
Scalable real-time classification of data
streams with concept drift
Article

Published Version

Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Tennant, M., Stahl, F. ORCID: https://orcid.org/0000-0002-
4860-0203, Rana, O. and Gomes, J. B. (2017) Scalable real-
time classification of data streams with concept drift. Future
Generation Computer Systems, 75. pp. 187-199. ISSN 0167-
739X doi: 10.1016/j.future.2017.03.026 Available at
https://centaur.reading.ac.uk/70047/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1016/j.future.2017.03.026

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

CentAUR

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

Central Archive at the University of Reading
Reading’s research outputs online

Future Generation Computer Systems 75 (2017) 187–199
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scalable real-time classification of data streams with concept drift
Mark Tennant a, Frederic Stahl a,∗, Omer Rana b, João Bártolo Gomes c

a University of Reading, Whiteknights, PO Box 225, RG6 6AY, Reading, UK
b Cardiff University, Computer Science & Informatics, Queen’s Buildings, 5 The Parade, Roath, CF24 3AA, Cardiff, UK
c Institute for Infocomm Research (I2R), A*STAR, 1 Fusionopolis Way Connexis, Singapore 138632, Singapore

h i g h l i g h t s

• A real-time data stream classifier adaptive to concept drift and robust to noise.
• A parallel implementation of the real-time data stream classifier.
• A discussion about using open source Big Data technologies for data stream mining.

a r t i c l e i n f o

Article history:
Received 30 November 2015
Received in revised form
3 June 2016
Accepted 22 March 2017
Available online 9 April 2017

Keywords:
Parallel data stream classification
Adaptation to concept drift
High velocity data streams

a b s t r a c t

Inducing adaptive predictive models in real-time from high throughput data streams is one of the
most challenging areas of Big Data Analytics. The fact that data streams may contain concept drifts
(changes of the pattern encoded in the stream over time) and are unbounded, imposes unique challenges
in comparison with predictive data mining from batch data. Several real-time predictive data stream
algorithms exist, however, most approaches are not naturally parallel and thus limited in their scalability.
This paper highlights the Micro-Cluster Nearest Neighbour (MC-NN) data stream classifier. MC-NN is
based on statistical summaries of the data stream and a nearest neighbour approach, which makes MC-
NN naturally parallel. In its serial version MC-NN is able to handle data streams, the data does not need
to reside in memory and is processed incrementally. MC-NN is also able to adapt to concept drifts. This
paper provides an empirical study on the serial algorithm’s speed, adaptivity and accuracy. Furthermore,
this paper discusses the new parallel implementation of MC-NN, its parallel properties and provides an
empirical scalability study.

© 2017 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
t

1. Introduction

The 4 main aspects of Big Data are [1]: data generated at
a fast rate (Velocity), very large and potentially unknown data
quantities (Volume), uncertainty in the data (Veracity) and different
forms of data such as text, structured data etc. (Variety). Other
aspects of Big Data have been added over the years, i.e. Volatility,
referring to how long the data is valid for, which is particularly
relevant when referring to real-time data streams; and Value,
referring to potential insights that can be derived by analysing
the data. Regarding Velocity, data arriving at a very high speed
challenges our computational hardware processing capabilities

∗ Corresponding author.
E-mail addresses:M.Tennant@pgr.reading.ac.uk (M. Tennant),

F.T.Stahl@reading.ac.uk (F. Stahl), RanaOF@cardiff.ac.uk (O. Rana),
bartologjp@i2r.a-star.edu.sg (J.B. Gomes).

http://dx.doi.org/10.1016/j.future.2017.03.026
0167-739X/© 2017 The Author(s). Published by Elsevier B.V. This is an open access ar
[2,3]. This paper presents an algorithm that addresses the overlap
of the Velocity and Volume aspects of Big Data Analytics through
a parallel and adaptive real-time data stream classifier. In data
stream classification a classifier is trained in real-time on incoming
labelled data instances. This classifier is then used in real-time to
predict the class label of previously unseen data instances. The
classifier is required to adapt to changes of concepts that can occur
over time (known as concept drift [4]), in order to keep an accurate
classification model over time.

The growing importance of data stream classification tech-
niques is reflected throughmany commercial applications, such as:
sensor networks; Internet traffic management and web log analy-
sis [5]; TCP/IP packet monitoring [6]; intrusion detection [7]; and
credit card fraud detection [8]. Due to high throughput of data and
potentially infinite data streams, it is often not feasible to capture,
store and process the data. In the past two decades this has led to
the development and publication of data stream classifiers that can
analyse the data in real-time as it is being generated. For example,

icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.future.2017.03.026
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.03.026&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:M.Tennant@pgr.reading.ac.uk
mailto:F.T.Stahl@reading.ac.uk
mailto:RanaOF@cardiff.ac.uk
mailto:bartologjp@i2r.a-star.edu.sg
http://dx.doi.org/10.1016/j.future.2017.03.026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

188 M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199
data stream classifiers such as Hoeffding Trees [9], G-eRules [10],
Very Fast Decision Rules (VFDR) [11] only need one pass through
the data and thus train and adapt to concept drifts in real-time sce-
narios. Nonetheless, their scalability is limited to the utilisation of
one processing node at a time.

Few attempts have beenmade to combine parallelism and real-
time data stream classification. Parallel binning is used by the
SPDT [12] algorithm. However, the updating of SPDT classifier is
not performed in parallel. Vertical Hoeffding Trees (VHDT) [13]
partition the stream instances in terms of attributes, to support
parallel processing. However, VHDTs scalability is limited by the
number of attributes, as the attributes are distributed evenly over
the number of processors utilised. In addition there exists a parallel
method for concept drift detection termedOnlineMapReduceDrift
Detection Method (OMR-DDM) [14], which makes use of the error
rate of a collection of classifiers executed concurrently.

This paper proposes an inherently parallel adaptive data stream
classifier termed MC-NN. The classifier is based on Nearest
Neighbour (NN) classification and statistical summaries of the data
and recency. The statistical summary is structured in the form
of a set of variance based Micro-Clusters (MCs). Micro-Clusters
continuously adapt to concept drifts through absorbing new data
instances (updating statistics). An empirical evaluation [15] shows
that the serial implementation of MC-NN is already very fast and
robust to noise and concept drifts. However, it is limited by the
throughput of a single computational node.

A parallel implementation of MC-NN is presented, along with
a critical appraisal of implementation mechanisms that can be
used to support parallel analysis of real-time data. A scalability
evaluation is also carried out, identifying insights, difficulties
and solutions in implementing parallel real-time data stream
classifiers.

This paper is organised as follows: Section 2 summaries some
related work. Section 3 describes the developed naturally parallel
MC-NN algorithm and provides an empirical study comparing
it with its serial competitors in terms of classification accuracy,
adaptation to concept drifts and speed. Section 4 discusses the
parallel implementation of MC-NN and provides an empirical
scalability evaluation. It further discusses issues and experiences
in implementing real-time data processing algorithms. Concluding
remarks are provided in Section 5.

2. Related work

In the more general area of data mining an algorithm would
iterate over the data several times in order to generate a model
that fits the concepts (patterns) in the data. In each iteration the
model is altered in order to better fit the concepts. However, as
data streams are inherently infinite in length, iterative processes
cannot be used. If left un-monitored, the algorithms would try to
fit the concepts encoded on the whole stream and not account
for ‘Concept Drifts’. ‘Concepts’ can be thought of as blocks of
homogeneous/statistically similar data in a linear time frame.
As the length and number of ‘Concepts’ is unknown the data
stream must be monitored in real-time. An interesting area
of research is the development of ‘standalone’ Concept Drift
Detectors that monitor data streams in real-time. Typically, when
a Drift Detector algorithm detects a concept drift (correctly or
incorrectly) the current model is deleted and a new model
is created. Examples of Concept Drift detectors are DDM [16],
ECDD [17] and ELM[18]. Typically Concept Drift detectors work
independently and concurrently from the underlying data mining
algorithm (i.e. a classifier). Thus, both the data mining algorithm
and the concept drift detector have to be computationally efficient
in order not to hinder the computational performance. The data
mining algorithm used in conjunction with the drift detector does
not need to be adaptive — batch algorithms such as C4.5 [19],
Support Vector Machines [20], N-Prism [21], KNN, etc. can also
be used. This would require buffering enough data after the
concept drift has occurred and then applying the batch datamining
algorithm on the buffer. However, as mentioned earlier, batch
algorithms typically require several passes through the data and
thus may be too slow if data is arriving at a high speed. Further
techniques exist to adapt non adaptive data mining algorithms
to streaming data, such as sliding window [2] and reservoir
sampling [22]. Reservoir sampling maintains an unbiased and
representative fixed sized sample of the data instances retrieved
from the stream, whereas sliding window based algorithms, such
as G-eRules [10], consider only the most recent instances from the
stream to build the dataminingmodel. However, these techniques
would require to re-train batch algorithms and thus may be too
slow and impractical to use for data arriving at high speed.

Other techniques such as Hoeffding bound based tech-
niques [23] and Micro-Clusters [24] have been used to create in-
herently adaptive data streammining algorithms. Hoeffding based
techniques aim to create and adapt data mining models based on
a statistical upper bound on the probability that the so far re-
ceived attribute values deviates from its expected value. The Ho-
effding bound has been successfully used to create various data
stream mining algorithms known as Very Fast Machine Learning
(VFDT [25]). Micro-Cluster based techniques aim to create a sta-
tistical summary in terms of feature values, value distribution and
time-stamps of the data retrieved from the stream (CluStream[24],
On Demand Classification of Data Streams [26]).

A number of systems exist to support parallel stream process-
ing, the most notable of these include Esper [27]. However, Esper
makes use of a centralised architecture that runs on a single node
and keeps everything (states, operators, and so on) in memory
(although support is provided formulti-threading). However, if the
continuous queries have a large window size and might require
processing of a large number of data items/sec, Samza [28] pro-
vides a better alternative [29]. Samza can be though of as a simpli-
fied ‘pilot job’ [30]. In the pilot terminology a Samza job is an ‘early
bound’ container that will process an unknown future workload.
The key difference is that a pilot task is identified as an individ-
ual with its own workload to process, and therefore has no inter-
action with other tasks. Samza containers bound to a data stream
are static, they have access to all data passed through the under-
lying stream until they are stopped externally. Other alternatives
with similar functionality include: Apache Storm, Spark Streaming
and Apache S4 — a comparison can be found in [29]. A number of
messaging systems exist that Samza is capable of utilising. Broadly
speaking they can be split into three groups: Message Queue Sys-
tems, such as Kestrel and RabbitMQ [31], Publish Subscribe Sys-
tems, such as Kafka [32] and Kestrel [33], and Log Systems, such as
Flume [34] and Scribe [35]. Thework presented in this paper devel-
ops an inherently parallel and adaptive data stream classifier that
makes use of parallel stream processing technologies.

3. Adaptive Micro-Cluster nearest neighbour data stream
classification

3.1. Micro-Cluster based nearest neighbour

In the authors’ previous feasibility study [36], a real-time
classifier was implemented based upon KNN. In KNN a data
instance is assigned the class that is most common amongst its
K Nearest Neighbours. The basic approach of the real-time KNN
is to keep a sliding fixed sized time window of the most recent
data instances and execute KNN from the sliding window set.
Real-time KNN retrains on recent instances whilst older instances
are deleted. However, real-time KNN is computationally limited

M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199 189
by faster data streams [36]. To overcome the computational
bottleneck of real-time KNN and the problems associated with the
slidingwindow, the presented classifier adaptsMicro-Clusters [37]
— a technique originally developed for data stream clustering [24]
in order to provide a summary of the locality of the data are of the
form:

⟨CF2x, CF1x, CF2t , CF1t , n⟩

The notation used for Micro-Cluster has been taken from [24],
the original paper that introduced Micro-Clusters. The sum of the
squares of the attributes are maintained in vector CF2x, the sum
of the values in vector CF1x; the sum of time stamps in vector
CF1t ; and the number of data instances is stored in scalar n. In
this notation CF stands for Cluster Feature, the superscripts x and t
denote if the CF is storing statistics about feature values or their
time stamps respectively. The numbers 1 and 2 used in the CF
notation denote if the CF stores the sum of the feature values or the
squared sum respectively. CF2x and CF1x can be used to calculate
the locality and boundary of the Micro-Clusters whereas CF2t and
CF1t can be used to determine the recency of the data summarised
in the cluster. MC-NN adapts Micro-Clusters to compute nearest
neighbours for classification. TheMicro-Cluster structure has been
extended by terms CL for the cluster’s class label, ϵ as error count,
Θ as error threshold for splitting, α as initial time stamp and Ω as
a threshold for the Micro-Cluster’s performance — leading to the
extended notation:

⟨CF2x, CF1x, CF1t , n, CL, ϵ, Θ, α, Ω⟩

The centroid of the Micro-Cluster can be calculated by CF1x
n .

In order to classify a new data instance from the stream the
MC-NN classifier calculates the Euclidean distances between the
data instance and each Micro-Cluster centroid and the class label
of the nearest Micro-Cluster is assigned to the data instance. In
our experiment, Euclidean distance has been demonstrated to
work faster than alternative distance measures, while achieving
a competitive accuracy. ϵ of a Micro-Cluster is initially 0 and
incremented by 1 if the Micro-Cluster is used for classification and
miss-classifies the data instance. Likewise ϵ is decremented by 1
if the Micro-Cluster is involved in a correct classification. Θ is a
user defined upper limit of acceptable ϵ. It is expected that a low
Θ will cause the algorithm to adapt to changes faster, but will be
more susceptible to noise. A larger Θ value will be more tolerant
to noise but may not ‘learn’ as fast.

As more labelled instances are received for learning they
will change the distribution of the Micro-Clusters. According to
Algorithm 1 two scenarios are possible after the nearest Micro-
Cluster has been identified when a new training instance is
presented to the classifier:

Scenario 1: If the nearest Micro-Cluster is of the same label as
the training instance, then the instance is incrementally added to
the Micro-Cluster and ϵ is decremented by 1.

Scenario 2: If the nearest Micro-Cluster is of a different class
label, then the training instance is incrementally added to the
nearest Micro-Cluster that matches the training instance’s class
label. However, the error count ϵ of both involved Micro-Clusters
is incremented.

If over time a Micro-Cluster’s error count ϵ reaches the
error threshold Θ , then the Micro-Cluster is split. This is done
by evaluating the Micro-Cluster’s dimensions for the size of
its variance, which can be calculated using Eq. (1), where x
denotes a particular attribute. The splitting of a Micro-Cluster
generates two new Micro-Clusters, centred about the point of
the parent Micro-Cluster’s attribute of greatest variance; while
the parent Micro-Cluster is removed. The two new Micro-Clusters
inherit all configuration values from the parent. Therefore, all
future classifications made by these new Micro-Cluster’s (or their
Data: Train Instance
Result: Re-Positioned Localised sub-set of Micro-Clusters
Remove Micro-Clusters with poor performance (under Ω

value)
foreach Micro-Cluster in LocalSet do

Evaluate Micro-Cluster against NewInstance;
end
Sort EvaluationsByDistance();
if Nearest Micro-Cluster is of the Training Items Class Label then

CorrectClassification Event
NewInstance is Incremented into Nearest Micro-Cluster
Nearset Micro-Cluster Error count (ϵ) reduced.

else
MisClassification Event
2 Micro-Clusters Identified:
1) Micro-Cluster that should have been identified as the
Nearest to the New Instance of the same Classification
Label.
2) Micro-Cluster that incorrectly was Nearest the New
Instance.
Training Item incrementally added to Micro-Cluster of
Correct Classification Label. Both Micro-Clusters have
internal Error count (ϵ) Incremented
foreachMicro-Cluster Identified do

ifMicro-Cluster Error count (ϵ) exceeds Error Threshold
(θ) then

Sub-Divide Micro-Cluster upon attribute of largest
Variance

end
end

end
Algorithm 1: Training the MC-NN classifier

children) will be of the same class label. The assumption behind
this way of splitting attributes is that a larger variance value
of one attribute over another indicates that a greater range of
values have been seen for this attribute. Therefore, the attribute
may contribute towards miss-classifications. This splitting of a
Micro-Cluster causes the two new Micro-Clusters to separate and
better fit the underlying concept encoded in the stream. Once
the attribute of largest variance has been identified, the two new
Micro-Clusters are initially populated with the parent’s internal
mean/centre data (CF1x). The split attribute (with the largest
variance), is altered by the variance value identified in the positive
direction in one of the new Micro-Clusters and negatively in the
other. This ensures that future training will further re-position the
two new Micro-Clusters better than the parent could alone.

Variance[x] =


CF2x

n


−


CF1x

n

2

(1)

When a Micro-Cluster has a new instance added to it, its internal
instance count n is incremented by 1 and the sum of time
stamps (CF1t) is incremented by the new time stamp value(T). The
Triangular Number ∆(T) (Eq. (2)) of this time stamp will give an
upper bound to the maximum possible value of CF1t . Therefore, if
all instances were entered into this Micro-Cluster CF1t would be
equal to the triangular number of T . The lower the value of CF1t is
from the Triangular Number the poorer the Micro-Cluster has been
participating in the stream classification. The use of Triangular
Numbers gives more importance to recent instances over earlier
ones added to the Micro-Cluster, as the time stamp value (T) is
always increasing and MC-NN uses the sum of these incremental
values. Triangular numbers assume that all Micro-Clusters were
created at time stamp 1. To counter this, each Micro-Cluster keeps
track of the time stamp when it was initialised (α). The Micro-

190 M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199
Fig. 1. Incremental time stamps and Triangular Number propagation. In this
example 11 is the most recent time stamp and 1 the first time stamp recorded.
The grey boxes for MC1 and MC2 denote that at this particular time stamp a data
instance has been absorbed by the Micro-Cluster.

Cluster’s real ∆(T), denoted ∆(T)real, can be calculated by ∆(T) −

∆(α). Any Micro-Clusters that fall under a pre-set threshold value
of (Ω) are deleted as they are considered old. For the rest of this
paper a value of 50% was given to all Micro-Cluster Ω values as it
seemed to work best for most classification problems.

Triangular Number ∆(T) = ((T 2
+ T)/2) (2)

At any point in the data stream the Triangular Number (Eq. (2))
can be calculated for each Micro-Cluster.

For example, consider the two Micro-Clusters (MC1 and MC2)
as depicted in Fig. 1. MC1 was created at time stamp 1 and was
updated with instances at time stamps 4, 6, 8 and 10. MC2 was
created at time stamp 7 and updatedwith instances at time stamps
8 and 9. This example evaluates the Micro-Clusters’ participation
at time stamp 11.

Calculate the Triangular number for Time Stamp 11.

Triangular Number ∆(11) = ((112
+ 11)/2) = 66

Calculate the initial Triangular number for each Micro-Cluster:

MC1 ∆(1) = ((12
+ 1)/2) = 1

MC2 ∆(7) = ((72
+ 7)/2) = 28

Calculate each Micro-Cluster’s real Triangular Number:

MC1 ∆real : (66 − 1) = 65
MC2 ∆real : (66 − 28) = 38

Retrieve each Micro-Cluster’s actual time stamp values:

MC1 : (1 + 4 + 6 + 8 + 10 + 11) = 40
MC2 : (7 + 8 + 9 + 11) = 35

Calculate each Micro-Cluster’s participation percentage:

MC1 : (40 ∗ 100/65) = 61%
MC2 : (35 ∗ 100/38) = 92%

If either of these percentages drops below the performance
threshold (Ω) the Micro-Cluster is deleted. It is interesting to note
that the use of the Triangular Number naturally biases towards
later instances in the data stream. In the example, MC1 contained
5 instances whereas MC2 only contained 3. Due to the fact that
MC2’s instances happened later in the data stream gives it 92%
participation score against MC1’s 61% participation, even though
it has a 50% (5 out of 10) actual instance insertions. This means
that as the data stream progresses, a Micro-Cluster’s participation
percentage can increase; as past ‘gaps’ become less relevant to the
overall scoring, which is desirable in adaptive classifiers.
3.2. Evaluation of MC-NN’s adaptation to concept drifts and classifi-
cation accuracy

3.2.1. Complexity of MC-NN
The complexity definitions used in this section are given in

Table 1. When implementing the MC-NN algorithm the number
of Micro-Clusters per class label is fixed at the maximum (mx).
In the experiments discussed in this paper mx was set to 25
Micro-Clusters for each class label. Once the Micro-Clusters are
initialised, the number of Micro-Clusters never changes and thus
thememory footprint remains constant. The algorithmbeginswith
one Micro-Cluster per class label and utilises additional ones from
the existing pool of Micro-Clusters depending on the data stream.
This is done in order to facilitate efficiency at runtime. The creation
anddeletion ofMicro-Clusters is implemented using array pointers
and counters. The memory size is therefore always a constant:
O(mx ∗ c ∗ d).

During training the distances of new instances are calculated
against each of the Micro-Clusters’ centroids, and the nearest
Micro-Cluster’ class label is used for classification. This is
equivalent to computing the Euclidean distance between 2 vectors,
where each vector value corresponds to a data attribute and
there are d attributes (dimensions). This results in a complexity
dependent upon both the number of Micro-Clusters per class label
and the dimension of the data: O(m ∗ c ∗ d).

In the best case, where there is only oneMicro-Cluster per class
label this will be Ω(ml) or Ω(c), in the worst case this will be
limited to the number of Micro-Clusters allowed by the algorithm
Θ(mx ∗ c). For example Fig. 2(a) displays a linear distribution of
data (c = 2, d = 2, n = 20). Fig. 2(b) displays how each of
the data points (n) will be inserted into each Micro-Cluster (m) to
determine their centroids. This shows the best case complexity for
new instances to be tested against Ω(c), where c ≪ n. For a non-
linear data pattern as shown in Fig. 2(c) (c = 2, d = 2, n = 20), the
data is unable to be classified correctly with just 2 Micro-Clusters.
Fig. 2(d) illustrates that multiple Micro-Clusters from each class
labelwill be required to fit the data. This shows that the complexity
of this data pattern is O(m), where againm ≪ n.

3.2.2. Experimental setup
For the evaluation of this serial MC-NN implementation, an

‘Intel core’ I5 processor with 8 Gb RAM was used. All synthetic
data generators and algorithms evaluated in Section 3.2were taken
from the Massive Online Analysis (MOA) framework [38]. Also
the here presented real-time KNN and MC-NN algorithms were
implemented within the MOA framework.

Four data streams have been utilised: The SEA data stream [39]
contains three continuous attributes and two class labels. The
stream can be set to 1 of 4 function parameters. The function
selected determines the value of a sum threshold of the first 2
continuous attribute values (threshold values: 8,9,7,9.5). A class
label of True is given only if the threshold level is surpassed,
otherwise class label False is given (i.e. attribute1 + attribute2 <
threshold). Arbitrarily function 1 was chosen for the initial concept
and function 3 for the concept change. The Random Tree
Generator [25] creates a random tree with split points using the
attributes associated with the stream. Each tree leaf is labelled
with class labels and then all subsequent randomly generated
instances are labelled according to their traversal of the tree to
a leaf node. In our experiments the random tree(s) comprise ten
continuous attributes and three distinct class labels. A drift is
achieved by simply generating a different random tree. Both the
RandomTree and the SEA datastreams generated 35,000 instances.
The concept drift begins at instance 10,000 with a gradual change,
where both concepts are present over a period of 1000 instances.
Random Trees generate useful data streams as the number of

M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199 191
Table 1
Complexity definitions.

n The number of instances in the data stream (only limited by experimentation as infinite in real data stream)
d The number of dimensions of the data (number of attributes in each instance)
c Then number of class labels to classify
mx The maximum number of Micro-Clusters (default set to 25 per class label)
m The number of Micro-Clusters required to cover a specific data pattern
ml The minimum number of Micro-Clusters (one Micro-Cluster per class label)
(a) Simple data pattern. (b) Simple Micro-Cluster pattern.

(c) Complex data pattern. (d) Complex Micro-Cluster pattern.

Fig. 2. Complexity of Micro-Clusters.
attributes and class labels are user defined, and the complexity
(or level) of the tree can be altered to create a more dense data
pattern. This allows for multilevel stress testing of algorithms, as
denser trees usually create harder problems for classification. We
expect the Hoeffding Tree to perform exceptionally well against
the Random Tree data streams, as the Hoeffding Tree algorithm
utilises the same underlying structure for data classification.
This was a major reason for choosing this data stream as a
benchmark against MC-NN. The Hyperplane generator creates a
linearly separable model. A Hyperplane in ‘D’ dimensions slowly
rotates continuously changing the linear decision boundary of the
stream. This constant concept change makes it very difficult for
data stream classifiers to keep a good classification accuracy and
computational efficiency. The experiments using the Hyperplane
generator created 10 million data instances, with five numerical
attributes and two classes. In order to add an additional challenge
10% noise was generated as well as with probability P(0.75)
chance of reversing the direction of the rotation causing an
‘Oscillation’ effect. To contrast, a version of the stream with
probability P(0) chance of reversing the direction of the concept
drift was also created. The Human Activity Recognition data
set (HAR) [40] containing data from multiple users, performing
multiple tasks, using personal smart phones/watches was used
as a more realistic alternative to the generated data set to show
how the algorithm could be applied in a different context. The
data from both the accelerometers and gyroscopes within such
personal devices is logged in microseconds whilst users are
performing an array of tasks. These tasks (class labels) include:
Biking, Sitting, Standing, Stairs_up, Stairs_down,Walking and null.
A sub-set of this data was taken (one single users data) and
implemented as a data stream containing 1.3 million instances.
Each Instance has the attributes of x, y, z accelerometer data, and
Device Model Identifier.
MC-NNwas compared against two state-of-the-art data stream
classifiers, Hoeffding Trees [9] and incremental Naïve Bayes and
against its predecessor real-time KNN classifier [36]. Each instance
was tested upon the classifier to log the classifier’s performance
before being used for training: this is also know as Prequential
testing [41]. Prequential testing deviates from traditional data
mining predictive accuracy testing, as stream data cannot be
divided beforehand into the classic groups of ‘Train’ and ‘Test’.
Instead each training instance is used first for training and then
as validation data to ascertain the predictive accuracy of the
model prior to being incorporated into the model itself. A study
of ‘Prequential’ data stream classification with drift detectors can
be found in [42].

Naïve Bayes and Hoffeding Tree classifiers were chosen as
they are widely covered in the literature and often considered
as the best all round classifiers in data stream mining, providing
a benchmark for comparison and evaluation. Although dated,
both are still widely used, as they often deliver an exceptional
classification performance in many applications. The Multinomial
Naïve Bayes version was used recently as an ensemble to win
the 2014 data mining Kaggle competition [43]. Hoffeding Trees
(VFDT) were recently adapted in [44], to be used in a parallel forest
executed within a GPU-based system.

3.2.3. Results for serial MC-NN implementation
Adaptation to new concepts: Two MC-NN classifiers were

created, one with Θ = 2 (error threshold) and the other with
Θ = 10. Table 2 shows how the MC-NN algorithm performs with
respect to other stream classification algorithms on the SEA and
Random Tree data streams. The results show that real-time KNN’s
results are competitive to the Hoeffding Tree and Naïve Bayes
classifiers for larger K values only. However, real-time KNN is

192 M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199
Table 2
Accuracies and runtime of MC-NN compared with other data stream classifiers. Accuracies are listed in
percent and runtime is listed in seconds. K denotes the number of nearest neighbours used in KNN and
Θ the error threshold used in MC-NN.

Algorithm SEA accuracy (runtime) Random Tree accuracy (runtime)

Naïve Bayes 94.40(0.11) 64.17(0.10)
Hoeffding Tree 95.96(0.19) 69.88(0.28)
Real-time KNN(K = 50) 90.46(0.27) 63.40(0.16)
Real-time KNN(K = 100) 92.61(0.39) 65.12(0.34)
Real-time KNN(K = 250) 94.77(1.08) 67.34(0.94)
Real-time KNN(K = 500) 95.86(2.26) 68.84(2.05)
Real-time KNN(K = 1000) 96.43(4.82) 70.49(4.46)
Real-time KNN(K = 2000) 96.92(10.00) 71.34(9.04)
Real-time KNN(K = 5000) 97.17(24.73) 65.03(24.46)

MC(Θ = 2) 94.03(0.28) 70.30(2.02)
MC(Θ = 10) 92.99(0.03) 60.99(1.49)
(a) Hoeffding Tree. (b) Naive Bayes. (c) KNN (50). (d) KNN (100).

(e) KNN (250). (f) KNN (500). (g) KNN (1000). (h) KNN (2000).

(i) KNN (5000). (j) Micro-Cluster(2). (k) Micro-Cluster(10).

Fig. 3. Concept drift adaptation on the SEA data stream. Accuracy is plotted along the vertical axis, instance stream is plotted along the horizontal axis.
multiple times slower than thewell establishedHoeffding Tree and
Naïve Bayes approaches. MC-NN achieves accuracies close to all
competitors, while clearly outperforming real-time KNN in terms
of runtime. MC-NN provides a similar accuracy compared with
Hoeffding Trees and Naïve Bayes, however, unlike its competitors
is naturally parallel and thus can be scaled up to high speed data
streams as will be shown in Section 4. It is also noticeable that
a larger Θ results in a shorter runtime of MC-NN. This can be
explained by the fact that when Θ is larger it will take more time
for a Micro-Cluster to reach Θ and thus it will perform splits less
frequently.

Figs. 3 and 4 illustrate the same experiments as listed in
Table 2, however, the accuracy is displayed over time. For the
SEA results displayed in Fig. 3 it can be seen that all classifiers
achieve a relatively high accuracy at any time and only show a
slight deterioration in accuracy during the concept drift (instances
10,000–11,000). For the Random Tree results displayed in Fig. 4
it can be seen that Hoeffding Tree and Naïve Bayes classifiers
are clearly challenged with adapting to the concept drift (again
between instances 10,000–11,000) as they need a long time to
fully regain their previous classification accuracy level. The real-
time KNN classifiers also have a noticeable deterioration of their
classification accuracy during the concept drift but recover much
faster compared with Hoeffding Tree and Naive Bayes. However,
they do not reach the same level of classification accuracy as
Hoeffding Trees and Naive Bayes. The results of MC-NN clearly
show the lowest classification accuracy deterioration and almost
recover instantly. MC-NN is able to reach the same classification
accuracy levels as Hoeffding Tree and Naive Bayes, whereas real-
time KNN performs poorly. Given the fact that MC-NN is also fast
and naturally parallelisable makes MC-NN the best performing
classifier on the Random Tree data stream.

Adaptation to continuous concept drift: The results in Table 3
show the total accuracy of the different classifiers evaluated
on the Hyperplane data streams. The Hyperplane is particularly
challenging as the concept is constantly changing and additional
noise (10%) has been added. One version adds the probability of
an oscillation effect with P(0.75). In the other version there is no
oscillation effect with P(0). In terms of classification accuracy it
can be seen that MC-NN(10) achieves second highest accuracy,
but is only 0.04% behind Naïve Bayes on the stream with no

M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199 193
Table 3
Accuracy and runtime on the Hyperplane data streams.

Algorithm Oscillating Hyperplane % (s) Rotating Hyperplane % (s)

Naïve Bayes 75.07(10.17) 89.89(10.12)
Hoeffding Tree 78.27(27.1) 87.43(29.44)
Real-time KNN(K = 250) 78.54(332.0) 78.21(311.0)

MC-NN(2) 74.59(11.61) 72.0(11.7)
MC-NN(10) 87.48(9.91) 89.85(9.72)
(a) Hoeffding Tree. (b) Naive Bayes. (c) KNN (50). (d) KNN (100).

(e) KNN (250). (f) KNN (500). (g) KNN (1000). (h) KNN (2000).

(i) KNN (5000). (j) Micro-Cluster(2). (k) Micro-Cluster(10).

Fig. 4. Concept drift adaptation on the Random Tree data stream. Accuracy is plotted along the vertical axis, instance stream is plotted along the horizontal axis.
oscillation. On the streamwith oscillation effectMC-NN(10) clearly
outperforms all its competitors. Note that Table 3 displays only the
runtime for the best configurations with real-time KNN. In terms
of runtime, MC-NN is faster than Hoeffding Trees and achieves a
similar speed to that of Naive Bayes. However, MC-NN is clearly
faster (approximately 30 times faster) than real-time KNN. For the
larger Θ , MC-NN performs slightly faster, which can be explained
by MC-NN being less likely to perform Micro-Cluster splits which
consume some of the runtime.

Fig. 5 shows the accuracy associated with experiments dis-
played in Table 3 for the Rotating Hyperplane data stream over
time for all 10 million data instances. All classifiers need some ini-
tialisation phase before producing a stable classification accuracy.
This initialisation phase is relatively short for all classifiers except
MC-NN with a low Θ . Overall MC-NN(10) achieves similar perfor-
mance to Naive Bayes and outperforms its predecessor real-time
KNN.

Fig. 6 shows the accuracy associated with experiments
displayed in Table 3 for the Oscillating Hyperplane data stream
over time for all 10million data instances. On thismore challenging
data stream, MC-NN(10) is stable and clearly outperforms all its
competitors. Both Naïve Bayes and the Hoffeding Tree classifiers
suffer at the beginning of the data stream with a negative
accuracy trend. This is due to the overlapping data values that are
contradicting each other due to oscillation and thus the classifiers’
inability to identify a fixed separation of classes without growing
an overly large and complex model.
Fig. 5. Concept drift adaptation on the Hyperplane with rotating boundary on a
stream length of 10 million instances.

For example, decision trees will adapt to a constantly changing
concept by growing more subtrees from leaf nodes. As the
Hyperplane streams are constantly changing, leaf nodes will
receive conflicting data and thus the tree grows constantly. This
leads to increased complexity and a high computational cost. A
tree using the oscillating hyperplane will cause the tree to grow
in multiple directions; whereas the rotating hyperplane will cause
the tree to grow constantly one sided in the direction of the drift.
Contrary to decision trees, MC-NN aims to retain itsMicro-Clusters

194 M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199
Fig. 6. Concept drift adaptation on the Hyperplane with oscillating boundary on a
stream length of 10 million instances.

Table 4
Accuracy and runtime on the HAR data streams.

Algorithm Accuracy (runtime)

Naïve Bayes 65(4.55)
Hoffeding 79(4.38)
MC(Θ = 2) 94(27.31)
MC(Θ = 10) 84.52(25.83)

by updating their statistical properties. Thus, continuous concept
drifts naturally get absorbed by the model without additional
computational cost for growing the model. Data streams with only
occasional drifts, such as the ones illustrated in Figs. 3 and 4 will
not pose this challenge for data stream classifiers. Hence, MC-NN
shows a better performance on these more challenging constantly
drifting data streams.

Table 4 summarises experiments of the use of MC-NN on the
HAR data set. In the results it can be seen that MC-NN outperforms
its competitors in terms of accuracy. However, it needs more time
to process the data stream with a larger number of class labels
(7), compared with the experiments on the SEA and Random Tree
data streams. In the complexity analysis in Section 3.2.1 it was
stated that the number of Micro-Clusters required is partially
dependent on the number of class labels. Hence, processing the
HAR data set requires more Micro-Clusters compared with the
other data streamsused in this research. However, aswill be shown
in Section 4.5 MC-NN can be parallelised and thus the runtime
reduced.

Overall the experiments in this section showed that MC-NN
clearly outperforms its predecessor in terms of classification accu-
racy and computational efficiency. MC-NN achieves a similar per-
formance compared with well established data stream classifiers
in terms of accuracy and runtime. However, it is more robust in
terms of adaptation to concept drifts, especially complex continu-
ous concept drifts. Moreover MC-NN is naturally parallel and thus
has the advantage to be scaled up to high speed data streams as
will be discussed on greater detail in Section 4.

4. Parallel MC-NN for scalability to fast data streams

This section presents a parallel implementation of the MC-NN
classifier highlighted and evaluated in Section 3. The underlying
idea behind the parallel implementation is that each node
in a computer cluster is training (updating) Micro-Clusters
individually; and each computer node is computing its similarity
to newly arrived labelled data instances.

Parallel MC-NN is implemented using the MapReduce parallel
programming paradigm, which divides computational tasks into
smaller subtasks implemented as Mappers. Mappers are then
distributed and executed concurrently on a computer cluster. The
results of the Mappers are aggregated by Reducer components,
which again can be executed concurrently in the computer cluster.

In the parallel MC-NN implementation each Mapper in the
cluster computes its own MC-NN cluster set. Predictions from
individual Mappers are aggregated in Reducer nodes, which assign
the final class label based on the majority vote. This paper is
primarily concerned with the scalability of data in terms of
Volume and Velocity, to this end the parallelism is not simply
limited to the algorithm. The data stream generation, in addition to
the classification methodology has been scaled-up. To accomplish
this, multiple stream generators were introduced into the system
to increase the velocity of data being processed in parallel. The
authors believe this to be the norm of current and future data
streams (e.g. tweets, status updates and automated sensor data).

The parallel MC-NN implementation can be described in three
steps, the Micro-Cluster initialisation, the training/adaptation of
Micro-Clusters and the prediction of newly arrived unlabelled data
instances (testing). Sections 4.1–4.3 highlight these three steps.

4.1. Initialisation

MC-NN requires a set of parameters for Micro-Clusters to
adapt to data patterns and data stream variations, as discussed on
Section 3.1. These configuration values are the predefined values
for error count (ϵ), error threshold (θ), time stamp threshold
(Ω), data stream parameters such as attribute numbers, class
labels and output stream parameters (identification of Stream
Generators), for returning data classifications. In the initialisation
phase, these parameters are communicated to the individual
Mappers, as depicted in Fig. 7. Initially each Mapper has a single
Micro-Cluster for each class label, however,more clusters are likely
to be generated during training and adaptation on new training
instances.

4.2. Training and adaptation

Training of individual nodes only requires a single ‘send’
operation and no ‘round trip’ response time for returning
predictions. Utilising a computer cluster incurs communication
and management overheads. The impact of these overheads can
be reduced by batching data instances together in single messages
when sending them to the computer cluster. The instances in
the batch are then distributed evenly inside the computer cluster
across the individual Mappers (Fig. 8).

Once a labelled training instance arrives at a Mapper, the
Mapper’s Micro-Clusters absorb the new data instance as it is
described for serial MC-NN in Section 3.1 and subsequently may
split into more Micro-Clusters or delete older less participating
clusters in order to adapt to concept drifts.

4.3. Prediction

Testing of a data instance requires each Mapper to be sent a
copy of the unlabelled instance. A broadcast message is created
containing the instance to be tested. This is depicted in Fig. 9,
where the message with the instance is denoted with the
letter T . Memory is allocated at the point of creation for the
response of the predicted classification label from the cluster. T
is broadcast to all Mappers. Upon arrival, each mapper predicts
the class label of the data instance using its local configuration of
Micro-Clusters as described in Section 3.1. Each of the Mappers
forwards its predicted classification label to the Reducer (denoted
V1, V2, . . . , Vn in Fig. 9). The Reducer node accumulates all the
predictions for T and selects the classification label with the
majority prediction. The classification label result (denoted R in
Fig. 9) is sent back to the originator of T .

M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199 195
Fig. 7. Parallel initialisation setup.

Fig. 8. Batch training message distribution.

Fig. 9. Test instance cycle.

Fig. 10. Architecture of a MC-NN computer cluster node.

4.4. Computer cluster architecture for parallel scalable MC-NN

The architecture utilises multiple open source technologies to
handle real-time data stream processing. The cluster consists of
17 rack mounted physical servers. Each node consists of a quad
core machine running CentOS 5. Fig. 10 illustrates the general
architecture of a typical MC-NN computer cluster node.

The architecture is centred on the use of Hadoop, which was
initially designed to work with files and batch processing on large
parallel processing tasks (e.g. distributed file searching and word
count problems), the later versions of Hadoop (2.0 — YARN) can
accept data from different sources such as MPI and Kafka [32].
Hadoop is designed to process specific processing jobs with
recursive/interactive access to all the data available (usuallywithin
the distributed file system). The cluster used for this evaluation
hosted Hadoop version 2.6.0.

Samza [28], is designed to enable Data Stream Processing over
the Hadoop framework. Samza creates and launches processing
jobs of unknown continuous duration within the Hadoop frame-
work. Instead of a traditional Hadoop job running until all data
has been processed in synchronisedMap/Reduce stages the Samza
job awaits for data to arrive from an external message system.
Spark had been considered as alternative to Samza for this re-
search. Samzawas chosen as the streamprocessing engine because
it has been designed with stream processing in mind, while Spark
achieves stream processing through time basedwindowing of data
objects.
The message system used in the experiment was Kafka [32],
as publish subscribe systems can be manipulated more accurately
for multiple stream configurations; such as different Hadoop
configurations. Kafka has low latency/high throughput message
handling and is also configurable to have its internal data streams
(known in Kafka as ‘Topics’) individually distributed in parallel as
required. Kafka can handle very long and fast streams due to fast
communication and distribution by employing a number of low
latency techniques. Such techniques are for example: retaining a
maximum number of messages (containing stream data instances)
inmemory, and using pointers for tracking data stream consumers
(i.e. MC-NN’s Mappers) to speed up the reading of data. The
original messages are retained within memory, while a secondary
process thread is taskedwith saving the data to hard disk. Multiple
configurations of data producers and consumers can be created to
best maximise the type of data throughput required by individual
tasks. Multiple messages can be batched together to reduce
the communications overhead. In the following experiments in
Section 4.5, 10,000 data instances were batched together in a
message to reduce communications latency to experimentally
‘stress’ the cluster. This batching is to highlight the performance of
the algorithm, not the limitations of the hardware setup. As Kafka
is a distributed system in itself it also requires some co-ordination
and management.

Zookeeper [45] is currently used as a distributed coordinator
and Topic consumer offset manager by Kafka. Zookeeper keeps
a parallel distributed synchronised file structure for parallel low
latency data access, with single write operations directed to a
‘leader node’, responsible for forcing data propagation down to
the available nodes for distribution. Future versions of Kafka are
planned to phase out the use of Zookeeper and just utilise internal
Topics for distributed coordination.

4.5. Evaluation of the parallel MC-NN implementation

4.5.1. Complexity of parallel MC-NN
The complexity definitions used in this section are given

in Table 5. Extending the complexity analysis carried out in
Section 3.2.1, our implementation scaleswith the available parallel
hardware. As stated earlier, the number of Micro-Clusters remains
fixed at the Maximum number allowed. Creation and deletion
of Micro-Clusters is controlled by counters and pointers to the
available pool of computational resources at run-time.

MC-NN Memory Size is O(mx ∗ c ∗ d ∗ p), or O(mx ∗ c ∗ d)
for each p Mapper. Additional processing time occurs due to more
internal messaging and vote counting. For complexity of testing
and training, each Micro-Cluster is calculated and the nearest
Micro-Clusters’ class label used O((m ∗ c ∗ d) + (p ∗ l)) in parallel
on p Mappers. In the best case, where there is only one Micro-
Cluster per class label. The complexity will be Ω(ml + (p ∗ l))
or Ω(c + (p ∗ l)), each p Mapper running in parallel and the
combined cost of their network voting. In theworst case thiswill be
limited to the number of Micro-Clusters allowed by the algorithm
Θ(mx ∗ c + (p ∗ l)) for each Mapper p, and the combined latency
induced by l messages.

4.5.2. Experimental setup
The setup of the proposed MC-NN algorithm over the cluster

was implemented in a traditional MapReduce setup, which is
depicted in Fig. 11.

Each of the Mappers (Hadoop nodes in the cluster) was
initialised with a Samza container connecting them to a specific
partition (distributed sub-section) of a Kafka topic stream. Each
node when idle, waits for a message to arrive. Upon arrival
of a message the node performs the required action (training,

196 M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199
Table 5
Parallel complexity definitions.

n The number of instances in the data stream (only limited by experimentation as infinite in real data stream)
d The number of dimensions of the data (number of attributes in instance)
c Then number of class labels to classify
mx The maximum number of Micro-Clusters (default set to 25 per class label)
m The number of Micro-Clusters required to cover a specific data pattern
ml The minimum number of Micro-Clusters (one Micro-Cluster per class label)
p The number of parallel Mappers utilised
l The network latency of a message
Fig. 11. Cluster setup.

predicting, etc.) of the message and data, then forwards the results
to another Kafka Output stream; as depicted in Fig. 10. To stress
test the scalability of the algorithm, multiple Stream Generators
were instantiated, firing training and test data simultaneously to
cluster. One of the nodes in the cluster was setup for Reducer jobs.
The data that the Reducers receive and process is much less than
that of the Mappers, as their task is a simple aggregation of local
predictions from Mappers. Each Reducer was also setup with a
Samza container connected to a Kafka stream.

The SEA data stream [39], Hyperplane data stream and HAR
data set were used inmultiple configurations of stream generators
and different numbers of Mappers. A brief description of the
generators can be found in Section 3.2.2. The cluster utilised had
16 physical worker nodes and 1 master node each with a quad
core processor, giving a Hadoop virtual pool of 64 worker nodes.
The parallelisation was limited to 1 node per machine to stop data
bottlenecks at the network level. Two configurations of Stream
Generators were created, 4 and 8 to send data in parallel to the
Mappers. Each stream generator was pre-configured to launch
one of the data streams (SEA, HYP or HAR). The total stream
length was divided by the number of stream generators so that
speed comparisons could be made upon a fixed stream length
processed over different configurations. For each of the stream
generator configurations 5 Mapper configurations were created
and evaluated: 1,3,5,7 and 9. The number of Mappers here controls
the level of parallelismwithin the system. The reason for using odd
numbers of Mappers for the parallelism is so that voting should
have an outright winning classification.

A 10million data instance streamwas created in parallel across
the Stream Generators. To highlight the parallel performance
of the system ‘batching’ was utilised to reduce the latency
communication costs. Training messages created were batched
into individual 10 thousand blocks for the Kafka messaging
streams. The HAR data is looped instance by instance from each
of the stream generators, to mimic the presence of a much larger
(infinite) data stream for performance evaluation.

For each parallelMapper configuration an equally parallel Kafka
distributed Topicwas created for the Samza containers to join to on
a 1:1 basis. In addition to each Samza container joining to a specific
Topic partition, a shared broadcast Topic was used for distributing
the test instances to all Mappers at the same time as depicted in
Fig. 9. The training and test messages were created simultaneously
in parallel within their own local Stream Generators, with 10
thousand training instances to 1 test message produced.
Fig. 12. Scalability of parallel MC-NN tested on the SEA data stream (10 million
instances).

Fig. 13. Scalability of parallel MC-NN tested on the Hyperplane data stream
(10 million instances).

Fig. 14. Scalability of parallel MC-NN tested on the HAR data stream (10 million
instances).

4.5.3. Scalability results for the parallel MC-NN implementation
Fig. 12 shows the overall reduction in processing timewith both

more Stream Generators and the use of more parallel processors.
Note that experiments with only 1 Mapper have been attempted,
however, a data stream with 10 million data instances sent in
parallel to a single node caused the Samza containers to re-
initialise — forced by the management software.

M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199 197
Fig. 15. Speedup of SEA data set with increasing Mappers.

It can be seen in Fig. 12, that MC-NN scales with respect to
the number of MC-NN processing nodes utilised and the number
of Stream Generators. The results for 3–5 Mappers with 4 stream
generators shows little reduction in runtime. In the setup used in
the SEA experiments, 4 generators running in parallel sending their
data to 3–5 Mappers seems to be the physical limit encountered
in terms of network performance. This is because the use of 4
generators can saturate the network, limiting the size of data that
can be forwarded to the Mappers.

In Fig. 13 the time taken for processing 10 million instances
reduces as both the number of Mappers and the stream generators
increase. In the previous MC-NN experiments (Section 3.2.3), the
Hyperplane generator stream can be efficiently classifiedwithMC-
NNwith only a fewMicro-Clusters required. The results presented
in Fig. 13 show the samepattern. By utilising theminimumnumber
of Micro-Clusters possible to ‘fit’ a data pattern, the testing time of
an instance should be unrelated to the number of Mappers (each
taking the same time in parallel). As the data is skewed in favour of
one test instance to 10,000 training instances, the benefit of using
parallelMC-NN can be seen. For example, asMapper 1 receives one
instance for training, Mapper 2 is free to receive the next training
instance and performs its ‘Training’ process at the same time.

In Fig. 14 the time taken to process the data stream appears to
be ‘non-uniform’ for using 7Mappers. This can be explained by the
fact that theHAR data set has been adapted to be a data stream. The
actual patterns encoded in the data that lead to the class labels are
not known. It is to be expected that when attempting to classify
such a data set, it would be more or less efficient when using
different parallel configurations, as the data will be distributed
differently using varying configurations. For example, instances
sent to the same Mappers will be incorporated locally into the
Micro-Clusters with little to no processing. Differing instances will
cause more Micro-Cluster splitting and take more time to train.
Unfortunately, this is a case of there being no ‘Magic Bullet’ and
certain data sets/streams will perform faster on different parallel
configurations.

Overall, the pattern we can see is that the more MC-NN nodes
that are used, the faster the processing of the 10 million data
instances from the streams. What can also be seen is that a larger
number of Stream Generators is also beneficial, which can be
explained by amore distributed data communication load between
the MC-NN nodes.

The speedup of the algorithm has been calculated by the
following formula: Speedup =

T3
TN [46]. Where T3 is the baseline

time taken for 3 Mappers and TN is the time taken for N Mappers.
Typically, speedup is taken as the ratio of parallel processing time
against a ‘single’ baseline, but as explained in Section 4.6 this was
not possible. Fig. 15 shows the speedup of the algorithm on the SEA
data set utilising multiple Mappers to spread the computational
cost. With 4 data senders a speedup of approximately 1.5 can
Fig. 16. Speedup of HYP data set with increasing Mappers.

Fig. 17. Speedup of HAR data set with increasing Mappers.

Table 6
Summarising percentage runtime improvement with respect to the number of
stream generators and Mappers.

Number of stream
generators

Number of
Mappers

SEA
%

HYP
%

HAR %

4 5 0.4 55 22
4 7 19 81 60
4 9 45 120 112

8 5 25 73 55
8 7 106 181 167
8 9 181 354 175

be seen, with 8 senders the speedup approaches 3. It should be
re-iterated that these speedups are in comparison to 3 Mappers.
Therefore a speedup factor of approximately 2.7 for 9 Mappers,
means that 9 Mappers performed 2.7 times faster than 3 Mappers
with 8 senders.

Fig. 16 shows the speedup of the algorithm on the HYP data set.
For both 4 and 8 Senders configurations we can see an increase of
the speedup in relation to the number of Mappers used.

Fig. 17 shows the speedup of the algorithm on the HAR data set.
An overall increase can be observed as the number of Mappers is
increased. A significant gradient reduction can be seen with 7–9
Mappers with 8 senders. For the HAR data set to be used as a
data stream within the stream generators it was pre-loaded into
memory before the data stream ‘ran’, otherwise there would have
been costly IO operations from the hard disk. As each data instance
was held in memory creating an instance was extremely fast. The
gradient reduction that can be seen in the figure can be explained
by the fact that the physical limit of the network configuration
was reached. This is because, the 8 senders to 7–9 Mappers is
approaching at a 1:1 ratio.

For better readability the speedup shown in Figs. 15–17 is also
shown in Table 6 as percentage improvement of runtime based on
3 Mappers.

198 M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199
4.6. Implementation, configuration and experimental issues

The current implementation has been realised by combining
a new classifier implementation with multiple Open Source
technologies. While Open Source technologies (namely, Hadoop,
Samza and Kafka) have considerable advantages for reducing
development time frames (and ensuring that the outcome can
be shared with a large user community), their use and practical
deployment is rarely complication free. From Figs. 12–14 it
should be noted that there is no 1 Mapper configuration. During
experimentation the authors noticed a repeated node failure,
leading to a re-submission for a sustained data stream to flow
through this specific configuration. The Samza containermanaging
the 1Mapper repeatedly failedwithin the Hadoop framework. This
occurred due to Samza attempting to buffer the entire data stream
in memory on a single node, leading to possible unpredictable
errors with variable sized data streams and available memory
on the nodes of the computational cluster. Distributed/parallel
technologies are well documented and aware of external and
partial failures over clustered machines and partitioned/‘sharded’
data. Most technologies utilise some strategy to deal with failures
and data recovery. RAID disks, Hadoop’s HDFS and Kafka use
data replication, holding data inmultiple locations simultaneously.
Data processing failures such as Hadoop node failures are handled
by the Node Manager. As Hadoop was primarily designed to
process batch data in individual ‘embarrassingly parallel’ blocks,
a failed task can simply be re-scheduled to be performed on
another node. Similarly, Samza ‘masquerades’ as a Hadoop job
of unbounded length, only processing data when it becomes
available. When a Samza node fails it is re-started by Hadoop as
another job. While batch processing can be processed in disjointed
iterative sub-tasks, data stream mining requires that the data
streams are processed in the order and speed that they are made
available to the classifier. This is especially true when the data is
generated from different sources in parallel. By restarting a Samza
job within the Hadoop framework a decision must be made as
to how data stream processing will proceed. The original Kafka
data stream does not know that the processing container failed,
it simply keeps a running pointer of the last message in the linear
stream that it gave to the processing job. Here only 2 choices are
available:

(1) Re-read the entire data stream (limited to Kafka logs).
(2) Start a completely new job from this point and accept that the

previous data was lost.

Re-reading the entire data stream will depend on the pre-
set Kafka configurations and how long the data stream has
been running for (perhaps, weeks or months). Kafka only retains
messages for a pre-set period of time or until messages are
overwritten on a ‘rolling log’ format of fixed hard disk size,
whichever happens sooner. Starting a new job from the point of
failure makes the classification analysis with other configurations
incomparable. Only a subset of the data stream is processed
by the new job. Accuracies and processing times are no longer
comparable. For the purpose of this paper the Kafka nodes only
kept messages for a maximum of 1 h. This allowed any old data
to be naturally flushed out of the system in a reasonable time, for
other experiments to be executed.

5. Conclusions

The development of a new parallel adaptive data stream
classifier for data streams, termed MC-NN, is presented. This
research is motivated by the fact that very little work has been
conducted on the development of real-time scalable parallel data
stream classification, even though many applications with high
throughput data streams exist. MC-NN is naturally parallel and has
been implemented on a computer cluster.

MC-NN realises real-time adaptation of data stream statis-
tics using a novel implementation of Micro-Cluster and a Near-
est Neighbour classification approach. Loosely speaking, Micro-
Clusters adapt quickly to concept drifts through splitting into
newMicro-Clusters based on variance andmisclassification errors.
Adaptation and learning within the cluster is performed through
the deletion of Micro-Clusters with a low participation. A Micro-
Cluster is considered participating if it regularly absorbs new data
instances by being correctly situated over a data pattern. An empir-
ical evaluation of MC-NN showed that it is competitive in terms of
classification accuracy and adaptation to concept drifts with other
existing popular data stream classifiers, i.e. Hoeffding Trees, adap-
tive Naïve Bayes and real-time KNN. The results show that MC-
NN has a similar or better overall classification accuracy compared
with its competitors and better adaptability to concept drifts. Fur-
thermore, the results show shorter runtime of MC-NN compared
with its competitors.

Parallelisation of MC-NN is achieved by distributing Micro-
Clusters to computational nodes in a computer cluster. Adaptation
and training is achieved by concurrently distributing training
instances from the data stream evenly among the computational
nodes in the cluster. Each node then trains and adapts to
concept drift in the same way as the serial implementation of
MC-NN. Classification is achieved through the use of a voting
mechanism by each computational node. An architecture that
allows the parallel processing of data streams has been realised
and implemented. The architecture is based on integrating various
distributed Open Source technologies such as Hadoop, Samza and
Kafka. The paper describes the use of these technologies for parallel
data stream processing and highlights issues and experiences.
An empirical evaluation of the parallel MC-NN implementation
utilising multiple data streams of varying attribute and class label
sizes, shows that parallel MC-NN scales well with respect to the
number of computational nodes utilised and the amount of Data
Stream Generators used.

Acknowledgements

This research has been supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) grant EP/L505043/1.

References

[1] M. Ebbers, A. Abdel-Gayed, V. Budhi, F. Dolot, Addressing Data Volume,
Velocity, and Variety with IBM InfoSphere Streams V3.0, 2013.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data
stream systems, in: PODS, 2002, pp. 1–16.

[3] M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining data streams: a review,
ACM SIGMOD Rec. 34 (2005) 18–26.

[4] M. Gaber, A. Zaslavsky, S. Krishnaswamy, A survey of classificationmethods in
data streams, Data Streams (2007) 39–59.

[5] J. Gama, Knowledge Discovery from Data Streams, Chapman and Hall / CRC,
2010.

[6] T. Bujlow, T. Riaz, J. Pedersen, A method for classification of network traffic
based on c5.0 machine learning algorithm, in: 2012 International Conference
on Computing, Networking and Communications, ICNC, 2012, pp. 237–241.

[7] A. Jadhav, A. Jadhav, P. Jadhav, P. Kulkarni, A novel approach for the design of
network intrusion detection system (NIDS), in: 2013 International Conference
on Sensor Network Security Technology and Privacy Communication System,
SNS PCS, 2013, pp. 22–27.

[8] A. Salazar, G. Safont, A. Soriano, L. Vergara, Automatic credit card fraud
detection based on non-linear signal processing, in: 2012 IEEE International
Carnahan Conference on Security Technology, ICCST, 2012, pp. 207–212.

[9] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceedings of
the Sixth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD’00, ACM, New York, NY, USA, 2000, pp. 71–80.

[10] T. Le, F. Stahl, J.B. Gomes, M.M. Gaber, G.D. Fatta, Computationally efficient
rule-based classification for continuous streaming data, in: Research and
Development in Intelligent Systems XXXI, Springer International Publishing,
2014, pp. 21–34.

http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref3
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref4
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref5
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref9
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref10

M. Tennant et al. / Future Generation Computer Systems 75 (2017) 187–199 199
[11] J.a. Gama, P. Kosina, Learning decision rules fromdata streams, in: Proceedings
of the Twenty-Second International Joint Conference on Artificial Intelligence
- Volume Volume Two, IJCAI’11, AAAI Press, 2011, pp. 1255–1260.

[12] Y. Ben-Haim, E. Tom-Tov, A streaming parallel decision tree algorithm, J.Mach.
Learn. Res. 11 (2010) 849–872.

[13] G.D.F. Morales, A. Bifet, Samoa: Scalable advanced massive online analysis,
J. Mach. Learn. Res. 16 (2015) 149–153.

[14] A. Andrzejak, J. Gomes, Parallel concept drift detection with online map-
reduce, in: 2012 IEEE 12th International Conference on Data Mining Work-
shops, ICDMW, 2012, 402–407. http://dx.doi.org/10.1109/ICDMW.2012.102.

[15] M. Tennant, F. Stahl, J. Gomes, Fast adaptive real-time classification for data
streams with concept drift, in: Internet and Distributed Computing Systems,
in: Lecture Notes in Computer Science, vol. 9258, Springer International
Publishing, 2015, pp. 265–272.

[16] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with drift detection,
in: Advances in Artificial Intelligence–SBIA 2004, Springer Berlin, Heidelberg,
2004, pp. 286–295.

[17] G.J. Ross, N.M. Adams, D.K. Tasoulis, D.J. Hand, Exponentially weightedmoving
average charts for detecting concept drift, Pattern Recognit. Lett. 33 (2) (2012)
191–198. http://dx.doi.org/10.1016/j.patrec.2011.08.019.

[18] R. Cavalcante, A. Oliveira, An approach to handle concept drift in financial time
series based on extreme learning machines and explicit drift detection, in:
2015 International Joint Conference onNeural Networks, IJCNN, 2015, pp. 1–8.
http://dx.doi.org/10.1109/IJCNN.2015.7280721.

[19] R.J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
[20] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995)

273–297. http://dx.doi.org/10.1023/A:1022627411411.
[21] M.A. Bramer, Automatic induction of classification rules from examples using

N-Prism, in: Research and Development in Intelligent Systems XVI, Springer-
Verlag, Cambridge, 2000, pp. 99–121.

[22] J. Han, M. Kamber, DataMining: Concepts and Techniques, Morgan Kaufmann,
2001.

[23] P. Domingos, G. Hulten, A general framework forminingmassive data streams,
J. Comput. Graph. Stat. 12 (2008).

[24] C. Aggarwal, J. Han, J. Wang, P. Yu, A framework for clustering evolving data
streams, in: Proceedings of the 29th VLDB Conference, Berlin Germany, 2003.

[25] P. Domingos, G. Hulten, Mining high-speed data streams, in: KDD, 2000,
pp. 71–80.

[26] C.C. Aggarwal, J. Han, J. Wang, P.S. Yu, A framework for on-demand
classification of evolving data streams, IEEE Trans. Knowl. Data Eng. 18 (5)
(2006) 577–589.

[27] Esper (http://www.espertech.com/esper/seen November 2015).
[28] Samza (https://samza.apache.org/seen November 2015).
[29] R. Ranjan, Streaming big data processing in datacenter clouds, IEEE Cloud

Comput. 1 (1) (2014) 78–83. http://dx.doi.org/10.1109/MCC.2014.22.
[30] M. Turilli, M. Santcroos, S. Jha, A comprehensive perspective on the pilot-job

abstraction, CoRR abs/1508.04180. URL http://arxiv.org/abs/1508.04180.
[31] Rabbitmq (https://www.rabbitmq.com/seen November 2015).
[32] Kafka (http://kafka.apache.org/seen November 2015).
[33] Kestrel (https://twitter.github.io/kestrel/seen November 2015).
[34] Flume (https://flume.apache.org/seen November 2015).
[35] Scribe (https://github.com/facebookarchive/scribe/wikiseen November

2015).
[36] M. Tennant, F. Stahl, G. Di Fatta, J.B. Gomes, Towards a parallel com-

putationally efficient approach to scaling up data stream classification,
in: M. Bramer, M. Petridis (Eds.), Research and Development in Intelli-
gent Systems XXXI, Springer International Publishing, 2014, pp. 51–65.
http://dx.doi.org/10.1007/978-3-319-12069-0_4.

[37] M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over
sliding windows, in: ACM-SIAM Symposium on Discrete Algorithms, SODA
2002, 2002.

[38] Massive online analysis(http://moa.cms.waikato.ac.nz) (September 2016).
URL http://moa.cms.waikato.ac.nz/.

[39] W. Street, Y. Kim, A streaming ensemble algorithm (SEA) for large-scale
classification, in: Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2001, pp. 377–382.
[40] A. Stisen, H. Blunck, S. Bhattacharya, T.S. Prentow, M.B. Kjærgaard, A.
Dey, T. Sonne, M.M. Jensen, Smart devices are different: Assessing and
mitigatingmobile sensing heterogeneities for activity recognition, in: Pro-
ceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems, SenSys’15, ACM, New York, NY, USA, 2015, pp. 127–140. URL
http://doi.acm.org/10.1145/2809695.2809718.

[41] A. Dawid, Stastical Theory the Prequential Approach, vol. 147, The Royal
Stastical Society, 1984, pp. 278–292.

[42] P. Sidhu, M. Bhatia, Empirical support for concept drifting approaches: Results
based on new performance metrics, Int. J. Intell. Syst. Technol. Appl. 7 (6)
(2015) 1–20.

[43] Kaggle competition winner 2014 (https://www.kaggle.com/c/lshtcseen
November 2015).

[44] M. Diego, A. Bifet, M. Gianmarco, De Francisci, Random forests of very fast
decision trees on gpu for mining evolving big data streams, in: Frontiers in
Artificial Intelligence and Applications (ECAI), vol. 14, 2014, pp. 615–620.

[45] Zookeeper (http://zookeeper.apache.org/seen November 2015).
[46] M.A. Bramer, Principles of Data Mining, second ed., in: Undergraduate Topics

in Computer Science, Springer, 2013.

Mark Tennant is currently working as Ph.D. student
at the University of Reading in High Velocity Data
Mining on Distributed Architectures. He received his
degree in Artificial Intelligence and Cybernetics from the
University of Reading in 2012. While working in Industry
as a programmer, he became qualified as a Microsoft
Professional (MP) and a Microsoft Certified Solutions
Developer (MCSD).

Frederic Stahl is a Lecturer in Computer Science at the
University of Reading. He holds a Ph.D. in Computer
Science with the title ‘‘Parallel Rule Induction’’, which
was awarded from the University of Portsmouth in 2010.
His research interests include parallel data mining, data
stream mining and data mining on smart devices.

Omer Rana is Professor of Performance Engineering
in the School of Computer Science and Informatics at
Cardiff University. He holds a Ph.D. in Neural and Parallel
Systems from Imperial College, London. His research
interests include high performance distributed systems,
data mining/analysis and multi-agent systems.

João Bártolo Gomes is a principal investigator and lab
head (distributed analytics) in the Data Analytics Depart-
ment (DAD) with the Institute for Infocomm Research
(I2R) under the Agency for Science, Technology and Re-
search (A*Star), Singapore. Before, he was a member of
the research group DAME (data mining engineering) at
Universidad Politecnica de Madrid (UPM). His current re-
search interests include ubiquitous knowledge discov-
ery, machine learning algorithms, data streammining and
learning from evolving data streams.

http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref11
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref12
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref13
http://dx.doi.org/10.1109/ICDMW.2012.102
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref15
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref16
http://dx.doi.org/10.1016/j.patrec.2011.08.019
http://dx.doi.org/10.1109/IJCNN.2015.7280721
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref19
http://dx.doi.org/10.1023/A:1022627411411
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref21
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref22
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref23
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref26
http://www.espertech.com/esper/seen
https://samza.apache.org/seen
http://dx.doi.org/10.1109/MCC.2014.22
http://arxiv.org/abs/1508.04180
https://www.rabbitmq.com/seen
http://kafka.apache.org/seen
https://twitter.github.io/kestrel/seen
https://flume.apache.org/seen
https://github.com/facebookarchive/scribe/wikiseen
http://dx.doi.org/10.1007/978-3-319-12069-0_4
http://moa.cms.waikato.ac.nz
http://moa.cms.waikato.ac.nz/
http://doi.acm.org/10.1145/2809695.2809718
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref41
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref42
https://www.kaggle.com/c/lshtcseen
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref44
http://zookeeper.apache.org/seen
http://refhub.elsevier.com/S0167-739X(17)30468-5/sbref46

	Scalable real-time classification of data streams with concept drift
	Introduction
	Related work
	Adaptive Micro-Cluster nearest neighbour data stream classification
	Micro-Cluster based nearest neighbour
	Evaluation of MC-NN's adaptation to concept drifts and classification accuracy
	Complexity of MC-NN
	Experimental setup
	Results for serial MC-NN implementation

	Parallel MC-NN for scalability to fast data streams
	Initialisation
	Training and adaptation
	Prediction
	Computer cluster architecture for parallel scalable MC-NN
	Evaluation of the parallel MC-NN implementation
	Complexity of parallel MC-NN
	Experimental setup
	Scalability results for the parallel MC-NN implementation

	Implementation, configuration and experimental issues

	Conclusions
	Acknowledgements
	References

