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Single-Carrier Frequency-Domain Equalization with Hybrid
Decision Feedback Equalizer for Hammerstein Channels

Containing Nonlinear Transmit Amplifier
Sheng Chen, Fellow, IEEE, Xia Hong, Senior Member, IEEE, Emad Khalaf,

Ali Morfeq, Naif D. Alotaibi and Chris J. Harris

Abstract—We propose a nonlinear hybrid decision feedback
equalizer (NHDFE) for single-carrier (SC) block transmission
systems with nonlinear transmit high power amplifier (HPA),
which significantly outperforms our previous nonlinear SC
frequency-domain equalization (NFDE) design. To obtain the
coefficients of the channel impulse response (CIR) as well as
to estimate the nonlinear mapping and the inverse nonlinear
mapping of the HPA, we adopt a complex-valued (CV) B-spline
neural network approach. Specifically, we use a CV B-spline
neural network to model the nonlinear HPA, and we develop
an efficient alternating least squares scheme for estimating the
parameters of the Hammerstein channel, including both the CIR
coefficients and the parameters of the CV B-spline model. We
also adopt another CV B-spline neural network to model the
inversion of the nonlinear HPA, and the parameters of this
inverting B-spline model can be estimated using the least squares
algorithm based on the pseudo training data obtained as a
natural byproduct of the Hammerstein channel identification.
The effectiveness of our NHDFE design is demonstrated in a
simulation study, which shows that the NHDFE achieves a signal-
to-noise ratio gain of 4 dB over the NFDE at the bit error rate
level of 10−4.

Index Terms—Single-carrier block transmission, decision feed-
back equalizer, nonlinear high power amplifier, Hammerstein
channel, complex-valued B-spline neural network

I. INTRODUCTION

Traditional time-domain (TD) equalization suffers from the
drawbacks of poor performance and excessively slow conver-
gence for the high-data-rate applications in fourth generation
(4G) and beyond 4G (B4G) systems, because the intersym-
bol interference (ISI) of these wireless channels spans over
tens or even hundreds of symbols. Orthogonal frequency-
division multiplexing (OFDM) [1], [2], which provides a low-
complexity high-performance solution for mitigating long ISI,
has found its way into many recent wireless network standards.
However, OFDM signals are notoriously known to have high
peak-to-average power ratio (PAPR), and a transmitted OFDM
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signal can be seriously distorted by the high power ampli-
fier (HPA) at transmitter, which exhibits nonlinear saturation
characteristics [3]–[7]. A viable alternative solution for long
ISI mitigation is single-carrier (SC) block transmission with
frequency-domain equalization (FDE) [8], [9]. Although the
total complexity of a SC-FDE transceiver is the same as that
of an OFDM transceiver, the SC-FDE transmitter does not
require the fast Fourier transform (FFT) operation. Therefore,
SC block transmission is particularly suited for uplink imple-
mentation where the transmitter is a pocket-size handset with
a limited hardware and computational capacity.

SC-FDE and OFDM essentially adopt linear equalization
techniques, and they suffer from considerable bit error rate
(BER) performance degradation for transmission over deep
frequency-selective fading channels. An effective means of
overcoming this problem associated with SC-FDE is to employ
decision feedback equalizer (DFE) [8]–[20]. Various SC-FDE-
DFE structures can be roughly divided into two categories.
The first category of SC-FDE-DFE has a hybrid equalization
structure, whereas SC-FDE, which acts as feedforward equal-
izer, is augmented with a TD transversal filter for feedback
equalization [8]–[14]. Calculating the tap vector of the TD
feedback filter requires a matrix inversion operation, which is
computationally expensive, particularly for long TD feedback
filters. We refer to this class as hybrid DFE (HDFE). The
second category of SC-FDE-DFE adopts an iterative block
DFE (IBDFE) in frequency domain (FD) [15]–[20]. This
structure is attractive since both the feedforward and feedback
equalizers operate in the FD and no matrix inversion operation
is required. However, the detection complexity, particularly the
detection delay, of IBDFE is higher than that of HDFE, owing
to the nature of iterative block detection operation.

To achieve the required high bandwidth efficiency, 4G and
B4G systems adopt high-order quadrature amplitude modu-
lation (QAM) signaling [21]. However, a high-order QAM
constellation has high PAPR, which will drive the HPA at
the transmitter into the nonlinear saturation region, resulting
in a significant degradation in the system’s achievable BER
performance. Note that key design goals of B4G systems gen-
erally include both high bandwidth efficiency and high power-
efficiency [22], [23]. The energy-efficiency aspect of commu-
nication favours high power-efficiency nonlinear HPAs, which
however will cause a serious problem to high bandwidth-
efficiency transmission technologies, such as OFDM and SC
block transmission. Furthermore, recently, millimeter-wave
(mmW) communications have been attracting extensive at-
tentions, owing to the huge amount of unlicensed bandwidth
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offered by mmW systems [24]–[26]. SC block transmission
provides a viable technology for mmW based B4G systems
[26]. However, for mmW communications, the design of HPA
encounters severe nonlinearity [27], [28]. With the transmitter
HPA exhibits severe nonlinear distortions, existing OFDM and
SC-FDE or SC-FDE-DFE techniques can no longer work.
How to effectively compensate for the nonlinear distortions
of the HPA in the design of B4G wireless systems is vital for
achieving the design goals of high bandwidth efficiency and
high power efficiency.

A classical way of avoiding the nonlinearity of the transmit-
ter HPA is output back-off (OBO). By lowering the average
transmit power sufficiently away from the saturation power
level of the HPA, hopefully the peak transmitted signal may
still fall in the near-linear operating region of the HPA. For
high PAPR modulation signals, however, OBO must be very
severe to be effective. But such a large OBO will dramatically
reduce the efficiency of the HPA, and more importantly it
may not meet the required link power budget, especially for
the user at cell edge. A more effective approach to compen-
sate for the nonlinear distortions of HPA is to implement a
digital predistorter at the transmitter, and various predistorter
techniques have been developed [29]–[35]. Implementing the
predistorter is attractive for the downlink, where the base
station transmitter has the sufficient hardware and software
capacities to accommodate the hardware and computational
requirements for implementing digital predistorter. In the
uplink, however, it is challenging to implement predistorter at
transmitter, because it is extremely difficult for a pocket-size
handset to absorb the required hardware and computational
complexity. Therefore, the predistorter option is not viable
for the SC block transmission based uplink system. Conse-
quently, the base station receiver must deal with the nonlinear
distortions of the transmitter HPA. With the nonlinear HPA at
transmitter, the channel is a complex-valued (CV) nonlinear
Hammerstein system and, moreover, the received signal is
further impaired by the channel additive white Gaussian noise
(AWGN). Therefore, nonlinear equalization for the SC block
transmission based CV Hammerstein channel is a challenging
task. A recent work [36] successfully developed a nonlinear
SC-FDE (NFDE) solution based on a CV B-spline (BS) neural
network approach [37], [38] for the Hammerstein channels
with nonlinear transmit HPA.

Against the above background, in this paper, we propose
a new nonlinear HDFE (NHDFE) design for Hammerstein
channels, which considerably outperforms the NFDE design
proposed in [36]. One reason that we favour a HDFE structure,
rather than an IBDFE structure, is because we consider the
uplink, whereby the BS has sufficient computational capacity
to perform the matrix inversion required to determine the TD
feedback equalizer’s taps. On the other hand, by avoiding the
iterative block detection of an IBDFE structure, we reduce
the data detection delay. This NHDFE design requires the
knowledge of the FD channel transfer function coefficients
(FDCTFCs) of the dispersive channel as well as the nonlinear
mapping and the inverse nonlinear mapping of the HPA, which
are generally unknown. Motivated by the previous work [36],
we adopt an effective CV BS neural network approach to

estimate the CV Hammerstein channel as well as to invert
the HPA’s nonlinear static mapping. More specifically, we
use a CV BS neural network to model the nonlinear HPA,
and we develop an efficient alternating least squares (ALS)
scheme for estimating the parameters of the Hammerstein
channel, including both the channel impulse response (CIR)
coefficients and the coefficients of the CV BS model for the
nonlinear HPA. This ALS algorithm is guaranteed to converge
in just one iteration. It is worth emphasizing that our ALS
algorithm is different to the two schemes derived in [36].
Similar to the work [36], we also adopt another CV BS
neural network to model the inversion of the nonlinear HPA.
Although the HPA’s output at the transmitter is unobservable
at the receiver for identifying this CV BS inverse model, the
pseudo training data obtained as a natural byproduct of the
Hammerstein channel identification can be used to estimate the
parameters of the inverting BS model using the standard least
squares (LS) algorithm [36]. To the best of our knowledge,
this is the first practical and effective scheme for designing
NHDFE for SC block transmission systems with nonlinear
HPA at transmitter. The effectiveness of our proposed CV
BS neural network based NHDFE solution is demonstrated
in a simulation study, and the results obtained show that the
proposed NHDFE solution outperforms the NFDE design of
[36] by 4 dB in the signal-to-noise ratio (SNR) at the BER
level of 10−4.

The remainder of this paper is organized as follows. Sec-
tion II provides the Hammerstein channel model for the SC
block transmission system with nonlinear transmit HPA and
summarises the proposed NHDFE design for the given Ham-
merstein channel. Section III is devoted to our proposed CV
BS neural network approach for realizing the NHDFE solution.
An extensive simulation study is provided in Section IV. Our
conclusion remarks are drawn in Section V.

II. HAMMERSTEIN CHANNEL AND PROPOSED NHDFE
SOLUTION

In our discussions, we represents a CV number x ∈ C either
by x = xR + jxI , where j =

√
−1, while xR = ℜ[x] and

xI = ℑ[x] denote the real and imaginary parts of x, or by
x = |x| exp(j∠x) with |x| denoting the amplitude of x and
∠x its phase.

A. System signal model

We adopt the unique word (UW) structure for SC block
transmission as shown in Fig. 1. Each transmit block consists
of Nd data symbols and the UW of length Nuw. Nuw must
be chosen to be at least as long as the length of the CIR. For
notation convenience, we express each transmission block as

x[s] =
[
x0[s] x1[s] · · ·xN−1[s]

]T
, (1)

UW Data UW Data UW ...
N

NuwdN
Fig. 1. UW-structure for SC block transmission.
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Fig. 2. Schematic diagram of the proposed NHDFE.

where [s] denotes the block index, N = Nd + Nuw which
defines the size of FFT for the SC block transmission system,
and ( )T denotes the transpose operator. We consider M -QAM
signaling and, therefore, xk[s] for 0 ≤ k ≤ Nd − 1 take the
values from the M -QAM constellation

X={d(2l −
√

M − 1) + jd(2q −
√

M − 1), 1 ≤ l, q ≤
√

M},
(2)

where 2d is the minimum distance between symbol points.
For notational simplification, the block index [s] is dropped in
the sequel. The signal block x is amplified by the transmitter
HPA to yield the actually transmitted signal vector

w =
[
w0 w1 · · ·wN−1

]T
, (3)

where

wk =Ψ(xk) , 0 ≤ k ≤ N − 1, (4)

and Ψ( ) represents the CV static nonlinearity of the HPA.
The solid state power amplifier [6], [7] is typically em-

ployed. The nonlinearity Ψ( ) of this type of HPA is defined
by the HPA’s amplitude response A(r) and phase response
Υ(r), which are given respectively by

A(r) =
gar(

1 +
(

gar
Asat

)2βa
) 1

2βa

, (5)

Υ(r) =
αϕrq1

1 +
(

r
βϕ

)q2 [degree], (6)

where r denotes the amplitude of the input to the HPA, ga

is the small gain signal, βa is the smoothness factor and
Asat is the saturation level, while the parameters of the phase
response, αϕ, βϕ, q1 and q2, are adjusted to match the specific
amplifier’s characteristics [6], [7]. Given the input

xk = |xk| exp
(
j∠xk

)
(7)

to the HPA, therefore, the output of the HPA is given by

wk = A(|xk|) exp
(
j
(
∠xk + Υ(|xk|)

))
. (8)

The operating status of the HPA may be specified by the OBO,
which is defined as the ratio of the maximum output power
Pmax of the HPA to the average output power Paop of the
HPA output signal, given by

OBO = 10 · log10

Pmax

Paop
. (9)

The smaller OBO is, the more the HPA is operating into the
nonlinear saturation region.

The amplified signal block w is transmitted through the
channel whose CIR coefficient vector is expressed by

h =
[
h0 h1 · · ·hLcir

]T
. (10)

Since the length of the UW is set to be no less than the CIR
length, we have Lcir ≤ Nuw. Without loss of generality, we
assume that h0 = 1. This is because if this is not the case, h0

can always be absorbed into the CV static nonlinearity Ψ( ),
and the CIR coefficients are re-scaled as hi/h0 for 0 ≤ i ≤
Lcir. At the receiver, the channel-impaired received signals yk

are given by

yk =
Lcir∑
i=0

hiwk−i + ek, 0 ≤ k ≤ N − 1, (11)

where ek is the channel AWGN with E
{∣∣ek

∣∣2} = 2σ2
e , and

E{ } denotes the expectation.

B. Receiver NHDFE structure
The proposed NHDFE structure is depicted in Fig. 2,

which consists of a block processing of the N samples y =[
y0 y1 · · · yN−1

]T
at a time in the FD and a sample-by-sample

subtraction of the Lcir feedback components in the TD.
More specifically, passing y through the N -point FFT

processor yields the FD received signal block Y =[
Y0 Y1 · · ·YN−1

]T with the elements

Yn =
N−1∑
k=0

yk exp
(
−j

2πkn

N

)
, 0 ≤ n ≤ N − 1. (12)

It is well known that

Yn =HnWn + Ξn, 0 ≤ n ≤ N − 1, (13)

in which Ξn is the FD representation of the channel AWGN
with E

{∣∣Ξn

∣∣2} = 2σ2
eN , and W =

[
W0 W1 · · ·WN−1

]T
denotes the N -point FFT of w with E

{∣∣Wn

∣∣2} =
E
{∣∣wk

∣∣2}N = σ2
wN , while the FDCTFC vector H =[

H0 H1 · · ·HN−1

]T is the N -point FFT of h. Denote the
coefficients of the FD feedforward equalizer by

{
Cn

}N−1

n=0
.

Then the block processing in the FD constitutes the FD
feedforward equalization specified by

Rn =CnYn, 0 ≤ n ≤ N − 1. (14)

Converting
{
Rn

}N−1

n=0
by the N -point inverse FFT (IFFT)

yields the TD signal block

rk =
1
N

N−1∑
n=0

Rn exp
(

j
2πnk

N

)
, 0 ≤ k ≤ N − 1. (15)
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In the proposed NHDFE, the feedback equalizer operates
in the TD sample-by-sample for 0 ≤ k ≤ Nd − 1. Let the
coefficients of the TD feedback equalizer be

{
gi

}Lcir

i=1
. Then,

the equalized signal at sample k is given by

w̃k =rk −
Lcir∑
i=1

g∗i ŵk−i, (16)

where ŵk−i denotes the estimate of wk−i for 1 ≤ i ≤ Lcir.
Assume that the inverse mapping Ψ−1( ) of the HPA is
available at the receiver. Then the “soft” estimate of the TD
symbol xk can be generated according to

x̃k =Ψ−1
(
w̃k

)
, 0 ≤ k ≤ Nd − 1. (17)

Quantizing x̃k yields the detected symbol x̂k. The detected
symbol x̂k is then fed back and distorted by the nonlinear
mapping Ψ( ) of the HPA, assuming that it is available at the
receiver, to yield the input to the TD feedback equalizer

ŵk =Ψ
(
x̂k

)
. (18)

Note that if we denote the UW by
[
u1 u2 · · ·uLcir

]T
, then

ŵ−l =Ψ
(
uLcir+1−l

)
, 1 ≤ l ≤ Lcir. (19)

Thus the TD feedback equalizer (16) is always causal.
Appendix provides the minimum mean square er-

ror (MMSE) solution for the coefficient vector g =[
g1 g2 · · · gLcir

]T
of the TD feedback equalizer and the coef-

ficients
{
Cn

}N−1

n=0
of the FD feedforward equalizer (also see

[12]). Specifically, the MMSE solution of g is given by


g1

g2

...
gLcir

= −


v0 v−1 · · · v−Lcir+1

v1 v0
. . .

...
...

. . . . . . v−1

vLcir−1 · · · v1 v0


−1

v1

v2

...
vLcir

,

(20)

where

vl =
N−1∑
n=0

exp
(
− j 2πnl

N

)
2σ2

e

σ2
w

+
∣∣Hn

∣∣2 (21)

with v−l = v∗
l . The MMSE solution of the FD feedforward

equalizer’s coefficients is given by

Cn =
H∗

nGn

2σ2
e

σ2
w

+
∣∣Hn

∣∣2 , 0 ≤ n ≤ N − 1, (22)

where

Gn =1 +
Lcir∑
i=1

g∗i exp
(
− j

2πin

N

)
. (23)

III. CV B-SPLINE NEURAL NETWORK APPROACH FOR
IMPLEMENTING NHDFE

The proposed NHDFE requires the knowledge of the FD-
CTFCs {Hn} or the CIR coefficients {hi} and the CV
nonlinearity Ψ( ) of the transmitter HPA as well as the inverse
mapping Ψ−1( ), which are unknown at the receiver. Similar to
the work [36], we adopt the CV BS neural network approach
to estimate {hi}, Ψ( ) and Ψ−1( ). More specifically, we use
a CV BS neural network [37], [38] to represent the mappinĝ̄w = Ψ̂(x) : C → C that is the estimate of the CV nonlinear
function Ψ( ). We then develop an efficient ALS algorithm
for jointly estimating {hi} and Ψ( ) by exploiting this BS
modeling. Note that this ALS algorithm is different to the two
algorithms derived in [36]. Furthermore, we utilise another CV
BS neural network to model Ψ−1( ). To estimate this invert-
ing model requires the “input-output” training data {w,x}.
Although w is unobserved and is therefore unavailable, the
pseudo training data ̂̄w can be constructed as a byproduct of
the Hammerstein channel identification [36], and this allows
us to estimate this inverting model based on the standard LS
algorithm. It is worth pointing out that the pseudo training
input ̂̄w is highly noisy, which may cause biased estimate for
many models, such as the polynomial based inverse model.
However, the BS model has the maximum robustness and
optimal convexity property [39]–[41], and this ensures an
excellent inverse modeling performance with noisy training
input data.

A. Complex-valued B-spline neural network
According to the physics of real-life HPA, we point out that

the nonlinearity Ψ( ) satisfies the following conditions.
1) Ψ( ) is a one to one mapping, i.e., it is an invertible and

continuous function.
2) xR and xI are upper and lower bounded by some finite

and known real values, where x = xR + jxI denotes the
input to the HPA Ψ( ). Furthermore, the distributions of
xR and xI are identical.

Based on property 2), we assume that Umin < xs < Umax,
where Umin and Umax are known finite real values, while xs

symbolically represents either xR or xI , namely, the subscript
s is either R or I .

To model a nonlinearity in the univariate dimension of xs,
we employ a univariate BS model with a piecewise polynomial
degree of Po and Ns basis functions. Such a univariate BS
neural network is parametrized by the knot sequence specified
by (Ns + Po + 1) knot values, {U0, U1, · · · , UNs+Po}, with

U0 < U1 < · · · < UPo−2 < UPo−1 = Umin < UPo < · · · <

UNs < UNs+1 = Umax < UNs+2 < · · · < UNs+Po . (24)

At each end, there are Po − 1 so-called “external” knots that
are outside the input region

[
Umin, Umax

]
and one boundary

knot. As a result, the number of “internal” knots is given by
Ns + 1 − Po. Given the set of predetermined knots (24), the
set of Ns BS basis functions are formed using the famous De
Boor recursion [42], yielding for 1 ≤ l ≤ Ns + Po,

B
(s,0)
l (xs) =

{
1, if Ul−1 ≤ xs < Ul,
0, otherwise, (25)
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as well as for l = 1, · · · , Ns + Po − p and p = 1, · · · , Po,

B
(s,p)
l (xs) =

xs − Ul−1

Up+l−1 − Ul−1
B

(s,p−1)
l (xs)

+
Up+l − xs

Up+l − Ul
B

(s,p−1)
l+1 (xs). (26)

The polynomial degree Po = 3 or 4 is often sufficient for
modeling the nonlinearities that can be encountered in most
practical applications. The number of BS basis functions Ns

should be chosen to be sufficiently large to provide accurate
approximation capability but not too large as to cause over-
fitting and to impose unnecessary computational complexity.
Specifically, Ns = 6 to 10 is usually sufficient for accurately
modeling in the finite and known interval

[
Umin, Umax

]
. The

two boundary knots are obviously related to the known values
Umin and Umax, respectively. The Ns + 1− Po internal knots
may be uniformly spaced in the interval

[
Umin, Umax

]
. Note

that there exist no data for xs < Umin and xs > Umax in
identification but it is desired that the BS model has certain
extrapolating capability outside the interval

[
Umin, Umax

]
.

The external knots may be set empirically to give the BS
model a required extrapolation capability. In fact, since no
data appears outside

[
Umin, Umax

]
, the precise choice of these

external knots does not really matter, in terms of modeling
accuracy. Also note that for QAM signals, the distribution of
xs is naturally symmetric and, therefore, the knot sequence
should be chosen to be symmetric too.

Using the tensor product between the two sets of univariate
BS basis functions [43], B

(R,Po)
l (xR) for 1 ≤ l ≤ NR and

B
(I,Po)
m (xI) for 1 ≤ m ≤ NI , a set of new B-spline basis

functions B
(Po)
l,m (x) can be formed and used in the CV BS

neural network, giving rise to

̂̄w = Ψ̂(x) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (x)θl,m

=
NR∑
l=1

NI∑
m=1

B
(R,Po)
l (xR)B(I,Po)

m (xI)θl,m, (27)

where θl,m = θl,mR
+ j θl,mI

∈ C, 1 ≤ l ≤ NR and 1 ≤ m ≤
NI , are the CV weights. Denote the weight vector of the BS
model (27) as

θ =
[
θ1,1 θ1,2 · · · θl,m · · · θNR,NI

]T ∈ CNB , (28)

where NB = NRNI . The task of identifying the nonlinearity
Ψ( ) is turned into one of estimating the parameter vector θ.

Remark 1: A conventional way of modeling a nonlinearity in
the univariate dimension of xs is to use a univariate polynomial
model with the polynomial degree Po, which has Po +1 basis
functions given by

1, xs, x2
s , · · · , xPo

s . (29)

Thus, the tensor-product polynomial model for modeling the
CV Ψ has (Po +1)2 basis functions for any given input x, and
the complexity of the polynomial model is obviously on the
order of O

(
(Po + 1)2

)
. The tensor-product BS model (27) on

the other hand has N2
s basis functions, where Ns = NR = NI .

Therefore, the complexity of this BS model would appear to

Um−1 Umx s

B(s,4)
m−4

B(s,0)
m =1

B B BB (s,4) (s,4) (s,4) (s,4)
mm−3 m−2 m−1

{1,1} {1,1}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}{3,4} {3,4} {3,4}

{3,4}

{3,4}

{3,4}

(a) Po + 1 ≤ m ≤ Ns

Um−1 Umx s

B(s,0)
m =1

B B BB (s,4) (s,4) (s,4) (s,4)
mm−3 m−2 m−1

{1,1} {1,1}

{1,2}

{1,2}

{1,2}

{1,2}

{1,2}{3,4} {3,4} {3,4}

{3,4}

{3,4}

{3,4}

(b) m = Po

Fig. 3. Complexity of the B-spline model with Po = 4 using the De Boor
recursion, where {a, b} beside a node indicates that it requires a additions
and b multiplications to compute the basis function value at this node. Note
that the case of m = Ns + 1 is similar to (b).

be on the order of O
(
N2

s

)
. Since typically Ns > Po, this

would be much higher than the complexity of the polyno-
mial model. But this is in fact not the case. Given a value
xs ∈

[
Umin, Umax

]
, there are only Po+1 basis functions with

nonzero values at most as illustrated in Fig. 3, which shows the
complexity of generating the BS basis function set for Po = 4
using the De Boor recursion. Note that the complexity does
not depend on the number of basis functions Ns employed.
For the BS model with Po = 4, the total computational
requirements are 26 additions and 38 multiplications at most.
Thus, in the tensor-product BS model (27), there are only
(Po + 1)2 non-zero basis functions at most for any given
input. The complexity of computing the BS model (27) is
therefore also on the order of O

(
(Po + 1)2

)
. In particular,

the upper bound complexity for Po = 4 is listed in Table I,
which includes generating the two sets of BS basis functions
for real and imaginary parts, respectively, and the output of
the tensor-product BS model (27).

Remark 2: The BS basis functions are optimally stable bases
and they have the maximum numerical robustness [39]–[41].
This optimal robustness property of the BS model is due to
the convexity of its model bases, i.e., they are all positive
and sum to one. In fact, it is straightforward to illustrate
this optimality of the BS model theoretically by comparing
it with the polynomial model. Let us consider the univariate

TABLE I
UPPER BOUND COMPLEXITY OF TENSOR-PRODUCT B-SPLINE MODEL (27)

FOR Po = 4.
Computation Multiplications Additions

Two sets of 1-D basis functions 2 × 38 2 × 26
Output of (27) 3 × 25 24

Total 151 76
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nonlinearity that can be represented by the polynomial model
of degree Po exactly as

ys =
Po∑
i=0

aix
i
s, (30)

as well as by the following BS model exactly as

ys =
Ns∑
i=1

biB
(s,Po)
i (xs). (31)

Because of the noisy training data, the estimated model
coefficients are perturbed from their true values to âi = ai+εi

for the polynomial model, and to b̂i = bi + εi for the BS
model. Assume that all the estimation noises εi are bounded
by |εi| < εmax. The upper bound of |ys− ŷs| for the BS model
is given by

|ys − ŷs| =
∣∣∣ Ns∑

i=1

biB
(s,Po)
i (xs) −

Ns∑
i=1

b̂iB
(s,Po)
i (xs)

∣∣∣
<εmax

∣∣∣ Ns∑
i=1

B
(s,Po)
i (xs)

∣∣∣ = εmax. (32)

This upper bound of the BS model output perturbation only
depends on the upper bound of the perturbation noise, and it
does not depend on the input value xs, the number of basis
functions Ns or the polynomial degree Po. Hence, the B-spline
model enjoys the maximum numerical robustness. By contrast,
the upper bound of |ys− ŷs| for the polynomial model is given
by

|ys − ŷs| =
∣∣∣ Po∑

i=0

aix
i
s −

Po∑
i=0

âix
i
s

∣∣∣ < εmax

∣∣∣ Po∑
i=0

xi
s

∣∣∣. (33)

The upper bound of the polynomial model output perturbation
depends not only on the upper bound of the perturbation noise
but also on the input value xs and the polynomial degree Po.
The higher the polynomial degree Po, the more serious the
polynomial model may be perturbed.

Here, we use the simple example given in [44] to demon-
strate the excellent numerical stability of the BS model
over the polynomial model. Fig. 4 (a) depicts a quadratic
polynomial function ys = 0.001x2

s − 0.02xs + 0.1 de-
fined over xs ∈ [0, 20] in solid curve. With the knot
sequence {−5,−4, 0, 20, 24, 25}, this function is modeled as a
quadratic BS model of ys = 0.14B

(s,2)
1 (xs)−0.10B

(s,2)
2 (xs)+

0.14B
(s,2)
3 (xs), which is plotted in Fig. 4 (b) in solid curve.

We draw three noises from a uniformly distributed random
number (UDRN) in [−0.0001, 0.0001], and add them to the
three parameters in the two models, respectively. Fig. 4 (a)
and (b) show the ten sets of the perturbed functions in dashed
curve generated by perturbing the two models’ parameters.
It can be seen from Fig. 4 (a) that the polynomial model
is seriously perturbed, but there is no noticeable change at
all in Fig. 4 (b) for the BS model. Then we draw three
perturbation noises from a UDRN in [−0.001, 0.001], and
add them to the three parameters of the BS model. Again,
the BS model is hardly affected, as can be observed from
Fig. 4 (c). Finally we draw three perturbation noises from a

(a) (b)

(c) (d)
Fig. 4. (a) Polynomial model with UDRN perturbation noises drawn from
[−0.0001, 0.0001], (b) B-spline model with UDRN perturbation noises
drawn from [−0.0001, 0.0001], (c) B-spline model with UDRN perturbation
noises drawn from [−0.001, 0.001], and (d) B-spline model with UDRN
perturbation noises drawn from [−0.01, 0.01]. Cited from [44].

UDRN in [−0.01, 0.01] to add to the three BS parameters,
and the results obtained are shown in Fig. 4 (d). Comparing
Fig. 4 (d) with Fig. 4 (a), we observe that, despite of the fact
that the strength of the perturbation noise added to the BS
model coefficients is 100 times larger than that added to the
polynomial model coefficients, the BS model is still much less
seriously perturbed than the polynomial model.

Moreover, the better performance of the BS based NFDE
(BS-NFDE) over the polynomial based NFDE (P-NFDE) is
shown in [36], while it is demonstrated in [45] that the BS
based nonlinear OFDM receiver outperforms the polynomial
based one.

B. Identification of the Hammerstein channel

The identification of the Hammerstein channel involves
estimating the parameter vector θ of the CV BS neural network
(27) that represents the HPA nonlinearity Ψ( ) as well as
the CIR coefficient vector h, based on a block of N training
data,

{
xk, yk

}N−1

k=0
. The output ̂̄yk of the nonlinear model for

‘predicting’ the desired output yk is given by

̂̄yk =
Lcir∑
i=0

hi ̂̄wk−i =
Lcir∑
i=0

hi

NR∑
l=1

NI∑
m=1

B
(Po)
l,m (xk−i)θl,m, (34)

where xk−i = uLcir+1−(k−i) if k < i. The model (34) is linear
with respect to h when fixing θ, and it is linear with respect
to θ given a fixed h. According to [46], [47], the estimates of
θ and h are unbiased, irrespective the estimation algorithm,
and the work [45] has derived two algorithms for estimating
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h and θ. By noting that h0 = 1, we propose a different ALS
procedure to estimate both θ and h, which we detail below.

Initialisation. Define the amalgamated parameter vector as

ω =
[
θT h1θ

T h2θ
T · · ·hLcirθ

T
]T ∈ C(Lcir+1)NB . (35)

Clearly the model (34) is linear with respect to ω. Further
define the regression matrix P ∈ RN×(Lcir+1)NB as

P =


ϕT(0) ϕT(−1) · · · ϕT(−Lcir)

...
...

...
...

ϕT(k) ϕT(k − 1) · · · ϕT(k − Lcir)
...

...
...

...
ϕT(N−1) ϕT(N−2) · · · ϕT(N−1−Lcir)

,

(36)
in which the BS basis function vector ϕ(k) ∈ RNB for the
input xk is given by

ϕ(k) =
[
ϕ1,1(k) ϕ1,2(k) · · ·ϕl,m(k) · · ·ϕNR,NI (k)

]T
(37)

with

ϕl,m(k) = B
(Po)
l,m (xk), 1 ≤ l ≤ NR, 1 ≤ m ≤ NI . (38)

Assuming that N ≥ (Lcir + 1)NB , then the closed-form LS
estimate of ω is readily given by

ω̂ =
(
P TP + λI

)−1
P Ty, (39)

where λ is a very small regularization parameter, e.g., λ =
10−5, and I denotes the identity matrix of appropriate dimen-
sion. The regularization in (39) is necessary because the huge
matrix P is typically very ill-conditioned. Obviously, ω̂ is a
unique and unbiased estimate of ω for λ → 0. Therefore, the
first NB elements of ω̂ provide a unique and unbiased LS
estimate for the weight vector of the CV BS neural network
θ, which will be denoted as θ̂(0).

Alternating LS estimation. For 1 ≤ τ ≤ τmax, where τmax

is the maximum number of iterations, perform:
a) Given the fixed θ̂(τ−1), calculate the LS estimate ĥ(τ).
Specifically, define the regression matrix Q ∈ CN×(Lcir+1) as

Q =



̂̄w0 ̂̄w−1 · · · ̂̄w−Lcir

...
...

...
...̂̄wk ̂̄wk−1 · · · ̂̄wk−Lcir

...
...

...
...̂̄wN−1 ̂̄wN−2 · · · ̂̄wN−1−Lcir

 , (40)

in which

̂̄wk =Ψ̂(xk) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (xk)θ̂(τ−1)

l,m . (41)

Then the closed-form LS estimate ĥ(τ) is readily given by

ĥ
(τ)

=
(
QHQ

)−1
QHy, (42)

ĥ
(τ)
i =ĥ

(τ)

i

/
ĥ

(τ)

0 , 0 ≤ i ≤ Lcir, (43)

where ( )H denotes the conjugate transpose operator. Since
θ̂(τ−1) is a unique and unbiased estimate of θ, the LS estimate
ĥ(τ) is guaranteed to be a unique and unbiased estimate of h.

b) Given the fixed ĥ(τ), calculate the LS estimate θ̂(τ).
Specifically, introduce

φl,m(k) =
Lcir∑
i=0

ĥ
(τ)
i B

(Po)
l,m (xk−i) ∈ C. (44)

Now introduce the regressor vector φ(k) ∈ CNB given by

φ(k) = [φ1,1(k) φ1,2(k) · · ·φl,m(k) · · ·φNR,NI
(k)]T , (45)

and define the regression matrix

S = [φ(0) φ(1) · · ·φ(N − 1)]T ∈ CN×NB . (46)

Then the closed-form LS estimate θ̂(τ) is readily given by

θ̂(τ) =
(
SHS

)−1
SHy. (47)

Since ĥ(τ) is a unique and unbiased estimate of h, the LS
estimate θ̂(τ) must be a unique and unbiased estimate of θ.

A few iterations, in fact no more than two, are sufficient
for this estimation procedure to arrive at a highly accurate
and joint unbiased estimate of h and θ.

Remark 3: This ALS scheme is different from the two
ALS algorithms given in [36]. In fact, it is clear that this
ALS procedure guarantees to converge in one iteration. A
few iterations, typically 2, are adopted simply to improve
the estimation accuracy or to reduce the estimation variances.
More specifically, since θ̂(0) is a unique and unbiased estimate
of θ, ĥ(1) is guaranteed to be a unique and unbiased estimate
of h. On the other hand, the unique and unbiased LS estimate
ω̂ of the high-dimensional amalgamated parameter vector
ω ∈ C(Lcir+1)NB may have relative high estimation variances,
owing to the low ratio of the available training data N over
the dimension (Lcir + 1)NB . Consequently, The first NB

elements of ω̂, i.e. θ̂(0), may have a relatively poor estimation
accuracy. With the fixed ĥ(1), the LS estimate θ̂(1) has lower
estimation variance than θ̂(0). In the second iteration, the
estimation accuracy of ĥ(2) and θ̂(2) will be further enhanced,
in comparison to the estimation accuracy of ĥ(1) and θ̂(1),
and ĥ(2) and θ̂(2) provide highly accurate and joint unbiased
estimate of h and θ.

With the estimated CIR tap vector ĥ, the estimated FDCT-
FCs Ĥ can readily be obtained by performing the N -point
FFT on ĥ. With the estimated HPA’s nonlinearity Ψ̂( ) and
the CIR tap vector ĥ, an estimate of the noise power 2σ2

e is
readily given by

2σ̂2
e =

1
N

N−1∑
k=0

∣∣yk − ̂̄yk

∣∣2, (48)

while an estimate for the power σ2
w of the unobserved wk is

given by

σ̂2
w =

1
N

N−1∑
k=0

∣∣ ̂̄wk

∣∣2 =
1
N

N∑
k=0

∣∣Ψ̂(xk)
∣∣2. (49)

Both 2σ2
e and σ2

w are needed in calculating the coefficients of
the NHDFE.
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C. Identification of the inverse nonlinear mapping of the HPA

Implementing the NHDFE of Fig. 2 also requires the inverse
mapping of the HPA’s CV nonlinearity defined by

xk =Ψ−1(wk) = Φ(wk). (50)

We utilise another CV BS neural network to model Ψ−1( ). To
estimate this inverting model Φ( ) requires the “input-output”
training data {wk, xk} but wk is unobserved and therefore
unavailable for this modeling. As pointing out in [36], the
pseudo training data { ̂̄wk, xk}N−1

k=0 can be constructed as a
byproduct of the Hammerstein channel identification. More
specifically, given the estimated HPA’s nonlinearity Ψ̂( ), we
can calculate ̂̄wk = Ψ̂

(
xk

)
. This allows us to estimate the

inverting model Φ( ) based on the standard LS algorithm.
However, the training input ̂̄wk is highly noisy and this may
introduce potentially serious bias in the estimate.

For notational convenience, define two knots sequences
similar to (24) for wR and wI , respectively. Similar to (27),
we construct the inverting BS neural network

̂̄x =Φ̂(w) =
NR∑
l=1

NI∑
m=1

B
(Po)
l,m (w)αl,m

=
NR∑
l=1

NI∑
m=1

B
(R,Po)
l (wR)B(I,Po)

m (wI)αl,m, (51)

where B
(R,Po)
l (wR) and B

(I,Po)
m (wI) are respectively calcu-

lated based on (25) and (26), while

α =
[
α1,1 α1,2 · · ·αl,m · · ·αNR,NI

]T ∈ CNB (52)

is the parameter vector of this inverting BS neural network.
Here for notational simplicity, we assume that the same
number of basis functions and polynomial degree are used
for the two BS neural networks Ψ(xk) and Φ(wk).

Over the pseudo training data set
{̂̄wk, xk

}N−1

k=0
, the regres-

sion matrix B̃ ∈ RN×NB can be formed as

B̃=


B

(Po)
1,1 ( ̂̄w0) B

(Po)
1,2 ( ̂̄w0) · · · B

(Po)
NR,NI

( ̂̄w0)
B

(Po)
1,1 ( ̂̄w1) B

(Po)
1,2 ( ̂̄w1) · · · B

(Po)
NR,NI

( ̂̄w1)
...

...
...

...
B

(Po)
1,1 ( ̂̄wN−1) B

(Po)
1,2 ( ̂̄wN−1) · · · B

(Po)
NR,NI

( ̂̄wN−1)

.

(53)
and the closed-form LS solution for α is readily given by

α̂ =
(
B̃TB̃

)−1
B̃Tx. (54)

Remark 4: A tensor-product polynomial model, having a
polynomial degree of Po in each dimension, can also be
utilized to estimate Ψ−1( ), based on the same LS identifi-
cation procedure developed here. It is well-known that since
the input ̂̄wk is noisy, the LS estimate (54) is generally
biased. Thus, the maximum robustness property of the BS
model as illustrated in Remark 2 is particularly helpful in
minimizing this bias. Consequently, the BS based approach
yields significantly better performance than the polynomial
based approach.

IV. SIMULATION STUDY

A. Simulation system set up

A 64-QAM Hammerstein system was simulated in which
the HPA employed at the transmitter was described by (5)
and (6). The parameters of this nonlinear HPA were set to
those of the NEC GaAs power amplifier adopted in the recent
wireless standards [6], [7], which are

ga = 19, βa = 0.81, Asat = 1.4;
αϕ = −48000, βϕ = 0.123, q1 = 3.8, q2 = 3.7.

(55)

The size of the transmitted data block was N = 2048. We
assumed a quasi-static Rayleigh multipath channel with the
CIR length Lcir = 9 and a power delay profile defined by

E
{
|hl|

}
=

 exp
(
− l

η

)
, 0 ≤ l ≤ 4,

exp
(
− l−5

η

)
, 5 ≤ l ≤ Lcir = 9,

(56)

with the channel degradation factor η = 3. The CIR coef-
ficients hl for 0 ≤ l ≤ Lcir remained constant during the
communication session. The effective system throughput is
given by

Effective throughput =
Nd

N
, (57)

where the effective data block length Nd = N−Lcir = N−9.
The larger the data block length N is, the more bandwidth
efficient the system is.

We used a full data block with N = 2048 training samples
in the joint estimation of the CV CIR coefficient vector h
and the CV parameter vector θ of the BS model for Ψ( ) as
well as the estimation of the CV parameter vector α of the
BS model for Ψ−1( ). The piecewise quartic polynomial of
Po = 4 was chosen as the BS basis function, since Po = 4
is sufficient for most practical applications. The number of
BS basis functions was set to NR = NI = 8, as 8 basis
functions is sufficient to partitioning or covering the input
interval

[
−d(

√
M−1), d(

√
M−1)

]
. Owing to the symmetric

distribution of xR and xI , the knot sequence for xR was set
to be identical to that for xI . Similarly, the knot sequences
for wR and wI were chosen to be identical. The empirically
determined knot sequences covering different HPA operating
conditions are listed in Table II. The system’s SNR was defined
as SNR = Ew

/
No, where Ew = E

{∣∣wk

∣∣2} = σ2
w was the

average transmitted signal power and No = 2σ2
e was the

channel AWGN’s power.
To demonstrate the optimal performance of the proposed

BS neural network based NHDFE (BS-NHDFE), in the sim-
ulation, two tensor-product polynomial models, both having
a polynomial degree of Po = 4 in each dimension, were
also be utilized to estimate the CV HPA’s static nonlinearity
Ψ( ) and its inversion Ψ−1( ), respectively, based on the
same identification procedures developed in Sections III-B and
III-C, yielding a polynomial based NHDFE (P-NHDFE). The

TABLE II
EMPIRICALLY DETERMINED KNOT SEQUENCES.

Knot sequence for xR and xI

-10.0, -9.0, -1.0, -0.9, -0.06, -0.04, 0.0, 0.04, 0.06, 0.9, 1.0, 9.0, 10.0
Knot sequence for wR and wI

-20.0, -18.0, -3.0, -1.4, -0.8, -0.4, 0.0, 0.4, 0.8, 1.4, 3.0, 18.0, 20.0
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TABLE III
IDENTIFICATION RESULTS FOR THE CIR COEFFICIENT VECTOR h OF THE HAMMERSTEIN CHANNEL.

Tap True Ew/No = 25 dB Ew/No = 30 dB
No. parameters B-spline Polynomial B-spline Polynomial

OBO = 3 dB
h0 1 1 1 1 1
h1 −0.3732 − j 0.6123 −0.3732 − j 0.6122 −0.3741 − j 0.6128 −0.3732 − j 0.6122 −0.3741 − j 0.6128
h2 0.3584 + j 0.3676 0.3578 + j 0.3682 0.3564 + j 0.3686 0.3581 + j 0.3679 0.3567 + j 0.3683
h3 0.3052 + j 0.2053 0.3039 + j 0.2058 0.3051 + j 0.2061 0.3045 + j 0.2056 0.3057 + j 0.2059
h4 0.2300 + j 0.1287 0.2300 + j 0.1289 0.2308 + j 0.1292 0.2300 + j 0.1288 0.2308 + j 0.1291
h5 0.7071 + j 0.7071 0.7071 + j 0.7083 0.7074 + j 0.7087 0.7071 + j 0.7077 0.7073 + j 0.7081
h6 0.6123 − j 0.3732 0.6136 − j 0.3723 0.6137 − j 0.3720 0.6130 − j 0.3727 0.6131 − j 0.3724
h7 −0.3584 + j 0.3676 −0.3590 + j 0.3663 −0.3601 + j 0.3662 −0.3588 + j 0.3668 −0.3598 + j 0.3668
h8 −0.2053 − j 0.3052 −0.2053 − j 0.3053 −0.2052 − j 0.3037 −0.2053 − j 0.3052 −0.2052 − j 0.3037
h9 0.1287 − j 0.2300 0.1279 − j 0.2299 0.1274 − j 0.2299 0.1283 − j 0.2299 0.1278 − j 0.2300

OBO = 5 dB
h0 1 1 1 1 1
h1 −0.3732 − j 0.6123 −0.3731 − j 0.6121 −0.3741 − j 0.6119 −0.3736 − j 0.6124 −0.3742 − j 0.6120
h2 0.3584 + j 0.3676 0.3579 + j 0.3682 0.3575 + j 0.3694 0.3584 + j 0.3668 0.3577 + j 0.3691
h3 0.3052 + j 0.2053 0.3039 + j 0.2059 0.3050 + j 0.2055 0.3061 + j 0.2044 0.3055 + j 0.2052
h4 0.2300 + j 0.1287 0.2299 + j 0.1289 0.2309 + j 0.1286 0.2304 + j 0.1292 0.2309 + j 0.1285
h5 0.7071 + j 0.7071 0.7072 + j 0.7081 0.7073 + j 0.7079 0.7077 + j 0.7072 0.7071 + j 0.7074
h6 0.6123 − j 0.3732 0.6136 − j 0.3723 0.6132 − j 0.3728 0.6111 − j 0.3741 0.6126 − j 0.3731
h7 −0.3584 + j 0.3676 −0.3591 + j 0.3664 −0.3597 + j 0.3666 −0.3589 + j 0.3671 −0.3594 + j 0.3671
h8 −0.2053 − j 0.3052 −0.2053 − j 0.3053 −0.2052 − j 0.3041 −0.2053 − j 0.3054 −0.2052 − j 0.3041
h9 0.1287 − j 0.2300 0.1280 − j 0.2296 0.1281 − j 0.2294 0.1285 − j 0.2307 0.1285 − j 0.2296

tensor-product polynomial model of degree Po = 4 had 25
basis functions, which was comparable to the tensor-product
BS model of at most 25 non-zero basis functions. Thus, the
complexities of the two approaches were similar.

B. Estimation results

The ALS algorithm was used to identify this Hammerstein
channel, specifically, to provide both the estimates of the
CIR vector ĥ and the BS neural network’s or polynomial
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Fig. 5. Comparison of the HPA’s static nonlinearity Ψ( ) and the B-
spline estimated HPA nonlinearity as well as the polynomial estimated HPA
nonlinearity under OBO= 3 dB and Ew

‹

No = 25 dB.

model’s weight vector θ̂. It was observed that τmax = 2
iterations were sufficient for the algorithm to obtain the highly
accurate estimation results as summarized in Table III as well
as illustrated in Figs. 5 to 8, under four different operational
conditions. It can be seen from Table III that the identification
of CIR tap vector in the nonlinear Hammerstein channel was
achieved with high precision under the adverse operational
condition of OBO= 3 dB and Ew

/
No = 25 dB for both

the BS based and polynomial based approaches. Note that
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spline estimated HPA nonlinearity as well as the polynomial estimated HPA
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under the HPA operational condition of OBO= 5 dB, the peak
amplitude of |xk| was less than 0.09, while under the condition
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Fig. 8. Comparison of the HPA’s static nonlinearity Ψ( ) and the B-
spline estimated HPA nonlinearity as well as the polynomial estimated HPA
nonlinearity under OBO= 5 dB and Ew

‹

No = 30 dB.

of OBO= 3 dB, the peak amplitude of |xk| was less than 0.14.
The results of Figs. 5 to 8 clearly demonstrate the capability of
the proposed CV BS neural network to accurately model the
HPA’s static nonlinearity, within the HPA’s input range. The
results of Figs. 5 to 8 also show that the polynomial estimate
of the HPA nonlinearity, although is sufficient accurate, is less
accurate than the BS based estimate.

The combined responses of the HPA’s true nonlinearity and
its estimated inversion obtained by the proposed BS inverting
scheme as well as the polynomial inverting scheme under the
two operating conditions of OBO = 3 dB and SNR = 25 dB
as well as OBO = 5 dB and SNR = 30 dB are depicted in
Figs. 9 and 10, respectively. The results of Figs. 9 and 10
demonstrate the capability of the CV BS neural network to
accurately model the inversion of the HPA’s nonlinearity based
only on the pseudo training data. More specifically, the results
of Figs. 9 and 10 clearly show that the combined response of
the true HPA’s nonlinearity Ψ( ) and its BS inversion estimate
Φ̂( ) satisfies

Φ̂
(
Ψ(x)

)
≈ x, (58)

where x denotes the input to the HPA. That is, the magnitude
of the combined response is

∣∣Φ̂(
Ψ(x)

)∣∣ ≈ |x| and the phase
shift of the combined response is approximately zero. In other
words, Φ̂( ) is an accurate inversion of Ψ( ). By contrast, the
polynomial inversion is much less actuate, as can be clearly
seen from Figs. 9 and 10. Thus, the results of Figs. 9 and
10 confirm the analysis of Remark 2 in Section III-A and
Remark 4 in Section III-C, demonstrating clearly the optimal
robustness properties of the proposed BS based approach.
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C. Bit error rate performance evaluation

The achievable BER performance of the proposed NHDFE
constructed based on the estimated CIR ĥ, the estimated BS
model Ψ̂( ) and the estimated BS inversion Φ̂( ) are plotted
in Fig. 11 under the two different operating conditions of the
HPA. In the proposed NHDFE structure, if the TD DFE is
removed, it reduces to the NFDE structure of [36], whereby the
coefficient vector of the NFDE is set to the MMSE solution,
namely, (22) with Gn = 1 for 0 ≤ n ≤ N − 1. The
BER performance achieved by this BS based NFDE based
on the estimated ĥ, Ψ̂( ) and Φ̂( ) are also depicted in
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Fig. 11. Bit error rate performance comparison of the proposed B-spline
based NHDFE and the B-spline based nonlinear FDE [36] under the two
HPA operating conditions of OBO= 3 dB and OBO= 5 dB.
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Fig. 12. Bit error rate performance comparison of the proposed B-spline
based NHDFE and polynomial based NHDFE as well as the ideal NHDFE
based on the perfect knowledge of h, Ψ( ) and Ψ−1( ) under the two HPA
operating conditions of OBO= 3 dB and OBO= 5 dB.

Fig. 11 for comparison. The results of Fig. 11 confirm that
the proposed BS based NHDFE outperforms the BS based
NFDE significantly. In particular, at the BER level of 10−4,
the BS based NHDFE achieves an SNR gain of approximately
4 dB over the BS based NFDE of [36]. Also observe from
Fig. 11 that under extremely poor SNR conditions, specifically,
SNR ≤ 17 dB for OBO = 5 dB and SNR ≤ 18 dB for
OBO = 3 dB, the BER of the BS-NFDE is smaller than
that of the BS-NHDFE. This is due to the well known error
propagation of the DFE structure at extremely poor SNR
conditions.

The achievable BER performance of the proposed BS based
NHDFE (BS-NHDFE) are compared with those of the poly-
nomial based NHDFE (P-NHDFE) in Fig. 12 for the two HPA
operating conditions of OBO = 3 dB and OBO = 5 dB, using
the benchmark of the ideal NHDFE (perf.NHDFE) constructed
based on the perfect knowledge of the CIR tap vector h, the
true HPA’s nonlinearity Ψ( ) and its true inversion Ψ−1( ).
Note that we model or estimate the true HPA’s inversion
Ψ−1( ) by a BS neural network based on the true input-output
training data of

{
wk, xk

}N−1

k=0
, which in reality are unavailable

at the receiver. Not surprisingly, the performance of the P-
NHDFE is considerably inferior to that of the proposed BS-
NHDFE, particularly when the HPA is operating in the severe
nonlinear region. This performance degradation of the P-
NHDFE is mainly caused by serious bias in the estimate for
Ψ−1( ). Also unsurprisingly, the performance of the proposed
BS-NHDFE is almost indistinguishable from that of the ideal
NHDFE based on the perfect h, Ψ( ) and Ψ−1( ). This
is simply owing to the ability of the proposed BS based
estimation approach to very accurately identify h, Ψ( ) and
Ψ−1( ), as clearly demonstrated in the results of Section IV-B.

V. CONCLUSIONS

A novel NHDFE design has been developed for the SC
block transmission system over the Hammerstein channel,
where the nonlinear distortion is caused by the high power
amplifier at transmitter. We have adopted to use a CV B-spline
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neural network for modeling the HPA’s CV static nonlinearity
as well as to use another CV B-spline neural network for
modeling the inverse mapping of the HPA’s nonlinearity. Dur-
ing training, the Hammerstein channel model parameters that
include the CIR coefficients and the B-spline neural network
weights can readily be estimated using a highly efficient
ALS algorithm, while the weights of the B-spline inversion
model can be identified using a standard LS algorithm based
on the pseudo training data as a natural by-product of the
Hammerstein channel model identification. Simulation results
obtained have demonstrated that our proposed B-spline based
NHDFE significantly outperforms the previous state-of-the-art
for nonlinear SC-FDE. The results have also been presented to
show the superior performance of the proposed B-spline based
NHDFE design over the polynomial based NHDFE design of
comparable complexity.

In this study, we mainly focus on the achievable perfor-
mance of the new NHDFE design for nonlinear SC block
transmission systems and, therefore, we assume that the chan-
nel is static during the whole communication session. Note
that the nonlinear HPA model obtained during the training will
remain valid for the whole session since the operating status
of the transmitter HPA is determined by the link budget for
the whole communication session. However, the channel may
vary during the transmission and, therefore, the estimated CIR
obtained during the training has to be updated. Our future work
will investigate how to incorporate decision-directed channel
estimation with the proposed NHDFE design.

APPENDIX

The mean square error (MSE) is defined by

MSE =E
{∣∣εk

∣∣2} = E
{∣∣wk − w̃k

∣∣2}. (59)

To determine the MMSE solution of
{
Cn

}N−1

n=0
and

{
gi

}Lcir

i=1
,

we set ŵk−i = wk−i in the TD feedback equalizer and,
therefore, we have

w̃k =
1
N

N−1∑
n=0

Cn

(
HnWn + Ξn

)
exp

(
j
2πnk

N

)
−

Lcir∑
i=1

g∗i wk−i.

(60)

By substituting (60) into (59) and after some simplification,
we obtain

E
{∣∣εk

∣∣2} =
2σ2

e

N

N−1∑
n=0

∣∣Cn

∣∣2 +
σ2

w

N

N−1∑
n=0

∣∣CnHn − Gn

∣∣2, (61)

where

Gn =1 +
Lcir∑
i=1

g∗i exp
(
− j

2πin

N

)
. (62)

By setting
∂E

{∣∣εk

∣∣2}
∂Cn

= 0, we obtain the MMSE solution

for
{
Cn

}N−1

n=0
as

Cn =
H∗

nGn

2σ2
e

σ2
w

+
∣∣Hn

∣∣2 , 0 ≤ n ≤ N − 1. (63)

Substituting the MMSE solution (63) into (59) yields the
corresponding MSE value

E
{∣∣εk

∣∣2} =
2σ2

e

N

N−1∑
n=0

∣∣Gn

∣∣2
2σ2

e

σ2
w

+
∣∣Hn

∣∣2
=

2σ2
e

N

N−1∑
n=0

∣∣∣1 +
Lcir∑
i=1

g∗i exp
(
− j 2πin

N

)∣∣∣2
2σ2

e

σ2
w

+
∣∣Hn

∣∣2 . (64)

Setting
∂E

{∣∣εk

∣∣2}
∂gl

= 0 yields the set of equations

Lcir∑
i=1

gi

N−1∑
n=0

exp
(
− j2πn(l−i)

N

)
2σ2

e

σ2
w

+
∣∣Hn

∣∣2 = −
N−1∑
n=0

exp
(
− j 2πnl

N

)
2σ2

e

σ2
w

+
∣∣Hn

∣∣2
(65)

for 1 ≤ l ≤ Lcir. By defining

vl =
N−1∑
n=0

exp
(
− j2πnl

N

)
2σ2

e

σ2
w

+
∣∣Hn

∣∣2 (66)

with the property v−l = v∗
l , we obtain

v0 v−1 · · · v−Lcir+1

v1 v0
. . .

...
...

. . . . . . v−1

vLcir−1 · · · v1 v0




g1

g2

...
gLcir

= −


v1

v2

...
vLcir

.

(67)
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