
Improving the stability and robustness of
incomplete symmetric indefinite
factorization preconditioners
Article

Accepted Version

Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 and
Tuma, M. (2017) Improving the stability and robustness of
incomplete symmetric indefinite factorization preconditioners.
Numerical Linear Algebra with Applications, 24 (5). e2099.
ISSN 1099-1506 doi: 10.1002/nla.2099 Available at
https://centaur.reading.ac.uk/70341/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1002/nla.2099

Publisher: John Wiley and Sons

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading
Reading’s research outputs online

NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 2017; 00:1–22
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla

Improving the stability and robustness of incomplete symmetric
indefinite factorization preconditioners

Jennifer Scott1∗, Miroslav Tůma2

1Scientific Computing Department, Rutherford Appleton Laboratory, Didcot, Oxfordshire, OX11 0QX, UK.
E-mail: jennifer.scott@stfc.ac.uk

2Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University and Institute of
Computer Science, Academy of Sciences of the Czech Republic. E-mail: mirektuma@karlin.mff.cuni.cz

SUMMARY

Sparse symmetric indefinite linear systems of equations arise in numerous practical applications. In many
situations, an iterative method is the method of choice but a preconditioner is normally required for it to
be effective. In this paper, the focus is on a class of incomplete factorization algorithms that can be used
to compute preconditioners for symmetric indefinite systems. A limited memory approach is employed that
incorporates a number of new ideas with the goal of improving the stability, robustness and efficiency of the
preconditioner. These include the monitoring of stability as the factorization proceeds and the incorporation
of pivot modifications when potential instability is observed. Numerical experiments involving test problems
arising from a range of real-world applications demonstrate the effectiveness of our approach. Copyright c©
2017 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: sparse matrices, sparse linear systems, indefinite symmetric systems, iterative solvers,
preconditioning, incomplete factorizations, pivoting.

1. INTRODUCTION

Large sparse symmetric indefinite linear systems of equations arise in a wide variety of practical
applications. In many cases, the systems are of saddle-point type (see Benzi et al. [1] for
an overview). However, in other cases (including problems coming from statistics, acoustics,
optimization, eigenvalue problems, and sequences of shifted systems), the indefinite systems possess
no nice block structure. The development of incomplete factorization preconditioners that are
applicable to general indefinite systems is the main focus of this paper.

A significant attraction of sparse direct methods for solving sparse indefinite systems is that they
can often be used as black box solvers. Their main weakness is the amount of memory they require:
for very large problems (typically those from three dimensional models) an iterative method must
be used. Iterative methods may also be the most efficient option if only an approximation to the
solution is needed (for example, if the problem data is not known to high accuracy). To be effective
iterative methods generally need to be used in combination with a preconditioner. Unfortunately,
the construction of a suitable preconditioner is highly problem dependent. A number of possible
approaches have been proposed for indefinite systems. For those of saddle-point type, significant
effort has gone into exploiting the underlying block structure and retaining it throughout the solution
process. An overview of work on these so-called segregated approaches up until 2005 can be found

∗Supported by EPSRC grant EP/I013067/1.
†Partially supported by the Grant Agency of the Czech Republic Projects GA13-06684S and 17-04150J.

Copyright c© 2017 John Wiley & Sons, Ltd.
Prepared using nlaauth.cls [Version: 2010/05/13 v2.00]

2

in [1]. Other techniques that make use of the block structure include constraint preconditioners
[2, 3], and symmetric-triangular preconditioners [4]. Alternatively, the saddle-point structure may
be partially exploited. For example, the structure may be used as a starting point before the blocks
are “mixed” through the use of more general symmetric permutations. The motivation here is that
general permutations can lead to incomplete factorization preconditioners that are sparser (and
cheaper to apply) than those resulting from a segregated approach. A theoretical background that
supports such approaches is available for symmetric quasi-definite (SQD) systems. Vanderbei [5]
shows SQD matrices are strongly factorizable while a stability analysis is given by Gill et al. [6]
(see also [7]).

An important contribution by Chow and Saad [8] considered the more general class of incomplete
LU preconditioners, while the work of Li and Saad [9] represented an important step in the
development of well-implemented general indefinite preconditioners. They integrated pivoting
procedures [10, 11, 12] with scaling and reordering. Building on this, Greif, He, and Liu [13]
recently developed a new incomplete factorization package SYM-ILDL.

In this paper, we consider incomplete factorizations of general indefinite systems; we generalize
our previous work on incomplete factorizations for special classes of problems as well as proposing
new ideas. In the positive-definite case, it was demonstrated in [14] that employing a modest amount
of additional memory during the construction of the preconditioner can significantly improve
its quality without increasing the number of entries in the incomplete factor and hence without
increasing the preconditioner application cost. Moreover, this approach appears to outperform the
modification scheme of Jennings and Malik [15, 16]. The implementation of our limited memory
approach and the development of the corresponding HSL [17] software package are described in
[18]. An extension of the technique to the computation of signed incomplete Cholesky factorizations
for saddle-point problems was discussed in [19]. It was shown that our proposed approach allows
a more general reordering of the rows and columns of the matrix than in segregated approaches
that preserve the saddle-point structure, while employing additional memory in the construction of
the preconditioner improves its quality and the use of two global shifts guards against breakdowns
during the factorization.

In this paper, we consider the significantly harder general indefinite case. Our goal is to improve
the stability, robustness and efficiency of incomplete factorization preconditioners. We incorporate
and explore a number of ordering and pivoting strategies. Furthermore, we introduce diagonal
modifications to improve stability and we generalize such modifications to the 2× 2 pivots that
are needed to maintain symmetry. Even with well-bounded entries in the incomplete factors, the
triangular solves performed during each application of the preconditioner can be highly unstable.
Thus another novel idea is the monitoring of stability as the factorization proceeds. If instability is
detected, we can use a number of possible cures. First, the factorization can be restarted with a larger
global shift (as in [14, 20]). Second, at essentially no additional time overhead in the construction of
the preconditioner, the intermediate memory that was discarded in the positive-definite case after the
factorization had completed can be employed to improve the quality of the preconditioner, albeit at
the cost of a denser incomplete factor. We also propose a strategy based on an auxiliary optimization
problem that allows us to improve the quality by using only some of the intermediate memory.

The rest of the paper is organised as follows. In Section 2, we briefly describe our incomplete
factorization algorithm and the different pivoting strategies that it incorporates. Then in Section 3,
we look at using a shift and/or a diagonal multiplier to prevent the factorization from becoming
unstable. We introduce the concept of local growth caused by the choice of pivots and show
how 1× 1 or 2× 2 pivots can be modified to reduce the local growth. In Section 4, we propose
monitoring possible instability as the factorization proceeds. Numerical results for a range of
problems from real-world applications are presented in Section 5; these demonstrate the efficiency
and effectiveness of our proposed approach. In Section 6, our findings are summarised and some
concluding comments are made.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

3

2. FACTORIZATION AND PIVOTING

2.1. Limited-memory incomplete factorization

We first summarize our limited-memory incomplete Cholesky (IC) factorization approach for a
symmetric positive-definite A; this is implemented within the package HSL MI28 from the HSL
mathematical software library [17, 18]. For such A, the computed IC factorization is of the form
(ΠL)(ΠL)T , where Π is a permutation matrix, chosen to preserve sparsity and L is lower triangular
with positive diagonal entries. The matrix A is optionally scaled and, if necessary, shifted to avoid
breakdown of the factorization (see Section 3). Thus the incomplete factorization of

Ā = S̄ΠTAΠS̄ + αI

is computed, where S̄ is a diagonal scaling matrix and α is a positive shift. The incomplete
factorization preconditioner is P = (L̄L̄T)−1 with L̄ = ΠS̄−1L.

The HSL MI28 algorithm is based on a limited memory version of the left-looking approach by
Tismenetsky [21] and Kaporin [22]. The basic scheme employs a sparse matrix factorization of the
form

Ā = (L+R)(L+R)T − E. (2.1)

Here R is a strictly lower triangular matrix with entries that are smaller in absolute value than those
in L that is used to stabilize the factorization process but is subsequently discarded, and E has the
structure

E = RRT .

The Tismenetsky incomplete factorization does not compute the full update and thus a positive
semidefinite modification is implicitly added to A. The matrix R represents intermediate memory,
that is, memory that is used in the construction of the preconditioner but is not part of the
preconditioner. Following the ideas of Kaporin [22], drop tolerances may be used to limit the
memory required in the computation of the incomplete factorization. User-chosen parameters lsize
and rsize are used to control the maximum number of fill entries in each column of L and
the maximum number of entries in each column of R, respectively. The memory used for the
preconditioner L can, to some extent, be replaced by the intermediate memory R (that is, lsize can
be reduced and rsize increased without significantly effecting the quality of L as a preconditioner).
As R is used for the computation of L but is then discarded, this can lead to a sparser preconditioner
that is less expensive to apply. Further details and numerical results are given in [14, 18, 19].

To extend this approach, if A is symmetric indefinite, we replace (2.1) by

Ā = (L+R)D(L+R)T − E, (2.2)

where L has unit diagonal entries, R is as before, D is block diagonal with 1× 1 and 2× 2 blocks,
and E is of the form

E = RDRT .

2.2. Pivoting strategies

For positive-definite problems, numerical pivoting is unnecessary and for saddle-point systems
pivoting can be avoided by using an appropriately chosen constrained ordering [19]. In the general
indefinite case, pivoting down the diagonal may be possible if the matrix is (close to) positive
definite or if preprocessing of the matrix ensures large diagonal entries. However, in general,
pivoting is needed for stability. The partial pivoting strategy of Bunch and Kaufman [11] has been
widely used for factorizing (dense) symmetric indefinite matrices using 1× 1 and 2× 2 pivots (the
latter are needed to maintain stability without destroying symmetry). The algorithm for choosing
the i-th pivot may be outlined as follows.
The parameter αp is chosen to minimize the global bound on growth of entries in the factors. In
the sparse case, if j − i is large then the choice of j as a 1× 1 pivot (or (i, j) as a 2× 2 pivot)
can adversely effect the sparsity of the computed factors. Consequently, it is common to use a

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

4

Partial pivoting strategy 1: Bunch-Kaufman (1977)
αp := (1 +

√
17)/8 ≈ 0.64

Find j 6= i such that |aji| = max{|aki|, k 6= i} =: λ

if |aii| ≥ αp |λ| then
use aii as a 1× 1 pivot

else
σ := max{|akj |, k 6= j}
if |aii|σ ≥ αp λ2 then

use aii as a 1× 1 pivot
else if |ajj | ≥ αp σ then

use ajj as a 1× 1 pivot
else

use
(
aii aij
aij ajj

)
as a 2× 2 pivot

end
end

threshold-based strategy that limits the search (see, for example, [23, 24]) but may compromise
stability. Instead of choosing the largest off-diagonal entry in the first column of the reduced matrix
to form the 2× 2 pivot, Liu [25] proposed using a sparsity threshold τ ∈ (0, 1] and selecting the
entry of smallest row index in the first column that satisfies a threshold condition. Liu’s strategy is
given below as partial pivoting strategy 2. The optimal αp now depends on the value of τ . Liu shows
that it satisfies a cubic equation and is monotonically increasing with respect to τ . In our codes we
compute the optimal αp directly solving the related cubic equation. Note that the value of αp is then
smaller than in the case of Bunch-Kaufman pivoting.

Partial pivoting strategy 2: Liu (1987) threshold pivoting
Choose a sparsity threshold value τ such that 0 < τ ≤ 1
Find j 6= i such that |aji| = max{|aki|, k 6= i} =: λ

Find s 6= i such that s = min{k, k 6= i, |aki| ≥ τ |aλi|}.
if |aii| ≥ αp |λ| then

use aii as a 1× 1 pivot
else

σ := max{|aks|, k 6= s}
if |aii|σ ≥ αp λ2 then

use aii as a 1× 1 pivot
else if |ass| ≥ αp σ then

use ass as a 1× 1 pivot
else

use
(
aii asi
asi ass

)
as a 2× 2 pivot

end
end

For tridiagonal matrices it is possible to use a more localized pivoting strategy (partial pivoting
strategy 3). For simplicity, we assume here that the subdiagonal entries are nonzero. This approach
was used by Hagemann and Schenk [26] in combination with a symmetric version of a maximum
weighted matching ordering for indefinite problems. The matching-based ordering is used to a
priori symmetrically permute large entries to the subdiagonal positions; the hope is that these can
be used to provide stable 2× 2 pivots (for the sparse direct case, see [27, 28]). Hagemann and
Schenk employ a local perturbation if the candidate pivot is too small to be inverted. Advantages
of the permutation are that no entries beyond the diagonal and subdiagonal are searched and no

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

5

swapping of rows/columns is needed during the factorization, which offers potential time savings
and significantly simplifies the software development. Hagemann and Schenk report encouraging
results for some saddle-point systems arising from interior-point problems; results for general
indefinite systems are less positive.

Partial pivoting strategy 3: Bunch tridiagonal pivoting (1974)
αp := (

√
5− 1)/2 ≈ 0.62

σ:= the entry of largest absolute value in the initial matrix
if |aii|σ ≥ αp |ai+1,i1|2 then

use aii as a 1× 1 pivot
else

use
(

aii ai,i+1

ai+1,i ai+1,i+1

)
as a 2× 2 pivot

end

3. THE USE OF SHIFTS AND MULTIPLIERS

We start by recalling the use of shifts in the case where A is symmetric and positive definite. The
problem of breakdown during an incomplete Cholesky factorization because of the occurrence
of zero or negative pivots is well known. Arbitrarily small pivots can also lead to unstable and
therefore inaccurate factorizations. In the late 1970s, Kershaw [29] proposed locally replacing non-
positive diagonal entries by a small positive number; the hope being that if only a few entries need
to be replaced, the resulting factorization will still yield an acceptable preconditioner. This idea
helped popularize incomplete factorizations, but ad hoc local perturbations with no relation to the
overall matrix can lead to large growth in the entries that is related to unstable preconditioners.
Thus a more commonly used approach is the one originally suggested by Manteuffel [30] that
involves factorizing the diagonally shifted matrix A+ αI for some positive α. Provided α is
large enough, the incomplete factorization of the shifted positive-definite matrix always exists,
although currently the only way to find a suitable global shift is essentially by trial-and-error
(see, for example, [14, 20]). In general, provided the problem has been well-scaled, α can be
chosen to be small so that the shifted matrix is not far from the original one. Recent results
[14, 18] illustrate the effectiveness of using a shift in increasing the stability of the factorization
and by monitoring the diagonal entries as the factorization progresses, the extra work needed on
restarting the factorization for each new shift is generally not prohibitive. Note that other approaches
to modifying A originated in solving discretized partial differential equations. An example of a
general sophisticated modification strategy is given in the paper by MacLachlan, Osei-Kuffuor and
Saad [31]. However, they use a standard ILU factorization that does not employ an intermediate
factor R but uses local modifications.

A relatively simple generalization of the global shift strategy was used by Scott and Tůma [19]
for saddle-point systems. They employ two shifts: a positive shift for the (1, 1) block and a negative
shift for the (2, 2) block. The shifts can always be chosen such that a signed incomplete Cholesky
factorization exists. Such a shifting strategy is closely connected to the regularization techniques
used by the numerical optimization community (see, for example, Saunders and Tomlin [32]).

Shifts have also been used in the construction of incomplete factorizations of general sparse
matrices. In particular, the package IFPACK [33] offers level-based ILUT(k) preconditioners and
suggests the use of a global shift if the computed factors are found to be unstable. IFPACK factorizes
the scaled and shifted matrix B, whose entries are given by

bij =

{
aij if i 6= j
ρ aii + sgn(aii)α if i = j,

(3.1)

where α and ρ are positive real parameters that must be set by the user. The documentation for the
code suggests a trial-and-error method for selecting suitable values. While our current interest is in

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

6

real shifts, we observe that using complex shifts and switching to complex arithmetic is a possible
alternative. This apparently works well in some particular applications (see, for example, [34, 35]).

For symmetric indefinite problems, we need a modification strategy that allows for both 1× 1
and 2× 2 pivots. Whilst it is always possible to choose a shift such that the diagonal blocks of the
shifted matrix are sufficiently diagonally dominant for the factorization to be breakdown free, such
a choice may lead to an inaccurate factorization of the unshifted matrix and hence to a poor quality
preconditioner.

In the following, we assume that the chosen 2× 2 pivots satisfy the following condition.

Assumption 3.1
2× 2 pivots are chosen such that the (positive) product of their off-diagonal entries is larger than
the product of the magnitudes of their diagonal entries.

Note that the Bunch Kaufman pivoting strategy satisfies this assumption. Namely, the 2× 2 pivot
(i, j) is chosen only if both |ajj | < αpσ and |aii|σ < αpλ

2. Thus |aii||ajj | < α2
pλ

2 < λ2.
In general, the stability of matrix factorizations is reflected in two quantities. The first is the local

growth factor that measures possible growth in the magnitudes of the entries of the factors. It can
be directly influenced by pivoting (that is, small pivots can lead to growth). Once a breakdown is
encountered, the block diagonal of the matrix is globally modified. In this section, we show how,
given a shift, the modifications can be done in an optimal way with respect to the growth of the other
entries. The second quantity is the instability factor that expresses the fact that the triangular solves
using the computed factors can be unstable. A large instability factor indicates stability problems
and can occur even when the pivots are not particularly small; this is discussed in the next section.

Standard references on symmetric indefinite factorizations (including [12, 36]) derive formulae
for the growth based on the global behavior of the pivoted factorization (see also [37]) and employ
quantities such as the maximum magnitudes of the diagonal and off-diagonal entries of A. To
examine the growth caused by shifting particular pivots, we introduce the idea of a local growth
factor.

Definition 3.1
Consider a 1× 1 or 2× 2 (nonsingular) pivot P used in an indefinite factorization. The value θ of
the entry of largest absolute value in P−1 is called the local growth factor.

If P = p ∈ R \ {0}, the local growth factor is just θ = 1/|p|. Consider now a 2× 2 pivot P given
by

P =

(
a b
b c

)
, ac− b2 6= 0, (3.2)

with inverse

P−1 =
1

ac− b2

(
c −b
−b a

)
. (3.3)

This has local growth factor

θ =
max(|a|, |b|, |c|)
|ac− b2|

.

We now consider how the local growth factor is influenced by a shift and, in particular, how
θ can be decreased by the use of an appropriately chosen shift and/or multiplier. Throughout our
discussion, α > 0 and ρ ≥ 1. For a 1× 1 pivot, we make the modification

P+ = ρ p+ sgn(p)α,

which reduces the local growth factor. 2× 2 pivots must be considered more carefully. One possible
approach to modifying a 2× 2 pivot is to treat it as two consecutive 1× 1 pivots. While the analysis
of diagonal pivoting strategies starting with the seminal contribution of Bunch and Parlett [12] based
on upper bounds of the magnitudes of entries, often uses this approach, local determination of the

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

7

shift with possible restarts does not allow this. For example, for a 2× 2 pivot with zeros on the
diagonal, the first column does not update the second. Consequently, we discuss modifications for
2× 2 pivots independently and separately from the motivation for 1× 1 pivots. We follow [23] and
distinguish three basic types of 2× 2 pivots.

3.1. Oxo pivots

An oxo pivot is of the form

Poxo =

(
0 b
b 0

)
.

From (3.3), it has local growth factor

θoxo =
|b|
b2

=
1

|b|
.

Thus stability of Poxo is improved by increasing the absolute value of its off diagonal entry b. The
modified oxo pivot is

P+
oxo =

(
0 ρ b+ sgn(b)α

ρ b+ sgn(b)α 0

)
,

which has a smaller local growth factor equal to

θ+
oxo =

|ρ b+ sgn(b)α|
(ρ b+ sgn(b)α)2

=
1

|ρ b+ sgn(b)α|
.

3.2. Tile pivots

Tile pivots have one nonzero diagonal entry and one diagonal entry equal to zero, that is,

Ptile =

(
a b
b 0

)
.

To improve pivot stability by shifting the entries of Ptile, first consider the effect of modifying the
off-diagonal entry b to ρ b+ sgn(b)α. The local growth factor becomes

max(|ρ b+ sgn(b)α|, |a|)
(ρ b+ sgn(b)α)2

= max

(
1

|ρ b+ sgn(b)α|
,

|a|
(ρ b+ sgn(b)α)2

)
, (3.4)

which is a non increasing function of α and ρ. Thus the local growth factor is either unchanged
or is reduced, which is our goal. However, if |a| > |ρ b+ sgn(b)α|, it can be reduced further by
decreasing |a|. In addition, the Euclidean condition number decreases by decreasing |a|, as we see
from the following result.

Lemma 3.1
The Euclidean condition number of Ptile is an increasing function of |a| > 0.

Proof
The characteristic equation of the eigenvalue problem connected to Ptile is −λ(a− λ)− b2 = 0.
Therefore, its condition number is given by

κtile =
||a|+

√
a2 + 4b2|

||a| −
√
a2 + 4b2|

.

Since a 6= 0 this can be rewritten as

κtile =
1 +

√
1 + 4(b/a)2

|1−
√

1 + 4(b/a)2|
.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

8

Hence

κtile =
2 + 4(b/a)2 + 2

√
1 + 4(b/a)2

4(b/a)2
= 1 + 1/(2(b/a)2) + (

√
1/(b/a)4 + 4/(b/a)2)/2.

The last expression clearly reveals that κtile can be decreased if |a| is decreased.

Lemma 3.1 and equation (3.4) imply a practical modification procedure: namely, modifying the
off-diagonal entry to ρ b+ sgn(b)α, reduces the local growth factor. Replacing a by a− sgn(a) δ
with

δ = min (α, |a| − |ρ b+ sgn(b)α|), (3.5)

further reduces the local growth factor. The modified tile pivot is

P+
tile =

(
a− sgn(a)δ ρ b+ sgn(b)α
ρ b+ sgn(b)α 0

)
with local growth factor

θ+
tile =

max (|ρ b+ sgn(b)α| , |a− sgn(a) δ|)
(ρ b+ sgn(b)α)2

.

3.3. Full 2× 2 pivots

Finally, consider a full 2× 2 pivot

Pfull =

(
a b
b c

)
,

with a, b, c 6= 0. Recall that b2 > |ac| (Assumption 3.1) and, without loss of generality, we assume
|a| ≥ |c|. Again, stability is increased by modifying b to ρ b+ sgn(b)α. The local growth factor
becomes

max(|ρ b+ sgn(b)α|, |a|)
(|ρ b+ sgn(b)α)2

,

which is a non increasing function of α and ρ. As in the case of a tile pivot, the local growth factor
can be reduced further by decreasing |a|. To show this, we employ the following result.

Lemma 3.2
Assume b2 − |ac| > 0, |a| > |c| > 0. Then

q =
b2 − ac
(a+ c)2

is a decreasing function of |a|.

Proof
Consider a > 0. The first derivative of q with respect to a is

− (c2 + 2b2 − ac)
(a+ c)3

.

By assumption, b2 − |ac| > 0 so that c2 + 2b2 − ac is positive. Since a+ c > 0, it follows that the
derivative is negative and q is a decreasing function of a > 0. If a is negative, the derivative of q is
positive and by decreasing the entry −a > 0 we obtain the same conclusion. We conclude that q is
a decreasing function of |a|.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

9

Lemma 3.3
The Euclidean condition number of Pfull under the assumptions from Lemma 3.2 is an increasing
function of |a| > 0.

Proof
The characteristic equation of the eigenvalue problem connected to Pfull is (c− λ)(a− λ)− b2 =
0. Therefore, its condition number is

κfull =
1 +
√

1 + 4q∣∣1−√1 + 4q
∣∣ , q =

b2 − ac
(a+ c)2

.

As in Lemma 3.1, this can be rewritten as

1 + 1/2q +
(√

1/q2 + 4/q
)
/2,

and the result follows from Lemma 3.2.

Lemma 3.3 implies that for |a| > |ρ b+ sgn(b)α|, we can simultaneously decrease the local
growth factor and the condition number of Pfull. Note that if a = −c, the condition number is
equal to 1. In practice, we again limit the size of the modification to a by using a− sgn(a) δ with δ
given by (3.5). The modified full 2× 2 pivot is

P+
full =

(
a− sgn(a) δ ρ b+ sgn(b)α
ρ b+ sgn(b)α c

)
with local growth factor

θ+
full =

max (|ρ b+ sgn(b)α| , |a− sgn(a) δ| , |c|)
(ρ b+ sgn(b)α)2

.

4. LOCAL INSTABILITY

A well-studied problem in sparse symmetric indefinite factorizations as well as in sparse non
symmetric factorizations is the growth in the size of the entries of the factors. The usual approach in
complete factorizations is to employ a pivoting scheme so that the entries in the factors are bounded.
In Sections 2 and 3, we considered trying to limit growth in the factors through the use of both
pivoting and global shifts and multipliers. Nevertheless, even with well bounded entries in L and D,
the triangular solves can be highly unstable. A sign of unstable triangular solves is when ||L−1|| is
very large and, unfortunately, this can occur without the presence of small pivots. The problem was
discussed by Chow and Saad [8], who proposed checking three quantities: the size of the inverse
of the smallest pivot, the size of the largest entry in the computed factors and a statistic they call
condest. This is defined to be

condest = condest(L) = ||(LDLT)−1e||∞, (4.1)

where e = (1, ..., 1)T is the vector of all ones. It measures the stability of the triangular solves and is
also a lower bound for ||(LDLT)−1||∞ and indicates a relation between unstable triangular solves
and poorly conditioned L factor. IFPACK [33] also uses condest and, as already discussed, employs
a priori diagonal perturbations if the condition estimate is larger than machine precision.

In this section, we propose monitoring for possible instability as the factorization proceeds. If
instability is detected, the factorization may be restarted with a new shift or new multiplier or with
different parameter settings, enabling us to obtain more robust incomplete symmetric indefinite
factorizations that provide higher quality preconditioners. Monitoring stability may provide an
indication as to whether R should be discarded or whether retaining it (or part of it) could lead
to a higher quality preconditioner.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

10

The factors L, D and R are computed in ν steps, where ν is equal to n minus the number of 2× 2
pivots. For k = 1, . . . , ν, let Lk, Rk and Dk denote the leading principal submatrices of order nk
(with nν ≡ n) of L, R and D, respectively. Further, let pk be the size of the k-th pivot (pk = 1 or
2). To monitor stability as the factorization proceeds, we need a computable quantity that can be
cheaply updated throughout the factorization. We will call it the instability factor and define it as
follows.

Definition 4.1
The instability factor gk at the k-th factorization step is the entry of largest absolute value in the
vector |L−1

k |ek, where ek is the nk-dimensional vector of all ones. The instability factor at the final
(ν-th) step is denoted by g.

Consider the factor Lk expressed in the bordered form

L1 = I1, Lk =

(
Lk−1

lk Ik

)
, k = 2, . . . , ν,

where Ik is the identity matrix of order pk, lk is the pk × nk−1 block of off diagonal entries in the
k-th (block) row of L. gk can be computed as follows.

Computation of the instability factor gk
v1 = e1

g1 = 1

for k = 2, . . . , ν

vk = |L−1
k |ek =

∣∣∣∣∣
(
Lk−1

lk Ik

)−1
∣∣∣∣∣ ek ≡

∣∣∣∣(L−1
k−1

−lkL−1
k−1 Ik

)∣∣∣∣ ek ≡ (vk−1

|lkvk−1|+ epk

)
gk = max(gk−1, ||(vk)nk−1+1:nk ||∞)

end

This computation requires us to store the previous instability factor gk−1 and a vector vk of length
nk. Entries nk−1 + 1 : nk of vk are computed using

(vk)nk−1+1:nk = epk + |lkvk−1|. (4.2)

The following lemma shows that computation of the instability factor leads to an incrementally
computable upper bound for condest.

Lemma 4.1
Assume that the diagonal entries of the computed LDLT factorization satisfy ||D−1||∞ ≤ β. Then
the instability factor g and condest are related by the inequality

condest ≤ βg2.

Proof
From (4.1) it follows that condest ≡ ||L−TD−1L−1e||∞ can be bounded as follows

||L−TD−1L−1e||∞ ≤ ||L−TD−1L−1e||1 = eT |L−TD−1L−1e| ≤ eT |L−T ||D−1||L−1|e ≤ βg2.

Note that the shift strategies for 1× 1 and 2× 2 pivots discussed in Section 3 are needed to bound
D−1. We have observed that the factorization appears stable for g �

√
1/ε (where ε is the machine

precision) and for “hard” indefinite systems, adding the computed R factor to L can reduce g for
the resulting L. Thus if g is large, L+R may give a more efficient preconditioner, albeit one that
requires more memory than L alone. Alternatively, entries of R that lead to a decrease in the size of

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

11

g can be selectively added to L; this is illustrated in Section 5. Thus R can be regarded as a source
of additional entries that can potentially improve the quality of the final preconditioner. We propose
a simple strategy based on this idea. Observe that since R is used in the updates in the same way as
L, it is sufficient at each step of the factorization to flag the entries of R that may be moved to L and
then the actual merging of these entries into L can be done once the factorization is complete.

Let the factor Rk be written in the bordered form

R1 = 01, Rk =

(
Rk−1

rk 0k

)
, k = 2, . . . , ν,

where 0k is the null matrix of dimension pk and rk is the pk × nk−1 block of the off diagonal entries
in the k-th (block) row of R. Denote by λk the set of column indices j ∈ {1, . . . , nk−1} for which
(lk)1:pk,j is nonzero. Equation (4.2) that is used to compute g can then be written as

(vk)nk−1+1:nk = epk +
∑
j∈λk

|(lk)1:pk,j(vk−1)j |.

But our goal is to minimize the sum based on L−1 rather than |L−1|. In particular, we would like
to find a subset γk of column indices j ∈ {1, . . . , nk−1} for which (rk)1:pk,j is nonzero and which
minimizes the sum

epk −
∑
j∈λk

(lk)1:pk,j(vk−1)j −
∑
j∈γk

(rk)1:pk,j(vk−1)j .

Let l̄k (respectively, r̄k) be the pk × nk−1 block with entries (l̄k)ij = (lk)ij(vk−1)j (respectively,
(r̄k)ij = (rk)ij(vk−1)j), i = 1 : pk, j = 1, . . . , nk−1. The minimization problem is then defined as
follows.

Problem 4.1
For k = 2, . . . , nν , find a subset γk of the column indices j ∈ {1, . . . , nk−1} that minimizes over all
such choices some norm of

epk −
∑
j∈λk

nk∑
i=nk−1+1

(l̄k)ij −
∑
j∈γk

nk∑
i=nk−1+1

(r̄k)ij .

Finding an approximate solution of this problem is a special instance of the sparse approximation
problem of selecting a small number of columns in a source matrix such that their sum approximates
a target matrix. It is a matrix generalization of the subset sum selection problem [38] in which the
matrix has at most two rows. Here we propose a simple greedy strategy to select the subset γk
for Problem 4.1. The minimization is based on evaluating 1-norms of column blocks l̄k and r̄k,
that is, on their absolute values or on the sum of the absolute values in the case of a 2× 2 block
(pk = 2). Our algorithm is below. At each stage, sum+ is the current value of the objective function
in Problem 4.1; the output is a set of column indices γk that gives an approximate solution to
Problem 4.1. Entries ofR that correspond to γk for k = 2, . . . , nν form a factorRs. Our experiments
illustrate that, if condest(L) is large, then if L is replaced by L+Rs, condest(L+Rs) is typically
smaller, giving a higher quality preconditioner.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

12

Simple greedy strategy for finding a subset of column indices γk (k = 2, . . . , nν)
Let pk be the size of the k-th pivot (pk = 1 or 2)
Let λk be the set of column indices j for which (l̄k)1:pk,j is nonzero
Let γ̄k be the set of column indices j for which (r̄k)1:pk,j is nonzero
Set γk = ∅
Set sum = epk −

∑
j∈λk(l̄k)1:pk,j

do while γ̄k 6= ∅
jρ = argminj∈γ̄k ||sum− (r̄k)1:pk,j ||1
sum+ = sum− (r̄k)1:pk,jρ

if ||sum+||1 < ||sum||1 then
γ̄k = γ̄k \ {jρ}
γk = γk ∪ {jρ}
sum = sum+

else
exit

end
end do

5. NUMERICAL EXPERIMENTS

5.1. Test environment

Throughout this section, we refer to the implementation of our incomplete factorization algorithm
with pivoting as PISIF (Pivoted Incomplete Symmetric Indefinite Factorization). All the software
we have developed to obtain the experimental results is written in Fortran and the gfortran Fortran
compiler (version 4.8.2) with option -O3 is used. All reported times are elapsed times in seconds
measured using the Fortran system clock and are for running on a machine with two Intel Xeon
E5620 quadcore processors and 24 Gbytes of memory. Sparse matrix-vector products are performed
using the Intel MKL routine mkl dcsrsymv. The implementation of the GMRES(1000) algorithm
(with right preconditioning) [39] offered by the HSL routine MI24 is employed, with starting vector
x0 = 0, the right-hand side vector b computed so that the exact solution is x = e, and stopping
criteria

‖Ax̂− b‖2 ≤ 10−8‖b‖2,

where x̂ is the computed solution. In addition, for each test we impose a limit of 2000 iterations.
Following [40], in our experiments we define the efficiency of the preconditioner P = (LDLT)−1

to be
efficiency = iter × nz(L), (5.1)

where iter is the iteration count. The lower the value of (5.1), the better the preconditioner. efficiency
reflects the number of floating-point operations performed using the preconditioner during the
iterative method but as it does not include communication, it may not reflect the runtime of the
iterative method and so we also use the runtime of our prototype code in some of our experiments
to assess performance. We also define the fill ratio in the incomplete factor to be

fillIL = (number of entries in the incomplete factor)/nz(A), (5.2)

For comparison purposes, we use the multicore sparse direct solver HSL MA97 [41]. Preordering
of A is performed using the HSL packages HSL MC68 and HSL MC80. Our test problems are real
indefinite matrices taken from the University of Florida (UFL) Sparse Matrix Collection [42].

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

13

5.2. Results for interior-point optimization matrices

Test Set 1 are interior-point optimization matrices that are of saddle-point form, namely,

A =

(
H BT

B −C

)
, (5.3)

with H n× n symmetric positive definite, B rectangular m× n (m ≤ n), and C = 10−8Im (where
Im is the m×m identity matrix). In Table I, we report the fill ratio fillL and the run times for the
direct solver HSL MA97 using MC64 scaling [43, 44], which has been found to work well when
solving “tough” indefinite systems [28, 45]; the default (nested dissection) ordering is used. The
interior-point examples we have selected all have fillL > 17.0. For a direct solver, the amount of
fill is highly dependent on the choice of ordering; we experimented with other orderings, including
approximate minimum degree (AMD) and matching-based orderings, but for these interior-point
examples the solution times as well as fillL were significantly greater.

Table I. Interior-point test problems (Test Set 1). n and m denote the order of H and C (see (5.3)), nz(A)
is the number of entries in the lower triangular part of A, fillL is the ratio of the number of entries in the
complete factor of A for the default ordering to nz(A) and Time is the solution time (in seconds) for the

direct solver HSL MA97.

Identifier n m nz(A) fillL Time

GHS indef/c-55 19121 13659 218115 21.5 0.49
GHS indef/c-59 23813 17469 260909 17.6 0.59
Schenk IBMNA/c-62 25158 16573 300536 28.5 1.07
GHS indef/c-68 36546 28264 315403 29.2 1.48
GHS indef/c-71 44814 31824 468079 37.1 2.60
Schenk IBMNA/c-big 201877 143364 1343050 39.0 10.3

Table II. The performance of PISIF preconditioned GMRES(1000) on Test Set 1. None denotes no
preordering, AMD denotes approximate minimum degree ordering and match(AMD) denotes AMD
combined with matching. iter is the number of GMRES iterations, and Tf , Tg and T denote, respectively, the
times (in seconds) to compute the incomplete factorization (including preordering and scaling the matrix),

to run GMRES and the total solution time. – denotes failure to converge within 2000 iterations.

Identifier None AMD match(AMD)
iter Tf Tg T iter Tf Tg T iter Tf Tg T

GHS indef/c-55 1956 2.84 24.4 27.2 78 2.90 0.24 3.15 30 0.54 0.08 0.61
GHS indef/c-59 727 8.01 8.29 16.3 41 5.97 0.13 6.10 28 0.50 0.09 0.59
Schenk IBMNA/c-62 – – – – 426 4.73 3.90 8.62 26 0.62 0.12 0.74
GHS indef/c-68 711 18.31 11.7 30.0 102 10.3 0.62 10.9 6 1.59 0.03 1.62
GHS indef/c-71 655 37.71 12.9 50.6 152 23.5 1.47 25.0 21 1.51 0.13 1.64
Schenk IBMNA/c-big – – – – 13 91.3 0.41 91.7 9 8.54 0.27 8.81

For PISIF, if lsize and rsize are held constant, the amount of fill in the incomplete factors
is essentially independent of the ordering of A that is used. However, the ordering can effect the
quality of the preconditioner. The results in Table II are for PISIF with lsize = rsize = 10, Bunch
Kaufman pivoting and MC64 scaling, and compare no preordering with approximate minimum
degree (AMD) and with a matching-based ordering combined with AMD (that is, match(AMD),
which applies AMD to the compressed graph that is employed within the matching algorithm; see
[28] for details). For each example fillIL < 3.0, illustrating the incomplete factors are significantly
sparser than the complete factors. We see that using a matching-based ordering leads to a much faster
time for computing the incomplete factorization and to higher quality preconditioners. In general,

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

14

having performed the matching ordering, pivoting is not needed (that is, the Bunch Kaufman
algorithm makes few modifications to the supplied pivot order), and this accounts for the significant
reduction in the factorize time and can result in the iterative solver outperforming the direct solver.
We remark that, although we omit the full details here, we investigated using other orderings (such as
a nested dissection ordering in place of AMD). We found that, for these test problems, match(AMD)
was generally the best choice in terms of the preconditioner quality.

We next provide a comparison with the signed incomplete Cholesky factorization approach of
[19] (HSL MI30) and with SYM-ILDL [13]. The PISIF and HSL MI30 results in Table III use
lsize = rsize = 30. For PISIF, we again use match(AMD) ordering, Bunch Kaufman pivoting
and MC64 scaling. Based on findings in [19], the settings for HSL MI30 are initial shifts αin(1 :
2) = 0.01, Sloan profile-reducing ordering, and equilibration scaling. For SYM-ILDL, we use
equilibration scaling, AMD ordering and the parameter settings fill = 12.0 and tol = 0.003). These
choices for SYM-ILDL give a similar amount of fill as for PISIF and HSL MI30. The results
show that PISIF generally performs strongly (in terms of fill, iteration count and efficiency) and
illustrates that a general-purpose indefinite algorithm can outperform one that exploits the saddle-
point structure.

Table III. GMRES(1000) convergence results using PISIF and HSL MI30 preconditioning applied to Test
Set 1 (lsize = rsize = 30). Results are also given for SYM-ILDL. – denotes failure to converge within 2000

iterations.

Identifier PISIF HSL MI30 SYM-ILDL
fillIL efficiency iter fillIL efficiency iter fillIL efficiency iter

GHS indef/c-55 3.73 9.0×106 11 3.37 3.0×107 41 4.35 7.4×107 78
GHS indef/c-59 4.04 1.3×107 12 3.67 3.9×107 41 4.33 1.1×108 97
Schenk IBMNA/c-62 3.45 1.2×107 12 3.40 6.2×107 61 3.23 3.3×107 34
GHS indef/c-68 3.48 3.3×106 3 4.06 1.8×107 14 4.31 8.3×107 61
GHS indef/c-71 3.94 1.8×107 10 3.51 8.7×107 53 4.03 7.0×107 37
Schenk IBMNA/c-big 3.08 2.1×107 5 4.44 3.3×108 56 4.47 – –

5.3. Results for power system optimization matrices

Test Set 2 are from the TSOPF test set of the UFL Collection and are transient stability-constrained
optimal power flow problems. They are of the saddle point structure (5.3) but, in this case, H is
not positive definite and C = 0, the m×m null matrix. Note that, as H is not positive definite, a
signed incomplete Cholesky factorization is not recommended. The problems are listed in Table IV.
HSL MA97 is run with match(AMD) ordering and MC64 scaling. Note that, although of full
structural rank, these problems are not all of full numerical rank. We further observe that although
the direct solver works well for these examples (with fillL < 6.5), they are included in this study
since they demonstrate the potential benefits of using a nonzero shift and multiplier, and of using
L+R as the preconditioner.

Table IV. TSOPF test problems (Test Set 2).

Identifier n m nz(A) HSL MA97
fillL Time

TSOPF FS b39 c7 14118 14098 368599 6.25 0.14
TSOPF FS b39 c19 38118 38098 998359 6.32 0.37
TSOPF FS b39 c30 60118 60098 1575639 6.16 0.50
TSOPF FS b162 c3 15424 15374 904612 6.38 0.38
TSOPF FS b162 c4 20424 20374 1204322 6.38 0.52

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

15

In Table V, results are given for PISIF with lsize = rsize = 30 using match(AMD) ordering,
MC64 scaling, and Bunch tridiagonal pivoting. The first two sets of three columns use L as
the preconditioner while the last two sets of three columns use L+R. We present results for
shifts α = 0 and 0.01. With α = 0, for problems TSOPF FS b39 c7 and TSOPF FS b39 c19 the
factorization suffers breakdown (that is, at some stage, a stable pivot cannot be found and we
terminate the computation). For Test Set 2, we found that using α < 0.01 generally led to a poorer
quality preconditioner and using a nonzero shift and/or using L+R yields a reduction in the number
of iterations although, because the fill is greater for L+R, efficiency may not be improved. We also
ran using L+Rs as the preconditioner, where Rs includes only selected entries of R, as discussed
in Section 4. We found that the results (in terms of the fill and the number of iterations) lie, as
expected, between those for L and those for L+R. For instance, for problem TSOPF FS b39 c30,
using L+Rs with α = 0.01, we obtain fillIL = 3.14 and an iteration count of 673.

Table V. Results for PISIF with lsize = rsize = 30, with and without a nonzero shift, using L and L+R

as the preconditioner. BD denotes factorization breakdown. – indicates condest greater than 1016.

Identifier L, α = 0.0 L, α = 0.01 L+R, α = 0.0 L+R, α = 0.01
fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters fillIL efficiency iters

TSOPF FS b39 c7 BD BD BD 2.31 2.5×108 296 BD BD BD 3.51 2.5×108 194
TSOPF FS b39 c19 BD BD BD 2.32 1.1×109 463 BD BD BD 3.50 9.2×108 263
TSOPF FS b39 c30 2.30 – – 2.46 2.8×109 732 4.05 2.6×108 40 4.04 2.5×109 386
TSOPF FS b162 c3 1.68 1.2×109 790 1.67 2.1×108 141 2.70 5.8×108 237 2.69 2.1×108 87
TSOPF FS b162 c4 1.67 8.0×108 397 1.67 3.0×108 149 2.69 6.6×108 205 2.69 3.0×108 93

Table VI. Timings for PISIF with lsize = rsize = 30 and alpha = 0.01, using L and L+R as the
preconditioner. Tf , Tg and T denote, respectively, the times (in seconds) to compute the incomplete

factorization (including preordering and scaling the matrix), to run GMRES and total solution time.

Identifier L L+R
Tf Tg T Tf Tg T

TSOPF FS b39 c7 0.26 1.66 1.92 0.28 1.04 1.33
TSOPF FS b39 c19 0.76 9.03 9.80 0.88 4.15 5.03
TSOPF FS b39 c30 1.68 30.8 32.4 1.96 12.2 14.1
TSOPF FS b162 c3 0.81 0.87 1.68 0.90 0.68 1.57
TSOPF FS b162 c4 1.12 1.35 2.47 1.23 1.04 2.27

Table VII. Results for PISIF with lsize = rsize = 30, with and without non-unit multiplier ρ, using L as
the preconditioner. BD denotes factorization breakdown. – indicates convergence not achieved.

Identifier ρ = 1.0 ρ = 1.1
fillIL efficiency iters condest fillIL efficiency iters condest

TSOPF FS b39 c7 BD BD BD BD 2.58 9.2×108 965 5.06×108

TSOPF FS b39 c19 BD BD BD BD 2.59 – – 3.12×108

TSOPF FS b39 c30 2.30 – – 2.33×1020 2.20 – – 4.15×109

TSOPF FS b162 c3 1.68 1.2×109 790 2.91×1013 1.66 3.0×108 197 2.03×107

TSOPF FS b162 c4 1.67 8.0×108 397 6.34×1011 1.65 4.1×108 206 1.92×107

Timings are reported in Table VI. The increase in time for constructing the L+R preconditioner
comes from summing the computed L and R. This additional cost is more than offset by the
reduction in the GMRES time but the total time is greater than the direct solver time.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

16

So far, we have used a fixed global multiplier ρ = 1.0. In Table VII, results are given for ρ = 1.1
with α = 0.0 and L used as the preconditioner. As our analysis predicted, using a multiplier ρ > 1.0
reduces condest and this can lead to a substantial reduction in the iterations needed for convergence
but it is less effective than using a positive shift.

5.4. Results for density functional theory matrices

We now consider symmetric indefinite problems that come from symmetric eigenvalue problems in
density functional theory calculations; these problems do not have a saddle-point structure. Test Set
3 is summarised in Table VIII; these problems belong to the PARSEC group of the UFL Collection.
Using a direct solver is very expensive for some of these problems as the amount of fill is high and
there are a number that HSL MA97 was unable to solve on our test machine because of insufficient
memory.

Table VIII. PARSEC test problems (Test Set 3). – denotes the factorization failed because of insufficient
memory (in these cases, fillL is the predicted fill returned by the analyse phase on the basis of the sparsity

pattern).

Identifier n nz(A) HSL MA97
fillL Time

CO 221119 3943588 495 –
Ga10As10H30 113081 3114357 216 400
Ga19As19H42 133123 4508981 179 532
Ga3As3H12 61349 3016148 80 62.7
Ga41As41H72 268096 9378286 275 –

GaAsH6 61349 1721579 136 48.8
Ge87H76 112985 4002590 160 327
Ge99H100 112985 4282190 153 527
H2O 67024 1141880 198 48.6
Si10H16 17077 446500 70 5.52

Si34H36 97569 2626974 185 231
Si41Ge41H72 185639 7598452 186 –
Si5H12 19896 379247 119 8.99
Si87H76 240369 5451000 376 –
SiO 33401 675528 131 15.8
SiO2 155331 5719417 181 –

Results for GMRES(1000) with PISIF preconditioning are given in Tables IX and X; results
are for both L and L+R used as the preconditioner. In these experiments, we employ Bunch
Kaufman pivoting, Sloan ordering and MC64 scaling. In previous experiments, we employed a
fixed shift (α = 0.0 or 0.01); for these harder problems, we monitor the instability factor and if
at any stage it exceeds 108, we increase the shift (starting with an initial value of 0.0) and restart the
factorization. This process may need to be repeated more than once; the final α is given in column
2 of Table IX and the times in Table X include any time taken by restarting the factorization. For
problems that used α > 0.0 we found that, if we did not allow an increase in the shift, condest is
large and there is no convergence. For problems Si34H36 and Si87H76, condest(L) remains large,
but condest(L+R) is significantly smaller and using L+R improves the preconditioner quality
and gives convergence. In all cases, L+R reduces the iteration count and this reduction is sufficient
to reduce the total computational time (although efficiency is smaller from some problems when L
is used). As observed in the previous section, if L+Rs is used as the preconditioner, then the fill
and the number of iterations lie between those for L and those for L+R.

Comparing the timings reported in Table X with those for the direct solver given in Table VIII,
we see that, not only is the iterative method successful in solving more problems, but the time taken
is substantially less than is required by the direct solver HSL MA97 (although when it is successful,
HSL MA97 again computes a solution of higher accuracy). For the PARSEC test problems, we

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

17

Table IX. Results for PISIF with lsize = rsize = 10, with and without a nonzero shift, using L and L+R
as the preconditioner. – indicates convergence not achieved within 2000 iterations.

Identifier α L L+R
fillIL efficiency iters condest fillIL efficiency iters condest

CO 0.0 1.54 4.1×108 68 2.43×102 2.11 4.6×108 56 2.08×101

Ga10As10H30 0.0 1.24 2.7×109 688 5.22×106 1.61 1.3×109 255 2.49×102

Ga19As19H42 0.01 1.11 5.3×109 1068 1.39×108 1.40 2.5×109 390 2.35×104

Ga3As3H12 0.0 0.85 2.1×108 81 2.19×101 1.05 2.4×108 75 2.30×101

Ga41As41H72 0.01 1.11 7.3×109 704 4.35×103 1.39 7.3×109 557 1.13×102

GaAsH6 0.0 1.14 1.1×108 56 6.67×101 1.50 1.3×108 52 8.25×101

Ge87H76 0.02 1.00 2.3×109 563 1.61×102 1.28 2.4×109 464 2.54×101

Ge99H100 0.02 0.98 2.6×109 613 2.02×102 1.24 2.5×109 476 2.68×101

H2O 0.0 1.56 5.3×107 30 4.94 2.15 6.6×107 27 8.59
Si10H16 0.0 1.23 9.1×107 166 5.21×105 1.62 8.3×107 115 4.27×102

Si34H36 0.0 1.22 – – 9.64×1011 1.59 1.8×109 439 2.84×104

Si41Ge41H72 0.01 0.91 4.0×109 574 3.50×103 1.15 4.2×109 483 1.34×102

Si5H12 0.0 1.46 2.2×107 40 3.24×101 1.98 2.5×107 33 3.28×101

Si87H76 0.04 1.33 – – 3.29×1012 1.77 9.5×109 984 4.73×105

SiO 0.0 1.37 4.0×107 43 7.39×101 1.87 4.4×107 35 6.91×101

SiO2 0.0 0.77 1.9×108 43 4.17×101 1.04 2.3×108 39 4.83×101

Table X. Times for the incomplete factorization preconditioner PISIF computed using lsize = rsize = 10;
L and L+R are reported on. Tf , Tg and T denote, respectively, the time (in seconds) to compute the
incomplete factorization (including preordering and scaling the matrix), to run GMRES and total solution
time. For each problem, the lowest total time (and any within 10% of that time) is in bold. – denotes

convergence not achieved within 2000 iterations.

Identifier L (L+R)
Tf Tg T Tf Tg T

CO 2.79 1.99 4.77 3.03 2.03 5.06
Ga10As10H30 2.07 19.9 22.0 2.16 6.74 8.91
Ga19As19H42 4.77 47.0 51.8 5.14 15.8 20.9
Ga3As3H12 1.70 1.04 2.74 1.65 1.11 2.76
Ga41As41H72 9.03 77.8 86.8 9.32 59.4 68.7
GaAsH6 1.06 0.54 1.60 1.16 0.59 1.75
Ge87H76 6.70 21.5 28.2 6.28 17.0 23.3
Ge99H100 7.36 25.1 32.5 7.63 18.0 25.6
H2O 0.81 0.23 1.04 0.84 0.29 1.12
Si10H16 0.24 0.45 0.69 0.28 0.36 0.63
Si34H36 – – – 1.82 13.2 15.0
Si41Ge41H72 7.95 38.6 46.5 8.33 31.1 39.4
Si5H12 0.25 0.09 0.34 0.24 0.11 0.35
Si87H76 – – – 7.97 120 128
SiO 0.40 0.18 0.58 0.41 0.19 0.61
SiO2 2.62 1.05 3.67 2.79 1.13 3.92

thus have a potentially attractive alternative to a sparse direct solver that requires substantially less
memory and computational time.

5.5. Monitoring instability and enriching L by entries from R

The following experiments further demonstrate the relationship between preconditioning using L,
L+R and also L+Rs and they show the monitoring role of the instability factor. To separate
the roles of shifts and the instability factor in our experiments, the shift is increased only if the
factorization breaks down. Moreover, we will use condest to explore the usefulness of employing
L+R instead of L. Note that repeatedly increasing the shift α will eventually make condest small,

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

18

but then the factorized matrix A+ αI may be far from the original A. In this case, enhancing L
using entries R can be beneficial and the instability factor may be a tool to decide when to do this,
as we discuss below.

We first consider problem PARSEC/Ga3As3H12; we use the same scaling, ordering and pivot
strategy for PISIF as in Section 5.4 and set shift α = 0.01 and multiplier ρ = 1.0. The incomplete
factorization of this matrix provides a high quality preconditioner, even for small values of lsize
and rsize. To explore what happens as the ratio of rsize to lsize decreases, we fix rsize = 5 and let
lsize vary from 1 to 45; iteration counts, efficiency , and condest are reported in Figure 5.1. We see

0 5 10 15 20 25 30 35 40 45 50
80

90

100

110

120

130

140

150

160

170

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

lsize

 L

 L + Rs

 L+R

0 5 10 15 20 25 30 35 40 45
2.8

3

3.2

3.4

3.6

3.8

4

4.2
x 10

8

e
ff

ic
ie

n
c
y

lsize

 L

 L + Rs

 L+R

0 5 10 15 20 25 30 35 40 45
10

1

10
2

10
3

10
4

10
5

10
6

10
7

c
o

n
d

e
s
t

lsize

 L

 L + Rs

 L+R

Figure 5.1. Iteration counts (top left), efficiency (top right) and condest (bottom left) for problem
PARSEC/Ga3As3H12 with rsize = 5 and lsize varying.

that, as expected, as lsize increases, R becomes less significant and the differences in the statistics
for L, L+Rs and L+R reduce. Moreover, the prediction of possible instability used to construct
Rs works well, with condest(L+Rs) generally lying between condest(L) and condest(L+R).
In terms of efficiency (recalling that the smaller the value of efficiency the better), we see that using
L is generally best as the modest reduction in the iteration counts for L+Rs and L+R are unable
to offset the increase in the factor size.

We next consider problem PARSEC/Si10H16. In Table XI, we report the iteration count and
condest for a range of values of rsize with lsize = 10 and α = 0.0, ρ = 1.0. As lsize is fixed,
nz(L) is essentially the same for all choices of rsize while nz(L+R) ' nz(L) + rsize ∗ n. This
example illustrates that using intermediate memory R in the construction of L does not guarantee to
improve the quality of L as a preconditioner but that stability in this case is recovered using L+R.
If we set rsize = 0 and increase lsize, for a given value lsize = l0, the quality of the resulting L0

as a preconditioner is, as we would expect, similar to that of L+R computed using lsize = 10 and
rsize = l0 − 10. The advantage of the latter is that if the prediction of the instability factor indicates
there is no instability, the sparser L can be used without including entries of R.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

19

Table XI. Iteration counts and condest for problem PARSEC/Si10H16 using lsize = 10 and rsize varying.

rsize L L+R
iters condest iters condest

0 123 7.14×102

10 166 5.21×105 115 4.27×102

20 391 3.66×107 118 1.41×103

30 524 2.35×108 114 3.08×102

40 532 2.14×108 99 1.62×103

50 429 2.72×107 86 2.73×102

Figure 5.2 reports iteration counts and the efficiency for problem Schenk IBMNA/c-56. For this
example, as lsize = rsize is increased, condest slowly decreases from approximately 106 to 104

and this is reflected in the value of the computed instability factor estimate g. If the value of g is
modest, we can choose between using L or L+R as the preconditioner, depending on whether we
need the preconditioner to be as sparse as possible and/or whether it is important to minimize the
iteration count. For this problem, using L+Rs does not offer advantages over using L.

10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

lsize

 L

 L + Rs

 L+R

10 20 30 40 50 60 70
0.5

1

1.5

2

2.5

3
x 10

8

e
ff

ic
ie

n
c
y

lsize

 L

 L + Rs

 L+R

Figure 5.2. Iteration counts (left) and efficiency (right) for problem Schenk IBMNA/c-56 with lsize =
rsize varying.

Our final experiment considers problem PARSEC/CO. To emphasize further the importance of
monitoring instability factor and the potential advantage of employing L+R as the preconditioner,
we use the Liu partial pivoting strategy with a threshold of 0.1. This leads to faster computation
of the incomplete factorization compared to using Bunch Kaufman pivoting but it can result in an
unstable factorization. Iteration counts and efficiency are reported in Figure 5.3 for lsize = rsize
in the range 10 to 68. We see that using L+R as the preconditioner stabilizes the Liu threshold
pivoting. The specific choices of lsize = rsize that give the peaks in Figure 5.3 correspond
to significantly higher values of condest(L) than of condest(L+R). We recommend that if
condest(L) is much larger than condest(L+R), L+R should be used as the preconditioner.

6. CONCLUDING REMARKS

In this paper, we have focused on the development of incomplete factorization preconditioners for
symmetric indefinite sparse linear systems. We have employed a limited memory approach that
has improved robustness of IC preconditioners for positive-definite systems. We have incorporated
numerical pivoting to prevent the entries of the factors from becoming large and have proposed new
ideas to prevent instability growth and to monitor stability as the factorization proceeds.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

20

10 20 30 40 50 60 70
0

50

100

150

200

250

300

350

n
u

m
b

e
r

o
f

it
e

ra
ti
o

n
s

lsize

 L

 L + Rs

 L+R

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3
x 10

9

e
ff

ic
ie

n
c
y

lsize

 L

 L + Rs

 L+R

Figure 5.3. Iteration counts (left) and efficiency (right) for problem PARSEC/CO with lsize = rsize
varying.

In our experience, the problems that prove difficult to solve with our incomplete factorization
approach are generally those for which the triangular solves are unstable, as indicated by a
large value of condest. It is possible to improve the stability of the triangular solves using pivot
modifications and we have discussed how to do this for both 1× 1 pivots and for the different
types of 2× 2 pivots. Our numerical experiments have shown that pivot modifications can be very
effective in reducing condest and improving preconditioner quality. However, if the shift α and/or
multiplier ρ needs to be large to prevent instability then the computed incomplete factorization is
inaccurate and convergence of the iterative solver may not be achieved. Moreover, increasing the
amount of fill is not always sufficient to obtain an accurate and stable factorization.

To successfully solve a wide range of problems, our software incorporates a number of different
pivoting options as well as different scalings. In addition, the user can control the choice of shift and
multiplier as well as the amount of memory available for L and R. Our tests have shown that using
intermediate memory (R 6= 0) can be beneficial but this is not guaranteed. Furthermore, usingL+R
(or, in some cases, the sparser L+Rs) can provide a better preconditioner than L that is much
less sensitive to the choice of lsize and rsize. The difficulty for a given problem is determining
which options should be selected and choosing appropriate values for the parameters. For saddle-
point problems, we recommend using a matching-based ordering and scaling combined with using
intermediate memory; with these choices L has been seen to provide a high-quality preconditioner.
For some classes of problems, the incomplete factorization preconditioner combined with GMRES
can compete with a state-of-the-art parallel direct solver and can solve problems for which the direct
solver fails because of its memory requirements.

ACKNOWLEDGEMENTS

We would like to thank two anonymous reviewers for their constructive feedback.

REFERENCES

1. Benzi M, Golub G, Liesen J. Numerical solution of saddle point problems. Acta Numerica 2005; 14:1–137.
2. Keller C, Gould NIM, Wathen AJ. Constraint preconditioning for indefinite linear systems. SIAM Journal on Matrix

Analysis and Applications 2000; 21(4):1300–1317.
3. Lukšan L, Vlček J. Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-

linear programming problems. Numerical Linear Algebra with Applications 1998; 5(3):219–247.
4. Wu X, Golub GH, Cuminato JA, Yuan JY. Symmetric-triangular decomposition and its applications Part II:

Preconditioners for indefinite systems. BIT Numerical Mathematics 2008; 48(1):139–162.
5. Vanderbei RJ. Symmetric quasidefinite matrices. SIAM Journal on Optimization 1995; 5(1):100–113.
6. Gill PE, Saunders MA, Shinnerl JR. On the stability of Cholesky factorization for symmetric quasidefinite systems.

SIAM Journal on Matrix Analysis and Applications 1996; 17(1):35–46.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

21

7. Golub GH, Van Loan CF. Unsymmetric positive definite linear systems. Linear Algebra and its Applications 1979;
28:85–97.

8. Chow E, Saad Y. Experimental study of ILU preconditioners for indefinite matrices. Journal of Computational and
Applied Mathematics 1997; 86(2):387–414.

9. Li N, Saad Y. Crout versions of ILU factorization with pivoting for sparse symmetric matrices. Electronic
Transactions on Numerical Analysis 2005; 20:75–85.

10. Ashcraft C, Grimes RG, Lewis JG. Accurate symmetric indefinite linear equation solvers. SIAM Journal on Matrix
Analysis and Applications 1999; 20(2):513–561.

11. Bunch JR, Kaufman L. Some stable methods for calculating inertia and solving symmetric linear systems.
Mathematics of Computation 1977; 31:162–179.

12. Bunch JR, Parlett B. Direct methods for solving symmetric indefinite systems of linear systems. SIAM Journal on
Numerical Analysis 1971; 8:639–655.

13. Greif C, He S, Liu P. SYM-ILDL: C++ package for incomplete factorizations of symmetric indefinite matrices
2013. https://github.com/inutard/matrix-factor.

14. Scott JA, Tůma M. On positive semidefinite modification schemes for incomplete Cholesky factorization. SIAM
Journal on Scientific Computing 2014; 36(2):A609–A633.

15. Jennings A, Malik GM. Partial elimination. Journal of the Institute of Mathematics and its Applications 1977;
20(3):307–316.

16. Jennings A, Malik GM. The solution of sparse linear equations by the conjugate gradient method. International
Journal of Numerical Methods in Engineering 1978; 12(1):141–158.

17. HSL. A collection of Fortran codes for large-scale scientific computation 2016. http://www.hsl.rl.ac.uk.
18. Scott JA, Tůma M. HSL MI28: an efficient and robust limited-memory incomplete Cholesky factorization code.

ACM Transactions on Mathematical Software 2014; 40(4):Art. 24, 19.
19. Scott JA, Tůma M. On signed incomplete Cholesky factorization preconditioners for saddle-point systems. SIAM

Journal on Scientific Computing 2014; 36(6):A2984–A3010.
20. Lin CJ, Moré JJ. Incomplete Cholesky factorizations with limited memory. SIAM Journal on Scientific Computing

1999; 21(1):24–45.
21. Tismenetsky M. A new preconditioning technique for solving large sparse linear systems. Linear Algebra and its

Applications 1991; 154–156:331–353.
22. Kaporin IE. High quality preconditioning of a general symmetric positive definite matrix based on its

UTU + UTR+RTU decomposition. Numerical Linear Algebra with Applications 1998; 5:483–509.
23. Duff IS, Gould NIM, Reid JK, Scott JA, Turner K. Factorization of sparse symmetric indefinite matrices. IMA

Journal of Numerical Analysis 1991; 11:181–204.
24. Reid JK, Scott JA. Partial factorization of a dense symmetric indefinite matrix. ACM Transactions on Mathematical

Software 2011; 38. Article 10, 19 pages.
25. Liu JWH. A partial pivoting strategy for sparse symmetric matrix decomposition. ACM Transactions on

Mathematical Software 1987; 13(2):173–182.
26. Hagemann M, Schenk O. Weighted matchings for preconditioning symmetric indefinite linear systems. SIAM

Journal on Scientific Computing 2006; 28(2):403–420.
27. Duff I, Pralet S. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM Journal on

Matrix Analysis and Applications 2005; 27:313 – 340.
28. Hogg JD, Scott JA. Pivoting strategies for tough sparse indefinite systems. ACM Transactions on Mathematical

Software 2013; 40. Article 4, 19 pages.
29. Kershaw DS. The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear

equations. Journal of Computational Physics 1978; 26:43–65.
30. Manteuffel TA. An incomplete factorization technique for positive definite linear systems. Mathematics of

Computation 1980; 34:473–497.
31. MacLachlan S, Osei-Kuffuor D, Saad Y. Modification and compensation strategies for threshold-based incomplete

factorizations. SIAM Journal on Scientific Computing 2012; 34(1):A48–A75.
32. Saunders MA, Tomlin JA. Solving regularized linear programs using barrier methods and KKT systems. Technical

Report SOL-96-4, SOL, Department of Operations Research, Stanford University 1996.
33. Sala M, Heroux M. Robust algebraic preconditioners with IFPACK 3.0. Technical Report SAND-0662, Sandia

National Laboratories 2005.
34. Erlangga YA, Vuik C, Oosterlee CW. Comparison of multigrid and incomplete LU shifted-Laplace preconditioners

for the inhomogeneous Helmholtz equation. Applied Numerical Mathematics 2006; 56(5):648–666.
35. Osei-Kuffuor D, Saad Y. Preconditioning Helmholtz linear systems. Applied Numerical Mathematics 2010;

60(4):420–431.
36. Bunch JR. Analysis of the diagonal pivoting method. SIAM Journal on Numerical Analysis 1971; 8:656–680.
37. Druinsky A, Toledo S. The growth-factor bound for the Bunch-Kaufman factorization is tight. SIAM Journal on

Matrix Analysis and Applications 2011; 32(3):928–937.
38. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction to algorithms. Third edn., MIT Press, Cambridge,

MA, 2009.
39. Saad Y, Schulz MH. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.

SIAM Journal on Scientific and Statistical Computing 1986; 7:856–869.
40. Scott JA, Tůma M. The importance of structure in incomplete factorization preconditioners. BIT Numerical

Mathematics 2011; 51:385–404.
41. Hogg JD, Scott JA. HSL MA97: a bit-compatible multifrontal code for sparse symmetric systems. Technical Report

RAL-TR-2011-024, Rutherford Appleton Laboratory 2011.
42. Davis TA, Hu Y. The University of Florida sparse matrix collection. ACM Transactions on Mathematical Software

2011; 38(1).

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

https://github.com/inutard/matrix-factor
http://www.hsl.rl.ac.uk

22

43. Duff IS, Koster J. On algorithms for permuting large entries to the diagonal of a sparse matrix. SIAM Journal on
Matrix Analysis and Applications 2001; 22:973–996.

44. Duff IS, Pralet S. Strategies for scaling and pivoting for sparse symmetric indefinite problems. SIAM Journal on
Matrix Analysis and Applications 2005; 27:313–340.

45. Hogg JD, Scott JA. The effects of scalings on the performance of a sparse symmetric indefinite solver. Technical
Report RAL-TR-2008-007, Rutherford Appleton Laboratory 2008.

Copyright c© 2017 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2017)
Prepared using nlaauth.cls DOI: 10.1002/nla

	1 Introduction
	2 Factorization and pivoting
	2.1 Limited-memory incomplete factorization
	2.2 Pivoting strategies

	3 The use of shifts and multipliers
	3.1 Oxo pivots
	3.2 Tile pivots
	3.3 Full 2 2 pivots

	4 Local instability
	5 Numerical experiments
	5.1 Test environment
	5.2 Results for interior-point optimization matrices
	5.3 Results for power system optimization matrices
	5.4 Results for density functional theory matrices
	5.5 Monitoring instability and enriching L by entries from R

	6 Concluding remarks

