 

Wolff et al. [2010] and from AICC_2012 in NGRIP ice standard deviation [Bazin et al., 2013] for older 204 

events. 205 

Non-radiocarbon dates are presented in the same BP notation as radiocarbon 206 

determinations. The modern reference date is taken as 1950 AD, since this is the reference date for 207 

the GICC05 chronology [Wolff et al., 2010]).  208 

Bayesian age modeling (e.g. using OxCAL, Bchron or BACON) requires information about 209 

accumulation rates and other informative user-defined priors [Blaauw and Christen, 2011] that is 210 

difficult to obtain for the relatively long ACER records. Moreover, BACON and Bchron [Haslett and 211 
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Parnell, 2008, Parnell et al., 2008] do not handle sudden shifts in accumulation rate very well, and 212 

such shifts are not uncommon across deglaciation and stadial time periods. We therefore use the 213 

classical age-modeling approach in the CLAM software [Blaauw, 2010], implemented in R (R version 214 

3.3.1) [R Development Core Team, 2016], to construct the age model.  215 

Several age models were built for each record using the calibrated distribution of the 216 

radiometric dates: a) linear interpolation between dated levels; b) linear or higher order polynomial 217 

regression; and c) cubic, smoothed or locally weighted splines (Table S2). Linear interpolation is 218 

generally the most parsimonious solution for records with no age reversals. However, if any of the 219 

regression or spline models provided a better fit to the calibrated age range of outliers from a linear 220 

model, we selected the model that included most of the outliers. If none of the regression or spline 221 

model provided a better fit, we used linear interpolation after excluding the outliers. The database 222 

includes information on the single ‘best’ age-model and the 95% confidence interval estimated from 223 

the 10,000 iterated age-depth models (weighted mean) for every sample depth.  224 

 225 

2.3 The Structure of the Database 226 

The ACER pollen and charcoal data set is archived in a Microsoft AccessTM relational database. 227 

There are six main tables (Fig. 1).  228 

 229 
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 230 

Figure 1 – ACER database structure in ACCESS format. 231 

  232 

(1) Site Metadata. This table includes the original site name, geographical coordinates (latitude 233 

and longitude in decimal degrees, elevation in meters above or below sea level) and additional meta-234 

data including site type (marine or terrestrial), basin size, catchment size. Basin size and catchment 235 

size determine the size of the area sampled by the record (or pollen source area: see Prentice, 1988), 236 

but are not always recorded in the original publication or known very accurately. A categorical 237 

classification (small, medium, large, very large) is recorded in the database where these categories 238 

are specified by ranges in km2. The details of the original publication of the data are also given in this 239 

table.  240 

(2) Sample data.  The table records the identification number of each sample (sample id) at each 241 

site (site id) and provides the depth of the sample (in cm from the surface). In only one site, core 242 

MD04-2845, a corrected depth is provided on which the new age model is based. The pollen count 243 

type (raw pollen count, pollen percentages given by the authors, or digitized percentage) is also 244 

given. The original age of the sample according to the published age model when available and the 245 
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age determined from the best CLAM model (the min and the max at 95%, the accumulation rate and 246 

the type of model used to obtain this age) are given.  247 

(3) Pollen data. The pollen data are recorded as raw counts or as the pollen percentage of each 248 

pollen and spore morphotype identified. The table records the identification number of each sample 249 

(sample id), the taxon name and count/percentage. Although the taxon names were standardized 250 

with respect to the use of terms such as type and to remove obvious spelling mistakes, no attempt 251 

was made to ensure that the names are taxonomically correct. 252 

(4) Charcoal data. The table records the identification number of each sample (sample id). The 253 

charcoal data are recorded by depth (in cm from the surface), and information is given on the 254 

quantity and unit of measurement, and data source. Charcoal abundance is quantified using a 255 

number of different metrics, given for the majority in concentrations and for few of them in 256 

percentages. 257 

(5) Original dating information. This table contains information on dating for each core at each 258 

site. The core name from the original publication is given, and the table provides information on date 259 

type (conventional 14C, AMS 14C, 234U/230Th, OSL, 40Ar/39Ar, annual laminations, event stratigraphy, 260 

TL), the average depth assigned to the data in the age-model construction, the dating sample 261 

thickness, laboratory identification number, material dated (bulk, charcoal, foraminifera, pollen, 262 

tephra, wood), measured radiometric age and associated errors.  The marine reservoir age (and 263 

associated error) and the radiocarbon calibration curve used in the construction of the original age 264 

model, and the original calibrated age, are also given. Dates that are based on recognized events are 265 

also listed, and identified by the name of the event (event name) and the type of record in which it is 266 

detected (tracer used). The column “is_used” corresponds to the dates used by the authors for 267 

building the original age models. 268 

(6) ACER dating information. The ACER dating information table duplicates the original dating 269 

information file, except that it provides information about the explicit corrections and the 270 

harmonized control points used to produce the ACER age models (Table 1). Specifically, it gives the 271 
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calibration curve used (no calibration, INTCAL13, MARINE13), and the local reservoir age (and 272 

uncertainty) for marine cores. 273 

 274 

Table 1. Harmonized control points used for age models when radiometric ages (14C, OSL, 40Ar/39Ar, 275 

234U/230Th) were not available. 276 

Event stratigraphy1,2,3,4,5,6 GICC058 
 b1950 
 
Age ka 

Tephra layers8-19 
 

ACER 
chronology 
Age 14Ca 

ACER 
Age ka 

Uncertainties8,24 
 
 
Years 

   K-Ah9 
Mazama Ash10 

6.28 
6.84 

 

 
130 
50 

   Rotoma11 8.53  10 
   U-Oki12  10b 300 
Onset 
Holocene  11.65   11.65 50 

   Rotorua11 13.08  50 
MIS 1/2 D-O 1 14.6   14.6  93 
   Rerewhakaaitu13 14.7  95 
   NYT14  14.9b  400  
   Sakate15 16.74  160 
   Y-216 18.88  230 
LGM     21   
   Kawakawa/Oruanui17 21.30  120 
 D-O 2 23.29   23.29 298 
MIS 2/3 D-O 3 27.73   27.73 416 
   AT9 24.83   90 
 D-O 4 28.85   28.85 449 
   TM-15  31b22 8000 
 D-O 5 32.45   32.45 566 
 D-O 6 33.69   33.69 606 
 D-O 7 35.43    35.43  661 
   TM-18  37 b22 3000 
 D-O 8 38.17   38.17  725  
   Y-516  39.28b 110 
   Akasuko18  40.73   1096 
 D-O 9 40.11   40.11 790 
 D-O 10 41.41   41.41  817 
 D-O 11 43.29   43.29  868 
   Breccia zone18 43.29   955 
 D-O 12 46.81    46.81 956 
 D-O 13 49.23   49.23 1015 
 D-O 14 54.17    54.17  1150 
   TM-19  55b22 2000 
 D-O 15 55.75   55.75 1196 
 D-O 16 58.23   58.23 1256 
MIS 3/4 D-O 17 59.39    59.39  1287 
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 onset HS 6 64.66    64.6  1479 
 D-O 18 656   65 1518  

MIS 4/5 D-O 19 
(onset Ognon II) 72.28   72.28  1478 

 D-O 20 
(onset Ognon I) 76.4    76.4 1449 

 C 20 
(stadial I) 776    77  1476 

 MS-insolation 15°S* 81   81 1504 

MIS 5.1 D-O 21  
(onset St Germain II) 82.95   82.9 1458 

 C 21 857   85 1448 
 

 

 Vico19  87b 7000 
  Aso-420  89b 7000 
      
  Ash-1021  100b  1540 
MIS 5/6     13523 2500 

 277 
*Middle of “high” magnetic susceptibility record zone (consistently <50 SI units) tied to low in insolation for 278 
January 15°S [Gosling et al., 2008]. 279 
a Ages in 14C that were calibrated for the construction of the age model. 280 
b Ages in 40Ar/39Ar or 40K/40Ar 281 
K-Ah: Kikai-Akahoya; U-Oki: Ulleungdo-U4; NYT: Neapolitan Yellow Tuff ; AT: Aira Tephra; K-Tz: Kikai-282 
Tozurahara 283 
1[Shackleton et al., 2000], 2[Shackleton et al., 2004], 3[Svensson et al., 2006], 4[Svensson et al., 2008], 5[Sánchez 284 
Goñi, 2007], 6[Sanchez Goñi et al., 2013], 7[McManus et al., 1994], 8[Wolff et al., 2010], 9[Smith et al., 2013], 10 285 
[Grigg and Whitlock, 1998], 11[Newnham et al., 2003], 12[Smith et al., 2011], 13[Shane et al., 2003]; 14[Deino et 286 
al., 2004],  15[Katoh et al., 2007], 16[Margari et al., 2009]; 17[Vandergoes et al., 2013]; 18[Sawada et al., 1992], 287 
19[Magri and Sadori, 1999],20[Nakagawa et al., 2012], 21[Whitlock et al., 2000], 22[Wulf et al., 2004],; 288 
23[Henderson and Slowey, 2000], 24[Bazin et al., 2013] (italics: uncertainties of the closest age in AICC_2012 in 289 
NGRIP ice standard deviation).  290 
 291 

Additional tables document the codes used in the main tables for e.g. basin type, basin size, date 292 

type, material dated, calibration curve and biome percentage table that includes selected biomes 293 

provided by the authors (Table 1). The taxa defining the pollen percentages of the main forest 294 

biomes are those originally published by the authors in the Quaternary Science Reviews special issue 295 

[Fletcher et al., 2010; Hessler et al., 2010; Jimenez-Moreno et al., 2010; Takahara et al., 2010]. The 296 

taxa defining the pollen percentages of the main biomes from Africa (Mfabeni, Rumuiku) Australia 297 

(Caledonia Fen, Wangoom) and New Zealand (Kohuora) not included in this issue are described in the 298 

supplementary information.  299 
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Each table of the ACCESS database is also available as .csv file: a) Site, b) Sample (original depth-300 

age model and ACER depth-age model), c) Dating info (original dating information), d) dating info 301 

ACER (harmonized dating information from this work), e) pollen data (raw data or digitized pollen 302 

percentages; pollen percentages of different biomes) (Table 2), f) unique taxa in database (list of all 303 

the identified taxa), g) charcoal data (raw or digitized). 304 

 305 

Table 2 – Biomes for which the pollen percentages data are included in the ACER database. Bo forest: 306 

Boreal forest; Te mountain forest: Temperate mountain forest; Te forest: Temperate forest; WTe 307 

forest: Warm-Temperate forest; Tr forest: Tropical forest; Subtr forest: Subtropical forest; SE Pine 308 

forest: Southeastern Pine forest; Gr: Grasslands; Sav: Savanah. In Europe, Te forest includes 309 

Mediterranean and Atlantic forests. 310 

 311 

Europe 
North 

America 

Tropics 
East Asia New Zealand Australia 

American                   African 

Te forest 

 

Bo forest 

Te forest 

WTe forest 

SE Pine Forest 

Te mountain forest 

WTe forest 

Tr forest 

Gr 

Bo forest 

Te forest 

WTe forest 

Subtr forest 

Gr 

Te forest 

WTe forest 

WTe forest 

Te mountain forest 

Sav 

 312 

 313 

3 Results 314 

3.1 The ACER pollen and charcoal database 315 

 ACER database comprises all available pollen and charcoal records covering all or part of the 316 

last glacial (73 to 15 ka) as of July 2015. It contains 93 well-resolved pollen records (< 1,000 years 317 
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between samples), 32 of which include charcoal data, from all the major potential present-day 318 

biomes (Fig. 2). There are 2486 unique pollen and spore taxa in the database.  319 

Harmonized age models were constructed for 86 out of the 93 records (Table S2 in the 320 

supplementary information). The seven sites without harmonized age models are: F2-92-P29 (no 321 

radiocarbon age errors available); Bear Lake (pollen was counted on one core but sample depths 322 

could not be correlated with the cores used for dating); EW-9504 and ODP 1234 (original age models 323 

based on correlation with another core, but tie point information was not available); Okarito Pakihi 324 

(no dating information available) and Wonderkrater borehole 3 (multiple age reversals). The well-325 

known site of La Grande Pile [de Beaulieu and Reille, 1992] is not included in the ACER database 326 

because the high-resolution data are not publicly available. Other sequences, such as Sokli in Finland, 327 

were fragmented and could not be used (Table S1). These sites are shown at the bottom of the 328 

supplementary Table S1. 329 

 330 

 331 

Figure 2 - Map with location of the 93 marine and terrestrial sites (pollen: black circles, charcoal: 332 
white circles) having resolution higher than 1 sample per 1000 years covering part or all the last 333 
glacial (MIS 4, 3 and 2). Present-day potential natural vegetation after [Levavasseur et al., 2012]. 334 
 335 
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 336 

3.2 Harmonized versus original age models 337 

We generated a total of 774 different age models. The age models of 45 records are based on 338 

linear interpolation (Table S2 in the supplementary information). The age models of the other 339 

records are derived from smooth or locally weighted splines (e.g. Lake Caço, Brazil; Fargher Lake, 340 

North America; ODP1078C, southeastern Atlantic margin) or polynomial regression (e.g. Hanging 341 

Lake and Carp Lake, North America; Lake Fuquene, Colombia; Valle di Castiglione, Europe) to include 342 

as many as possible of the available radiometric dates. Since the focus for age modeling was the last 343 

glacial period, age models for the Holocene (11.65ka - present) and Last Interglacial sensu lato 344 

intervals (135ka -72.28 ka) are not necessarily well constrained. 345 

Selected examples of the original and harmonized age models are illustrated in Figures 3 and 346 

4. The original age model of marine core MD95-2043, western Mediterranean Sea (Figure 3a, red 347 

curve) was based on tuning the mid-points of the cold to warm D-O transitions with the equivalent 348 

mid-points in the alkenone-based sea-surface temperature (SST) record [Cacho et al., 1999]. The 349 

harmonized age model (black) is based on 21 14C ages and two isotopic stratigraphic events (D-O 12 350 

and D-O 14). The two age models are similar, with a mismatch of less than 1,000 years for periods 351 

older than 35 ka and narrow uncertainties (Fig. 3a). In contrast, the original age model of the 352 

terrestrial sequence of Valle di Castiglione, central Italy, published in Fletcher et al. (2010) differs 353 

substantially, by several millennia, from the harmonized model in the interval between 50 and 30 ka 354 

and has large uncertainties (Fig. 3b). This age model was based on two calibrated 14C dates, one 355 

40Ar/39Ar tephra age (Neapolitan Yellow Tuff, Table 2) and the identification of D-O 8, 12 and 14 while 356 

the new age model takes into account the entire number of 14C dates (eight), one 40Ar/39Ar tephra 357 

age and one GICC05-event stratigraphic age (identification of D-O 21). It derives from a 3rd order 358 

polynomial regression model to take into account as many as possible of the radiometric ages 359 

available (Table S2 in the supplementary information). 360 
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 361 

a.       b. 362 

 363 

Figure 3- a) Linear age model of the marine core MD95-2043, and b) 3rd order polynomial age model 364 

of the terrestrial sequence Valle di Castiglione. Red line: original age model with the control points, 365 

Black line: harmonized age model based on radiometric dating and event stratigraphy. Blue: 366 

calibrated 14C distribution. Green: non-14C age distribution (40Ar/39Ar, 234U/230Th, OSL, event 367 

stratigraphy). Grey shadow: age uncertainties. 368 

 369 

The original age model for marine core ODP 1233 C from the southern Pacific Ocean off 370 

southern Chile was based on 19 AMS 14C dates calibrated using Calpal 2004 [Heusser et al., 2006] and 371 

is very similar to the harmonized age model (Figure 4a). The use of the new INTCAL13 calibration 372 

curve is sufficient to explain the small differences between the original and harmonized age models. 373 

In contrast, there are major differences between the original and harmonized age models for the 374 

terrestrial pollen record of Toushe, Taiwan (Figure 4b). The original age model [Liew et al., 2006] was 375 

based on 24 uncalibrated radiometric dates for the 0-24 ka interval , and two dated isotopic events, 376 

MIS 3/4 and MIS 4/5, which were dated following Martinson et al. [1987] to 58.96 ka and 73.91 ka 377 

respectively. The harmonized age model is based on calibrated ages from 3 AMS 14C and 28 378 
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conventional 14C dates and dating of the MIS 3/4 and MIS 4/5 boundaries. In the ACER chronology, 379 

these two events are dated to 59.39 ka and 72.28, respectively. In combination, these differences 380 

produce substantially younger ages (by up to 5,000 years) for the interval between 50-26 ka than in 381 

the original age model. 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

a.       b.  390 

 391 

Figure 4- a) Linear age model of the marine core ODP 1233 C, and b) Linear age model of the 392 

terrestrial sequence Toushe (Taiwan). Red line: original age model with the control points, Black line: 393 

harmonized age model based on radiometric dating. Blue: calibrated 14C distribution. Green: non-14C 394 

age distribution (40Ar/39Ar, 234U/230Th, OSL, event stratigraphy). Grey shadow: age uncertainties. 395 

 396 
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Figure 5 additionally illustrates pollen and microcharcoal data plotted against the harmonized age 397 

models for few sites from different biomes. This figure highlights the regional response of the 398 

vegetation and fire regime to the D-O events. 399 
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 400 
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Figure 5 – Pollen (black) and charcoal (orange) curves from six sites plotted against the harmonized 401 

age model. 402 

3.3 Vegetation and climate response to the contrasting D-O 8 and D-O 19 warming events.  403 

Comparison of the vegetation and climate response to warming events in two different 404 

regions provides an example of the importance of developing harmonized chronologies. D-O 19 and 405 

D-O 8 are iconic D-O events, characterized by strong warming in Greenland followed by long 406 

temperate interstadials of 1,600 (GI 19) and 2,000 (GI 8) years respectively [Wolff et al., 2010]. D-O 8 407 

occurred ca 38.17 ka b1950 AD and was marked by an initial short-lived warming of ca 11°C, whereas 408 

D-O 19 (ca 72.28 ka b1950 AD) was characterised by a maximum warming of ca 16°C.  The difference 409 

in the magnitude of warming suggests that the Northern Hemisphere monsoons would be stronger 410 

during D-O 19 than D-O 8, but this is not consistent with speleothem evidence from Hulu Cave 411 

(China) indicating that monsoon expansion was more marked during D-O 8 than during D-O 19 412 

[Wang et al., 2001] (Fig. 6). Sanchez Goñi et al. [2008] argued that the smaller increase in CH4 during 413 

D-O 19, by ca 100 ppbv, than during D-O 8, by ca 200 ppbv, was because the expansion of the East 414 

Asian monsoon (and hence of regional wetlands) was weaker during D-O 19 due to the differences in 415 

precession during the two events (Fig. 6). Differences in the strength of the monsoons between GI 8 416 

(precession minima, high seasonality) and GI 19 (precession maxima, low seasonality) can also be 417 

tested using evidence from the pollen record of Toushe Basin, which lies under the influence of the 418 

East Asian monsoon. This record shows a similar development of moisture-demanding subtropical 419 

forest, during the two interstadials (Fig. 6), and thus does not support the argument that the East 420 

Asian monsoon was weaker/less expanded during GI 19 than during GI 8. However, Toushe Basin lies 421 

in the tropical belt (23°N) and is likely to be less sensitive to changes in monsoon extent than more 422 

marginal sites such as Hulu Cave (32°N).  423 

Previous works have also hypothesized that the Mediterranean forest and climate were 424 

tightly linked to the Asian and African monsoon through the Rodwell and Hoskins zonal mechanism 425 
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[Marzin and Braconnot, 2009; Sanchez Goñi et al., 2008] or through shifts in the mean latitudinal 426 

position of the ITCZ [Tzedakis et al., 2009].  Data from Hulu cave [Wang et al., 2001] and the western 427 

Mediterranean region (MD95-2042 and SU81-18 twin pollen sequences) show that during warming 428 

events occurring at minima in precession, such as D-O 8, monsoon intensification is stronger and 429 

associated with a marked seasonality in the Mediterranean region (strong summer dryness) and, 430 

therefore, a strong expansion of the Mediterranean forest and decrease in the summer dry-431 

intolerant Ericaceae (Fig. 6) [Sánchez Goñi et al., 1999; Sánchez Goñi et al., 2000]. Actually, we 432 

observe parallel strong and weak increases in East Asian monsoon and Mediterranean forest during 433 

GI 8 and GI 19, respectively. However, here again there is a discrepancy between the harmonized 434 

Toushe pollen sequence and that from the Hulu cave and the western Mediterranean region: the 435 

Mediterranean forest and monsoon during D-O 8 strongly increased while the subtropical forest 436 

cover weakly expanded. The different latitudinal position of the Toushe Basin (23°N) in tropical 437 

region and that of the Hulu Cave (32°N) and the southern Iberian margin sequence (37°N) both in the 438 

subtropical region could explain such a discrepancy. A comprehensive analysis of differences in the 439 

magnitude of monsoon expansion between D-O 8 and D-O 19 is now possible because of the creation 440 

of robust and standardised age models for the ACER records. 441 

 442 

 443 

 444 

 445 
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 446 

Figure 6 - Comparison of pollen sequences from the Toushe Basin (Taiwan) and the SW Iberian margin 447 

(cores MD95-2042 [Desprat et al., 2015; Sanchez Goñi et al., 2008] and SU 81-18 (23500-10000 cal 448 

years BP) [Lézine and Denèfle, 1997]) for the interval 73-23.5 ka. Green line: new harmonized age 449 

model, red dashed line: original age model. Grey vertical bands indicate the duration of GI 8, GI 16-17 450 

and GI 19. Also shown the comparison with the Greenland temperature record (black) [Huber et al., 451 

2006; Landais et al., 2005; Sanchez Goñi et al., 2008], atmospheric CH4 concentration (blue) record 452 
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[Chappellaz et al., 1997; Flückiger et al., 2004], compiled Hulu Cave δ18O speleothem records (PD in 453 

purple, MSD in green, and MSL in blue)  [Wang et al., 2001], and precession index [Laskar et al., 454 

2004]. Note the mismatch in the timing of GI 19 between the Greenland and pollen harmonized age 455 

models and the chronology of Hulu Cave. 456 

4. Conclusions 457 

The ACER pollen and charcoal database (ACER 1.0) comprises all available pollen and charcoal 458 

records covering part or all of the last glacial, as of July 2015. We foresee future updates of the ACER 459 

database by the research community with newly published pollen and charcoal records. For 460 

consistency age models for new sites should be constructed using the strategy described here. 461 

The harmonization of the ACER age models in the ACER 1.0 database increases the 462 

consistency between records by (a) calibrating all the radiocarbon dates using the recommended 463 

INTCAL13 and MARINE13 calibration curves, (b) using the same ages for non-radiometric control 464 

points and basing these on the most recent Greenland ice core chronology (GICC05), and (c) using 465 

the CLAM software to build the age models and taking account of dating uncertainties. While these 466 

harmonized age models may not be better than the original models, they have the great advantage 467 

of ensuring comparability between pollen and charcoal records from different regions of the world. 468 

As we have shown in the preliminary analyses of monsoon-related vegetation changes during D-O 8 469 

and D-O 19, this will facilitate regional comparisons of the response to rapid climate changes. 470 

 The same strategy for age-model harmonization is now being applied to the sea-surface 471 

temperature records from the last glacial that have been compiled by the ACER-INTIMATE group 472 

(http://www.ephe-paleoclimat.com/acer/ACER%20INTIMATE.htm). This will ensure that the 473 

terrestrial and marine databases share a common chronological framework, a considerable step 474 

towards improving our knowledge of the interactions between oceans and land that underlie the 475 

nature and timing of abrupt climatic changes.  476 
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 477 

Data availability  478 

Supplementary data are available at https://doi.org/10.1594/PANGAEA.870867  479 
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Figures & Tables 500 

Figure 1 – ACER database structure in ACCESS format. 501 

 502 

Figure 2 – Map with location of the 93 marine and terrestrial pollen sites covering part or all the last 503 

glacial (MIS 4, 3 and 2). Sites have better resolution than 1 sample per 1000 years. Present-day 504 

potential natural vegetation after [Levavasseur et al., 2012]. 505 

 506 

Figure 3 –a) Linear age model of the marine core MD95-2043, and b) 3rd order polynomial age model 507 

of the terrestrial sequence Valle di Castiglione (Italy). Red line: original age model with the control 508 

points, Black line: harmonized age model with based on radiometric dating and event stratigraphy. 509 

Blue: calibrated 14C distribution. Green: non-14C age distribution (Ar/Ar, OSL, event stratigraphy). 510 

Grey shadow: age uncertainties. 511 

 512 

Figure 4- a) Linear age model of the marine core ODP 1233 C, and b) Linear age model of the 513 

terrestrial sequence Toushe (Taiwan). Red line: original age model with the control points, Black line: 514 

harmonized age model with based on radiometric dating and event stratigraphy. Blue: calibrated 14C 515 

distribution. Green: non-14C age distribution (Ar/Ar, OSL, event stratigraphy). Grey shadow: age 516 

uncertainties. 517 

 518 

Figure 5 – Pollen (black) and charcoal (orange) curves from six sites plotted against the harmonized 519 

age model. 520 

 521 

Figure 6 - Comparison of pollen sequences from the Toushe Basin (Taiwan) and the SW Iberian 522 

margin (cores MD95-2042  [Desprat et al., 2015; Sanchez Goñi et al., 2008] and SU 81-18 (23500-523 

10000 cal years BP) [Lézine and Denèfle, 1997]) for the interval 73-23.5 ka . Green line: new 524 

harmonized age model, red dashed line: original age model. Grey vertical bands indicate the duration 525 
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of GI 8, GI 16-17 and GI 19. Also shown the comparison with the Greenland temperature record 526 

(black) [Huber et al., 2006; Landais et al., 2005; Sanchez Goñi et al., 2008], atmospheric CH4 527 

concentration (blue) record [Chappellaz et al., 1997; Flückiger et al., 2004], compiled Hulu Cave δ18O 528 

speleothem records (PD in purple, MSD in green, and MSL in blue)  [Wang et al., 2001], and 529 

precession index [Laskar et al., 2004]. Note the mismatch in the timing of GI 19 between the 530 

Greenland and pollen harmonized age models and the chronology of Hulu Cave. 531 

 532 

Table 1. Harmonized control points used for age models when radiometric ages (14C, OSL, 40Ar/39Ar, 533 

234U/230Th) were not available. 534 

 535 

Table 2 – Biomes for which the pollen percentages data are included in the ACER database. Bo forest: 536 

Boreal forest; Te mountain forest: Temperate mountain forest; Te forest: Temperate forest; WTe 537 

forest: Warm-Temperate forest; Tr forest: Tropical forest; Subtr forest: Subtropical forest; SE Pine 538 

forest: Southeastern Pine forest; Gr: Grasslands and dry shrublands; Sav: Savanah. In Europe, Te 539 

forest refers to Mediterranean and Atlantic forests. 540 

 541 

 542 

  543 
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