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A novel approach to statistical-dynamical downscaling for long-term wind 

resource predictions  

Roberto Chávez-Arroyo, Pedro Fernandes-Correia, Sergio Lozano-Galiana, Javier Sanz-Rodrigo, 

Javier Amezcua, *Oliver Probst 

 

A novel method to determine representative periods (typically a year) for the estimation of the long-

term mesoscale wind resource has been proposed and compared to other recently published 

techniques. It provides a computationally lean while accurate solution of the problem of constructing 

long-term mesoscale wind maps through downscaling without having to go through a brute force 

procedure. Applications include a wider dissemination of mesoscale wind maps because of faster and 

cheaper execution, as well as greater flexibility for sensitivity analyses. 
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Abstract 10 

A new method for the long-term prediction of the wind resource based on the concept of statistical-11 

dynamical downscaling is presented. This new approach uses mean sea-level pressure (MSLP) maps from 12 

global reanalysis data (NCEP-DOE AMIP-II) and image processing techniques to identify a synthetic 13 

reference period which optimally matches the corresponding long-term maps. Four different image 14 

processing techniques, averaged into one image similarity error index, are used to evaluate image 15 

similarity. A representative set of days is selected by requiring the error index to be minimal. Validation 16 

of representativeness in terms of the wind resource for the Iberian domain is performed against ten years 17 

of measured wind data from Navarra (Spain), as well as mesoscale simulations of the Iberian Peninsula. 18 

The new approach is shown to outperform not only the industry-standard method but also other recently 19 

proposed methods in its capability to achieve mesoscale level representativeness. A particular advantage 20 

of the new method is its capability of simultaneously providing a representative period for all potential 21 

wind farm sites located within large regional domains without requiring re-running the method for 22 

different candidate sites. 23 

Keywords: Long-term wind resource; statistical-dynamical downscaling; stratified sampling; mean sea 24 

level maps; reanalysis data; image processing 25 

1. Introduction 26 

The accurate representation of large-scale circulation systems and their associated local wind field is 27 

essential to the development and financing of wind power plants. Consequently, the interest in methods 28 

providing insights into the representativeness of on-site measured wind data has sparked in recent years. 29 

To date, most industry-standard analyses of the long-term wind resource of a wind project rely on 30 

statistical relationships (Romo Perea et al., 2011), often in the form of a linear regression, between the on-31 

site towers and suitable reference sites, typically either Automatic Surface Observation Stations (ASOS) 32 

or virtual wind towers from numerical climate data bases such as NCEP/NARR (North American 33 

Regional Reanalysis) (Mesinger et al., 2006), NASA/MERRA (Modern-Era Retrospective Analysis for 34 

Research and Applications) (Rienecker et al., 2011), ECMWF/ERA-Interim among others (Liléo et al., 35 

2013). While the predictions derived from statistical relationships may be quite accurate if the long-term 36 

station is located at a site with similar wind climate and exposure conditions, and long-term 37 

measurements have been conducted at a height level similar to the projected turbine hub height, these 38 

idealized conditions are only seldom met. The construction of statistical associations between long-term 39 
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atmospheric data with local variables is widely known as statistical downscaling. In these methods, a 40 

statistical model is trained to use empirical relationships between local observed variables, predictands, 41 

and large scale atmospheric fields known as predictors (e.g. García-Bustamante et al. (2012)). This 42 

approach is very computationally efficient; however, similar to the virtual series method, its reliability 43 

relies on the strength of the statistical links between atmospheric circulations and regional observations. 44 

On the opposite side are approaches that solve the equations of the atmosphere dynamics for a period 45 

of interest. Such approaches are generally referred to as dynamical downscaling and provide solutions to 46 

the atmospheric dynamics in the region of interest based on the full set of balance equations at the chosen 47 

simulation grid and semi-empirical relationships for physical processes occurring at the sub-grid level 48 

(Pielke, 2002). A possible approach to assessing the long-term wind resource in a region of interest is to 49 

apply the dynamical downscaling methodology for periods long enough to capture the intra- and inter-50 

annual, and if possible, decadal variability. Despite the significant increase in computing power, the need 51 

for solutions at finer-resolution scales and the continuous development of more complex physics such as 52 

the implementation of higher-order models for the solution of sub-grid processes (e.g. Barranger & Kallos  53 

(2012)) requires substantially higher computational resources than those typically available at the desktop 54 

level or in small research clusters. 55 

Practical solutions to the dilemma outlined above are hybrid methods, often termed statistical 56 

dynamical downscaling (SDD), which combine the deterministic approach of dynamical downscaling 57 

with statistical techniques. SDD methods can be roughly grouped into three categories: (1) approaches 58 

based on the classification of weather types (Frey-Buness et al., 1995), (2) algorithmic methods with 59 

suitable evaluation metrics where almost no pre-classification by the user is required (Fuentes & 60 

Heimann, 2000a; Cutler et al., 2006; Hagemann, 2008; Rife et al., 2013; Tammelin et al., 2013; Chávez-61 

Arroyo et al., 2013; Martinez et al., 2013), and (3) construction of statistical relations between long-term 62 

and short-term dynamical downscaled data (Hahmann et al., 2012). Weather classification approaches are 63 

rather typical in the atmospheric sciences, where algorithmic methods have made a more recent 64 

appearance. In both cases the underlying assumption is that any regional climate can be associated with a 65 

specific frequency distribution of classified large-scale weather situations (Frey-Buness et al., 1995).  66 

While methods based on the synoptic-scale classification of stationary weather regimes are generally 67 

physically meaningful and often lead to a reasonably small number of classes, there are several downsides 68 

which limit their usefulness for comprehensive wind prospecting purposes. First, there is generally a loss 69 

of the time-dependent phenomena (Fuentes & Heimann, 2000b). Secondly, the simulation of daily or 70 

seasonal phenomena is difficult because of the large number of classes required for such a distinction. 71 

Thirdly, classification is rather case-specific and somewhat subjective as it requires site-specific 72 

knowledge (Cutler et al., 2006).  73 

Some of these issues can in principle be tackled by algorithmic approaches such as those described 74 

below. Martínez et al. (2013) disaggregated the large-scale climate into their Empirical Orthogonal 75 

Functions (EOF) which were then dynamically downscaled. They were able to account for the temporal 76 

variability by applying the Principal Components time series to the downscaled version of the 77 

corresponding EOF which also served for the comparisons with observations. Fuentes and Heimann 78 

(2000) proposed the dynamical downscaling of the most representative multi-day episodes of quasi-79 

stationary circulations. These episodes were created by hierarchical cluster analysis combined with a 80 

spatio-temporal metric to collect consecutive dates with similar patterns described by their first Principal 81 

Components of the geopotential at 500 hPa. Hagemann (2008) proposed the use of Self-Organizing Maps 82 
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(SOM) to select a representative continuous set of 365 days which were afterwards dynamically 83 

downscaled. 84 

Rife et al. (2013) based their selection on a 365-day sample with equal representation for all days. The 85 

sample resulted from testing very large number sets generated by random stratified sampling and 86 

selecting the best rated sample’s wind speed and direction distributions according to their proposed 87 

distance metric based on the �� statistic. Their selection was made from daily averages of wind speed and 88 

direction from the first native vertical level from the MERRA global reanalysis data point that best 89 

correlated with the measurements used for validation. The ideas of Hageman (2008), Tammelin et al. 90 

(2013) and Rife et al. (2013) were also addressed by Chavez-Arroyo et al. (2013) and Chávez-Arroyo et 91 

al. (2015). They employed the stratified sampling technique (Rife et al., 2013) to generate a large pool of 92 

candidate years that were ranked according to their similarity to the long-term climate. Chávez-Arroyo et 93 

al.(2013), Chávez-Arroyo et al. (2015), and (Hagemann (2008) used large-scale atmospheric circulation 94 

predictors, which probe representativeness at a mesoscale level. Recently, Vanvyve et al. (2015) 95 

presented another interesting methodology suitable for statistical-dynamical downscaling based on an 96 

analogue ensemble approach.   97 

The present work is a new contribution to the field of statistical dynamical downscaling and has two 98 

main objectives: (1) introduction of an improved algorithmic approach for the determination of 99 

representative periods, and (2) a systematic comparison of the new proposal against published methods. 100 

The new method is based on the assumption that regional wind flow is driven by large-scale systems 101 

which can be suitably analysed in terms of synoptic patterns. While the previously published methods 102 

require a relatively modest computing time compared to the one required for downscaling large regional 103 

areas the computational effort is still considerable, which motivated the search for a computationally 104 

leaner method which should ideally retain or improve the accuracy of the previously proposed methods 105 

for identifying representative periods. As will be shown in the following, the novel approach proposed in 106 

this work does indeed comply with these expectations.  107 

 108 

2. Methods and data 109 

A total of five different methods for the determination of representative periods were evaluated. One 110 

technique, termed the Best Annual Mean and Standard Deviation or BAMS method, is new and will be 111 

described at some detail in the present paper. It will be shown that this novel approach consistently 112 

outperforms all other methods. Another important method implemented and evaluated in this work is the 113 

one put forward by Rife et al. (2013) discussed above. The Rife method was implemented in two variants 114 

(REA1 and REA2) described in greater detail below. Two other techniques recently published and used 115 

for comparison in the present work are the PCA (Principal Component Analysis)-based approach 116 

proposed by Chávez-Arroyo et al. (2013) and the SOM (Self-Organizing Maps) method used by Chávez-117 

Arroyo et al. (2015). The last method used for comparison and termed the traditional (TRA) approach in 118 

this work is the wind industry-standard procedure for statistical downscaling of the long-term wind 119 

resource. The traditional method (TRA) is based on the construction of one synthetic year (365 days) 120 

where each calendar day of the representative year is determined from random draws among the 121 

corresponding set of repetitions of that calendar day within the long-term period.  122 

 123 

2.1 The Best Annual Mean and Standard Deviation (BAMS) method 124 

The novel approach introduced in this work incorporates several elements explored successfully in 125 

published work. One key ingredient is the use of mean sea-level pressure (MSLP) mesoscale maps for a 126 
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region of interest as predictors; this approach was found to outperform the industry-standard practice in 127 

Chávez-Arroyo et al. (2013) and Chávez-Arroyo et al. (2015). Another element is the use of the stratified 128 

sampling technique put forward by Rife et al. (2013) in which a large number of monthly data sets (10
5
 129 

samples/month) are generated by randomly sampling the long-term SLP data, each sample containing 28, 130 

30, or  31-days per month, depending on the calendar month. The new ingredient in the BAMS method is 131 

the way the similarity between the long-term and the representative period is established. Whereas Rife et 132 

al. (2013) use comparisons between wind resource at a point location the BAMS method uses a 133 

mesoscale approach to establish this similarity by using the complete information contained in the 134 

regional MSLP maps. Such an approach seems more appropriate for mesoscale downscaling applications, 135 

though it was clear from the outset that the Rife approach might work better at the specific location used 136 

for tuning the method.  137 

Evidently, a tool is required to establish the similarity between mesoscale maps. The novelty in the 138 

present work consists in its departure from traditional statistical methods used in the atmospheric 139 

sciences, both linear (such as PCA) and non-linear (such as SOM), by using image processing techniques 140 

successfully employed in other areas of science and engineering. Four different image similarity detection 141 

techniques are used and combined into one similarity index after applying a linear normalization operator 142 

to the sub-index associated with each method. An optimal or representative set of days is selected by 143 

requiring the error index to be minimal.  144 

 In the following we will consider two types of maps, ���� (long-term) and ���� (candidate 145 

representative period), which have been obtained from temporally averaging over their respective 146 

observational periods; � ∈ 	1, � with � being the number of grid points. Both the temporal mean (e.g. 147 ���� = ∑���, �� �⁄ ) and the standard deviation (e.g. ���� = �∑����, �� − ������ �⁄ �� − 1�⁄  are 148 

considered for both of the similarity indices considered. We can then define the first similarity index 149 

SI1	as the root mean square error of the point-to-point comparison between the � and � map as 150 

SI1 ≡ 〈�〉 = �1����� − �����
���  

� �⁄
																																																																																																�1� 

The second similarity index SI2	is an average Pearson correlation coefficient !�", #�	between rows and 151 

columns from each pair of maps. In order to account for small variations in the sea level pressure (SLP) 152 

patterns which are due to small shifts between maps but still represent almost identical spatial patterns, 153 

the correlations are computed not only between corresponding rows (i.e., !��$ , �$�, % being the row 154 

index, % ∈ 	1, &, & being the number of rows) and columns (i.e. !��' , �'�, ( being the column index, 155 ( ∈ 	1, )), ) being the number of columns), but also from certain neighbouring rows and columns as 156 

defined by	!��$, �$±+.+-.� and !��' , �'±+.+-/�, respectively, i.e. 157 

SI2 ≡ !̅ = 13& � �!��$ , �$23	+.+-.� + 13) � �!��' , �'23	+.+-/�																															�2�/
'��

�
3�6�

.
$��

�
3�6�  

 158 

The third similarity index SI3 = 7, is based on a comparison between distributions of the SLP values 159 

contained in both rows and columns of the images representing the long-term and the candidate 160 

representative period, respectively. As before, the analysis is conducted on both the average SLP and its 161 

standard deviation. Specifically, the following calculations are carried out: a histogram 8$	of the SLP 162 
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values of the %th row and, similarly, a histogram 9' of the SLP values of the (th column in each of the 163 

SLP mean or standard deviation map is first calculated using 30 bins. Then, the Pearson correlation for all 164 

pairs of distributions is calculated from the rows with the same index, i.e. corr�8$LT, 8$RP� and, similarly, 165 

from columns with the same index, i.e. corr:9'LT, 9'RP;, where in both cases the superscript LT refers to 166 

long-term and RP to representative period. Finally the row and column correlations are averaged to 167 

compute the third similarity index 7 according to 168 

SI3 ≡ 7 = 1& + ) <� corr�8$LT, 8$RP� +� corr:9'LT, 9'RP;/
'��

.
$�� =																																																		 �3� 

The fourth metric or similarity index SI>  is a structural similarity index proposed by Wang et al.  169 

(2004). This technique is designed for the quality assessment based on the degradation of structural 170 

information of an image. This technique attempts to quantify the visibility of errors (differences) between 171 

a distorted image and a reference image. The structural similarity index SSIM for two images " and # is 172 

computed as: 173 

SI> ≡ SSIM�", #� = ?@�", #�AB�", #�C��", #�DE,																																																																										�4a� 
where @�", #� is the luminosity function, B�", #� the contrast comparison function, and ��", #� the 174 

structure comparison function, respectively defined by 175 

@�", #� = 2GHGI + J�GH�+GI� + J� 																																																																																																																						�4a� 
B�", #� = 2KHKI + J�KH�+KI� + J� 																																																																																																																					�4b� 
��", #� = KHI + J-KHKI + J- 																																																																																																																									�4c� 

The mean G	and the standard deviation K of an image have their usual meanings, KHI = cov�", #� is 176 

the covariance between images " and #, and J�, J�, and J- are small constants  (J� ≪ GH�, etc.). M, N, and 177 Γ are free parameters used to adjust the relative importance of the three image comparison functions 178 

introduced above; in the present work M = N = Γ = 1. 179 

In the BAMS method, the four image similarity components described above are linearly transformed 180 

using the lower and upper bounds of each statistic calculated from the P samples making up the candidate 181 

set of representative periods Q. This transformation scales the ranges of each of the four similarity indices 182 

to [0, 1] in order to allow them to be averaged into one overall similarity measure. The linearly scaled 183 

version RS,T∗  of any of the four metrics (SI3 , V = 1…4) is then obtained from  184 

RS,T∗ = RS,T −min3[R3,T\max3[R3,T\ − min3[R3,T\,																																																																																																	�5� 
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for the Qth candidate and a given month `. All four normalized metrics are then averaged into one 185 

performance index aS,T. In the present work, equal weights were assigned to the each of the four indices, 186 

although generalization to non-equal weights is evidently straightforward: 187 

aS,T = 14 [〈�〉S,T∗ + :1 − bS,T∗ ; + :1 − 7S,T∗ ; + :1 − SSIMS,T∗ ;\,																																																					�6� 
where 〈�〉S,T∗ , bS,T∗ , 7S,T∗ , and SSIMS,T∗  are the linearly scaled versions of the four similarity indices 188 

according to equation (5). Please note that the complements of bS,T∗ , 7S,T∗ , and SSIMS,T∗  are used in equation 189 

(6) are used for consistency with the first similarity metric 〈�〉S,T∗ . The BAMS index is now constructed by 190 

averaging the performance indices aS,T for the monthly mean GSLP	of the sea level pressure (SLP) and its 191 

standard deviation KSLP. 192 

BAMSST = ��[aST�GSLP� + aST�KSLP�\																																																																																												�7� 
The representative year is then selected by requiring BAMSS,T to be at a minimum for each month, i.e. 193 

BAMSef,T = min3[BAMS3,T\ 																																																																																																						 �8� 
 194 

2.2 Observational data base used for validation 195 

The surface observational data employed here consist of wind speed and direction measurements from 22 196 

automatic weather observation stations (ASOS) in Comunidad Foral de Navarra, Spain. These stations 197 

are managed and maintained by the Sección de Evaluación de Recursos Agrarios del Departamento de 198 

Agricultura, Ganadería y Alimentación at the regional Government of Navarra.  Figure 1 shows their 199 

location together with the topography information which outline the complex topographic elements 200 

dominating the region: a complex system of mountain ranges in the centre, on the eastern and western 201 

side the mountain lines which form the last foothills of the Pyrenees to the north, and the less complex 202 

low lands of the Ebro valley which characterizes the south of the region. This figure also shows the 203 

position of the MERRA grid points over the area which is used for further analysis below. 204 

Prior to the analyses related to the main topic of this paper the wind speed and wind direction records 205 

of the 22 stations were subjected to an extensive quality assurance analysis in order to remove both rough 206 

and systematic errors by using the methodology described in Chávez-Arroyo & Probst (2015). The data 207 

period from 1 January 2001 through 31 December 2012 was used for the purposes of the present work. 208 

The total data recovery after quality assurance was 94% global, with station data recovery ranging from 209 

82% (NM20) to 98% (NM2) with a standard deviation of 5 percentage points. 210 

 211 

2.3 Numerical data base 212 

The Regional Weather Forecasting Model SKIRON was used to generate the numerical data set of 213 

surface wind speed employed in this study and includes 9 years of dynamically downscaled wind fields 214 

for the Iberian Peninsula for the period 2004-2012. The details of the SKIRON regional model are 215 

described in Kallos et al. (2005). Initial and boundary conditions were obtained from the NCEP Global 216 

Forecast System (GFS) global Numerical Weather Prediction model. Each SKIRON run is initialized as a 217 

cold start with the GFS analysis at 12 UTC of each day, and is run with a forecast horizon of 36 hours, 218 

updating the boundary conditions with GFS data every three hours. The first 12 hours are discarded as 219 

part of the spin-up time of the model (Gastón et al., 2008) while the next 24 forecast hours are stored 220 
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every hour. These outputs are post-processed in order to obtain the wind speed at 80 m above surface 221 

from the native h vertical levels by performing a power-law interpolation to account for wind shear. The 222 

static data for representing vegetation, topography and soil texture are introduced at a resolution of 30”, 223 

30” and 2’ respectively. In addition, a buffer zone of 100 km is considered by discarding this distance 224 

from the borders to avoid possible dynamical and numerical inconsistencies at the interface between the 225 

GFS and SKIRON boundaries. 226 

 227 

2.4 The PCA and the SOM methods 228 

The methods based on Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) have 229 

been introduced by Chávez-Arroyo et al. (2013) and Chávez-Arroyo et al. (2015), respectively. As the 230 

BAMS method introduced in the present work both the PCA and the SOM method use mean sea level 231 

pressure maps from NCEP-DOE AMIP-II reanalysis (Kanamitsu et al., 2002) as input. In the 232 

implementation of the PCA method the first Empirical Orthogonal Functions (EOFs) representing 70% of 233 

the variability were used. In the case of the SOM method, the number of nodes (C) used to describe the 234 

distribution function of the original data set was defined by three rectangular arrays with dimensions 235 	2 × 3, 	4 × 5 and 	6 × 6 equivalent to 6, 20 and 36 nodes, respectively. The reader is referred to the 236 

references above for a detailed description of both methods.  237 

 238 

2.5 Implementations of the Rife method 239 

The method described in Rife et al. (2013) requires data from a reanalysis location, taken to be the 240 

MERRA grid point closest to the point of interest in the original paper. A distance metric involving the 241 

squared differences between both the wind speed and wind direction distributions of the long-term and 242 

candidate representative year is used to determine the most representative (synthetic) year. Two versions 243 

of the Rife method (termed REA1 and REA2) were coded to allow for a fair comparison in the case of the 244 

validations against observational data (obtained from 22 met stations at the Navarra province). In the 245 

REA1 implementation the MERRA grid point showing the highest average correlation of the daily wind 246 

speed averages with all 22 Navarra ASOS data was selected; conversely, in the REA2 implementation the 247 

MERRA point with the lowest average correlation with all 22 Navarra weather stations was used.  248 

As the Rife method in its original version was not designed to achieve mesoscale representativeness, a 249 

fair comparison called for an appropriate selection of the MERRA reference point to be used. Six 250 

locations on the Iberian Peninsula were selected randomly (shown in the inset of Figure 1) and the 251 

method was repeated for each of the reference points. The results of this sensitivity analysis are shown in 252 

Figure 6. While the reference point was found to have no statistically significant impact on the results, the 253 

results for two implementations (called R-I and R-II), chosen to be the ones with the “best” and “worst” 254 

error metrics, are shown below. 255 

 256 

2.6 Validation metrics 257 

The following metrics were calculated for each of the time series associated with each of the 22 weather 258 

stations (ASOS) at Navarra as well as each of the 99050 virtual wind speed records at 80 m above sea 259 

level obtained from the mesoscale model SKIRON. The first validation metric is the Relative Absolute 260 

Error (RAE) of a particular statistic such as the average (" = 〈j〉) or standard deviation (" = K�j�) of 261 

the wind speed between the long-term (LT) and the representative (RP) time series: 262 
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|�H| = l"LT − "RP"LT
l × 100		%																																																																																																		�9� 

The second metric used for validation is the Mean Absolute Error (MAE) of either the hourly (� = 24 263 

hours) or monthly (� = 12 months) wind speed time series averages: 264 

|�p| = 1��qjrLT − jrRPq																																																																																																									�10�p
r��  

The third validation metric is the relative wind speed frequency difference 265 

s = � tu l8uLT − 8uRP

8uLT
l × 100		%																																																																																				�11�nbins

u��  

where 8uLT and 8uRP  are the relative wind speed frequencies corresponding to the long-term and 266 

representative period respectively, computed for a total number of bins given by nbins = 20. The 267 

weighting factor tu is taken as the long-term frequency (tu 	= 	 8uLT) in order to assign more importance 268 

to those bins with higher frequency of occurrence.  269 

The last metric is based on the two-sample Kolmogorov-Smirnov (KS) test. This non-parametric 270 

hypothesis test evaluates the difference between the empirical cumulative wind speed distribution 271 

functions v of each pair of long-term and representative data sets (vuLT and vuRP). The KS metric is 272 

defined as 273 

KS = max:qvLT − vRPq;																																																																																																						�12� 
2.7 Analysis of statistical significance 274 

In order to allow for a meaningful statistical comparison among the six methods described above a 275 

consistent procedure had to be devised to deal with the random structure associated with the Monte Carlo 276 

approach common to all methods. For this purpose, 100 realizations of each method were conducted, with 277 

each realization implying the generation of 10
5
 trial cases, with the exception of the industry-standard or 278 

traditional method (TRA) which only generates one trial case. Subsequently, the results were subjected to 279 

a one-way ANOVA (Analysis of Variance) test (Wilks, 2006), as well as a non-parametric version, the 280 

Kruskal-Wallis (KW) test (Kruskal & Wallis, 1952). The Kruskal-Wallis test was run in addition to 281 

ANOVA as it had not been possible from the outset to ensure homoscedasticity (i.e. similar variance 282 

among group), a relatively stringent requirement for ANOVA. The KW test starts by ranking all data 283 

from all groups Q together (in the present case, values of a given error metric for the different methods), 284 

ignoring group membership. The KW metric w then measures the deviation of the average group ranks x̅S 285 

from the overall average rank x̅ of the sample compared to the scatter of individual ranks xST of all data 286 

around x̅, where	` identifies data points within group Q. A suitable y-value is defined in order to decide 287 

whether at least one group is significantly different from the others. 288 

a. Each method was run 100 times and all error statistics (section 2.6) are gathered for either the 289 

Navarra ASOS or the mesoscale SKIRON wind field. 290 

b. The average and the standard deviation of the error metrics of each trial were computed in the 291 

space dimension, i.e. for Q = 22 stations in the case of the Navarra ASOS network and for Q = 292 
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99050 SKIRON grid points in the case of the mesoscale simulations. One group (with 100 sample 293 

elements) was generated for each method. 294 

c. Thereafter, a group comparison was conducted through the ANOVA test, in which the groups 295 

correspond to the six methods discussed above: BAMS, PCA, SOM, REA1, REA2, and TRA. 296 

The null hypothesis for the ANOVA is “the means for all the groups are equal”, while the 297 

alternative hypothesis is “at least one mean is different”. The hypotheses for the KW test are the 298 

same with the median instead of the mean. If the null hypothesis was rejected (y-value ≤ M =299 0.05) in either the ANOVA or the KW test a Tukey-Kramer test  (Tukey, 1949) was conducted in 300 

order to establish if the difference between any two of the means or medians (in the case of KW) 301 

was significant and to construct confidence limits (see e.g. (Hochberg & Tamhane, 1987) for a 302 

review of multiple comparison techniques). Tukey confidence limits are shown as bars in Figures 303 

4, 5, 6, and 9. 304 

The multiple trials of all methods were performed in identical manner for both data sets used for 305 

validation, i.e. the Navarra observational data and the numerical simulations conducted with SKIRON. 306 

The long-term reference periods are 1 January 2001 through 31 December 2012 (12 years) for the 307 

Navarra (ASOS) records and 1 January 2004 through 31 December 2012 (9 years) for the SKIRON-308 

derived wind data. 309 

 310 

3. Results and discussion 311 

3.1 BAMS predictions for the Navarra network 312 

The results of the BAMS method for a single run are illustrated in Figure 2; as in the following sections – 313 

with the exception of section 3.5 where the effect of the length of the representative period is assessed – 314 

the representative period is taken to be one year. Figure 2 (a) shows a histogram of the relative 315 

frequencies of the wind speed time series of both the long term and the best-matched representative year, 316 

together with their corresponding Weibull probability density functions (PDF). It is conspicuous that the 317 

PDF is very accurately predicted. Similarly, the daily profile (Figure 2 (b)) and the wind rose (Figure 2 318 

(d)), two important metrics for annual energy production (AEP) estimate of wind farms, are almost 319 

identically reproduced by the representative. In the case of the seasonal profile (Figure 2 (c)) the majority 320 

of the monthly wind speeds are accurately predicted but occasional variations of up to 10% are also 321 

observed. It should be noted that at the ensemble level the BAMS actually predicts the seasonal profile 322 

consistently better than the other methods studied for comparison (see section 3.3).  323 

3.2 BAMS predictions for the SKIRON mesoscale map of the Iberian Peninsula 324 

Figure 3 shows the spatial distribution of the error of the wind speed average and energy density in the 325 

Iberian domain, obtained from one realization of the BAMS method. It can be noticed that, with the 326 

exception of a small area in the eastern part of the Iberian Peninsula, the wind speed error for most part of 327 

the domain is very low and homogeneous, with a mean of the map (i.e. mean of 〈�〉�j�	for the 99050 time 328 

series) of 1.2% and a median of 0.9% for the absolute relative error of the wind speed prediction (left 329 

figure). Little dependence on geographic feature can be noticed in the map, which illustrates the 330 

robustness of the method. Given the cubic dependence of the wind energy density on wind speed the error 331 

in this variable is evidently higher, with an average error of 4% and a median of 3.1% compared to the 332 

long-term results, and the spatial variation is somewhat higher than in the case of the wind speed (right 333 

figure). 334 
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3.3 Comparative performance of different methods  335 

(a) Kruskal-Wallis / ANOVA – Tukey-Kramer analysis for the Navarra network 336 

A comparative study of the performance of the six methods discussed in this paper was conducted 337 

according to the methodology described in section 2.7. As ANOVA has more stringent requirements 338 

regarding the statistical properties of the groups of data to be compared (homoscedasticity, normality) 339 

than the Kruskal-Wallis (KW) method, only the results obtained with the latter are shown for brevity. 340 

However, it should be mentioned that the qualitative findings of the ANOVA approach (combined with 341 

the Tukey-Kramer pairwise group comparison as in the KW case) are essentially identical to the ones 342 

obtained with KW.  343 

As shown in Figure 4 for the case of the Navarra met station network the y-value for the group 344 

comparisons of all six metrics shown in the figure is ≪ 0.05, so it can be safely stated that at least one of 345 

the method is statistically different from the others. As illustrated by the Tukey-Kramer error bars the new 346 

method (BAMS) and the two implementations of the Rife method all outperform the traditional method 347 

(TRA) in a statistically significant sense for most of the error metrics but are indistinguishable among 348 

each other. The PCA and SOM method, on the other hand, were found to be indistinguishable from the 349 

TRA method in this study case. The Rife method, in its REA1 implementation, outperforms the PCA and 350 

SOM methods in some of the metrics (�〈{〉, ��>, s, KS) while being indistinguishable from them in others 351 

(�|�{�, ���); the REA2 implementation is always indistinguishable from SOM and PCA. A noteworthy 352 

feature is the fact the BAMS methods clearly outperforms all other methods in the case of the seasonal 353 

profile (as measured by ���). We will see further below that this feature was also confirmed in the case of 354 

the mesoscale simulations for the Iberian Peninsula. While the REA1 method is indistinguishable from 355 

BAMS in five of the metrics and outperformed by BAMS in one (���) it does show the lowest rank in 356 

three of the metrics, insinuating a consistently good performance. It should be stated that this good result 357 

can at least in part traced back to the fact that the MERRA reference used for the REA analysis was 358 

selected within the region of the met stations against which the methods are validated, and that on top of 359 

that the MERRA point with the highest average correlation with the Navarra network had been chosen. 360 

This situation is somewhat different for the cases where the training region is different from the validation 361 

region, as in the case of the mesoscale simulation discussed next. 362 

 363 

(b) Kruskal-Wallis (KW) / ANOVA – Tukey-Kramer (TK) analysis for SKIRON mesoscale simulations 364 

Evidently, validation of the different methods against mesoscale simulation is much more relevant to the 365 

general topic of the present work (statistical-dynamical downscaling) than point comparisons, as the 366 

rationale behind this approach is precisely the reduction of the computational effort required to perform a 367 

long-term mesoscale simulation for a large area, such as the Iberian Peninsula. Figure 5 shows the results 368 

obtained with the six methods.  369 

It is clear from these graphs that in the case of the mesoscale simulation the new method (BAMS) now 370 

dramatically outperforms all other methods. In all metrics BAMS has by far the lowest error ranks and is 371 

clearly distinguishable (in a KW-TK sense) from all methods but the PCA approach which is statistically 372 

indistinguishable in the case of three metrics, and the REA implementation R-I (the one providing the 373 

best ranks in the KW method) whose TK error bounds overlap with those of BAMS in the case of �|�{�. 374 

Not unexpectedly, the runner-up to BAMS is also a mesoscale method, and the local method proposed by 375 

Rife et al. (2013) (in its implementations R-I and R-II, the ones providing the best and worst ranks in the 376 

KW analysis, respectively, out of the six implementations R1 through R6, see Figure 1) is not working as 377 
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well on a larger scale as on the local scale with data from the region which was used to train it in the first 378 

place. As seen from Figure 8 the REA implementations are now essentially indistinguishable from the 379 

traditional method (TRA) used for reference. It is interesting to note that the method based on a linear 380 

pattern analysis (PCA) is working somewhat better than its non-linear counterpart (SOM), which 381 

performs a complex (and computationally demanding) detection of non-linear patterns. This is of course a 382 

preliminary verdict, and other studies will have to show if this conclusion can be sustained on other data 383 

sets. 384 

In order to treat the REA method in all fairness and to avoid that the selection of the reference point 385 

used for training of the method would unduly influence the results, six versions were implemented where 386 

the reference point was changed to six random locations (R1 through R6) distributed evenly over the 387 

Iberian Peninsula (Figure 1). The results are shown in Figure 6, where both a boxplot for the individual 388 

results (providing error statistics for the 99050 locations/time series of the SKIRON mesoscale wind map) 389 

and a group comparison plot have been provided. For brevity, only the metrics s (measuring wind speed 390 

probability distributions) and �〈{〉 (measuring the global error in the wind speed prediction) have been 391 

shown. ANOVA/Tukey-Kramer results are shown, but as in the previous cases, the Kruskal-Wallis 392 

analysis provided essentially the same results. It can be seen from the figure that the results obtained with 393 

either of the REA implementation were found to be statistically indistinguishable in an ANOVA sense, as 394 

indicated by the high value of the y-value (0.72 and 0.84, respectively) and the overlap of the TK error 395 

bounds. This is of course not all that surprising as in a local method like REA an increase in accuracy in 396 

one location (the training location) is likely to come at the expense of a lesser accuracy in the rest of the 397 

simulation region, resulting in a similar overall error. It has of course to be recognized that the REA was 398 

not originally designed for mesoscale assessments for regions as large as the Iberian Peninsula, and that 399 

the extension of it by the authors of the present work was for reference purposes only. 400 

3.4 Repeatability of the methods 401 

In order to obtain further insights into repeatability of the results the variance for each of the annual 402 

ensemble average wind speed values of the 99050 locations modelled in the SKIRON mesh was 403 

calculated, where - as before -  the ensemble consisted of } = 100	realizations of each method. The 404 

results are shown in Figure 7 as maps of the wind speed variance for each method. It is conspicuous from 405 

the colour scales of the maps that the traditional method by far has the largest variability among 406 

realizations and that the latter is relatively uniform over the simulation region, with the exception of a few 407 

regions of higher variability in the mountain ranges in North-eastern Spain. This results was somewhat 408 

expected, given the simple design of the method. On the other end of the range, the BAMS method is 409 

again seen to outperform all other methods in terms of its high repeatability and a very high homogeneity, 410 

i.e. very low dependence of the variability on location. It therefore provided what is expected from a 411 

model suitable for mesoscale modelling. The runner-up, as before, as the PCA-based method which 412 

shows a total variance only some 10% higher than BAMS and also a relatively good spatial homogeneity. 413 

SOM and REA1 have a similar total variance and spatial homogeneity over the continental part of the 414 

simulation domain, though REA1 shows a higher variability over the seas, particular the Atlantic Ocean 415 

adjacent to Portugal and Galicia (North-western Spain). 416 

3.5 The role of the length of the representative period 417 

While it is intuitive to assume that a representative year should be the natural choice for the representative 418 

(synthetic) period of a long-term period to be simulated under a mesoscale approach, it can also be 419 

expected that there will be cost-benefit trade-off which has to be assessed for an optimal use of 420 
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computational resources while ensuring accuracy. Periods significantly shorter than one year are prone to 421 

create biases associated with a lack of seasonal representativeness. Periods composed of several years 422 

might be able to better assess inter-annual fluctuations but come at a higher computational cost. Figure 8 423 

has the evolution of four error metrics as a function of the duration of the representative period; note the 424 

non-linear time axis. It is evident from the figure that a consistent reduction both in average and in 425 

variability among Monte Carlo realizations occurs as the length of the synthetic period is increased.  426 

A power law was found to be a very good fit (�� > 0.99) to all four metrics shown in Figure 8, with 427 

power law exponents in the range of -0.57 (for �〈{〉) to -0.77 (for |���|), indicating that the seasonal 428 

profile benefits most from an extension of the representative period which is of course very intuitive. In 429 

can be seen from Figure 8 that the average absolute error of the average wind speed 〈j〉 (i.e. �〈{〉) is of the 430 

order of 1.5% for a one-year representative period, down from about 6% if a 36-day period is chosen. 431 

Using two years as a representative period provides only a marginal improvement to about 1%. 432 

While Figure 9 strongly suggests a significant improvement in long-term prediction accuracy as a 433 

function of the length of the representative period it still remained to be assessed to what extent these 434 

improvements are significant in a statistical sense.  In order to address this question another round of 435 

Kruskall-Wallis (KW) non-parametric group comparisons was conducted where each group consisted of 436 

the long-term predictions elaborated with representative periods (RP) of varying length (as before) and a 437 

given error metric. As shown by the results in KW ranks do indeed decline consistently as a function of 438 

the RP length, increasing the RP length not always guarantees a significant improvement in prediction 439 

accuracy, e.g. upon increasing the RP length from 120 to 180 days. However, it is evident from the figure 440 

that the expected error in a given error metric can be tuned by selecting the appropriate length of the 441 

representative period. 442 

In order to further elaborate on this aspect, which directly translates into the computational effort 443 

required to achieve a given level of accuracy, an attempt was made to directly relate the BAMS scores (as 444 

calculated by equation (7)) with the expected accuracy of the (SKIRON) mesoscale simulation conducted 445 

with the reduced synthetic period instead of the full long-term period. Figure 10 shows the corresponding 446 

results. It can be seen that in all six error metrics shown the relationship between the error and the BAMS 447 

scores is approximately linear, allowing the level of computational effort (length of the period to be 448 

simulated) to be adjusted to the level of final accuracy required. Evidently, a reduction of the error 449 

associated with the selection of the synthetic period is only worthwhile to the extent that this error is 450 

larger than or comparable to other sources of errors associated with the mesoscale modelling process. 451 

3.6 Savings in computational resources 452 

In an effort to quantify the computational cost of the main contribution of the present work, the BAMS 453 

method, was run for the Iberian domain on an Intel Xeon processor (using a single core@2.53GHz), 454 

requiring 38 hours of execution. However, as the method can be fully parallelized the same task using the 455 

full 12-core set of the processor would require less than four hours. With this computational investment 456 

the required execution time of a downscaling process for the same domain can be reduced by a factor of 457 

20 to 30 (depending on the exact lengths of both the representative and the required long-term period). 458 

This translates into a speedup in a cloud computing environment from typically one month to little over 459 

one day, saving both considerable amounts of financial resources and allowing for a greater range of 460 

sensitivity studies. 461 

4. Summary and conclusions 462 
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A new method for the statistical-dynamical downscaling of the resource, termed the BAMS method (Best 463 

Annual Mean and Standard Deviation), has been introduced. This method allows to construct a synthetic 464 

representative period with an optimal similarity compared to a long-term period of interest; this reduced 465 

period can then be used for dynamical downscaling purposes at a fraction of the time that would have 466 

been required if the long-term period had been downscaled directly. The BAMS method is an algorithmic 467 

approach which does not require specific knowledge about the wind climate in the region of interest, as 468 

opposed to statistical-dynamical downscaling methods based on classifications of wind resource data 469 

prior to the construction of the representative data set. It has the distinctive advantage over other 470 

algorithmic methods that it does not require the specification of a priori information such as a number of 471 

retained orthogonal components (as in the case of Principal Component Analysis) or prior selection of the 472 

number and structure of cluster arrays (as in the case of Self-Organizing Maps). Much as many 473 

algorithmic but unlike most classification-based methods BAMS retains control of the temporality of the 474 

data which is very important in the case of wind resource studies where seasonal and daily profiles are of 475 

great interest. The BAMS method is based on the use of mesoscale input information, in the present case 476 

mean sea level pressure (MSLP) maps, which allow for the construction of a regionally representative 477 

period rather than one tuned to a specific site of interest. It was shown that the new method clearly 478 

outperforms the other methods in all error metrics studied, indicative of different characteristics of the 479 

wind resource. Even with the continuous rise in computing power available to general and research users 480 

long-term mesoscale simulation remain a significant computational challenge, and it is believed that the 481 

approach presented in the current work significantly contributes to the progress of the field.  482 
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Figure captions 555 

Figure 1 Location of the ASOS stations used in the present work. The MERRA reference locations REA1 556 

and REA2 for the REA method in the case of the local validation are indicated in the main graph. Inset: 557 

Locations of the reference locations R1 through R6 used for the REA method in the case of the mesoscale 558 

validation. 559 

Figure 2 Comparison of the basic wind statistics for the long-term period (LT) and the representative year 560 

(RY) determined by one realization of the BAMS method for one ASOS (NM19) from the Navarra 561 

network. (a) Histograms of the wind speed distributions, (b) daily profiles, (c) seasonal profiles, and (d) 562 

wind roses. 563 

Figure 3 (a) Absolute wind speed error for one realization of the BAMS method. (b) Absolute error of the 564 

wind energy density. 565 

Figure 4 Results of the Kruskal-Wallis / Tukey-Kramer pairwise group comparison for the six methods 566 

under study using the Navarra observational data for validation 567 

Figure 5 Results of the Kruskal-Wallis / Tukey-Kramer pairwise group comparison for the six methods 568 

under study using the SKIRON mesoscale data for the Iberian Peninsula for validation 569 

Figure 6 Results of the ANOVA / Tukey-Kramer pairwise group comparison for six implementations of 570 

the REA method 571 

Figure 7 Maps of the variance of the wind speed of the representative year obtained from }=100 572 

realizations of each method 573 

Figure 8 Box-plots with several error statistics as a function of the length of the synthetic period selected 574 

for the case of the BAMS method. Each sample in the plots is built with the average of results obtained at 575 

the 99050 SKIRON grid points of each metric. Red asterisks denote the mean of each error metric over 576 

the 100 trials. Green circles (with corresponding vertical axis on the right of each plot) denote the 577 

standard deviation of the trials. 578 

Figure 9 Results of the multiple comparisons test (Kruskall-Wallis / Turkey-Kramer) for SKIRON-579 

derived wind fields and different length of the representative period selected through the BAMS method. 580 

Each metric include their mean and their narrow confidence intervals for the join significance (with 581 M = 	0.05) constructed from the Kruskall-Wallis results.  582 

Figure 10 Correlation between the BAMS scores and six different error metrics for the case of the 583 

SKIRON mesoscale simulations 584 

 585 
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 587 
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Figure 1 Location of the ASOS stations used in the present work. The MERRA reference locations REA1 and 
REA2 for the REA method in the case of the local validation are indicated in the main graph. Inset: Locations 
of the reference locations R1 through R6 used for the REA method in the case of the mesoscale validation.  
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Figure 4 Results of the Kruskal-Wallis / Tukey-Kramer pairwise group comparison for the six methods under 
study using the Navarra observational data for validation  

Figure 4  
360x402mm (300 x 300 DPI)  

 

 

Page 22 of 28

http://mc.manuscriptcentral.com/metapps

Meteorological Applications



For Peer Review

  

 

 

Figure 5 Results of the Kruskal-Wallis / Tukey-Kramer pairwise group comparison for the six methods under 
study using the SKIRON mesoscale data for the Iberian Peninsula for validation  
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Figure 6 Results of the ANOVA / Tukey-Kramer pairwise group comparison for six implementations of the 
REA method  
Figure 6  
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Maps of the variance of the wind speed of the representative year obtained from M=100 realizations of each 
method  
Figure 7  
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Results of the multiple comparisons test (Kruskall-Wallis / Turkey-Kramer) for SKIRON-derived wind fields 
and different length of the representative period selected through the BAMS method. Each metric include 
their mean and their narrow confidence intervals for the join significance (with α= 0.05) constructed from 

the Kruskall-Wallis results  
Figure 9  
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Correlation between the BAMS scores and six different error metrics for the case of the SKIRON mesoscale 
simulations  
Figure 10  
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