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Abstract
In soil, bioavailable inorganic orthophosphate is found at low concentrations and thus 
limits biological growth. To overcome this phosphorus scarcity, plants and bacteria 
secrete numerous enzymes, namely acid and alkaline phosphatases, which cleave or-
thophosphate from various organic phosphorus substrates. Using profile hidden 
Markov modeling approaches, we investigated the abundance of various non specific 
phosphatases, both acid and alkaline, in metagenomes retrieved from soils with con-
trasting pH regimes. This analysis uncovered a marked reduction in the abundance and 
diversity of various alkaline phosphatases in low-pH soils that was not counterbal-
anced by an increase in acid phosphatases. Furthermore, it was also discovered that 
only half of the bacterial strains from different phyla deposited in the Integrated 
Microbial Genomes database harbor alkaline phosphatases. Taken together, our data 
suggests that these ‘phosphatase lacking’ isolates likely increase in low-pH soils and 
future research should ascertain how these bacteria overcome phosphorus scarcity.
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1  | INTRODUCTION

In soil, total phosphorus (P) concentrations typically vary between 100 
and 3,000 mg kg−1 (Hedley et al. 1995; Mengel 1997), of which 30%–
60% is in the form of complex organic P esters (White & Hammond, 
2008). However, plants can only acquire simple orthophosphate (Pi), 
which is frequently found at low concentrations in soils (<10 μmol L-1) 
(White & Hammond, 2008). Therefore, P is often a limiting nutrient 
for global crop production and subsequently inorganic rock phosphate 
is applied in large quantities with deleterious economic and environ-
mental consequences (Vance, Uhde-Stone, & Allan, 2003; Cordell, 
Drangert, & White, 2009; White & Hammond, 2008, 2009).

Microorganisms can have a beneficial effect on crop production, 
partly through the liberation of unavailable P in the rhizosphere and 
surrounding soil (Rodrıǵuez & Fraga, 1999). Various studies have re-
vealed that upon depletion of extracellular Pi bacteria can undergo a 
regulatory and physiological response resulting in the secretion of var-
ious exoproteins involved in liberating and binding Pi (Hirani, Suzuki, 
Murata, Hayashi, & Eaton-Rye, 2001; Rittmann, Sorger-Herrmann, 
& Wendisch, 2005; Monds, Newell, Schwartzman, & O’Toole, 2006; 
Antelmann, Scharf, & Hecker, 2000; Lidbury et al., 2016). Through this 
process, numerous reports have revealed that various phosphatases 
play an important role in the bioavailability of P in soils (Nannipieri, 
Newell, Giagnoni, Landi, & Renella, 2011). Usually, the most heavily 
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secreted exoenzymes are alkaline phosphatases (APases), which cleave 
Pi from a plethora of complex organic P monoesters and diesters. The 
latter compounds account for the bulk (up to 90%) of organic P in soils 
(Condron, Turner, & Cade-Menun, 2005; Lidbury et al., 2016; Santos-
Beneit, 2015; Zaheer, Morton, Proudfoot, Yakunin, & Finan, 2009). 
APases encompass a wide genetic diversity including PhoA (Roy, 
Ghosh, & Das, 1982), PhoX (Sebastian & Ammerman, 2009) and PhoD 
(Eder, Shi, Jensen, Yamane, & Hulett, 1996) types. APases are secreted 
through various mechanisms, including the twin-arginine translocation 
(TAT) pathway (Putker et al., 2013) or sec pathway (PhoA) (Angelini 
et al., 2001). Mutagenesis of phoX almost entirely abolishes para-
nitrophenyl phosphate degradation capacity (Monds et al., 2006), the 
substrate most frequently used to determine in situ soil phosphatase 
activity. Similarly, both PhoD and PhoA have been shown to be highly 
active against para-nitrophenyl phosphate (Rodriguez et al., 2014; 
Yang & Metcalf, 2004). APases are thought to be partly responsible 
for the ‘P-fertilisation’ effect seen when inoculating soils with plant 
growth-promoting bacteria (PGPB) (Condron et al., 2005; Rodrıǵuez 
& Fraga, 1999).

2  | EXPERIMENTAL PROCEDURES

2.1 | Bioinformatic analyses

For each protein analyzed, between 50 and 80 sequences from a 
range of phylogenetically distinct soil bacteria were downloaded from 
the Integrated Microbial Genomes database (IMG/JGI) (https://img.
jgi.doe.gov/). To identify these homologs, a combination of BLASTP 
and function searches (IMG search option) using the conserved PFAM 
domains for each protein were performed. Downloaded sequences 
were aligned using MUSCLE and HMM profiles were constructed 
using the hmmbuild function in HMMER (Eddy, 1998).

The eight metagenomes were downloaded from the EBI metag-
enomics portal under the project code ERP001068 (Title: Functional 
diversity of soil microbes across environmental gradients). The 
eight sample IDs for each metagenome are as follows: ERS078132, 
ERS078133, ERS078134, ERS078135, ERS078136, ERS078137, 
ERS078138, ERS078139 corresponding to CS1, CS179, CS864, 
CS922, CS78, CS251, CS511, CS1053 sites of the UK countryside 
survey, respectively. Information regarding the taxonomic profile 
of each site (based on the 16S rRNA gene) can be obtained directly 
from the EBI metagenomics portal. For each site, both FASTA files 
for the ‘predicted CDS’ and ‘predicted CDS without annotation’ were 
downloaded.

Each site was screened for the abundance of each functional gene 
using the hmmsearch option in HMMER and using easel to generate 
output files. For determining the abundance of a given functional 
gene at each site, the method used by Howard, Sun, Biers, and Moran 
(2008) was adapted. Briefly, the raw number of hits at each site was 
normalized to RecA by taking the ratio of the length (amino acid) of 
each given functional protein against the length (amino acid) of RecA. 
Four single copy housekeeping genes, RpoB, AtpB, GyrB, and SucD 
were also used. The mean number of counts retrieved for each enzyme 

was used to determine the ‘average genome equivalent’ for each site. 
Next, the ratio of the number of hits related to phosphorus-scavenging 
enzymes against each genome equivalent was calculated to provide 
the number of bacteria containing a given enzyme at each site.

To assess the diversity of alkaline phosphatases and GyrB, manu-
ally curated databases were established for each gene by downloading 
all the known homologs present in the IMG/JGI database. A BLASTP 
search was performed using a relatively relaxed stringency (e-10). To 
confirm the validity of the hits retrieved from hmmsearches, individual 
sequences retrieved by hmmsearches were used as queries in BLASTP 
searches using the nr database located on the National Centre for 
Biotechnology Information server (www.ncbi.nlm.nih.gov/BLAST.cgi). 
Higher taxonomic ranks were retrieved using the NCBI taxonomy tool. 
The data were visualized using the Krona tools package (Ondov et al. 
2011).

3  | RESULTS AND DISCUSSION

To determine the ‘genetic potential’ of microbial communities to rem-
ineralize organic forms of P, we screened eight metagenomes (https://
www.ebi.ac.uk/metagenomics/) from geographically distinct locations 
across the UK landscape (Griffiths et al., 2011). Four sites were con-
sidered low-pH soils (4.12–4.37), and four high-pH soils (8.04–8.46). 
Profile hidden Markov modeling (HMM) searches (Eddy, 1998) were 
conducted for each APase (PhoX, PhoD, PhoA), the nonspecific class 
A, class B, class C acid phosphatases (ACPases) (Gandhi & Chandra, 
2012; Thaller, Berlutti, Schippa, Lombardi, & Rossolini, 1994), a num-
ber of other P-scavenging enzymes and several housekeeping genes 
(see Table S1). The number of bacteria containing P-scavenging genes 
was determined according to Howard et al. (2008). Based on 16S 
rRNA gene diversity, there were no significant changes (T-test, p > .06) 
in the dominant phyla (Actinobacteria, Proteobacteria, Firmicutes, 
Acidobacteria) between low-pH and high-pH soils (Figure S1). The 
diversity of GyrB at the phylum and class levels was also comparable 
(Figure S4) between low- and high-pH soils. Furthermore, there were 
no major differences in the broad functional capabilities (based on GO 
terms) between the high-pH and low-pH sites (Figure S2).

However, there was a significant reduction (T-test, unpaired, 
p < .05) in the various APases (PhoX, PhoD, PhoA) detected in low-pH 
soils compared to high-pH soils. In high-pH soils, 47%, 56%, and 
20% of bacteria possessed genes encoding PhoX, PhoD, and PhoA, 
respectively, whereas in low-pH soils, only 3%, 7% and 1% of bac-
teria contained these genes, respectively (Figure 1A). Unexpectedly, 
the number of bacteria containing class A and C ACPases was simi-
lar (T-test, unpaired, p > .05) between all sites while the number of 
bacteria containing class B ACPases actually decreased (T-test, un-
paired, p = .046) in low-pH soils (Figure 1A). Besides the nucleoti-
dase, UshA (Rittmann et al., 2005), which also showed a significant 
increase in high-pH soils, the abundance of several other enzymes 
involved in organic P scavenging (phytases, phosphodiesterases) did 
not change (T-test, unpaired, p > .05) between low-pH and high-pH 
soils. The diversity of the three APases was comparable to that of GyrB 
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and the 16S rRNA gene (Figure 2 and S3). For example, the majority 
of APase sequences (63%–73%) were related to the Proteobacteria, 
Actinobacteria, and Firmicutes.

Based on our curated databases for APases, the majority of se-
quences found in the soils analyzed here had a mean amino acid identity 
of 69% to those found in the Integrated Microbial Genomes database 

at the Joint Genome Institute (IMG/JGI). However, due to a lack of 
biochemical and biophysical data on the majority of APases found in 
less-studied bacteria that make up our curated database, for example, 
members of the Betaproteobacteria or Bacteroidetes, it remains to be 
determined whether all of the sequences related to the various APases 
represent bona fide APases. Future work should ascertain whether or 

F IGURE  1 The abundance of various 
P-scavenging enzymes detected in the 
eight metagenomes retrieved from soils 
with contrasting pH values (red, low 
pH; blue, high pH). The percentage of 
bacteria containing phosphatases was 
calculated assuming a copy number of 
one per cell. A reduction in the three 
alkaline phosphatases was observed 
in low-pH soils while there was no 
concurrent increase in acid phosphatases 
Abbreviations: PhoX, PhoD, PhoA, alkakine 
phosphatases; classA/B/C, nonspecific acid 
phosphatases; UshA, 5′ nucleotidase, GlpQ, 
glycerolphosphodiester phosphodiesterase; 
PhnI, carbon-phosphorus lyase complex 
subunit I

F IGURE  2 Combined taxonomic diversity of the three alkaline phosphatases (PhoX, PhoD, PhoA) in the metagenomes retrieved from all four 
high-pH sites (CS922, CS78, CS251, CS511). The chart was generated using the KronaTools software package (Ondov et al., 2011)



4 of 5  |     LIDBURY et al.

not predicted APases found in genomic databases, having significant 
sequence divergence from the relatively few characterized APases, 
function in a similar manner to those studied to date.

To determine the number of sequenced bacterial genomes pos-
sessing APases, we scrutinized all the genomes (status, ‘finished’) 
deposited in the IMG/JGI for the presence of each APase. It was 
discovered that approximately half of the strains related to the 
Proteobacteria (1510/2244), Actinobacteria (257/494), Firmicutes 
(471/1052), and Cyanobacteria (66/99) possess at least one of 
the three APases (PhoX, PhoA, PhoD). Furthermore, only 165/258 
genomes (status, finished) tagged with ‘soil’ and 37/45 genomes 
(status, finished) tagged with ‘rhizome/rhizoplane’ under the filter 
‘ecosystem type’ harbor one of the three APases, revealing that a 
number of bacteria exist that do not possess the typical phospha-
tases associated with overcoming Pi limitation (Lidbury et al., 2016; 
Santos-Beneit, 2015).

Together, this analysis revealed that low-pH soils have a marked 
reduction in their ‘known genetic potential’ to remineralize organic 
P. In a previous study, using a targeted amplicon approach, soil pH 
was also shown to be a driver of phoD diversity (Ragot, Kertesz, & 
Bünemann, 2015). Whether this reduction in genetic potential found 
in low-pH soils equates to a reduction in P remineralization capabilities 
warrants further investigation. Although APases have a pH optimum 
between 9 and 11, PhoX showed activity against 79 phosphomon-
oesters at pH 7.5 (Zaheer et al., 2009) and PhoD functions well at pH 
8 (Rodriguez et al., 2014). However, it is likely that these promiscuous 
enzymes do not function in soils at such low-pH values. Considering 
that the pH optimum of ACPases is much lower (pH 4.8–7) (Rossolini 
et al., 1998), it was surprising that there was no observed increase in 
the genes encoding these enzymes in low-pH soils.

Low-pH soils may select for microbial communities contain-
ing bacteria lacking ‘known’ APases (PhoX, PhoD, PhoA), but which 
possess as-yet-unidentified phosphatases, rather than a total loss of 
non-specific phosphatases from bacterial genomes. This hypothesis is 
indirectly supported by evidence that numerous bacterial strains de-
posited in genome banks lack characterized APases. Given the fact 
that soils harbor a tremendous amount of genetic diversity (Torsvik 
& Øvreås, 2002) and that multiple Phyla inhabit the rhizosphere 
(Bulgarelli, Schlaeppi, Spaepen, van Themaat, & Schulze-Lefert, 2013; 
Bulgarelli et al., 2012), our knowledge of the P-scavenging abilities of 
soil bacteria remains relatively poor. Clearly our understanding of the 
microbial response to Pi limitation is limited to studies focusing on 
easily culturable strains. Future studies should focus on APase-lacking 
isolates to determine their P mineralization capabilities and thus their 
capacity to overcome P scarcity in soils. This should include the isola-
tion and cultivation of various bacterial strains from low-pH soils to 
determine if they still elicit phosphatase activity or conversely, are re-
liant solely on various forms of inorganic P.
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