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ABSTRACT
This paper proposes a systematic procedure for the determination of state-space models from an
available descriptor representation of a linear dynamic system. The goal is to determine a state equa-
tion, a set of algebraic equations and an output equation in terms of the state and input variables.
It is shown that standard methods may fail to convert the descriptor representation to state-space
form, even for simple electrical circuit models obtained from Kirchoff’s laws and constitutive element
equations. A novel procedure to address this problem is then proposed as an extension of the classic
shuffle algorithm combinedwith a singular value decomposition approach. In addition to an illustra-
tive example involving a simple electrical circuit, the proposed method is employed in a case study
involving the modelling of three-dimensional RLC networks with a large number of components.

1. Introduction

Descriptor representations naturally arise in the mod-
elling of dynamic systems with algebraic constraints from
first principles (Luenberger, 1977; Müller, 2000). Exam-
ples can be found in several application areas such as
robotics, power systems, microelectromechanical devices
and many others (Wong & Chu, 2008). In chemical
processes, for example, differential equations are used
to describe the dynamic balances of mass and energy,
whereas algebraic equations are used to express thermo-
dynamic equilibrium and steady-state assumptions. In
the case of electrical circuits, descriptor representations
follow directly from the algebraic constraints imposed
by Kirchoff ’s laws and the differential relations between
voltage and current in reactive circuit elements. For this
reason, much research has been conducted on the anal-
ysis and design methods for descriptor models (Benner,
Sima, & Voigt, 2012; Cobb, 1981; Kazantzidou & Ntogra-
matzidis, 2016).

In this context, an important problem consists of
obtaining a state-space model in standard form from a
given descriptor representation. Such a proceduremay be
useful to facilitate the simulation and analysis of dynamic
properties of the system under consideration, as well as
to employ existing state-space control design techniques
and software.

An indirect conversion to state-space form can be
carried out by first computing the transfer matrix

CONTACT Sillas Hadjiloucas s.hadjiloucas@reading.ac.uk

associated to the descriptor model (Varga, 1989; Misra,
1989) and then using a canonical state-space realisation
(Chen, 1984). However, the relation between the state
vector and the original descriptor variables may not be
straightforward, which can be an inconvenience for the
interpretation of results obtained with such model.

A more direct approach consists of using elementary
matrix operations to determine a linear transformation
that relates the descriptor vector with a suitable state vec-
tor (Luenberger, 1977). A classic method for this pur-
pose is the so-called ‘shuffle algorithm’ proposed in Luen-
berger (1978). Alternatively, singular value decomposi-
tion (SVD) can be used to obtain modified descriptor
equations from which purely algebraic dependencies can
be extracted (Bender & Laub, 1987; Geromel & Palhares,
2011; Safonov, Chiang, & Limebeer, 1987). This allows
rewriting a subset of the equations in the form of a state-
space representation.

A key condition required in both the shuffle algorithm
and the SVD-based method is the invertibility of one of
the transformed matrices. The present paper shows that
this invertibility condition is not always satisfied for elec-
trical circuit models obtained from the systematic use of
Kirchoff ’s laws, even in the case of very simple networks.
The reason for this shortcoming is discussed, and a novel
method is proposed as an extension of the shuffle algo-
rithm combined with the SVD-based approach.

In addition to an illustrative example involving a sim-
ple circuit, the proposed method is employed in a case
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study concerning the modelling of three-dimensional (3-
D) RLC networks with a large number of components.
Within this scope, the present contribution also bridges a
gap with respect to previous work concerning the mod-
elling of 3-D RC networks (Galvao, Hadjiloucas, Kienitz,
Paiva, & Afonso, 2013; Galvão et al., 2013; Jacyntho et al.,
2016). Indeed, the results obtained herein indicate that
the standard shuffle and SVD-based methods for conver-
sion to state-space form may fail in the case of 3-D RLC
networks.

The remainder of this paper is organised as follows.
Section 2 states the problem of conversion from descrip-
tor representation to state-space form and describes the
standard shuffle and SVD-based methods that can be
used for this purpose. Section 3 presents two examples
involving simple RC and RL electrical circuits in order
to illustrate a case in which the standard methods can be
applied, as well as a case in which they cannot be applied.
Section 4 introduces the proposed method, which is then
illustrated with the example in which the standard meth-
ods could not be employed. The 3-D RLC network case
study is presented in Section 5, along with a brief dis-
cussion of possible applications associated with this type
of network. Finally, concluding remarks are given in
Section 6 .

2. Background

Consider a linear dynamic system represented by a
descriptor equation of the form

Eẋ(t ) = Ax(t ) + Bu(t ) (1)

and an output equation

y(t ) = Cx(t ) + Du(t ) (2)

where x(t ) ∈ �N , u(t ) ∈ �m and y(t ) ∈ �r are the
descriptor, input and output vectors, respectively, and A,
B, C, D and E are matrices of dimensions (N × N), (N ×
m), (r × N), (r × m) and (N × N). It is assumed that E is
non-invertible, i.e. rank(E) = n < N.

The problem under consideration consists of deter-
mining a state equation, a set of algebraic equations and
an output equation in terms of the state and input vari-
ables. The state equation and set of algebraic equations
shall be equivalent to the available descriptor representa-
tion in the sense that the descriptor vector can be readily
calculated from the input vector, the solution to the state
equation and the solution to the set of algebraic equations.

This problem can be addressed by using the shuffle
algorithm, which was originally proposed in Luenberger
(1978) for the discrete-time case, but can also be applied

to continuous-timemodels (Gerding, 2004). Initially, ele-
mentary row operations (i.e. linear combinations of rows)
are carried out in order to rewrite Equation (1) in the
form [

Ê1
0(N−n)×N

]
ẋ(t ) =

[
Â1

Â2

]
x(t ) +

[
B̂1

B̂2

]
u(t ) (3)

where Ê1 is an (n × N) matrix of rank n and Â1, Â2, B̂1
and B̂2 are matrices of dimensions (n × N), ((N − n) ×
N), (n×m) and ((N− n)×m). From (3), it follows that

Â2x(t ) = −B̂2u(t ) (4)

which can be differentiated with respect to time to obtain
Â2ẋ(t ) = −B̂2u̇(t ). This expression can be inserted in (3)
in place of the last N − n rows to obtain[

Ê1
Â2

]
ẋ(t ) =

[
Â1

0(N−n)×N

]
x(t ) +

[
B̂1

0(N−n)×m

]
u(t )

+
[
0n×m

−B̂2

]
u̇(t ) (5)

If the squarematrix [ÊT
1 ÂT

2 ]T is non-singular, (5) leads
to

ẋ(t ) =
[
Ê1
Â2

]−1{ [
Â1

0(N−n)×N

]
x(t ) +

[
B̂1

0(N−n)×m

]
u(t )

+
[
0n×m

−B̂2

]
u̇(t )

}
(6)

This is not a state equation in standard form, in view of
the dependence on the input derivative term u̇(t ). How-
ever, a state-space model can be obtained by choosing a
state vector z(t ) ∈ �n as

z(t ) = Ê1x(t ) (7)

Indeed, from (4) and (7), one arrives at[
Ê1
Â2

]
x(t ) =

[
z(t )

−B̂2u(t )

]
(8)

and thus

x(t ) = Qz(t ) − RB̂2u(t ) (9)

where Q and R are matrices of dimensions (N × n) and
(N × (N − n)) obtained as

[Q R] =
[
Ê1
Â2

]−1

(10)
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In addition, from (3) and (7), it follows that

ż(t ) = Ê1ẋ(t ) = Â1x(t ) + B1u(t ) (11)

From (9) and (11), a state equation for z(t) can be writ-
ten as

ż(t ) = Fz(t ) + Gu(t ) (12)

where F = Â1Q, G = B̂1 − Â1RB̂2. Finally, from (2) and
(9), the output equation becomes

y(t ) = Hz(t ) + Lu(t ) (13)

with H = CQ, L = D −CRB̂2.
The procedure described above demands the inver-

sion of the (N × N) matrix [ÊT
1 ÂT

2 ]T . An alternative
method, which can be more numerically reliable for large
N, involves the transformation of the descriptor represen-
tation into an SVD coordinate system (Bender & Laub,
1987; Geromel & Palhares, 2011; Ishihara & Terra, 2002;
Safonov et al., 1987). For this purpose, E is decomposed
as

E = U
[

�1 0n×p
0p×n 0p×p

]
VT (14)

where �1 is an (n × n) diagonal matrix of non-zero sin-
gular values, p = N − n is the number of singular values
equal to zero, and U, V are (N × N) unitary matrices, i.e.
UT =U−1 andVT =V−1. By substituting (14) for E in (1)
and pre-multiplying both sides of the equation by UT, it
follows that[

�1 0n×p
0p×n 0p×p

]
VT ẋ(t ) = UTAx(t ) +UTBu(t ) (15)

Now, let [
z(t )
w(t )

]
= VTx(t ) (16)

where z(t ) ∈ �n is a candidate state vector and w(t ) ∈
�p is a vector of additional variables. Since VT = V−1,
(16) can alternatively be written as

x(t ) = V
[
z(t )
w(t )

]
(17)

From (15)–(17), it follows that[
�1 0n×p
0p×n 0p×p

] [
ż(t )
ẇ(t )

]
= UTAV

[
z(t )
w(t )

]
+UTBu(t )

(18)

By defining Ã = UTAV , B̃ = UTB and choosing
appropriate partitions for these matrices, one may write

[
�1 0n×p
0p×n 0p×p

] [
ż(t )
ẇ(t )

]
=

[
Ã11 Ã12

Ã21 Ã22

] [
z(t )
w(t )

]
+

[
B̃1

B̃2

]
u(t )

(19)

or

�1ż(t ) = Ã11z(t ) + Ã12w(t ) + B̃1u(t ) (20)

0p×1 = Ã21z(t ) + Ã22w(t ) + B̃2u(t ). (21)

If the (p × p) matrix Ã22 is invertible, an algebraic
equation for w(t) can be obtained from (21) as

w(t ) = −Ã−1
22 [Ã21z(t ) + B̃2u(t )] (22)

After substituting (22) for w(t) in (20) and pre-
multiplying both sides by�−1

1 , one arrives at a state equa-
tion of the form (12) with

F = �−1
1 (Ã11 − Ã12Ã−1

22 Ã21) (23)

G = �−1
1 (B̃1 − Ã12Ã−1

22 B̃2) (24)

Moreover, from (2), (17) and (22), with an appropriate
partition for matrices C and V, it follows that

y(t ) = [
C1 C2

] [
V11 V12
V21 V22

] [
z(t )

−Ã−1
22 Ã21z(t ) − Ã−1

22 B̃2u(t )

]
+Du(t ) (25)

which is an output equation of the form (13) with

H= C1(V11 −V12Ã−1
22 Ã21) +C2(V21 −V22Ã−1

22 Ã21) (26)

L = D −C1V12Ã−1
22 B̃2 −C2V22Ã−1

22 B̃2 (27)

Finally, in view of (17) and (22), the descriptor vector
x(t) can be calculated from z(t) and u(t) as

x(t ) =
[
V11 V12
V21 V22

] [
z(t )
w(t )

]

=
[
(V11 −V12Ã−1

22 Ã21)z(t ) −V12Ã−1
22 B̃2u(t )

(V21 −V22Ã−1
22 Ã21)z(t ) −V22Ã−1

22 B̃2u(t )

]
(28)

Remark 2.1: The use of SVD to convert the origi-
nal descriptor equation (1) into (20), (21) is a well-
known form of restricted equivalent transformation (see
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Appendix). Indeed, decomposition (14) is a particular
case of the transformation (A3) in Appendix, withQ−1 =
U and P−1 = VT. The transformed model obtained
through this SVD procedure is said to be in the dynamics
decomposition form (Duan, 2010).
Remark 2.2: Aproblem of practical relevance is to deter-
mine a state transformation T such that

z(t ) = T−1�x(t ), (29)

where � = [�1�2] is some matrix of interest and ade-
quate dimension. Substituting (28) for x(t) in (29) results
in

z(t ) = T−1[�1�2]

×
[
(V11 −V12Ã−1

22 Ã21)z(t ) −V12Ã−1
22 B̃2u(t )

(V21 −V22Ã−1
22 Ã21)z(t ) −V22Ã−1

22 B̃2u(t )

]
(30)

Thus, if � = [�1�2]satisfies the condition

(�1V12 + �2V22)Ã−1
22 B̃2 = 0 (31)

it follows that T will be given by

T = �1(V11 −V12Ã−1
22 Ã21) + �2(V21 −V22Ã−1

22 Ã21) (32)

which can be used as transformation matrix if it is non-
singular.

3. Illustrative examples

This section presents two examples involving simple elec-
trical circuits. The first example illustrates a case in which
the descriptor model can be converted into state-space
form by using either the shuffle algorithm or the SVD-
basedmethoddescribed in Section 2. In the second exam-
ple, this will not be possible. Such a problemwill serve as a
motivation for the proposedmethod, which will be intro-
duced in Section 4.

In what follows, resistances (R), inductances (L) and
capacitances (C) will be written with upright letters, in
order to avoid confusion with the matrices defined in
Section 2. Moreover, the notation d/dt for time deriva-
tive will be employed to facilitate reading. All the numer-
ical calculations were carried out by using theMATLAB R©

software.

3.1 First example: RC circuit

Figure 1 present the RC circuit considered in this first
example. The input signal u(t) corresponds to the source
voltage and the output signal y(t) will be taken as the

Figure . RC circuit employed in the first example.

current iS(t). By applying Kirchoff ’s current and voltage
laws and noting that the current through the capacitors is
given by C1dvC1(t )/dt and C2dvC2(t )/dt , it follows that

iS(t ) = C1
dvC1(t )

dt
+ C2

dvC2(t )
dt

(33)

e(t ) = u(t ) − RSiS(t ) (34)

vC1(t ) = e(t ) (35)

vC2(t ) = e(t ) (36)

These equations can be cast into the descriptor form
(1) with

x(t ) =

⎡
⎢⎢⎣

iS(t )
vC1(t )
vC2(t )
e(t )

⎤
⎥⎥⎦ (37)

and

E =

⎡
⎢⎢⎣
0 C1 C2 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , A =

⎡
⎢⎢⎣

1 0 0 0
RS 0 0 1
0 1 0 −1
0 0 1 −1

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0
−1
0
0

⎤
⎥⎥⎦ (38)

Since y(t)= iS(t), the output equation is of the form (2)
with

C = [
1 0 0 0

]
, D = 0 (39)

In this case, the descriptor equation is already in the
form (3) assumed in the shuffle algorithm, with
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Ê1 = [0 C1 C2 0] (40)

Â1 = [ 1 0 0 0 ], Â2 =
⎡
⎣RS 0 0 1

0 1 0 −1
0 0 1 −1

⎤
⎦ (41)

B̂1 = 0, B̂2 =
⎡
⎣−1

0
0

⎤
⎦ (42)

As can be seen, [ÊT
1 ÂT

2 ]T is non-singular for any
positive values of RS, C1, C2. Therefore, from (7) and
(40), it follows that the state-space model can be written
with a single state variable z(t ) = Ê1x(t ) = C1vC1(t ) +
C2vC2(t ).

In what follows, the numerical procedures for conver-
sion to state-space formwill be illustrated with RS =C1 =
C2 = 1 (normalised units).With these component values,
the expression for the state variable z(t) becomes

z(t ) = vC1(t ) + vC2(t ) (43)

The Q, Rmatrices defined in (10) are calculated as

[
Q R

] =
[
Ê1
Â2

]−1

=

⎡
⎢⎢⎣
0 1 1 0
1 0 0 1
0 1 0 −1
0 0 1 −1

⎤
⎥⎥⎦

−1

= 1
2

⎡
⎢⎢⎣

−1 2 1 1
1 0 1 −1
1 0 −1 1
1 0 −1 −1

⎤
⎥⎥⎦ (44)

and the resultingmodelmatrices are given by F = Â1Q =
−1/2,G = B̂1 − Â1RB̂2 = 1,H = CQ = −1/2, L =D −
CRB̂2 = 1.

A similar result can be obtained by using the SVD pro-
cedure. For this purpose, matrix E is decomposed as

E =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
U

⎡
⎢⎢⎣

�1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

0
√
2/2

√
2/2 0

0 −√
2/2

√
2/2 0

0 0 0 1
−1 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
VT

(45)

where�1 = √
2. Since n= 1 (only one singular value dif-

ferent from zero), the state z(t) is a single variable. From

(16) and (45), it can be seen that z(t ) = (
√
2/2)[vC1(t ) +

vC2(t )], which corresponds to (43) up to a scale factor.
Matrices Ã = UTAV , B̃ = UTB are calculated as

Ã =

⎡
⎢⎢⎣

0 0 0 −1√
2/2 −√

2/2 −1 0√
2/2

√
2/2 −1 0

0 0 1 −1

⎤
⎥⎥⎦ =

[
Ã11 Ã12

Ã21 Ã22

]
,

B̃ =

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦ =

[
B̃1

B̃2

]
(46)

As can be seen in (46), Ã22 is a non-singular (3 × 3)
matrix. By using (23), (24), (26), (27) and (46), the state-
space model matrices are calculated as F = −1/2, G =√
2/2, H = −√

2/2, L = 1. These values correspond to
those obtained above, up to scale factors in the input gain
G and output gain H, which result from the definition of
the state variable z(t) in this case. In fact, the two state-
space models are different realisations of the same trans-
fer function �(s), which is given by

�(s) = Y (s)
U (s)

= H(sI − F )−1G + L = 2s
2s + 1

(47)

whereU(s) and Y(s) denote the Laplace transforms of the
input signal u(t) and the output signal y(t), respectively.
Since u(t) and y(t) are the source voltage and current in
Figure 1, the transfer function (47) corresponds to the
admittance of the circuit (including the source resistance
RS) with the normalised values for RS, C1, C2.

Remark 3.1: It is clear that a first-order state-space
model and the associated transfer function can also be
obtained by using an equivalent capacitance (C1 + C2)
in Figure 1. However, simplifications of this form are not
always straightforward in the development of models for
networks with a large number of components. In such
a case, the systematic methods presented in Section 2
may be of value to obtain a state-space model from the
descriptor equation that arises from the use of Kirchoff ’s
laws together with an incidence matrix description of
the network topology. This approach was employed, for
instance, to model large 3-D RC networks as described in
Galvao, Hadjiloucas et al. (2013).

3.2. Second example: RL circuit

This second example is concernedwith theRL circuit pre-
sented in Figure 2. As in the previous case, the input sig-
nal u(t) corresponds to the source voltage and the output
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Figure . RL circuit employed in the second example.

signal is taken as y(t) = iS(t). By applying Kirchoff ’s cur-
rent and voltage laws and noting that the voltage across
the inductors is given by L1diL1(t )/dt and L2diL2(t )/dt ,
it follows that

e2(t ) = e1(t ) − L1
diL1(t )
dt

(48)

e2(t ) = L2
diL2(t )
dt

(49)

e1(t ) = u(t ) − RSiS(t ) (50)
iS(t ) = iL1(t ) (51)
iL1(t ) = iL2(t ) (52)

These equations can be cast into the descriptor form
(1), (2) with

x(t ) =

⎡
⎢⎢⎢⎢⎣
iS(t )
iL1(t )
iL2(t )
e1(t )
e2(t )

⎤
⎥⎥⎥⎥⎦ (53)

and

E =

⎡
⎢⎢⎢⎢⎣
0 −L1 0 0 0
0 0 −L2 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ (54)

A =

⎡
⎢⎢⎢⎢⎣

0 0 0 −1 1
0 0 0 0 −1
RS 0 0 1 0
1 −1 0 0 0
0 1 −1 0 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

0
0

−1
0
0

⎤
⎥⎥⎥⎥⎦
(55)

C = [
1 0 0 0 0

]
, D = 0 (56)

Again, the descriptor equation is already in the form
assumed in Equation (3), with

Ê1 =
[
0 −L1 0 0 0
0 0 −L2 0 0

]
(57)

Â2 =
⎡
⎣RS 0 0 1 0

1 −1 0 0 0
0 1 −1 0 0

⎤
⎦ (58)

However, in this case [ÊT
1 ÂT

2 ]T is singular for any val-
ues of RS, L1, L2, as can be seen from the final column
of zeros in both Ê1 and Â2. Therefore, the standard shuf-
fle algorithm described in Section 2 cannot be employed
to obtain a model in state-space form. A similar prob-
lem arises if one attempts to use the SVD-based approach.
Indeed, let RS = L1 = L2 = 1 (normalised units) for illus-
tration. The SVD operations then lead to

E =

⎡
⎢⎢⎢⎢⎣
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
U

⎡
⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
0 0 −1 0 0
0 −1 0 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
VT

(59)

Ã = UTAV =

⎡
⎢⎢⎢⎢⎣
0 0 −1 0 0
0 0 1 0 −1
1 −1 0 0 0
0 0 0 1 1
0 1 0 1 0

⎤
⎥⎥⎥⎥⎦ =

[
Ã11 Ã12

Ã21 Ã22

]

(60)

As can be seen Ã22 is not invertible, which prevents the
use of this approach for converting the model to state-
space form.

However, even though the methods described in
Section 2 cannot be applied in this case, (48)–(52) can
actually be used to obtain a state-space model. In fact,
from (48)–(51 ), it follows that

L1
diL1(t )
dt

= u(t ) − RSiL1(t ) − L2
diL2(t )
dt

(61)
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At this point, the problem lies in the absence of an
explicit equation relating diL1(t )/dt to diL2(t )/dt . How-
ever, this problem can be circumvented by noting that
(52) holds not only for a specific time t, but for every time.
Therefore, it can be concluded that

diL1(t )
dt

= diL2(t )
dt

(62)

From (61) and (62), one arrives at

diL1(t )
dt

= − RS

L1 + L2
iL1(t ) + 1

L1 + L2
u(t ) (63)

which is a state equation of the form (12) with z(t) =
iL1(t). In view of (51), the output equation becomes

y(t ) = z(t ) (64)

which is in the form (13). Finally, by using (48)–(52)
togetherwith (63), the descriptor vector x(t) can be recov-
ered from z(t) and u(t) as

x(t ) =

⎡
⎢⎢⎢⎢⎣
iS(t )
iL1(t )
iL2(t )
e1(t )
e2(t )

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

z(t )
z(t )
z(t )

u(t ) − RSz(t )
− L2RS

L1+L2
z(t ) + L2

L1+L2
u(t )

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

1
1
1

−RS
− L2RS

L1+L2

⎤
⎥⎥⎥⎥⎦ z(t ) +

⎡
⎢⎢⎢⎢⎣

0
0
0
1
L2

L1+L2

⎤
⎥⎥⎥⎥⎦ u(t ) (65)

The method proposed in the next section generalises
the reasoning employed in this example, thus providing
an alternative to obtain a state-spacemodel in caseswhere
the procedures described in Section 2 cannot be applied.

4. Proposedmethod

Let � be an ((N +m) × N) matrix defined as

� =
[
ET

BT

]
(66)

with E, B from the descriptor equation (1). Assume that
� is rank-deficient (i.e. the N columns of � are linearly
dependent) and let� be an (N× q) matrix with columns
forming a basis for the null space of �, where q = N
− rank(�). The � matrix is such that ET� = 0N×q and
BT� = 0m×q, which is equivalent to writing

�TE = 0q×N (67)

�TB = 0q×m (68)

Pre-multiplying both sides of (1) by �T leads to

�TEẋ(t ) = �TAx(t ) + �TBu(t ) (69)

From (67) and (68), it follows that �TEẋ(t ) = 0q×1
and �TBu(t ) = 0q×1, ∀t . Therefore, (69) can be rewrit-
ten as

�TAx(t ) = 0q×1 , ∀t (70)

Now, the key point lies in the fact that (70) is valid
not only for a specific time t, but for every t. Therefore,
d/dt[�TAx(t )] = 0q×1 holds as well. Since�, A are con-
stant matrices, it follows that

�TAẋ(t ) = 0q×1 (71)

Equations (1) and (71) can then be merged into an
extended descriptor equation of the form

Ēẋ(t ) = Āx(t ) + B̄u(t ) (72)

where

Ē =
[

E
�TA

]
, Ā =

[
A

0q×N

]
, B̄ =

[
B

0q×m

]
(73)

The use of (71) to obtain the new descriptor repre-
sentation (72) resembles the procedure employed in the
standard shuffle algorithm to arrive at (5). However, by
using the�matrix with the properties (67) and (68), one
avoids the introduction of derivative input u̇(t ) terms in
the model. In what follows, the SVD procedure described
in Section 2will be applied to the new representation (72),
with suitable modifiations to account for the fact that Ē
and Ā are no longer square matrices.

By using an SVD, the ((N + q) × N) matrix Ē can be
expressed as

Ē = Ū
[

�̄1 0n̄× p̄
0( p̄+q)×n̄ 0( p̄+q)× p̄

]
V̄ T (74)

where n̄ is the number of singular values different from
zero, p̄ = N − n̄, �̄1 is an (n̄ × n̄) diagonal matrix and Ū ,
V̄ are unitary matrices with dimensions ((N + q) × (N +
q)) and (N × N), respectively. Now, let

[
z̄(t )
w̄(t )

]
= V̄ Tx(t ) (75)
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or, alternatively,

x(t ) = V̄
[
z̄(t )
w̄(t )

]
(76)

where z̄(t ) ∈ �n̄ is a candidate state vector and w̄(t ) ∈
� p̄ is a vector of additional variables. After substituting
(74) for Ē and (76) for x(t) in (72) and choosing appro-
priate partitions for the matrices ˜̄A = ŪT ĀV̄ , ˜̄B = Ū T B̄,
one may write

[
�̄1 0n̄× p̄

0( p̄+q)×n̄ 0( p̄+q)× p̄

] [ ˙̄z(t )
˙̄w(t )

]

=
[ ˜̄A11

˜̄A12
˜̄A21

˜̄A22

][
z̄(t )
w̄(t )

]
+

[ ˜̄B1
˜̄B2

]
u(t ) (77)

or

�̄1 ˙̄z(t ) = ˜̄A11z̄(t ) + ˜̄A12w̄(t ) + ˜̄B1u(t ) (78)

0(p̄+q)×1 = Ã21z̄(t ) + ˜̄A22w̄(t ) + ˜̄B2u(t ). (79)

Equations (78) and (79) are similar to (20) and (21),
with the difference that Ã22 is now a non-square matrix,
with dimensions ( p̄+ q) × p̄. If rank( ˜̄A22) = p̄ (i.e. if the

columns of ˜̄A22 are linearly independent), then ˜̄A
T

22
˜̄A22

will be invertible and an algebraic equation for w̄(t ) can
be obtained from (79) as

w̄(t ) = − ˜̄A
+
22[

˜̄A21z̄(t ) + ˜̄B2u(t )] (80)

where ˜̄A
+
22 =(

˜̄A
T

22
˜̄A22)

−1 ˜̄A
T

22.
After substituting (80) for w̄(t ) in (78) and pre-

multiplying both sides by �̄−1
1 , one arrives at a state equa-

tion of the form ˙̄z(t ) = Fz̄(t ) + Gu(t ) with

F = �̄−1
1 (

˜̄A11 − ˜̄A12
˜̄A

+
22

˜̄A21) (81)

G = �̄−1
1 ( ˜̄B1 − ˜̄A12

˜̄A
+
22

˜̄B2) (82)

Moreover, from (2), (76) and (80), with an appropriate
partition for matrices C and V̄ , the output equation can
be rewritten as

y(t ) = [
C1 C2

] [
V̄11 V̄12
V̄21 V̄22

][
z̄(t )

− ˜̄A
+
22

˜̄A21z̄(t ) − ˜̄A
+
22

˜̄B2u(t )

]
+Du(t ) (83)

which is of the form y(t ) = Hz̄(t ) + Lu(t ) with

H = C1(V̄11 − V̄12
˜̄A

+
22

˜̄A21) +C2(V̄21 − V̄22
˜̄A

+
22

˜̄A21)

(84)

L = D −C1V̄12
˜̄A

+
22

˜̄B2 −C2V̄22
˜̄A

+
22

˜̄B2 (85)

Finally, in view of (76) and (80), the descriptor vector
x(t) can be calculated from z̄(t ) and u(t) as

x(t ) =
[
V̄11 V̄12
V̄21 V̄22

] [
z̄(t )
w̄(t )

]

=
⎡
⎣(V̄11 − V̄12

˜̄A
+
22

˜̄A21)z̄(t ) − V̄12
˜̄A

+
22

˜̄B2u(t )

(V̄21 − V̄22
˜̄A

+
22

˜̄A21)z̄(t ) − V̄22
˜̄A

+
22

˜̄B2u(t )

⎤
⎦
(86)

Remark 4.1: Unlike the SVD procedure presented in
Section 2, the proposed method to convert the original
descriptor Equation (1) into the form (78), (79) is not a
restricted equivalence transformation, because it involves
an augmentation of the E, A, B matrices as indicated in
(73).

4.1. The RL example revisited

The proposed method will now be illustrated by using
the RL example presented in Section 3.2, with normalised
component values RS = L1 = L2 = 1. In view of the E, B
matrices presented in (54), (55), the � matrix defined in
(66) is given by

� =
[
ET

BT

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ (87)

In this case, N = 5 (number of descriptor variables)
and rank(�) = 3. Therefore, the dimension of the null
space of � is q = 2. An (N × q) matrix � that satisfies
(67) and (68) is

� =

⎡
⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 1
1 0

⎤
⎥⎥⎥⎥⎦ (88)

The Ē, Ā, B̄matrices defined in (73) are then given by
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Ē =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 −1 0 0
1 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(89)

Ā =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 1
0 0 0 0 −1
1 0 0 1 0
1 −1 0 0 0
0 1 −1 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, B̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(90)

The SVD procedure leads to

�̄1 =
⎡
⎣1.97 0 0

0 1.29 0
0 0 0.68

⎤
⎦ (91)

˜̄A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −0.66 0.43
0 0 0 0.43 0.23
0 0 0 0.23 −0.66

1.29 −0.55 −0.16 0 0
−1.14 −0.74 −0.39 0 0
0.050 0.076 0.14 1.14 −0.74
0.29 0.44 0.83 −0.20 −0.89

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[ ˜̄A11

˜̄A12
˜̄A21

˜̄A22

]
(92)

As can be seen, ˜̄A22 is a (4 × 2) matrix with linearly
independent columns. By proceedingwith the conversion
to state-space form, the resulting model matrices are

F =
⎡
⎣ 0.015 0.023 0.043

0.10 0.15 0.29
−0.23 −0.36 −0.67

⎤
⎦ , G =

⎡
⎣ 0.051

0.34
−0.79

⎤
⎦
(93)

H = [−0.29 − 0.45 − 0.84], L = 0 (94)

These matrices can be used to obtain the following
transfer function �(s):

�(s) = Y (s)
U (s)

= H(sI − F )−1G + L = 0.5s2

s3 + 0.5s2

= 1
2s + 1

(95)

which corresponds to the admittance of the RL network
in Figure 2 (including the source resistance RS) with

the normalised values for RS, L1, L2. It is worth noting
that the cancellation of the s2 factors in the numerator
and denominator of the transfer function indicates the
presence of two non-controllable and/or non-observable
modes (Chen, 1984). By using a Kalman decomposi-
tion (Chen, 1984), these modes can be removed in
order to reduce the order of the state-space model from
three to one. As a result, it can be shown that the
simplified model becomes ż(t ) = −0.5z(t ) − 0.87u(t ),
y(t ) = −0.58z(t ), with a single-state variable z(t ) =
−0.58[iS(t ) + iL1(t ) + iL2(t )] (which corresponds to the
current through the inductors, up to a scale factor).

Remark 4.2: It is clear that a first-order state-space
model and the associated transfer function can also be
obtained by using an equivalent inductance (L1 + L2)
in Figure 2. However, such simplifications may not be
straightforward in networks with a large number of com-
ponents, as in the 3-D RLC case study which will now be
presented.

5. Case study: descriptor modelling of
three-dimensional RLC networks

The RLC network topology under consideration com-
prises NZ layers, as depicted in Figure 3, each one con-
sisting of a matrix of nodes with NX rows and NY
columns. A previous work involving this 3-D RLC struc-
ture was reported in a conference (Paiva, Duarte, Galvão,
& Hadjiloucas, 2013) within an investigation concern-
ing the detection of changes in the composition of
amorphous dielectric materials. However, that paper was
not concerned with the conversion from descriptor to
state-space form. Relevant applications associated with
networks of this type may include the modelling of per-
formance characteristics in oxide-based, metallic or Fe-
based superconductors and high-temperature supercon-
ductors in wire, tape, ribbon, thin-film or thick-film form
and micro-strip resonator designs. For example, one can
see applications within the context of superconducting
surface plasmon interfaces (Ghamsari & Majedi, 2011),
and electromagnetic modelling of meta-materials, with
application to the design of THz filters or studies of
effective resistance in mesh structures (Zhongyang Li,
& Ding, 2013) or other multilayer structures (Gutin,
Ytterdal, Kachorovskii, Muraviev, & Shur, 2013). Such
network models may also be of value to study the broad-
band response of photonic band-gap structures and sub-
wavelength gratings (Halir et al., 2014).

As in the illustrative examples presented in Section 3,
the input signal u(t) in Figure 3 corresponds to the source
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Figure . Example of a -D network with random allocation of R, L, C elements. The grey plates represent electrodes through which the
network is connected to a voltage sourcewith resistance RS. Reproduced fromPaiva et al. () under the terms of the Creative Commons
Attribution . licence.

voltage and the output signal y(t) is the current iS(t) enter-
ing the network. In what follows, the notation (t) for the
time dependence will be omitted for brevity.

The 3-D RLC network topology can be expressed in
terms of an incidencematrixWNN×NB , as described inGal-
vao, Hadjiloucas et al. (2013) for the case of an RC net-
work. A +1 entry in matrix W indicates that the branch
at the corresponding column leaves the node at the corre-
sponding row, a−1 entry indicates that the branch arrives
at the node, and a 0 entry indicates that the branch is
not connected to the node. The number of nodes NN
includes the input electrode, but not the ground elec-
trode, since the latter is used as the electric potential ref-
erence in Kirchoff ’s laws. The number of branches NB
includes the source branch plus the branches in all lay-
ers and the branches connecting consecutive layers. The
number of resistors (not including the source resistor),
inductors and capacitors is denoted by NR, NL and NC,
respectively, so that NB = NR + NL + NC + 1. The frac-
tions of resistors, inductors and capacitors in the net-
work are defined as fR = NR/(NR + NL + NC), fL =
NL/(NR + NL + NC) and fC = NC/(NR + NL + NC),
respectively.

Kirchoff ’s current and voltage laws (KCL and KVL)
can be written as (Chua, Desoer, & Kuh, 1987)

Wi = 0NN×1 (96)

WTe = v (97)

where iNB×1, vNB×1 and eNN×1 are the vectors of branch
currents, branch voltages and node potentials, respec-
tively. The i vector can be written as

i = P
[
iS iTR iTL iTC

]T (98)

where iS is a scalar value corresponding to the source cur-
rent and iR, iL and iC are the vectors of currents at the
branches corresponding to theNR resistors,NL inductors
and NC capacitors, respectively. P is a (NB × NB) permu-
tation matrix (Galvao, Hadjiloucas et al., 2013) that can
be used to randomise the position of the R, L, C compo-
nents in the network. It is worth noting that P is unitary,
i.e. P−1 = PT. In a similar manner, the v vector can be
written as

v = P
[
vS vT

R vT
L vT

C
]T (99)

where vS, vR, vL and vC denote the branch voltages at the
source, resistors, inductors and capacitors, respectively.
The relations between the branch currents and voltages
can be expressed as

vS = RSiS − u (100)
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vR = RiR (101)

vL = LdiL/dt (102)

iC = CdvC/dt (103)

Equations (96)–(103) can be combined into a descrip-
tor representation of the network dynamics. In fact, from
(96), (98) and (103), it follows that

WP
[
iS iTR iTL CdvT

C/dt
]T = 0NN×1 (104)

whereas from (97) and (99)–(102), it follows that

PTWTe = [
RSiS − u RiTR LdiTL /dt vT

C
]T (105)

which can be rewritten as

M︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

WP 0NN×NN

−RS 01×NR 01×NL 01×NC

0NR×1 −RINR×NR 0NR×NL 0NR×NC PTWT

0NL×1 0NL×NR 0NL×NL 0NL×NC

0NC×1 0NC×NR 0NC×NL 0NC×NC

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

iS
iR
iL

CdvC/dt
e

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣
0NN×1
−1
0NR×1
0NL×1
0NC×1

⎤
⎥⎥⎥⎥⎦ u +

⎡
⎢⎢⎢⎢⎣
0NN×NL

01×NL

0NR×NL

LINL×NL

0NC×NL

⎤
⎥⎥⎥⎥⎦

diL
dt

+

⎡
⎢⎢⎢⎢⎣
0NN×NC

01×NC

0NR×NC

0NL×NC

INC×NC

⎤
⎥⎥⎥⎥⎦ vC

(106)

or

[
MiS MiR MiL CMdvC/dt Me

] [
iS iTR iTL dvT

C /dt eT
]T

=

⎡
⎢⎢⎢⎢⎣
0NN×1
−1
0NR×1
0NL×1
0NC×1

⎤
⎥⎥⎥⎥⎦ u +

⎡
⎢⎢⎢⎢⎣
0NN×NL

01×NL

0NR×NL

LINL×NL

0NC×NL

⎤
⎥⎥⎥⎥⎦

diL
dt

+

⎡
⎢⎢⎢⎢⎣
0NN×NC

01×NC

0NR×NC

0NL×NC

INC×NC

⎤
⎥⎥⎥⎥⎦ vC

(107)

whereMiS, MiR , MiL, MdvC/dt , Me correspond to the col-
umn blocks of the M(NN+NB)×(NN+NB) matrix in (106)
associated to iS, iR, iL, dvC/dt, e, respectively. By mov-
ing the iS, iR, iL, e terms to the right-hand side, and
the diL/dt term to the left-hand side, (107) can be

rewritten as

E︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

0NN×NL

01×NL

0(NN+NB )×1 0(NN+NB )×NR 0NR×NL CMdvC/dt 0(NN+NB )×NN

−LINL×NL

0NC×NL

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣
diS

/
dt

diR
/
dt

diL
/
dt

dvC
/
dt

de
/
dt

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0NN×NC

01×NC

−MiS −MiR −MiL 0NR×NC −Me
0NL×NC

INC×NC

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

×

⎡
⎢⎢⎢⎢⎣
iS
iR
iL
vC
e

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣
0NN×1
−1
0NR×1
0NL×1
0NC×1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u (108)

Equation (108) is a descriptor model in the form
(1) with x = [ iS iTR iTL vT

C eT ]T . An output equation of
the form (2) for y = iS can be written with C =
[1 01×NR 01×NL 01×NC 01×NN ] and D = 0. After conver-
sion to the state-space form (12), (13), the transfer
function �(s) = Y (s)/U (s) = H(sI − F )−1G + L can
be obtained and the admittance at a given frequency ω

(rad/s) can thus be calculated as�(jω). It is worth noting
that �(jω) includes the contribution of the source resis-
tance RS. However, simple calculations for the series asso-
ciation of RS and the 3-D network can be used to obtain
the admittance of the latter.

5.1. Results and discussion

TheMATLAB R© software was employed to implement the
RLC network equations, obtain the corresponding state-
space model, calculate �(jω) and separate the contribu-
tion of the source resistance from the 3-D network admit-
tance. The network dimensions were set toNX =NY = 5,
NZ = 6, with component fractions fR = 0.1 and fC = fL =
0.45. The component values were set to RS = 0.001, R =
1, L = 0.02, C = 0.5 (normalised units). The network has
NN = 151 nodes andNB = 426 branches, which comprise
the source, NR = 43 resistors, NL = 191 inductors and
NC = 191 capacitors.

In this case, the descriptor vector x =
[ iS iTR iTL vT

C eT ]T comprises N = 1 + NR + NL + NC
+ NN = 577 variables. Within a set of 100 different
networks with random component allocations, the E
matrix rank ranged from 328 to 340. In 96 of these
100 cases, the [ÊT

1 ÂT
2 ]T and Ã22 matrices defined in
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Figure . Admittance responses of two random -D RLC networks:
(a) without and (b) with the contribution of the source resistance
RS = −. The phase responses are depicted in the insets.

Section 2 were both singular, thus preventing the use of
the standard shuffle algorithm and SVD-based approach
for conversion to state-space form. In contrast, by using

the method proposed in Section 4, the ˜̄A
T

22
˜̄A22 matrix

was invertible in all the 100 cases, thus allowing the
corresponding state-space models to be obtained. The
computational effort involved in the conversion process
was not substantial, requiring an average of 0.8 second
for each network in a computer with i7-3687U processor
(2.10GHz) and 8GB RAM.

For illustration, Figure 4(a) presents the admittance
responses (amplitude and phase) obtained for two RLC
networks, after removing the contribution of the source
resistance RS. As can be seen, the admittance plots
are slightly different for the two networks (solid and
dotted lines), as a result of the random allocation of
the R, L, C elements. However, overall both behave as
band-reject filters with similar stop bands. It is worth

noting that the admittance grows large at low and high
frequencies due to the increase in the inductive and
capacitive susceptances, respectively. As shown in the
inset, the change from inductive to capacitive behaviour
is reflected in a phase change from −90° to +90° as the
frequency increases.

The contribution of the source resistance RS = 0.001
to the overall admittance can be visualised by comparing
Figure 4(a) with the corresponding plot in Figure 4(b). In
Figure 4(b), the admittance becomes upper-bounded by
1/RS = 10+3 (60 dB), which establishes pass-bands with
no ripple at low and high frequencies. The levelling of
the amplitude plot within the pass bands is reflected in
a change of the phase values towards zero, as can be seen
in the inset.

It is interesting to note that, apart from the ripple in
the stop band, the behaviour of these large 3-D networks
resembles that of a simple network with single R, L, C
components in a parallel configuration. Such an analogy
can be further illustrated by investigating the effect of
changes in the component values. In the case of a simple
parallel RLC network, the admittance � is given by

�(s) = s2 + (RC)−1s + (LC)−1

s/C
(109)

which has a second-order numerator with natu-
ral frequency ωn = 1/

√
LC and damping factor

ξ = (2R)−1√L/C. Therefore, an increase in L reduces
the central frequency of the stop band and leads to
larger damping. For illustration, Figure 5(a–c) present
the admittance response of a 3-D RLC network with
the same configuration used in Figure 4(a) and three
different values of L, namely 0.002, 0.02 and 0.2. As can
be seen, an increase in L reduces the central frequency of
the stop band, as expected. In addition, the ripple within
the stop band is also reduced. Although such an effect
does not have a direct counterpart in the simple parallel
RLC network, it may be argued that a reduction in the
ripple can be associated to a larger overall damping of the
network response. A similar analysis can be carried out
with respect to changes in the capacitance C, as shown
in Figure 5(d–f). An increase in C shifts the stop band
to lower frequencies and increases the ripple, which is
consistent with a reduction in both the natural frequency
and overall damping of the network response. Finally,
Figure 5(g–i) illustrates the result of changing the resis-
tance R. The central frequency of the stop band remains
unaltered, but the ripple increases with growing R. These
effects are consistent with the expected results of keeping
the natural frequency constant and reducing damping,
which is again in line with the expressions for the simple
parallel RLC network.
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Figure . Admittance response of a random -D RLC network with
different R, L, C parameters (R= , L= ., C= ., whenever the
value is not specified).

6. Conclusion

This paper has shown that standard methods for conver-
sion of descriptor representations to state-space form are
not always applicable to electrical circuit models derived
in a systematic manner from Kirchoff ’s laws and consti-
tutive element equations. In particular, two well-known
methods (shuffle algorithm and SVD) failed to provide
a state-space model from descriptor representations of

a simple RL circuit and complex 3-D RLC networks. A
novel procedure to address this problem was proposed
as an extension of the classic shuffle algorithm combined
with the SVD approach. In a case study involving 100 dif-
ferent 3-DRLCnetworks with random allocation of com-
ponents, the proposed method always succeeded in con-
verting the descriptor representation to state-space form,
which illustrates its advantage over the classic approaches.

Although the examples presented herein were con-
cerned with electrical circuits, the relevance of the pro-
posed method for applications involving different types
of systems can be inferred from the existing analo-
gies between circuit models and other physical domains
(Hinaje, Raël, Noiying, Nguyen, & Davat, 2012; Schwarz,
2000; Smith, 2002). The case study investigated in the
present paper also bridges a gap with respect to pre-
vious work concerning the modelling of 3-D RC net-
works (Galvao, Hadjiloucas et al., 2013; Galvão et al.,
2013; Jacyntho et al., 2016) and opens up the possibility of
investigating emergent properties of 3-D RLC networks
in greater detail. Such investigations may be of value
for several applications, including the study of percola-
tion processes (Stauffer & Aharony, 1992), neuroscience
(Hill, Wang, Riachi, Schürmann, & Markram, 2012) and
critical phenomena (Hatef, Sadeghi, Fortin-Deschênes,
Boulais, & Meunier, 2013). Simulations using 3-D RLC
networks may also be used to study a range of complex
or emergent behaviours encountered across all parts of
the electromagnetic spectrum and are of much relevance
to the optoelectronics, terahertz, photonics and plas-
monics communities where complex dynamics across a
wide range of frequencies are observed (Avouris & Fre-
itag, 2014). Such simulations can be particularly valu-
able for the interpretation of results at grain bound-
aries, e.g. charge transport in graphene-based electronics
(Tsen et al., 2012) and interconnects (Nishad & Sharma,
2014) in experiments in compounds displaying complex
(e.g. stretched multi-exponential mixed with resonant)
responses (Scheller, 2011).

Moreover, studies concerning the use of fractional
order models to approximate the dynamic behaviour of
3-D RLC networks may be of particular interest to com-
plement the studies involving the 3-D RC case (Galvao,
Hadjiloucas et al., 2013; Jacyntho et al., 2016). This is a
topic of significant interest within the systems and con-
trol literature (Elwakil, 2010; Mesbahi, Haeri, Nazari, &
Butcher, 2015; Radwan, 2013), which we shall pursue in
future work.
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Appendix. Restricted equivalent transformation
(Duan, 2010)

Given twonon-singularmatricesQ,Pof dimensions (N×
N), a restricted equivalent transformation consists in con-
verting the descriptor model (1), (2) into the form

ET ẋT (t ) = ATxT (t ) + BTu(t ) (A1)

y(t ) = CxT (t ) + Du(t ) (A2)

where xT (t ) = P−1x(t ), ET = QEP, AT = QAP, BT =
QB,CT = CP. Such a transformation is invertible, i.e. one
can use matrices Q−1 and P−1 to convert (A1), (A2) into
the form (1), (2) with

E = Q−1ETP−1 (A3)

Similarly, A = Q−1ATP−1, B = Q−1BT and
C = CTP−1.
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