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Summary
Null-space methods for solving saddle point systems of equations have long been

used to transform an indefinite system into a symmetric positive definite one of

smaller dimension. A number of independent works in the literature have identi-

fied that we can interpret a null-space method as a matrix factorization. We review

these findings, highlight links between them, and bring them into a unified frame-

work. We also investigate the suitability of using null-space factorizations to derive

sparse direct methods and present numerical results for both practical and academic

problems.
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1 INTRODUCTION

A saddle point system is an indefinite linear system of equations of the form



[
x
y

]
=
[

A BT

B 0

] [
x
y

]
=
[

f
g

]
. (1)

Here, we will assume that B ∈ Rm×n(n > m) has full rank and A ∈ Rn×n is symmetric positive definite on the null space of B.

We are particularly interested in the case where A and B are large, sparse matrices, and our discussion will focus on A symmetric

and positive semidefinite.

Saddle point systems (also known as KKT systems or augmented systems) arise frequently in scientific applications, partic-

ularly when solving constrained optimization problems. Sometimes the optimization framework is explicit, for example, when

applying an interior point method to solve a linear or quadratic program, or when solving a least squares problem. More often,

the optimization context is not so obvious, as is the case with incompressible fluid flow, electronic circuit simulation, and struc-

tural mechanics. The survey paper of Benzi et al.1 describes a wide range of applications that require the solution of systems of

the form 1.

One approach for solving Equation 1 is to use a null-space method.[1, section 6] These methods, which we will describe in detail

below, have been used in the fields of optimization (where they are known as reduced Hessian methods), structural mechanics

(where they are known as a “force” method or “direct elimination”), fluid mechanics (where they are known as the “dual

variable” method), and electrical engineering (where they are known as “loop analysis”). This approach remains particularly

popular in the large-scale optimization literature.2-7

There has been a sizable body of work—some historical but much recent—that has (directly or indirectly) revisited null-space

methods and put them into the context of a matrix factorization, see, for example, the references.8-18 Our main contribution is
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to bring these factorizations together within a unified framework, highlighting the relationships between them (some of which

do not appear to be well known). In addition to drawing links between different null-space factorizations, we compare their

relative merits. We focus on two issues that are vital for determining the potential of a sparse direct solver, namely the sparsity

of the factors and the stability of the factorization.

Null-space methods require a basis for the null space of B. This typically comes from either finding an invertible subblock of

B or performing a QR factorization of B; we discuss different choices in Section 2, drawing them into a unified framework. The

choice of null-space basis affects the conditioning of the resulting factorization and thus its stability. In Section 3, we highlight

stability results that have appeared in the literature.

We also observe that null-space factorizations allow us to predict the level of fill a priori, which is not the case for a gen-

eral sparse symmetric indefinite solver that employs numerical pivoting for stability. However, as a null-space factorization

predetermines an elimination ordering, it may or may not produce sparser factors than a general sparse solver.

Section 4 presents our numerical experiments that explore the effectiveness of null-space factorizations and compare their

performance with that of a general sparse solver. We consider a range of problems, both artificial and from real-world appli-

cations, and investigate the stability of the factorization and the sparsity of the factors. We give concluding remarks in

Section 5.

2 NULL-SPACE METHODS AS A FACTORIZATION

Suppose we are given a matrix Z ∈ Rn×(n−m) whose columns form a basis for the null space of B, that is, BZ = 0. Suppose

additionally that we have a particular solution for the second equation, that is, a vector x̂ such that

Bx̂ = g.

Then solving Equation 1 is equivalent to solving [
A BT

B 0

] [
x̄
y

]
=
[

f − Ax̂
0

]
,

where x = x̂ + x̄. The second equation in this system is equivalent to finding a vector z ∈ R(n−m) such that x̄ = Zz. Substituting

this into the first equation we have

AZz + BTy = f − Ax̂

⇐⇒ ZTAZz = ZT (f − Ax̂)
(2)

Therefore, by solving the reduced system (Equation 2), we can straightforwardly recover x = x̂ + Zz. We can then obtain y by

solving the overdetermined system Ax + BTy = f . This is a null-space method, which we summarise as Algorithm 1.

The approach outlined in Algorithm 1 is well known. What is less well known is that we can interpret this as a matrix

factorization. Consider again Equation 1. The primal variable x can be expressed in the form

x = ZxN + YxR, (3)

where Y ∈ Rn×m is chosen so that
[

Z Y
]

spans Rn. Thus,[
A BT

B 0

] [
Y Z 0
0 0 I

][ xR
xN
y

]
=
[

f
g

]
,

and hence, [ YT 0
ZT 0
0 I

][
A BT

B 0

] [
Y Z 0
0 0 I

][ xR
xN
y

]
=

[ YT 0
ZT 0
0 I

][
f
g

]
,
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and so, [ YTAY YTAZ YTBT

ZTAY ZTAZ 0
BY 0 0

][
xR
xN
y

]
=

[ YT 0
ZT 0
0 I

][
f
g

]
. (4)

It is clear that this is a matrix representation of Algorithm 1. First, x̂ = YxR is found by solving the linear system BYxR = g.

Then, the component xN of x in the null space of B is found by solving the linear system

ZTAZxN = ZT (f − AYxR) = ZT (f − Ax̂).

Finally, y is recovered by solving

YTBTy = YT f − YTAYxR − YTAZxN = YT (f − Ax).

Note that the matrix

[ YT 0
ZT 0
0 I

]
is square and nonsingular and so, using Equations 3 and 4, we can rewrite Equation 1 as

[ YT 0
ZT 0
0 I

]−1 [ YTAY YTAZ YTBT

ZTAY ZTAZ 0
BY 0 0

][
Y Z 0
0 0 I

]−1 [
x
y

]
=
[

f
g

]
.

Thus, the factorization

 =
⎡⎢⎢⎣
[

YT

ZT

]−1
0
0

0 I

⎤⎥⎥⎦
[ YTAY YTAZ YTBT

ZTAY ZTAZ 0
BY 0 0

][ [
Y Z

]−1
0

0 0 I

]
(5)

is a block LTLT factorization, with L lower triangular and T reverse block triangular, that is equivalent to the null-space method.

Because there are infinitely many potential bases Y, Z, this factorization is nonunique and the main difficulty of the null-space

method is choosing these bases. In the Sections 2.1 to 2.5, we discuss some special cases that have been proposed in the literature.

2.1 Factorizations based on the fundamental basis
One way of fixing Y in Equation 3 is to extend BT to an n × n nonsingular matrix

[
BT VT ]

. If we choose Y and Z satisfying[
B
V

] [
Y Z

]
= I

then it is easy to see that BZ = 0 and BY = I. The factorization in Equation 5 reduces to

 =
[

BT VT 0
0 0 I

][ YTAY YTAZ I
ZTAY ZTAZ 0

I 0 0

][ B 0
V 0
0 I

]
.

This factorization was given by Fletcher et al.,[19, eq. 3.6] who described it as “readily observed (but not well known).”

2.1.1 A first null-space factorization
Suppose we have a nonsingular subset of m columns of B. We may then write, without loss of generality, B =

[
B1 B2

]
, where

B1 ∈ Rm×m is nonsingular. If, as suggested by Fletcher et al,19 we make the choice of V =
[

0 I
]
, then[

B
V

]−1

=
[

B1 B2

0 I

]−1

=
[

B−1
1

−B−1
1

B2

0 I

] (
=
[

Y Z
])

.

This gives us the bases

Zf =
[
−B−1

1
B2

I

]
, Yf =

[
B−1

1
0

]
. (6)

This choice for Z is often called the fundamental basis,[1, section 6] and we consequently label it Zf.

Substituting Equation 6 into Equation 5 gives the factorization

 =
⎡⎢⎢⎣

BT
1

0 0

BT
2

I 0

0 0 I

⎤⎥⎥⎦
⎡⎢⎢⎣

B−T
1

A11B−1
1

B−T
1

XT I
XB−1

1
N 0

I 0 0

⎤⎥⎥⎦
[ B1 B2 0

0 I 0
0 0 I

]
, (7)
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TABLE 1 Cost of forming Factorization 1 assuming that B1, B2 chosen. mat-mat,

and mat-add denote a sparse matrix–matrix product and sparse matrix addition

Operation Size Details How many?

sparse solve m × m matrix with B1 = B2 1

n − m right hand sides

mat-mat ((n − m) × m) × (m × m) T A11 1

mat-mat ((n − m) × m) × (m × (n − m)) X, T A12 2

mat-add (n − m) × m forming X 1

mat-add (n − m) × (n − m) forming N 2

factorize (n − m) × (n − m) (possibly sparse) N 1

where

N = ZT
f AZf , (8)

denotes the (n − m) × (n − m) null-space matrix and

A =
[

A11 A12

A21 A22

]
and X = ZT

f

[
A11

A21

]
,

with A11 ∈ Rm×m. It is easy to see that Equation 7 is equivalent to

 =
⎡⎢⎢⎣

I 0 0
BT

2
B−T

1
I 0

0 0 I

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1

⎡⎢⎢⎣
A11 XT BT

1

X N 0
B1 0 0

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

1

⎡⎢⎢⎣
I B−1

1
B2 0

0 I 0
0 0 I

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

T
1

. (9)

Indeed, this LTLT factorization appeared in the survey paper by Benzi et al.,[1, eq. 10.35] where it was attributed to a personal

communication from Michael Saunders and was described as being “related to the null-space method.” We will refer to this

decomposition as Factorization 1. The factor 1 is well conditioned provided B1 is chosen appropriately; this is discussed in

Section 3. Factorization 1 is then a stable factorization of  and the diagonal blocks of 1 (that is, B1, N, and BT
1
) accurately

reflect the condition of the full system.

In practice, once we have found the m × (n − m) matrix  by solving the sparse system

B1 = B2, (10)

the only additional calculations required to generate Factorization 1 are matrix–matrix products with , some matrix additions,

and a factorization of the null-space matrix N. This is due to the relationships X = −TA11 +A21 and N = −X−TA12 +A22.

The overall cost is summarised in Table 1. We point out that, because the subblocks involved are sparse, it is not possible to

give explicit operation counts in Table 1, as these would depend on the density of the submatrices. Note further that, in some

applications (for example, where N is large and dense) it may not be possible to explicitly compute N and form its factorization;

in this case, it is necessary to use an iterative solver.

Having formed Factorization 1, Table 2 gives the costs of using it to solve Equation 1. Again, note that exact operation counts

are not possible. Table 2 describes two variants: implicit and explicit. In the explicit version, we store the off-diagonal matrices

(X, ) that are formed in the construction of N and apply them via matrix-vector products to solve Equation 1. In the implicit

version, we discard the off-diagonal matrices and recompute them as needed. This is computationally more expensive but saves

storing the potentially dense matrices X and  of size m × (n − m). It is clear that the implicit version is exactly equivalent to

the null-space method as presented in Algorithm 1.

The costs in Tables 1 and 2 are upper bounds, and they may be reduced in certain circumstances. For example, as we discuss

in Section 3 below, it is usual to find B1,B2 by forming an LU factorization of BT

BT = (PLPT )(PUQ) =
(

P
[

La 0
Lb I

]
PT

)(
P
[

Ua
0

]
Q
)
,

where La is lower triangular, Ua is upper triangular, and P and Q are permutation matrices. Then B−1
1

B2 = PL−T
a LT

b PT , and so

this can be calculated without reference to Ua, although Lb is needed and is likely to be less sparse than B2. Furthermore, in this

case Z = L−TPT
[

I
0

]
, so ZTAZ can also be formed efficiently. See, for example, Fletcher et al.19 for more details.
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TABLE 2 Cost of using Factorization 1 to solve Equation 1

Operation Size Details How many?

Explicit sparse solve m × m matrix B1x = y, BT
1

x = y 2

sparse solve (n − m) × (n − m) Factors of N 2

lower triangular

mat-vec (n − m) × m x, Xx 2

mat-vec m × m A11x 1

mat-vec m × (n − m) T x, XTx 2

vec-add n − m 2

vec-add m 3

Implicit As explicita plus:

sparse solve m × m matrix B1x = y,BT
1

x = y 4

(in mult with ,T ,X,XT )
mat-vec (n − m) × m 1

mat-vec m × m 1

mat-vec m × (n − m) 1

vec-add n − m 1

Note. mat-vec denotes the product of a sparse matrix with a vector, and vec-add denotes the addition of two

vectors.
aThe numbers of solves and matrix-vector products will be the same, but the matrices in the matrix-vector

products will generally be sparser in the implicit case.

2.1.2 A factorization due to Lungten, Schilders, and Maubach
Assume now that A is symmetric and positive semidefinite so that N is symmetric positive definite and a Cholesky factorization

of the form N = L2LT
2

exists, where L2 is lower triangular. Then we can decompose the reverse triangular 1 matrix in Equation 9

as

1 =

[ A11 XT BT
1

X N 0
B1 0 0

]
=

[ I 0 LA
0 L2 X
0 0 B1

][−DA 0 I
0 I 0
I 0 0

] ⎡⎢⎢⎣
I 0 0
0 LT

2
0

LT
A XT BT

1

⎤⎥⎥⎦ ,
where

A11 = LA − DA + LT
A, (11)

with LA a strictly lower triangular matrix and DA a diagonal matrix. Combining the outer matrices here with the outer matrices

in Equation 9 yields the alternative, but equivalent, LTLT factorization

 =

[ I 0 LA
BT

2
B−T

1
L2 K

0 0 B1

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

[−DA 0 I
0 I 0
I 0 0

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

2

⎡⎢⎢⎣
I B−1

1
B2 0

0 LT
2

0

LT
A KT BT

1

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

2

, (12)

where K = X + BT
2
B−T

1
LA. This factorization was recently proposed both for use as a direct method and as the basis of a

preconditioner for an iterative method by Lungten et al.15 We refer to it as Factorization 2 or the LSM factorization.

Note that forming Equation 12 is more expensive than Equation 9, as it requires one more matrix-matrix multiply of T (recall

Equation 10) with an m × m matrix and one more (n − m) × m matrix addition, both coming from the formation of K. In terms

of applying Equation 12 explicitly, one matrix-vector multiply with A11 is replaced by matrix-vector multiplies with its strictly

upper, lower, and diagonal parts, and two extra m × m matrix additions; there is a similar increase in cost when applying the

factorization implicitly. This suggests that, in terms of the computational cost, Factorization 1 is preferable; we perform tests

with both versions in Section 3.

Lungten et al.15 focus on problems for which the nonsingular matrix B1 is also upper triangular (or it is easy to transform the

problem into this form). In this case, if Factorization 2 is formed via an modified Cholesky algorithm, they show that, for the

dense case, it takes

1

3
(n3 − m3) + 1

2
(n2 − 7m2) − 1

6
(5n + m) + nm(n − m + 4)

flops to factorize the saddle point matrix .
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2.1.3 The Schilders factorization
We next consider the relationship of Factorizations 1 and 2 to the decomposition known in the literature as the Schilders

factorization. Dollar et al.10 were interested in developing constraint preconditioners for symmetric systems as in Equation 1.

Such preconditioners represent the blocks B exactly but approximate the (1,1) block A. Dollar et al. choose symmetric matrices

E1 ∈ Rm×m, E2 ∈ R(n−m)×(n−m) (E2 nonsingular), together with matrices F1 ∈ Rm×m, F2 ∈ R(n−m)×(n−m) (F2 nonsingular),

and M ∈ R(n−m)×m. To obtain an inexpensive preconditioner, E2, F2 are chosen so that they are easy to invert. The Schilders

factorization is then given by ⎡⎢⎢⎣
A11 AT

21
BT

1

A21 A22 BT
2

B1 B2 0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

BT
1

0 F1

BT
2

F2 M
0 0 I

⎤⎥⎥⎦
⎡⎢⎢⎣

E1 0 I
0 E2 0

I 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

B1 B2 0
0 FT

2
0

FT
1

MT I

⎤⎥⎥⎦ , (13)

where

A11 = F1B1 + BT
1
FT

1
+ BT

1
E1B1

A21 = BT
2
FT

1
+ MB1 + BT

2
E1B2

A22 = F2E2FT
2
+ MB2 + BT

2
MT + BT

2
E1B2.

Note that the (1,1) block A is implicitly defined by the choices of Ei, Fi. Nevertheless, we can use this construction to give a

factorization for a given A.

One possible choice for E1, F1 is

E1 = −B−T
1

DAB−1
1
, F1 = LAB−1

1
,

for the DA, LA in Equation 11. The matrices M, E2, and F2 are then given by the relations

M =
(
A21 − BT

2
FT

1
− BT

2
E1B2

)
B−1

1
,

F2E2FT
2
= MB2 + BT

2
MT + BT

2
E1B2 − A22.

With these choices, transferring a factor of the block diagonal matrix with diagonal blocks BT
1
, I, and B−1

1
from the left outer

matrix to the central matrix in Equation 13 again gives Factorization 2.

The original Schilders factorization,14 of which the formulation 13 is a generalization, was given only for matrices for which

B1 is upper triangular and used the choice

E1 = diag
(
B−T

1
A11B−1

1

)
, F1 = BT

1
lower

(
B−T

1
A11B−1

1

)
,

where diag() and lower() denote the diagonal and strictly lower triangular parts of a matrix, respectively. Again, it is straight-

forward to show the equivalence of this factorization to Factorization 2. Generating this factorization is clearly significantly

more work than Equation 9, not least because we are unable to reuse the matrix  in forming the subblocks.

There are, of course, other ways of rearranging the decompostion given by Equation 9. Dollar et al.20 give a list of forms the

factorization can take. As already observed, their focus was on implicit factorizations of constraint preconditioners and only

five of their factorizations are applicable in the case of an arbitrary symmetric (1,1) block.

2.2 Relationship to the Schur complement factorization
A commonly used block LDLT factorization for generalized saddle point systems (which have a negative definite (2,2) block)

where A is nonsingular is [
A BT

B −C

]
=
[

I 0
BA−1 I

] [
A 0
0 −(C + BA−1BT )

] [
I A−1BT

0 I

]
, (14)

see, for example, Benzi et al.[1, Equation 3.9] Approximating the terms of this factorization has proved an effective strategy for

developing preconditioners for saddle point systems. It can also be used to develop another factorization that is equivalent to

the null-space method. First, note that

 =
⎡⎢⎢⎣

I 0 0

0 0 I
0 I 0

⎤⎥⎥⎦
⎡⎢⎢⎣

A11 BT
1

A12

B1 0 B2

A21 BT
2

A22

⎤⎥⎥⎦
⎡⎢⎢⎣

I 0 0

0 0 I
0 I 0

⎤⎥⎥⎦ ,
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where we are again assuming, without loss of generality, that B1 is a nonsingular m × m subblock of B. Applying Equation 14

with C = A22, we obtain

 =

[ I 0 0
0 0 I
0 I 0

][ I 0 0
0 I 0

BT
2
B−T

1
A21B−1

1
− BT

2
B−T

1
A11B−1

1
I

][ A11 BT
1

0
B1 0 0
0 0 S

]⎡⎢⎢⎣
I 0 B−1

1
B2

0 I B−T
1

A12 − B−T
1

A11B−1
1

B2

0 0 I

⎤⎥⎥⎦
[ I 0 0

0 0 I
0 I 0

]

=
⎡⎢⎢⎣

I 0 0
BT

2
B−T

1
XB−1

1
I

0 I 0

⎤⎥⎥⎦
⎡⎢⎢⎣

A11 BT
1

0

B1 0 0

0 0 S

⎤⎥⎥⎦
⎡⎢⎢⎣

I B−1
1

B2 0

0 B−T
1

XT I
0 I 0

⎤⎥⎥⎦ .
Here, S denotes the Schur complement, which satisfies

S = A22 −
[

A21 BT
2

] [ A11 BT
1

B1 0

]−1 [ A12

B2

]
= A22 −

[
A21 BT

2

] [ 0 B−1
1

B−T
1

−B−T
1

A11B−1
1

] [
A12

B2

]
= A22 − BT

2
B−T

1
A12 − A21B−1

1
B2 + BT

2
B−T

1
A11B−1

1
B2

= ZT
f AZf = N.

It follows that the null-space matrix in Equation 8 is the Schur complement for an alternative blocking of the matrix, and we

have the factorization

 =

[ I 0 0
BT

2
B−T

1
XB−1

1
I

0 I 0

][ A11 BT
1

0
B1 0 0
0 0 N

] ⎡⎢⎢⎣
I B−1

1
B2 0

0 B−T
1

XT I
0 I 0

⎤⎥⎥⎦ . (15)

Again, this can be derived from Equation 9 by simply noting that the reverse triangular matrix 1 is equal to the product

T =

[ I 0 0
0 XB−1

1
I

0 I 0

][ A11 BT
1

0
B1 0 0
0 0 N

][ I 0 0
0 B−T

1
XT I

0 I 0

]
.

This factorization is therefore not “new”—and it is significantly more expensive to form than Equation 9—but it highlights

the connection between Schur complement methods and null-space factorizations. In particular, given the success in finding

approximations to the Schur complement using techniques from functional analysis (see, e.g., Mardel et al.21) it is hoped that

viewing the null-space matrix this way could yield alternative preconditioners for certain classes of saddle point systems.

2.3 Connection with Cholesky decomposition
Schilders developed his original factorization and the subsequent variant (Equation 12), by considering what he terms a micro-
factorization. In this formulation, the matrix in Equation 1 is reordered by pairing every entry on the diagonal of the (1,1) block

A with a corresponding nonzero entry in the constraint block B so that (after permutations) the entries on the diagonal form

micro saddle point systems. This is known as a tiling in the optimization community. Below is an illustrative example of this

ordering for n = 3,m = 2:

PT
1
P1 = ̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 b11 a12 b21 a13 b31 a14 a15

b11 0 b12 0 b13 0 b14 b15

a21 b12 a22 b22 a23 b32 a24 a25

b21 0 b22 0 b23 0 b24 b25

a31 b13 a32 b23 a33 b33 a34 a35

b31 0 b32 0 b33 0 b34 b35

a41 b14 a42 b24 a43 b34 a44 a54

a51 b15 a52 b25 a53 b35 a45 a55

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that there is no requirement for aij to be combined with bij and bji; instead, a suitable pairing that preserves sparsity and is

numerically stable should be chosen—see Section 3 for further discussion. This is an example of a constrained ordering.22-24

Because the entries on the (block) diagonal are now micro saddle point systems (chosen to be nonsingular) a modified sparse

Cholesky code can be used to solve this system, and it is guaranteed (at least in exact arithmetic) that this will not break
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down.[14, section 3] By this process, a factorization ̃ = LDLT can be computed, where D has 1×1 and 2×2 blocks on the diagonal

in the appropriate places. Furthermore, uniqueness results in, for example, Maubach et al.,12 show that the factors generated by

the Cholesky process will be equivalent to those generated by the (macro) factorizations described earlier in this section.

In addition to the work by Schilders et al.,12,14,15 this approach has been considered by Forsgren et al.25 (whose focus was

on inertia control), Gould,17 and de Niet et al.9; each of these works, to varying degrees, made the connection between the

microfactorization and the null-space method.

2.4 The antitriangular factorization
An alternative matrix factorization can be obtained by assuming we have a QR factorization

BT =
[

Q1 Q2

] [ R
0

]
, (16)

where Q =
[

Q1 Q2

]
is an n × n orthogonal matrix and R is an m × m upper triangular and nonsingular matrix. Then Q1 spans

the range of BT and Q2 spans the null space of B. We can, therefore, substitute Y = Q1 and Z = Q2 into the factorization given

by Equation 5 to obtain

 =
[

Q1 Q2 0
0 0 I

]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

3

⎡⎢⎢⎣
QT

1
AQ1 QT

1
AQ2 R

QT
2
AQ1 QT

2
AQ2 0

RT 0 0

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

3

⎡⎢⎢⎣
QT

1
0

QT
2

0

0 I

⎤⎥⎥⎦
⏟⏞⏟⏞⏟

3

. (17)

We refer to this as Factorization 3 or the AT (for antitriangular) factorization.

The reverse triangular matrix 3 in Equation 17 appeared in the proof of theorem 2.1 in Keller et al.18 which established

eigenvalue bounds for Equation 1 preconditioned with a constraint preconditioner, although the link to a factorization of 

does not appear to have been made there. Recently, Pestana et al.13 derived Factorization 3 in the case A is symmetric and B
is of full rank and showed that it is (up to a permutation) the representation of the antitriangular factorization of Mastronardi

et al.11 applied to a saddle point system. They also gave a flop count for forming the factorization in the dense case. The work

is dominated by performing the QR factorization (Equation 16), with additional work being two n × n matrix–matrix products

and a subsequent factorization of QT
2
AQ2.

It is clear from the above formulation that—provided a rank-revealing QR is applied—Factorization 3 is well defined for a B
with linearly dependent rows and also for nonsymmetric A.

An advantage of having an orthogonal null basis is that the reduced system (Equation 4) is guaranteed to be well conditioned

if A is. However, even for sparse problems, Q1 and Q2 may be rather dense. The explicit version of the factorization requires

storing Q1,Q2,QT
1
AQ2 and the lower triangular part of QT

1
AQ1 in addition to keeping the factors of QT

2
AQ2. For large systems

this incurs prohibitive storage costs, see Section 3. Sparse QR routines—for example, SuiteSparseQR26—normally allow the

user to compute the action of Qi on a vector using the stored Householder reflectors, and this facility is the preferred option here.

Pestana et al.13 give a complexity analysis of the factorization in Equation 17 in the dense case and show that the number of

flops required is

8mn2 − 2m2 − 2

3
m3.

An alternative way of obtaining the factorization in Equation 17 which again focuses on the dense case, is given by Mastronardi

et al.,27 and the number of flops there is dependent on the size of m relative to n; see Pestana et al.[13, Table 2.1] Details of an

efficient implementation that uses Level 3 BLAS are given by Bujanović et al.28

2.5 Other bases and converting between factorizations
Consider again the general factorization as given in Equation 5. As already observed, there is an infinite number of potential

matrices Z (whose columns span the null space of B) and Y (whose columns are such that
[

Y Z
]

span Rn).

In fact, for any given basis matrix Z and for any nonsingular matrix G ∈ R(n−m)×(n−m), another factorization that is equivalent

to Equation 5—and hence Algorithm 1—is

 =
⎡⎢⎢⎣
[

ŶT

GTZT

]−1
0
0

0 I

⎤⎥⎥⎦
⎡⎢⎢⎣

ŶTAŶ ŶTAZG ŶTBT

GTZTAŶ GTZTAZG 0

BŶ 0 0

⎤⎥⎥⎦
[ [

Ŷ ZG
]−1

0
0 0 I

]
, (18)

where Ŷ is a matrix such that
[

Ŷ ZG
]

spans Rn.
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To highlight this fact, we will show explicitly how we can transform Factorization 1 into Factorization 3. Consider the

fundamental basis Zf (Equation 6), and assume that we have its “skinny” QR factorization Zf = Q2R2. Then, we see that

Q2 = Zf R−1
2

∈ R
n×(n−m),

the columns of which clearly span the null-space of B. Now, let BT = Q1R1 be the skinny QR factorization of BT. Because B is

of full rank, we have obtained two matrices, Q1 ∈ Rm×n that spans the range of BT and Q2 ∈ Rn×(n−m) that spans the null-space

of B. We, therefore, know that the n × n matrix
[

Q1 Q2

]
spans Rn.

Substituting G = R−1
2

and Ŷ = Q1 into Equation 18, we see that these choices transform Factorization 1 (Equation 9) into

Factorization 3 (Equation 17). This construction may not have any practical use, but it is theoretically satisfying to explicitly

connect two seemingly different methods. In the same way, by an appropriate choice of G and Ŷ , we can transform any null-space

factorization into any other.

3 STABILITY AND SPARSITY PROPERTIES

For a factorization to be effective for solving sparse linear systems, it must be stable in the classical sense[29, chapter 7] and the

factors must be sparse. In this section, we bring together results from the literature that concern the viability of the factorizations

described in Section 2 as the basis of a sparse direct solver.

Consider Factorization 3, the antitriangular factorization. This was shown to be backward stable by Mastronardi et al.11

Stability is a direct consequence of the fact that the only calculation needed is a stable QR factorization, see also Gill et al.,16

and Fletcher et al.19 The penalty for this stability is that the factors may not be sparse, even when using a sparse QR factorization

routine, as the Q matrices can fill in significantly; this is illustrated in Section 4.1.

An alternative approach is to choose the permutations in Factorizations 1 and 2 in such a way that we guarantee a stable

factorization. Forsgren et al.25—thinking in terms of a microfactorization—describe a pivoting strategy to do this. Their method

was refined further by Gould.17

Another way to ensure stability is to perform an LU factorization on BT (incorporating pivoting to ensure the L factor is well

conditioned). If we obtain B1 using this, then BT
2
B−T

1
is bounded, and the factorization can be proved to be backward stable,

whereas the forward error in x and y are proportional to 𝜅([BTVT])𝜅(ZTAZ) and 𝜅([BTVT])2𝜅(ZTAZ), respectively, where 𝜅

denotes the condition number—see Fletcher et al.19 for details; an alternative description is given by Gill et al.30 This is the

approach we adopt in the tests in Section 4.

A weakness of a general solver, such as an LDLT factorization, is that, due to the need for pivoting to preserve stability, the

fill in the computed factors may be significantly higher than predicted on the basis of the sparsity pattern of the matrix alone.

This use of numerical pivoting not only leads to a higher operation count and denser factors but also prohibits the exploitation

of parallelism (and significantly complicates the code development). On the other hand, null-space factorizations reduce the

solution of Equation 1 to solving a positive definite matrix, and as such, they give a direct method with a predictable level of fill

without pivoting (other than to find B1). This is a potentially attractive feature. However, by identifying a nonsingular subblock

B1 of B we are essentially predetermining an ordering that may or may not produce sparser factors than that used by a general

sparse indefinite direct solver.

Instead of choosing B1 to give stability at the expense of sparsity, we can alternatively choose B1 so that the fundamental

basis Zf is sparse, for example, by ensuring B−1
1

is sparse. Pinar et al.31 describe several ways to do this using methods based on

graph matchings and hypergraph partitioning. However, such approaches are reportedly time consuming, and no results about

the stability of the resulting decomposition are given. Murray32 describes a method for picking Z so that ZTAZ is diagonal.

However, to quote Fletcher,[33, section 10.1] this “may be doubtful in terms of stability.” Note also that B−1
1

can only be sparse when

the graph of B1 is disconnected,[34, section 12.6] which may not be possible to achieve in certain applications.

Favourable sparsity and stability properties are achievable for certain classes of matrices . In particular, de Niet et al.9

prove some strong results for  matrices. An  matrix is a saddle point matrix (Equation 1) in which A is symmetric positive

definite and B is a gradient matrix, that is, B has at most two entries per row, and if there are two entries, their sum is zero.

Such matrices appear naturally in certain formulations of fluid flow problems (see, for example, Arioli et al.35) and also in

electronic simulations, where they arise as the incidence matrix of the graph representing the circuit.36 The original Schilders

factorization14 was developed specifically for solving systems with this structure.

De Niet et al. find the basis B1 implicitly by considering a microfactorization (recall Section 2.3). They pair entries in A with

entries in B in such a way as to ensure the stability of the factorization. Moreover, de Niet et al. show that the number of nonzeros
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in the symbolic factorization of F(A) ∪F(BBT ), where F(·) denotes the sparsity pattern, “provides a reasonable estimate” of the

number of nonzeros in the factorization. We perform tests on this class of matrices in Section 4.3.

4 NUMERICAL RESULTS

With the exception of the special case of  matrices, the literature focuses on proving either stability, with little said about

sparsity or vice versa. In this section, we present results using Factorizations 1, 2, and 3—that is, Equations 9, 12, and 17,

respectively—as the basis of a direct method. Our intention is to demonstrate the stability and sparsity of these factoriza-

tions when applied to a range of problems, and we compare their performance with that of a general sparse symmetric

indefinite solver. We concentrate on the solution of a single saddle-point system and do not exploit the potential advantages

null-space factorizations can offer over a general indefinite solver in terms of updating the factors after a row is added to

(or removed from) .

We perform tests using MATLAB Version R2014a. We factorize the positive definite null-space matrix N using cholmod37

and use the SuiteSparseQR algorithm,26 both from Tim Davis’ SuiteSparse package and applied via a MATLAB interface.

To find an invertible subset of B, we use the package LUSOL38 with partial pivoting (with a pivot tolerance of 1.9, as suggested

for basis repair in the LUSOL documentation) to perform the sparse factorization of BT. LUSOL is called via a MATLAB

interface.39

For comparison, results for the MATLAB command ldl (with default settings) are also given. ldl computes an LDLT

factorization (where L is unit lower triangular and D is block diagonal with 1 × 1 and 2 × 2 blocks on the diagonal) of a sparse

symmetric indefinite matrix by employing the direct solver40 MA57 from the HSL mathematical software library.41 MA57 first

computes a sparsity-preserving ordering of  and a scaling that is designed to help with numerical stability. It does not explicitly

exploit the block structure of  but is designed to efficiently and robustly solve general symmetric indefinite sparse linear

systems. To ensure a fair comparison in our experiments, we always prescale  using the scaling for  calculated by ldl. We

recognise, however, that, in practice, it may be more effective to scale the A and B blocks separately as x and y may represent

very different types of quantity.

To measure stability, we report the scaled backwards error for Equation 1 given by||w − b||2∕||b||2, (19)

where w =
[

x
y

]
and b =

[
f
g

]
, see Higham.[29, Equation 7.23] Again, we note that in certain circumstances it may be more

appropriate to consider the residual of the first and second rows of Equation 1 individually. In particular, note that we can bound

Equation 19 by ||Ax + BTy − f||2
2
∕||b||2

2
+ ||Bx − g||2

2
∕||b||2

2
⩽ ||w − b||2

2
∕||b||2

2
.

We highlight the fact that, due to the nature of null-space factorizations, ||Bx − g||2
2

is generally well behaved and close to

machine precision. This is because the LU or QR factorization used to find the null space of B will be accurate. When comparing

null-space factorizations, we can, therefore, assume that most of the error in ||w − b||2 actually comes from the term ||Ax +
BTy − f ||2. In contrast, MA57 does not treat the two types of variable differently. Because we assume no prior knowledge of the

source of the matrix in the following examples, we present the results as residuals for the unreduced matrix only.

We require a measure of the amount of fill that a method uses; this will be different in the explicit and implicit cases. For the

explicit methods, the measure of fill we use is

fill =  (i) + (i)
nnz()

, (20)

where  (·) denotes the number of nonzeros needed to store the information required to solve with i. For all the factorizations

considered here,  (i) denotes the number of nonzeros in the leftmost matrix in Factorization i. The central i is symmetric,

and we only count the lower triangular part. Here,  (i) denotes the number of nonzeros of all blocks that only need to be

multiplied, plus the number of nonzeros in the factors of any matrix that needs to be solved. For example, for Factorization 1,

if B1 = LBUB and N = LNLT
N , then

explicit(1) = nnz(tril(A11)) + nnz(X) + nnz(LB) + nnz(UB) + nnz(LN),

where tril(·) denotes the lower triangular part of a matrix.

For implicit methods, we only store the number of nonzeros needed by the factorizations of the blocks we must solve for;

we assume that we have access to the original matrix, and do not count entries that can be obtained from there. For example,
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for Factorization 1, the measure of fill would be nnz(LB) + nnz(UB) + nnz(LN), as all the other blocks can be obtained from

the original matrix. Recall that, although the storage is lower for implicit methods, the operation count is higher, as certain

quantities are computed “on the fly”; see Table 2.

4.1 An academic example
We start by considering some small academic matrices that illustrate some worst case behaviour. We form a system of the form

given in Equation 1 using the MATLAB commands:

A = sprandsym(n,0.1,1e-1,2);
B = sprand(m,n,0.1);
B(1:m,1:m) = B(1:m,1:m) + 10*diag(rand(m,1));
b = [A B’; B sparse(m,m)]*rand(n+m,1);

We take n = 1024 and m = {100, 512, 900} and construct the matrices so that the leading m columns of B form a nonsingular

submatrix; these can be used without permutation as B1.

Figure 1 presents plots showing the backward error and the fill. We should expect the norm of the residual (Equation 19)

to be close to machine precision if the method is stable. However, we observe that, if B1 taken as being the leading columns

of B, Factorizations 1 and 2 are numerically unstable, with the measure of the backwards error spanning four orders of

magnitude, and, at worst, greater than 10−9. This indicates that the accuracy of the solution is variable and hence demon-

strates that choosing an invertible subset for B1 is not sufficient for stability. If, however, we choose B1 using LUSOL with

partial pivoting, as expected given the results quoted in Section 3, the norms of the residuals obtained using Factoriza-

tions 1 and 2 all lie below 10−13, confirming that this method is stable. Factorization 3 (the antitriangular factorization) also

behaves as expected, being the most stable of the null-space factorizations, although it also results in the largest amount of

fill (Figure 1b).

4.2 Optimization examples
We next consider examples from the optimization community; namely, a selection of relatively small quadratic programs from

the CUTEst42 test collection. In particular, the problems are taken from the Maros and Meszaros quadratic programming test

set and are solved without consideration for any inequality constraints. These are of the form

min
1

2
xTAx − fTx

s.t. Bx = g.

We chose the subset of problems for which A is symmetric positive semidefinite, has at least n − m nonzeros on the diagonal,

and where n > m. Our test problems, and the relative sizes of their submatrices, are listed in Table 3. Our tests showed that

the families {HS21, HS35, HS35MOD, HS51, HS52, HS53}, {AUG2D, AUG2DC, AUG2DCQP, AUG2DQP}, and {AUG3D,

AUG3DC, AUG3DCQP} all exhibited very similar behaviour, and so we only report results for a representative problem from

each of these sets: HS51, AUG2DC, and AUG3DC.

We again select the basis B1 using LUSOL with partial pivoting. We do not compare Factorization 3 here, and in the subsequent

tests, as the cost of doing a QR factorization proved to be excessive (both in terms of timing and storage) for many of these

problems.

The results are shown in Figures 2 and 3. The backwards errors for the null-space factorizations and the ldl factorization

are generally similar, with the null-space factorizations giving slightly better accuracy on the CONT-xxx problems, which are

known to be difficult for direct solvers. If we apply one step of iterative refinement (as is usual in practical applications) then,

as we see in Figure 2b, all methods behave comparably.

In Figure 3, we compare the sparsity of the factors. The explicit versions of Factorizations 1 and 2 result in similar levels of fill,

and, with a few exceptions, these are greater than for ldl, while the implicit version of Factorization 1 gives significant storage

savings (at the cost of more computation). The latter needs the least storage for 38 of the 53 problems, whereas ldl performs

best for the remaining 18 problems, in some cases, producing significantly sparser factors than the null-space factorizations.

For example, about 100 times more storage is required by Factorization 1 (implicit) compared to ldl for the AUGxx problems,

and over 1,500 times the storage is needed for HUES-MOD and HUESTIS.

We do not report timings, as we cannot give a fair comparison between our proof-of-concept MATLAB code and the compiled

ldl command, but we observed the null-space factorizations to be significantly slower. They do, however, potentially offer
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FIGURE 1 Measures of stability and sparsity for various factorizations. The results given for 10 runs with small random matrices and are

reported ordered by the worst performer. (a) Backwards error (Equation 19), without iterative refinement. The legend gives the order of

performance, running from least accurate to most accurate (on average). (b) Fill, as defined in Equation 20. The legend gives the order of

performance, running from least sparse to most sparse (on average)

scope for parallelization, as the bulk of the computational work is from forming and factorizing N. The columns of N can be

computed in parallel and, because the Cholesky factorization does not require pivoting, it can be parallelized more effectively

than an indefinite sparse solver (see, e.g., Hogg et al.43). However, it is still necessary to factorize the nonsquare matrix BT to

obtain the basis B1.

4.3  matrices
Recall that both stability and sparsity can be shown for  matrices. We give two examples of such problems below: one from

resistor networks and one from fluid flow. In the former, the (1,1) block is a diagonal matrix, and in the latter, it is nondiagonal

but symmetric positive definite.



REES AND SCOTT 13 of 17

TABLE 3 The CUTEst test matrices

Problem m n (n − m)∕(n + m) Problem m n (n − m)∕(n + m)

LISWET1 10,000 10,002 9.999e-05 HS51 3 5 2.500e-01

LISWET10 10,000 10,002 9.999e-05 LOTSCHD 7 12 2.631e-01

LISWET11 10,000 10,002 9.999e-05 DPKLO1 77 133 2.667e-01

LISWET12 10,000 10,002 9.999e-05 STCQP2 2,052 4,097 3.326e-01

LISWET2 10,000 10,002 9.999e-05 CVXQP1_M 500 1,000 3.333e-01

LISWET3 10,000 10,002 9.999e-05 CVXQP1_S 50 100 3.333e-01

LISWET4 10,000 10,002 9.999e-05 TAME 1 2 3.333e-01

LISWET5 10,000 10,002 9.999e-05 GOULDQP3 349 699 3.334e-01

LISWET6 10,000 10,002 9.999e-05 AUG2DC 10,000 20,200 3.378e-01

LISWET7 10,000 10,002 9.999e-05 MOSARQP1 700 2,500 5.625e-01

LISWET8 10,000 10,002 9.999e-05 PRIMAL1 85 325 5.854e-01

LISWET9 10,000 10,002 9.999e-05 AUG3DC 1,000 3,873 5.896e-01

YAO 2,000 2,002 4.998e-04 CVXQP2_M 250 1,000 6.000e-01

LASER 1,000 1,002 9.990e-04 CVXQP2_S 25 100 6.000e-01

CONT-300 90,298 90,597 1.653e-03 PRIMAL3 111 745 7.407e-01

CONT-201 40,198 40,397 2.469e-03 PRIMAL2 96 649 7.423e-01

CONT-101 10,098 10,197 4.878e-03 PRIMAL4 75 1,489 9.041e-01

CONT-200 39,601 40,397 9.950e-03 PRIMALC1 9 230 9.247e-01

CONT-100 9,801 10,197 1.980e-02 PRIMALC2 7 231 9.412e-01

CONT-050 2,401 2,597 3.922e-02 PRIMALC5 8 287 9.458e-01

GENHS28 8 10 1.111e-01 PRIMALC8 8 520 9.697e-01

QPCSTAIR 356 467 1.349e-01 DUAL4 1 75 9.737e-01

CVXQP3_M 750 1,000 1.429e-01 DUAL1 1 85 9.767e-01

CVXQP3_S 75 100 1.429e-01 DUAL2 1 96 9.794e-01

HS76 3 4 1.429e-01 DUAL3 1 111 9.821e-01

MOSARQP2 600 900 2.000e-01 HUES-MOD 2 10,000 9.996e-01

DTOC3 9,998 14,999 2.001e-01 HUESTIS 2 10,000 9.996e-01

4.3.1 Resistor networks
An important problem arising from the electronics industry is to find the voltage, V, and current, I, of a network of resistors.

The current and voltages are related by the equation AI + BV = 0, where A is a diagonal matrix containing the values of the

resistors, and B is the incidence matrix of the network. From Kirchhoff’s law, we also have BTI = 0.

One node is usually grounded (algebraically, we remove a column of B) so that B has full rank. It is clear that putting these

two equations together we get a system of the form 1 that is also an  matrix. For further details, we refer the reader to

Rommes et al.44

In order to analyse the behaviour of null space factorizations on such problems, we run tests on artificial systems with

n = 1, 024 resistors, joined at m = {100, 250, 512} nodes at random (while forming a complete network). The resistor val-

ues are chosen at random from a uniform distribution between 0 and 10−2. Plots showing backward errors and fill are given

in Figure 4. A property of matrices of this type is that it is possible to permute B to make it upper trapezoidal, and so a

well-conditioned, easy to invert, block B1 is possible to achieve without arithmetic (see Benzi et al.[1, chapter 6] for a discussion

and references).

The results illustrate that the null-space factorizations are stable (as predicted by the theory in de Niet et al.9); indeed, they

produce smaller backward errors than ldl (without iterative refinement). In terms of sparsity, the antitriangular factorization

(Factorization 3) is again the poorest, whereas Factorization 1 gives the sparsest factors. As we do not need to factorize a block

of B, the fill for the factorizations based on the fundamental basis is negligible.
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FIGURE 2 Stability results for matrices from the CUTEst test set. We have rounded up values less than 10−16 where neceesary. (a) Backwards

error (Equation 19), no iterative refinement. (b) Backwards error (Equation 19) after one step of iterative refinement

FIGURE 3 Sparsity results for matrices from the CUTEst test set. (a) Fill, as defined in Equation 20. (b) Detail from Figure 3a. (c) Detail from

Figure 3b

4.3.2 Fluid flow problems
Fluid flow problems provide another source of  matrices. In particular, we use some matrices derived from the mixed hybrid

finite element approximation of Darcy’s law and the continuity equation, which describes fluid flow through porous media.45

Our test matrices* are described in Table 4; the same examples were used as test cases by, for example, Tůma46 and de Neit

et al.9 Sparsity and stability results are given in Figure 5. As with example 4.2, we do not test Factorization 3 here, as computing

a QR factorization proved to be too expensive.

*We thank Miroslav Tůma for providing us with these matrices.
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FIGURE 4 Stability and sparsity results for the resistor network problem, as described in Section 4.3.1. (a) Backwards error (Equation 19), no

iterative refinement. (b) Fill, as defined in Equation 20

TABLE 4  matrices from a problem in fluid flow

Problem m n (n − m)∕(n + m)

S3P 207 270 0.13208

M3P 1,584 2,160 0.15385

L3P 12,384 17,280 0.16505

DORT 9,607 13,360 0.16341

DORT2 5,477 7,515 0.15687

dan2 46,661 63,750 0.15478

FIGURE 5 Stability and sparsity results for  matrices from a problem in fluid flow, as described in Section 4.3.2. (a) Backwards error (Equation

19), no iterative refinement. (b) Fill, as defined in Equation 20.

For these real-word problems, the null-space factorizations perform markedly worse than ldl. The fill, in particular, is

very high. Consider the problem dan2, which has 318,750 nonzeros in A and 127,054 nonzeros in B. For Factorization 1, if

ZTAZ = LLT, then the number of nonzeros in L is 59,146,699. This is an order of magnitude larger than any of the other terms

in the fill calculation and is due to the fact that the null-space matrix, ZTAZ, is significantly denser than A. This means that the

null-space factorizations can need more than 20 times the storage of ldl, as ldl has greater freedom to choose appropriate
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pivots to preserve sparsity in the LDLT factorization. Furthermore, null-space factorizations also result in larger backwards

errors (although a single step of iterative refinement reduces all the backwards errors to the order of machine precision).

5 CONCLUSION

Null-space methods for solving systems of the form given by Equation 1 can be thought of in terms of matrix factorizations.

We have presented a number of such decompositions that have been proposed in the literature. By placing these in the unified

framework of null-space factorizations we see that, although they may appear to be different, they are in fact fundamentally

related.

By highlighting such relationships it is clear that, for example, stability results proved for one type of factorization are equally

applicable to another. In particular, we can say that all factorizations relying on a fundamental basis enjoy a certain degree

of stability and sparsity when applied to  matrices. Similarly, the stability of Factorization 2 can be shown if B1 is chosen

appropriately, a result that is only clear by putting it in the null-space factorization framework.

In the literature we find null-space factorizations that are known to be either stable or sparse, but (with the exception of 

matrices) not both. However, a practical factorization must possess favourable properties in both these areas. In Section 4, we

investigated numerically the stability and sparsity properties of various null-space factorizations using matrices derived from a

number of academic and practical applications. Our results suggest that these factorizations—particularly the form in Equation

9—have the potential to be competitive with a sparse symmetric indefinite solver for some classes of problems.

However, we stress that any set of numerical tests can only be indicative of typical behaviour, and cannot predict worse case

performance. In the future, we would like to see the development a null-space factorization for general saddle point systems

that gives, as much as possible, a theoretical guarantee of a certain measure of both stability and sparsity. Our hope is that, by

exposing connections between previously disparate solution methods, we have brought such an algorithm one step closer.
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