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 2 

Abstract 24 

The North American Multi-Model Ensemble (NMME)-Phase II models are evaluated 25 

in terms of their retrospective seasonal forecast skill of the North Atlantic (NA) 26 

tropical cyclone (TC) activity, with a focus on TC frequency.  The TC identification 27 

and tracking algorithm is modified to accommodate model data at daily resolution.  28 

It is also applied to three reanalysis products at the spatial and temporal resolution 29 

of the NMME-Phase II ensemble to allow for a more objective estimation of forecast 30 

skill.  When used with the reanalysis data, the TC tracking generates realistic 31 

climatological distributions of the NA TC formation and tracks, and represents the 32 

interannual variability of the NA TC frequency quite well.  33 

 34 

Forecasts with the multi-model ensemble (MME) when initialized in April and later 35 

tend to have skill in predicting the NA seasonal TC counts and TC days.  At longer 36 

leads, the skill is low or marginal, although one of the models produces skillful 37 

forecasts when initialized as early as January and February.  At short lead times, 38 

while demonstrating the highest skill levels the MME also tends to significantly 39 

outperform the individual models and attain skill comparable to the reanalysis.  In 40 

addition, the short-lead MME forecasts are quite reliable.  It is found that the overall 41 

MME forecast skill is limited by poor representation of the low-frequency variability 42 

in the predicted NA TC frequency, and large fluctuations in skill on decadal time 43 

scales.  Addressing these deficiencies is thought to increase the value of the NMME 44 

ensemble in providing operational guidance.  45 
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1. Introduction 46 

Recognizing high socioeconomic significance of tropical cyclone (TC) prediction, 47 

dynamical seasonal forecasts of TC activity have been pursued since the early 2000s 48 

using low-resolution climate models (see reviews by Camargo et al. 2007; Camargo 49 

and Wing 2016).  These efforts have been gaining ground in recent years with the 50 

improvements in the prediction systems including the increase of horizontal and 51 

vertical resolutions of the component models (Molteni et al. 2011; Vecchi et al. 52 

2014; Camp et al. 2015; Manganello et al. 2016) and wider use of ensemble 53 

forecasting and multi-model ensemble approach (MME; Vitart 2006; Vitart et al. 54 

2007).  One such system is the North American Multi-Model Ensemble (NMME) 55 

experimental multiagency seasonal forecasting system (Kirtman et al. 2014), which 56 

is currently delivering real-time seasonal-to-interannual predictions used for 57 

operational guidance.  In the second stage of this project (NMME-Phase II), 58 

improvements to the modeling and data assimilation systems have been introduced, 59 

the size of forecast ensembles has increased, and more complete and higher 60 

temporal frequency data has become available.   In light of these developments, it 61 

has become possible to evaluate the skill of dynamical seasonal forecasts of TC 62 

activity by the individual NMME models and the corresponding MME to determine 63 

whether these forecasts are skillful enough to be used in operational hurricane 64 

outlooks. 65 

In this paper, we examine the performance of the NMME-Phase II retrospective 66 

forecasts of the North Atlantic (NA) seasonal mean TC activity where predicted 67 

storms are identified directly in the model data using a feature-tracking algorithm.  68 
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Due to data limitations and relatively coarse horizontal resolution of the NMME 69 

models (see Sections 2a and b), our analysis is largely limited to TC frequency, and 70 

we briefly examine TC days1 and regional TC activity as represented by track 71 

density (see Vecchi et al. 2014; Manganello et al. 2016).  For verification purposes, 72 

we use three different reanalysis products in addition to the postseason best track 73 

data, such as IBTrACS (see Section 2c).  This is done to isolate the influence of model 74 

resolution and the TC identification approach on the verification results.  In addition 75 

to assessing the overall level of skill, our goal is to identify aspects of the simulations 76 

that could lead to potential improvements in the TC forecast skill and translate into 77 

further developments of the NMME models. 78 

Section 2 presents the NMME-Phase II models and hindcast datasets, and 79 

introduces the observational and reanalysis data used to assess the skill of TC 80 

hindcasts.  It also describes the methodology of identifying and tracking the TCs in 81 

the model data and reanalysis.  Assessment of the seasonal forecast skill of the NA 82 

TC activity, its dependence on the month of initialization and low-frequency 83 

variability are presented in Section 3, along with a brief description of the 84 

climatology of TC formation and tracks.  Discussion of the results and concluding 85 

remarks are included in Section 4. 86 

  87 

                                                        
1 “TC days” is defined as a lifetime of all TCs accumulated over a season, measured in 
days.  
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2. Data and Methods 88 

a. NMME-Phase II models and data 89 

The NMME-Phase II ensemble consists of coupled prediction systems from North 90 

American modeling centers and the Canadian Meteorological Centre (CMC).  Table 1 91 

contains information about the NMME-Phase II models and hindcast datasets used 92 

in this study2.  The NMME System Phase II hindcasat data is available for download 93 

from the Earth System Grid at the National Center for Atmospheric Research (NCAR) 94 

(https://www.earthsystemgrid.org/search.html?Project=NMME).   95 

Atmospheric horizontal resolution of the models in Table 1 is relatively coarse 96 

(between about 1 and 2 degrees), which is common to most present-day operational 97 

seasonal prediction systems.  (The output resolution is 1°x1° grid for all models.)  98 

Daily frequency is the highest temporal output resolution for the majority of the 99 

NMME-Phase II models.  This rather coarse horizontal and temporal resolution of 100 

the data puts additional constraints on the choices of objective criteria used for TC 101 

identification, which is further elaborated below.  A roughly 30-year period is 102 

considered long enough to evaluate the skill of long-range predictions.  The hindcast 103 

start times include all 12 calendar months, which in addition to a large number of 104 

lead times allows for an assessment of long-lead (forecasts initialized as early as 105 

January) and short-lead (initialization as late as August) predictions.  106 

 107 

b. Tracking of tropical cyclones 108 

                                                        
2 At the time of this writing, daily dynamical fields for a common 1982-2012 
hindcast period were available for download only for a subset of the NMME-Phase II 
models, which are listed in Table 1. 

https://www.earthsystemgrid.org/search.html?Project=NMME
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Identification and tracking of TCs in coarse- (horizontal) resolution models has 109 

been done since the early 1980s, and a variety of methods exist to minimize the 110 

effect of resolution on detection criteria (e.g., Walsh et al. 2007; Strachan et al. 111 

2013).  On the other hand, to resolve the TC trajectory, including its pre- and post-112 

TC stages, a sufficiently high temporal resolution is generally required with the 6-113 

hourly output frequency preferred for direct comparison with the best track data.  114 

Tracking with daily data is not usually done, except in Smith et al. (2010) where TCs 115 

are identified as minima in daily sea level pressure as they are tracked, which 116 

reduces the number of possible matches but only captures the most intense part of 117 

the lifecycle.  In their study, the analysis is also restricted to the region between 0° 118 

and 25°N.  Recently, Vitart (2016) has successfully adjusted the tracking scheme 119 

used at the European Centre for Medium-Range Weather Forecasts (ECMWF) to 120 

evaluate the skill of sub-seasonal TC predictions using daily data. 121 

In this study, the initial TC identification and tracking is based on the objective 122 

feature-tracking methodology of Hodges (1995, 1999) and is tuned to work with 123 

daily data, as opposed to 6-hourly data.  The detection algorithm identifies vortices 124 

as maxima in the 850-hPa relative vorticity field (in the Northern Hemisphere) 125 

spectrally truncated at T42 with an intensity threshold of 1x10-5 s-1 and lifetimes 126 

greater than 2 days (2 time steps).  This tracking method allows TC tracks to be 127 

captured in the deep tropics quite well but may underrepresent the extra-tropical 128 

extensions of the tracks (see also Section 3a). 129 

To separate predicted TCs from other synoptic-scale features, a set of TC 130 

identification criteria needs to be applied to the raw tracks generated above.  This 131 
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should include (1) a structural requirement of a warm core, (2) an intensity 132 

threshold, along with (3) the formation region and (4) duration requirements.  Due 133 

to the coarseness of the spatial and temporal resolutions of the NMME-Phase II 134 

models and limited availability of the surface wind data, we decided to base our TC 135 

identification criteria solely on multi-level relative vorticity (at 850-hPa, 500-hPa 136 

and 200-hPa levels common to all models in Table 1).  To derive detection 137 

thresholds in this case, simulated TC counts need to be calibrated against 138 

observations.  In this respect, our approach is similar to the method of Strachan et 139 

al. (2013).  140 

We have tested seven sets of TC identification criteria using May-November3 141 

(MJJASON) reanalyses and model data (forecasts initialized in April).  We varied the 142 

number of levels used to define the vertical structure, assessed the sensitivity to the 143 

presence of vorticity center at each level and monotonic reduction of vorticity with 144 

height, and varied the minimum number of days when structural conditions need to 145 

be satisfied (see Supplementary Material for more detail).  In all cases, a warm core 146 

condition remained the same, cyclogenesis was restricted to 0°-20°N over land and 147 

0°-30°N over oceans, and 850-hPa vorticity at output resolution was used to 148 

calibrate seasonal TC counts.  For each reanalysis and NMME model, we have chosen 149 

a set of TC identification criteria that maximizes their MJJASON TC frequency 150 

correlation skill.  These criteria are therefore not the same for all the datasets, 151 

although the sensitivities are not large and are further discussed in the 152 

Supplementary Material.  While this is not a general practice, we believe that the 153 

                                                        
3 The MJJASON period encompasses most of the TC season in the NA basin. 
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above approach allows to better gauge the skill of each individual reanalysis and 154 

model.  These dataset-specific criteria do not change for the rest of the analysis, 155 

including the skill assessment of long- and short-range predictions. 156 

 157 

c. Observational and reanalysis data 158 

For comparison with observations, we use data from the International Best 159 

Track Archive for Climate Stewardship (IBTrACS, version v03r07; Knapp et al. 2010; 160 

available online at https://www.ncdc.noaa.gov/ibtracs/).  IBTrACS makes available 161 

for public use a global dataset of post season analysis of TC position and intensity 162 

(also know as “best track”) by merging storm information from multiple centers into 163 

one product.  The observed tracks are further processed here by retaining systems 164 

with lifetimes greater than 2 days, of tropical storm strength for at least 1 day and 165 

with first identification occurring between 0°-20°N over land and 0°-30°N over 166 

oceans, to be more in line with the model and reanalysis tracks (see Section 2b).  We 167 

also use sea surface temperature (SST) data from the National Oceanic and 168 

Atmospheric Administration (NOAA) Optimum Interpolation SST version 2 data set 169 

(OISSTv2; Reynolds et al. 2002). 170 

Since our choice of TC identification criteria (Section 2b) does not imply a close 171 

match with the observational ones, it is prudent to use reanalysis data for more 172 

direct verification of model results.  In reanalyses, historical observations are 173 

objectively ingested into the models with a goal to produce a consistent estimate of 174 

the state of the climate.  As such, reanalyses have an advantage of models by 175 

providing a more comprehensive dataset.  They are constrained by the observations 176 

https://www.ncdc.noaa.gov/ibtracs/
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but limited by the raw input data and its quality, the resolution of the models used, 177 

and the capabilities of the data assimilation system.  Overall, applying the same 178 

tracking methodology to the reanalysis and model data of the same spatial and 179 

temporal resolution would allow a more objective estimation of the model skill. 180 

We have used the following three reanalysis datasets:  the National Centers for 181 

Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR; Saha 182 

et al. 2010); the Interim ECMWF Re-Analysis (ERA-I; Dee et al. 2011); and the 183 

National Aeronautics and Space Administration (NASA) Modern Era Retrospective-184 

Analysis for Research and Applications (MERRA; Rienecker et al. 2011).  The spatial 185 

resolution of all reanalysis data was downgraded to the 1°x1° grid of the NMME-186 

Phase II model data.  The temporal resolution was converted to daily, and the period 187 

of 1982-2014 was used for analysis. 188 

 189 

3. Results 190 

a. Climatologies of TC formation and tracks 191 

Prior to evaluating the skill of TC frequency forecasts, we verify whether the TC 192 

identification and tracking approach chosen here generates realistic distributions of 193 

genesis locations and tracks.  Figs. 1 and 2 show NA genesis and track densities, 194 

respectively, for the IBTrACS, reanalyses and the NMME-Phase II retrospective 195 

seasonal forecasts.  Reanalysis products reproduce main features of the genesis 196 

pattern quite well, with varying levels of success depending on the specific 197 

cyclogenesis center (Figs. 1a-d).  CFSR is most accurate in representing the Main 198 

Development Region (MDR; 10°-25°N, 80°-20°W), whereas in ERA-I and MERRA, 199 
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activity in this area is largely concentrated near the west coast of Africa. (Origin of 200 

some tracks over West Africa is likely related to their tropical easterly wave 201 

precursors being captured by the tracking algorithm (see also Manganello et al. 202 

2012).  For the same reason, the bulk of the MDR genesis is shifted further to the 203 

east compared to observations.)  The Gulf of Mexico center is underrepresented in 204 

all reanalysis products, whereas the western Atlantic center is quite realistic across 205 

the board.  The Caribbean genesis is shifted southeast and is somewhat overactive in 206 

ERA-I.  This shift has been noted earlier and linked to the coarse spatial resolution of 207 

the models (Manganello et al. 2012, 2016).  The associated track density is overall 208 

well reproduced (Figs. 2a-d), except in the extra-tropics which is likely a 209 

consequence of tracking using daily data (see Section 2b). 210 

Predicted genesis and track densities on the whole are less realistic compared to 211 

observations and reanalyses, where formation regions are strongly concentrated in 212 

space (Figs. 1e-h), and track density is overpredicted and too zonal in the tropics 213 

and quite weak further north (Figs. 2e-h).  However, the MDR genesis is rather 214 

active in all the hindcasts, and other centers are well defined, except for the Gulf of 215 

Mexico and the western Atlantic centers being absent in the CanCM3 forecasts.  In 216 

addition, the Gulf of Mexico center, where present, is more realistic than in the 217 

reanalysis.  On the other hand, the Caribbean genesis is too strong, and the 218 

associated tracks are largely confined to the northern tip of South America.  To 219 

summarize, the tracking algorithm is capable of generating climatologies of the NA 220 

TC formation and tracks with many realistic features, particularly when applied to 221 

reanalysis products. 222 
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 223 

b. April forecasts of the North Atlantic seasonal mean TC activity 224 

1).  TC frequency 225 

Fig. 3 shows the interannual variability of the observed and reanalyses-based NA 226 

TC frequency, which is another demonstration of the utility of the TC tracking 227 

method in estimating seasonal mean TC activity using daily data.  The reanalysis 228 

datasets reproduce the interannual variability quite well, with major peaks of 1995 229 

and 2005 to the most part realistically represented.  The correlation coefficients 230 

between the reanalyses and the observed time series are also quite high ranging 231 

from 0.67 to 0.81 (see Table 2).  The reanalyses do differ considerably in terms of 232 

their skill in representing multidecadal changes characterized by low activity in the 233 

1980s and early 1990s and high activity in the latter part of the record (e.g., 234 

Goldenberg et al. 2001).  ERA-I is the most successful in capturing this trend, 235 

whereas CFSR displays no trend (see Fig. 3). 236 

Retrospective correlation skill varies markedly among the NMME-Phase II 237 

models (see Table 2 for MJJASON forecasts initialized in April).  It is quite high for 238 

CCSM4 and CanCM4 and is in fact similar to the skill of experimental high-239 

atmospheric-resolution coupled prediction systems in Project Minerva (Manganello 240 

et al. 2016), whereas it is close to zero for GEOS-5 and CanCM3.  As a consequence, 241 

correlation of the MME mean4 is significant but rather modest and does not exceed 242 

                                                        
4 The MME mean is defined as the average over all the hindcasts, with all ensemble 
members of each model having equal weight. 
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the skill of all models in the ensemble.  The root-mean-square error5 (RMSE), which 243 

a measure of forecast accuracy, is fairly large, although the differences are not major 244 

when the MME mean is compared to reanalyses (Table 3).  RMSE for the detrended 245 

time series is smaller across the board suggesting that low-frequency variability is 246 

not well reproduced in the forecasts (see below).  For short-range predictions, the 247 

overall skill improves, and the advantages of the MME approach become more 248 

evident (see Secion 3d). 249 

A natural question arises whether the individual NMME-Phase II models are 250 

indeed more or less skillful than their MME mean, and whether these models 251 

including the MME display skill that is significantly different from the skill based on 252 

the reanalyses data.  The correlation coefficient is not considered a very good 253 

measure to compare skill, as the presence of noise may lead to large differences in 254 

this quantity.  It is found that the squared error is a more appropriate metric 255 

(DelSole and Tippett, 2014), and we choose the Wilcoxon signed-rank test for the 256 

forecast skill comparison since it is not sensitive to the type of distribution (ibid.).  257 

We find that at the 95% confidence level, the differences in skill among the four 258 

NMME models and their MME mean are insignificant, except that the skill of GEOS-5 259 

and CanCM3 is significantly lower that the skill of CanCM4.  We also find that all 260 

NMME models and the MME mean are as skillful as CFSR and ERA-I but less skillful 261 

than MERRA.  (The skill of CanCM3 is also significantly lower compared to ERA-I).  It 262 

                                                        
5 Forecasts are calibrated (without cross-validation) where each ensemble member 
is multiplied by a constant factor so that the predicted ensemble-mean and 
observed climatologies become equal. 
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is worth emphasizing that the above skill comparison is based on the MJJASON 263 

season (forecasts initialized in April). 264 

Ensemble forecasts have an additional advantage of being able to quantify 265 

uncertainty based on the probabilistic approach.  One such measure is statistical 266 

reliability, which can be expressed as a ratio of the ensemble spread and the RMSE 267 

(SPRvERR).  In a perfectly reliable ensemble forecast, forecast probabilities match 268 

the observed frequencies, and the SPRvERR is equal to one.  Individual NMME and 269 

the MME mean April forecasts are found to be underdispersed (or overconfident; 270 

Table 4).  Detrending the time series enhances reliability quite a bit which indicates 271 

that poor low-frequency variability of the predicted NA TC frequency is indeed a 272 

distinct source of forecast error.  These results are similar to our findings in Project 273 

Minerva (Manganello et al. 2016).  274 

To further illustrate the above results, Fig.4 shows seasonal mean TC frequency 275 

predicted by the CCSM4 and CanCM4 models along with their ensemble information 276 

compared with observations.  Both models capture year-to-year fluctuations quite 277 

well, particularly in the 1990s and early 2000s where only several seasons fall 278 

outside the 10th-90th percentile range (1992, 1997, and 2005 for CCSM4; and 1992, 279 

1995, 1997 and 2005 for CanCM4).  Neither of the models reproduces the secular 280 

trend, and the hindcast skill appears to be inferior in the 1980s and 2010s, which is 281 

further discussed below. 282 

2) TC days and TC track density    283 

Seasonally accumulated lifetime of all TCs in the basin, or “TC days” (see 284 

definition in Section 1), exhibits retrospective correlation skill behavior quite 285 
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comparable to TC frequency (Table 5).  The forecasts that are skillful in predicting 286 

TC frequency are to the most part also skillful in predicting TC days.  For MJJASON 287 

forecasts initialized in April the correlation of the MME mean TC days is not high but 288 

significant (0.46), and increases to 0.59 at shorter leads (July and August 289 

initializations).  It is curious that reanalyses reproduce variability of TC days 290 

seemingly better than TC frequency (using current tracking), where correlation for 291 

TC days doesn’t drop below 0.76 (Table 5). 292 

One of the current challenges of seasonal TC forecasting is to provide regional 293 

information, such as local TC occurrence or probability of landfall, which is more 294 

relevant for decision-making (e.g., Vecchi et al. 2014; Camp et al. 2015; Manganello 295 

et al. 2016; Murakami et al. 2016).  Here we examine whether MME forecasts of the 296 

NA TC activity have retrospective skill on sub-basin scales using track density as a 297 

metric and Spearman rank correlation as a measure of performance (see 298 

Manganello et al. 2016 for more detail).  We compare this skill to the rank 299 

correlation between the seasonal mean observed and reanalyses-derived track 300 

densities.   All three reanalysis products are quite successful at reproducing 301 

interannual variability of regional TC activity over most of the NA domain (Figs. 5a-302 

c).  The regions with significant correlations common to all products are the MDR, 303 

the Caribbean Sea, the Gulf of Mexico and central subtropical North Atlantic.  These 304 

regions also tend to show the highest correlation values.  The results do not seem to 305 

be particularly sensitive to whether the extended MJJASON season or the peak ASON 306 

season is examined (Figs. 5e-g).  In comparison, for the longer-lead MME forecasts 307 

initialized in April the regions with significant skill are rather sparse and limited to 308 
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some parts of the MDR and the westernmost margins of the Caribbean Sea and the 309 

Gulf of Mexico (Fig. 5d).  The absence of any skill north of about 30°N is likely 310 

related to strong underprediction of climatological tracks at these latitudes in the 311 

NMME models (see Section 3a).  At shorter leads (MME forecasts initialized in July), 312 

the region with significant skill markedly increases and now covers the western part 313 

of the MDR and the whole Caribbean Sea (Fig. 5h).  Fairly high retrospective forecast 314 

skill in the vicinity of Caribbean islands suggests that predictions of TC landfall 315 

frequency in this region may also be skillful.  Overall, the skill of regional TC activity 316 

forecasts in the NMME is rather modest compared to other coupled prediction 317 

systems that employ atmospheric models with much higher horizontal resolution 318 

(see Vecchi et al. 2014; Manganello et al. 2016; Murakami et al. 2016). 319 

 320 

c. Low-frequency variability in prediction skill  321 

The NMME-Phase II ensemble exhibits variability in the retrospective forecast 322 

skill of the NA TC frequency (Fig. 6).  Compared to the reanalyses, which maintain 323 

relatively constant skill throughout the hindcast period, the MME mean displays 324 

markedly lower skill in the 1980s and early 1990s, and also late 2000s and 2010s 325 

(Fig. 6a).  During these two periods, the model skill deviates from the reanalyses.  In 326 

contrast, it is quite comparable to the reanalyses in the late 1990s and early 2000s.  327 

Since the NA TC season peaks in August-October, forecasts initialized in June could 328 

be considered short-lead forecasts of the full hurricane season.  We find that at 329 

shorter leads (Fig. 6b), forecast skill becomes more in line with the reanalyses in the 330 
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latter part of the record.  This tendency is also present in forecasts initialized in May 331 

(not shown).  332 

Loss of skill in the 1980s is not unique to the NMME-Phase II models.  Similar 333 

behavior was also found in all Minerva hindcasts (Manganello et al. 2016) where it 334 

was linked to more deficient initialization of ocean fields.  It is also feasible that 335 

predictability of the NA TC activity can fluctuate from one decade to another.  The 336 

influence of certain climatic factors that serve as predictors of the NA TC activity 337 

may depend on the underlying climate conditions (Fink et al. 2010; Caron et al. 338 

2015).  Current seasonal prediction systems are perhaps able to reproduce some of 339 

the relationships but not others or do not time them correctly, which may 340 

contribute to the drop in skill. 341 

While a detailed analysis of these influences is beyond the scope of the current 342 

paper, as a first step we examine here the relationship between the NMME forecasts 343 

of TC frequency and several well established predictors of the NA TC genesis, and 344 

compare results to observations and reanalyses.  The selected climate indices are: 1) 345 

SST averaged over the MDR; 2) relative SST index6, and 3) the Niño-3.4 index7 (see, 346 

e.g., Villarini et al. 2010; Vecchi et al. 2011; Caron et al. 2015 and the extensive lists 347 

of references in these papers).  Both observations and reanalyses suggest a stronger 348 

relationship between the MDR SSTs and the NA TC frequency in the late 1990s and 349 

early 2000s compared to the earlier and latter parts of the record where 350 

correlations become marginally significant (Fig. 7a).  The correlation with the 351 

                                                        
6 Relative SST index is defined as the difference between MDR SST and global 
tropical-mean SST (e.g., Zhao et al. 2010). 
7 Niño-3.4 index is defined as SST averaged over 5°S-5°N, 120°-170°W. 
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relative SST index is higher and more constant throughout the time period (Fig. 7b), 352 

as is the negative connection with the El Niño and the Southern Oscillation (ENSO) 353 

except perhaps in 2000s where reanalyses data suggest a weakening of this 354 

relationship (Fig. 7c).  The NMME models and their MME mean tend to display 355 

rather different behavior.  During the earlier and latter parts of the hindcast period, 356 

TC frequency forecasts appear to be much stronger driven by variations in the 357 

predicted MDR SSTs and the relative SST index compared to the middle part of the 358 

record, opposite to what observations and reanalyses demonstrate (Figs. 7a and b).  359 

It is curious that the late 1990s and early 2000s when the MME correlations with 360 

the MDR SSTs and the relative SST index are most realistic coincide with the period 361 

of the highest MME TC frequency forecast skill (Fig. 6a).   On the other hand, the rest 362 

of the hindcast period when these correlations are too high and markedly outside 363 

the range of the observed/reanalyses values is also when the forecast skill is at the 364 

lowest levels as described above and shown in Fig. 6a.  In addition, the retrospective 365 

forecast skill of the MDR and relative SST indices is generally quite high except in 366 

the 1980s and early 1990s when forecasts of the relative SST index are not skillful 367 

(see Fig. S1 in the Supplementary Material).  This could further limit the quality of 368 

the TC frequency predictions during this time period.  In contrast, the influence of 369 

ENSO appears to be captured quite well by the MME forecasts, except possibly in the 370 

1980s and late 2000s when it appears to be somewhat stronger (Fig. 7c); the 371 

hindcast skill of the Niño-3.4 index is the highest among the indices examined and 372 

also fairly constant throughout the record (Fig. S1).   373 

 374 
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d. Long- and short-lead forecasts 375 

The NA TC hindcast skill as a function of the initialization month is shown in Fig. 376 

8, along with the results for the reanalyses and measures of “null skill”.  At longer 377 

lead times (earlier than April), the MME mean shows marginal skill when initialized 378 

in February relative to the IBTrACS trailing 5-yr average, which is a skill metric 379 

recommended by the World Meteorological Organization (WMO 2008; Fig. 8a).  In 380 

this reference forecast, the interannual variability is smoothed out but the 381 

interdecadal variability is preserved to some extent.  The best performing forecasts 382 

at long leads are produced by CanCM4 and are skillful for January and February 383 

initializations.  It is notable that for most models and the MME mean the skill curves 384 

in Fig. 8a display substantial variability from month to month.  This “noisiness” is 385 

largely due to low-frequency variability being forecasted at varying levels of skill 386 

depending on the initialization month.  (Compare also with Fig. 8b that shows 387 

similar metrics computed for the detrended time series and displaying a more 388 

consistent increase in skill with lead time.)  Relative to persistence, or the previous 389 

season’s TC count, the detrended MME mean shows no long-lead skill except 390 

perhaps when initialized in March.   All detrended long-lead CanCM4 forecasts show 391 

skill albeit marginal.   392 

When the hurricane season is approached (March and June initializations) the 393 

skill drops somewhat (Figs. 8a and b).  At short lead times (July and August), it 394 

rebounds and displays the highest levels overall (see also Table 2).  It is notable that 395 

all detrended MME mean forecasts initialized in April and later are consistently 396 

skillful relative to persistence (Fig. 8b). The short-lead MME mean correlation skill 397 
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(RMSE) also shows the highest (lowest) value among all the models (detrended 398 

only; see Tables 2 and 3).  In addition, it becomes comparable to the skill of the 399 

reanalyses.  For instance, RMSEs of forecasts initialized in July are lower than for 400 

CFSR and ERA-I (detrended only in the latter case; Table 3).  The short-lead MME 401 

mean forecasts are also quite reliable, although somewhat over-dispersed when 402 

detrended (Table 4).  It is curious that among the forecasts initialized in June 403 

through August the best performing model is CanCM3, whereas it is one of the worst 404 

performing at longer leads.  If April forecasts were chosen as a benchmark and the 405 

MME are based on two models with skill (CCSM4 and CanCM4), the resultant 406 

correlation at short leads is markedly lower compared to the MME based on all 407 

available models (not shown).  This is one of the advantages of the multi-model 408 

ensemble approach that is not always obvious. 409 

The skill of the MME mean relative to the individual NMME-Phase II models and 410 

the reanalyses is further assessed using the difference between the squared error as 411 

a skill metric and testing the significance by applying the Wilcoxon signed-rank test 412 

(see Fig. 9; DelSole and Tippett, 2014).  In the vast majority of cases, the MME mean 413 

outperforms the individual model with differences being statistically significant at 414 

short lead times (June and July initializations).  Relative to the reanalyses, the MME 415 

mean shows larger error most of the time (except at short leads with respect to 416 

CFSR), although it is significant primarily at long leads and when compared to 417 

MERRA only.  It is also notable that at most lead times, the reliability is improved 418 

slightly for the MME mean and to a larger extent when the time series are detrended 419 

(not shown).  420 
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 421 

4. Summary and conclusions 422 

In this study, the NMME-Phase II models are interrogated in terms of the 423 

retrospective seasonal forecast skill of the NA TC frequency.  The TCs are identified 424 

explicitly in the model data by means of an objective feature-tracking methodology.  425 

Due to the synoptic nature of these storms, daily resolution (the highest available 426 

for the ensemble) is generally considered coarse for TC tracking.  As part of this 427 

work, we have adjusted the TC identification and tracking algorithm to work with 428 

daily data and also applied it to three reanalysis products (CFSR, ERA-I and MERRA) 429 

that were coarsened to have the same spatial and temporal resolution of the NMME-430 

Phase II ensemble.  The latter step provides additional verification data (apart from 431 

best track data) where the effects of resolution and the TC identification approach 432 

have been isolated which allows for a more objective estimation of forecast skill.   433 

The TC tracking method used here, when applied to reanalysis data, produces 434 

realistic climatological distributions of the NA TC formation and tracks.  Low track 435 

density in the extra-tropics is a common deficiency, which is a result of tracking 436 

using daily data.  The tracking is also quite skillful in reproducing the interannual 437 

variability of the TC frequency relative to the IBTrACS with correlations ranging 438 

between 0.67 and 0.81 depending on the reanalysis product.  These values are quite 439 

comparable to the estimates obtained in Strachan et al. (2013) and Roberts et al. 440 

(2015) where both studies utilized six-hourly data. 441 

Long-lead (March and earlier) retrospective seasonal forecasts of the NA TC 442 

frequency with the MME based on the available NMME-Phase II models are found to 443 
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have low or marginal skill, although one of the models (CanCM4) produces skillful 444 

forecasts when initialized as early as in January and February.  At shorter leads 445 

(April and later), the MME mean forecasts are largely skillful with the best 446 

performance for July and August initializations.  Skill metrics evaluated for the 447 

detrended time series display a more systematic increase in skill with shorter lead 448 

time, and all detrended MME mean forecasts initialized in April and later are 449 

consistently skillful.  At short lead times (June through August), the MME mean also 450 

tends to significantly outperform the individual models and attain skill comparable 451 

to the reanalysis.  The short-lead MME mean forecasts are also quite reliable, while 452 

being under-dispersed at longer leads. 453 

We have identified several deficiencies in the simulations that likely limit the 454 

NMME-Phase II seasonal hindcast skill of the NA TC frequency.   455 

1. None of the models or the MME mean independent of the initialization month 456 

can realistically represent low-frequency variability characterized by low 457 

activity in the 1980s and early 1990s and higher activity thereafter.  The skill 458 

metrics computed for the detrended time series show higher scores in the 459 

vast majority of cases.  This suggests that poor multi-year variability in the 460 

forecasts may indeed be a source of forecast error.  This problem is not trivial 461 

and is characteristic of other prediction systems like Minerva (Manganello et 462 

al. 2016) and several reanalysis products, e.g., MERRA and CFSR.  It could be 463 

related, for instance, to poor skill in reproducing downward trends in upper 464 

tropospheric temperature (Emanuel et al. 2013; Vecchi et al. 2013), 465 

inadequate representation of the effects of aerosols and ozone (Evan et al. 466 
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2009, 2011; Emanuel et al. 2013), possibly deficiencies in simulating tropical 467 

heating and atmospheric teleconnections (Manganello et al. 2016), and the 468 

sensitivity to the identification of weak and short-lived TCs in the model and 469 

reanalysis data. 470 

2. We have shown that the MME mean forecasts exhibit a large drop in skill in 471 

the 1980s and early 1990s and also late 2000s and 2010s (mostly at longer 472 

leads).  It is curious that during the rest of the period (late 1990s and early 473 

2000s), the MME mean skill is quite comparable to the reanalyses, which 474 

maintain relatively constant skill throughout the hindcast time period.  Early 475 

in the record, forecast errors could be partly related to deficiencies in the 476 

model initialization.  Although the problem as a whole may be more complex 477 

and indicate that certain physical relationships that underline predictability 478 

of the NA TC activity may not be consistently reproduced or properly timed. 479 

Addressing the above issues, while not an easy task, could lead to marked 480 

improvements in the seasonal forecast skill and increase the value of the NMME 481 

ensemble in providing operational guidance. 482 
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Figure 1:  NA genesis densities for the MJJASON season as number density per 648 
season per unit area equivalent to a 5° spherical cap for (a) IBTrACS (OBS), (b) 649 
CFSR, (c) ERA-I, and (d) MERRA reanalyses based on 1982-2014, and (e) CCSM4, (f) 650 
GEOS-5, (g) CanCM3, and (h) CanCM4 seasonal hindcasts (all ensemble members) 651 
based on the time periods listed in Table 1. 652 
  653 
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Figure 2:  As in Fig. 1, but for the track density. 697 
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Figure 3: Time series of the NA MJJASON TC frequency based on the IBTrACS (OBS) 719 
data (red), and the CFSR (black), ERA-I (blue) and MERRA (green) reanalysis data 720 
sets.  Linear trends for each time series are shown in the upper-left corner, units are 721 
counts per season per year.  722 
  723 
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Figure 4: Retrospective forecasts (initialized in April) of the NA MJJASON TC 762 
frequency for the (a) CCSM4 and (b) CanCM4 NMME-Phase II models.  Red and black 763 
lines show the observed time series and the ensemble-mean forecasts, respectively.  764 
Black dots mark predictions from the individual ensemble members.  Box-and-765 
whisker plots denote the 25th-75th and 10th-90th percentile ranges. 766 
  767 
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Figure 5:  Rank correlation between the MJJASON observed (IBTrACS) and 805 
reanalysis-derived TC track densities for 1982-2014 using (a) CFSR, (b) ERA-I, and 806 
(c) MERRA.  TC track density is defined as number density per season per unit area 807 
equivalent to a 5° spherical cap.  (E)-(g) are the same as (a)-(c) but for the ASON 808 
season.  (D) and (h) show retrospective rank correlation of the observed vs. MME 809 
predicted TC track density for MJJASON (April ICs) and ASON (July ICs) of 1982-810 
2012, respectively.  Values statistically significant at a two-sided p=0.1 level are 811 
shown by color shading.  Grey shading marks the regions where the observed track 812 
density above zero for at least 25% of the years.  813 
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Figure 6:  Sliding 15-year correlation of the predicted (ensemble mean) and 845 
reanalysis NA TC frequency with the observed (IBTrACS) for the (a) May-November 846 
season (forecasts initialized in April), and (b) July-November season (forecasts 847 
initialized in June).  NMME-Phase II model results are shown in black and solid line 848 
for CCSM4, dotted for GEOS-5, long-dash-short-dash for CanCM3, and dot-dot-dash 849 
for CanCM4.  Results for the MME mean are shown in magenta, and blue for the 850 
reanalyses (solid line for CFSR, long-dash-short-dash for ERA-I and dot-dot-dash for 851 
MERRA).  Horizontal dashed line signifies statistically significant correlation.  852 
Horizontal axis marks the central year in the 15-year window. 853 
  854 
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Figure 7:  Sliding 15-year correlation of the MJJASON NA TC frequency with the ASO 890 
mean (a) MDR SST index; (b) relative SST index; and (c) Niño-3.4 index (see 891 
definitions in the text) for observations (IBTrACS vs. OISSTv2), reanalysis and 892 
ensemble mean forecasts (initialized in April).  NMME-Phase II model results are 893 
shown in black and solid line for CCSM4, dotted for GEOS-5, long-dash-short-dash 894 
for CanCM3, and dot-dot-dash for CanCM4.  Results for the MME mean are shown in 895 
magenta, green for observations, and blue for the reanalyses (solid line for CFSR, 896 
long-dash-short-dash for ERA-I and dot-dot-dash for MERRA).  Grey shading 897 
denotes the range of observed/reanalysis values.  Horizontal dashed line signifies 898 
statistically significant correlation.  Horizontal axis marks the central year in the 15-899 
year window.  900 
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Figure 8:  Correlation skill of the seasonal mean NA TC frequency for the NMME-933 
Phase II models, the MME mean and the reanalyses as a function of forecast lead 934 
time, shown for the (a) full time series, and the (b) detrended time series.   The solid 935 
colored lines display the skill of the CCSM4 (orange), GEOS-5 (brown), CanCM3 936 
(lilac), CanCM4 (violet), and the MME mean (magenta).  The black lines show the 937 
skill of CFSR (solid), ERA-I (long-dash), and MERRA (dot-dot-dash).  Results shown 938 
are for the May-November average for forecasts initialized in January through April; 939 
June-November, July-November, August-November and September-November 940 
means when initialized in May, June, July and August, respectively.  For the full time 941 
series, the skill is compared to a reference forecast comprising of the lagged 5-yr 942 
average of the observed TC frequency (solid gray; WMO 2008), and to persistence, 943 
or the previous season’s observed TC frequency, (long-dash grey) for the detrended 944 
cases.  945 
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Figure 9:  Difference between the squared error of the MME mean hindcasts and the 967 
squared error of the NMME-Phase II model or reanalysis indicated on the vertical 968 
axis, as a function of forecast lead time.  Light blue (light red) color indicates that the 969 
MME mean squared error is smaller (larger) than the respective model/reanalysis.  970 
Dark blue (dark red) color indicates that the squared error of the MME mean is 971 
significantly smaller (larger) than the comparison model/reanalysis at the 95% 972 
confidence level using Wilcoxon signed-rank test.  White blanks indicate that there 973 
are no results due to incompleteness/unavailability of the model data. 974 
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Table 1.  NMME-Phase II models and forecasts. 976 

Model 
Name 

Modeling Center Reference 
Hindcast 

Period 
Ensemble 

Size 
Lead Times 

(months) 

Atmospheric 
Model 

Resolution 

CCSM4 

University of Miami-
Rosenstiel School for 
Marine and Atmospheric 
Science (UM-RSMAS) 

Kirtman et al. (in 
prep.) 

1982-2014 10 0-11 
0.9x1.25 deg. 

L26 

GEOS-5 
National Aeronautics and 
Space Administration 
(NASA) 

Verniers et al. 
(2012) 

1982-2012 10 0-8 
1x1.25 deg. 

L72 

CanCM3 
Canadian Centre for Climate 
Modeling and Analysis 
(CCCMA) 

Merryfield et al. 
(2013) 

1981-2012 10 0-11 T63L31 

CanCM4 
Canadian Centre for Climate 
Modeling and Analysis 
(CCCMA) 

Merryfield et al. 
(2013) 

1981-2012 10 0-11 T63L35 

 977 

  978 
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Table 2.  Linear correlation of the predicted (ensemble mean) and reanalysis NA TC frequency with the observed 979 

(IBTrACS) for 1982-2014 for the reanalyses data sets, and the time periods listed in Table 1 for the forecasts.  Results 980 

are shown for May-November (MJJASON), August-November (ASON) and September-November (SON) seasons with 981 

forecasts initialized in April, July and August, respectively.  Multi-model ensemble mean (MME) is based on four or 982 

three models listed depending on data availability, as indicated.  Values in parentheses show correlation coefficients 983 

computed for the detrended time series.  Boldface marks values that are statistically significant at the 95% confidence 984 

level. 985 

Season 
(ICs) 

CCSM4 GEOS-5 CanCM3 CanCM4 MME CFSR ERA-I MERRA 

MJJASON 

(April ICs) 
0.48 (0.51) 0.12 (0.06) 0.14 (0.05) 0.52 (0.43) 0.46 (0.36) 0.67 (0.81) 0.78 (0.69) 0.81 (0.80) 

ASON 

(July ICs) 
0.33 (0.44) -* 0.62 (0.57) 0.54 (0.55) 0.56 (0.60) 0.57 (0.74) 0.77 (0.67) 0.85 (0.82) 

SON 

(August ICs) 
0.24 (0.45) 0.48 (0.36) 0.60 (0.50) 0.45 (0.34) 0.52 (0.57) 0.58 (0.65) 0.80 (0.71) 0.84 (0.79) 

 986 

-* incomplete data  987 

  988 
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Table 3.  RMSE between the calibrated ensemble-mean forecasts and the observations (IBTrACS) of the NA TC 989 

frequency based on the time periods listed in Table 1, and between the reanalyses and observed NA TC frequency for 990 

1982-2014.  Results are shown for May-November (MJJASON), August-November (ASON) and September-November 991 

(SON) seasons with forecasts initialized in April, July and August, respectively.  Multi-model ensemble mean (MME) is 992 

based on four or three models listed depending on data availability, as indicated.  Values in parentheses show RMSE for 993 

the detrended time series. 994 

Season 
(ICs) 

CCSM4 GEOS-5 CanCM3 CanCM4 MME CFSR ERA-I MERRA 

MJJASON 

(April ICs) 
3.73 (3.15) 4.32 (3.54) 4.27 (3.58) 3.66 (3.06) 3.87 (3.18) 3.37 (2.37) 2.81 (2.80) 2.57 (2.40) 

ASON 

(July ICs) 
3.73 (3.05) -* 2.89 (2.39) 3.09 (2.44) 3.09 (2.28) 3.34 (2.46) 2.44 (2.43) 1.95 (1.84) 

SON 

(August ICs) 
2.93 (2.25) 2.61 (2.23) 2.32 (2.09) 2.59 (2.30) 2.56 (2.02) 2.42 (2.01) 1.79 (1.78) 1.57 (1.54) 

 995 

-* incomplete data 996 

  997 
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Table 4.  The SPRvERR for the calibrated predicted NA TC frequency based on the time periods listed in Table 1.  998 

Results are shown for May-November (MJJASON), August-November (ASON) and September-November (SON) seasons 999 

with forecasts initialized in April, July and August, respectively.  Multi-model ensemble mean (MME) is based on four or 1000 

three models listed depending on data availability, as indicated.  Values in parentheses show SPRvERR for the 1001 

detrended time series. 1002 

 1003 

  1004 

 1005 

 1006 

 1007 

 1008 

 1009 

-* incomplete data 1010 

  1011 

Season 
(ICs) 

CCSM4 GEOS-5 CanCM3 CanCM4 MME 

MJJASON 

(April ICs) 
0.79 (0.91) 0.59 (0.70) 0.60 (0.69) 0.74 (0.86) 0.74 (0.88) 

ASON 

(July ICs) 
0.74 (0.88) -* 0.93 (1.07) 0.93 (1.11) 1.00 (1.31) 

SON 

(August ICs) 
0.75 (0.93) 0.77 (0.88) 0.96 (1.04) 0.90 (0.99) 0.97 (1.20) 
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Table 5.  As in Table 2 but for TC days.  Only values for the full time series are shown. 1012 

 1013 

Season 
(ICs) 

CCSM4 GEOS-5 CanCM3 CanCM4 MME CFSR ERA-I MERRA 

MJJASON 

(April ICs) 
0.39 0.21 0.29 0.57 0.46 0.85 0.82 0.82 

ASON 

(July ICs) 
0.37 -* 0.67 0.55 0.59 0.80 0.82 0.83 

SON 

(August ICs) 
0.37 0.54 0.66 0.38 0.59 0.76 0.80 0.79 

 1014 

-* incomplete data 1015 

 1016 


