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Abstract. We use a variational method to assimilate mul-
tiple data streams into the terrestrial ecosystem carbon cy-
cle model DALECv2 (Data Assimilation Linked Ecosys-
tem Carbon). Ecological and dynamical constraints have re-
cently been introduced to constrain unresolved components
of this otherwise ill-posed problem. Here we recast these
constraints as a multivariate Gaussian distribution to incor-
porate them into the variational framework and we demon-
strate their advantage through a linear analysis. Using an ad-
joint method we study a linear approximation of the inverse
problem: firstly we perform a sensitivity analysis of the dif-
ferent outputs under consideration, and secondly we use the
concept of resolution matrices to diagnose the nature of the
ill-posedness and evaluate regularisation strategies. We then
study the non-linear problem with an application to real data.
Finally, we propose a modification to the model: introducing
a spin-up period provides us with a built-in formulation of
some ecological constraints which facilitates the variational
approach.

1 Introduction

Carbon is a fundamental constituent of life and understand-
ing its global cycle is a key challenge for the modelling of
the Earth system. Through the processes of photosynthesis
and respiration, ecosystems play a major role in the carbon
cycle and thus in the dynamics of the global climate system.
Our knowledge of the biogeochemical processes of ecosys-
tems and an ever-growing amount of Earth observation sys-
tems can be combined using inverse modelling strategies to
improve model predictions and uncertainty quantification.

The Data Assimilation Linked Ecosystem Carbon
(DALEC) model is a simple box model for terrestrial
ecosystems simulating a large range of processes occurring
at different timescales from days to millennia. The work
of Williams et al. (2005) established the benefit of using
DALEC together with net ecosystem exchange (NEE) of
CO2 measurements in a Bayesian framework to estimate
initial carbon stocks and model parameters, to improve
flux predictions for ecosystem models and to quantify
uncertainties. Inter-comparison experiments (Fox et al.,
2009; Hill et al., 2012) have then demonstrated the relative
merit of various inverse modelling strategies using NEE
and MODIS leaf area index observations: most results
agreed on the fact that parameters and initial stocks directly
related to fast processes were best estimated with narrow
confidence intervals, whereas those related to slow processes
were poorly estimated with very large uncertainties. Other
studies have tried to overcome this difficulty by adding
complementary data streams (see Richardson et al. (2010))
or by considering longer observation windows (see Hill
et al. (2012)). Recently Bloom and Williams (2015) defined
a set of ecological and dynamical constraints (EDCs) to
reject unrealistic parameter combinations in the absence
of additional data. However, to date very few systematic
analysis has been carried out to explain the large differences
among results.

As with many inverse problems, assimilating Earth ob-
servations into DALEC is an ill-posed problem: the model–
observation operator which relates parameters and initial car-
bon stocks to the observations is rank deficient and not all
variables can be estimated, or the model–observation opera-
tor is ill-conditioned and small observational noise may lead
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to a solution we can have little confidence in. Solving the
problem amounts first to transforming it into a tractable prob-
lem in order to ensure a robust, meaningful and stable solu-
tion. This can be achieved by using regularisation techniques;
the most popular one involves combining the observations
and prior information, assuming it exists, through Bayesian
inference. The choice of regularisation method depends on
the nature of the problem and on the inverse modelling ap-
proach adopted.

So far, off-the-shelf methods such as ensemble Kalman fil-
ter (EnKF) and Monte Carlo Markov Chain (MCMC) were
adopted to perform model–data fusion with DALEC. For its
ability to accommodate non-linearity and any kind of prob-
ability distributions, the MCMC method, in the limit of a
large number of samples, may be considered as the gold
standard. However, despite being well suited for this type
of small-scale problem, the computational complexity of
MCMC method makes it intractable for more complex situa-
tions. Here we adopt a variational approach (4DVAR) where
a cost function measuring the mismatch between the model
and observations is minimised using a gradient method based
on the adjoint of the model. At AmeriFlux sites (see http:
//ameriflux.lbl.gov/), we use MODIS monthly mean leaf area
index (LAI) observations over a 12-year time window to-
gether with flux tower measurements of NEE and gross pri-
mary production (GPP). 4DVAR facilitates the diagnosis of
the ill-posedness of the inverse problem: using model res-
olution matrices we can assess the resolution and stability
properties of the observation operators and of the regularisa-
tion terms. We transcribe the EDCs into a novel variational
framework and use some of this additional knowledge to es-
timate the otherwise undetermined variables. We consider a
modification of the DALEC model by adding a spin-up pe-
riod where carbon stocks are brought to equilibrium. This
offers an alternative to including all the EDCs and helps re-
ducing the confidence intervals for the predicted fluxes.

The paper is organised as follows. In Sect. 2 we present
DALECv2 and the observation streams used in this study,
review the EDCs introduced in Bloom and Williams (2015)
and perform a sensitivity analysis of the different outputs of
DALECv2 of interest for our experiments. In Sect. 3 we re-
call basic principles of inverse theory from a Bayesian per-
spective, we introduce the variational formulation and we
show how to incorporate the EDCs into this framework. Sec-
tion 4 is devoted to a résumé of the linearised problem, using
the tangent linear model, where the challenges of ill-posed
problems and their regularisation can be explored in detail
using simple linear algebra. Using a singular value decom-
position we illustrate the effect of observational noise on ill-
conditioned systems, and we investigate solution strategies
from the point of view of resolution matrices. In Sect. 5 we
conduct a series of non-linear inverse modelling experiments
using multiple data streams and EDCs. In Sect. 6 we modify
DALECv2 to include a spin-up period which offers a built-in
formulation of some EDCs, and then we reproduce the non-
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Figure 1. DALECv2 links the carbon pools (C) via allocation
fluxes (green), litterfall fluxes (red) and decomposition (black).
Respiration is represented by the blue arrows. The orange arrow
represents the feedback of foliar carbon to gross primary produc-
tion (GPP).

linear experiments. In Sect. 7 we discuss several extension to
our manuscript and finally in Sect. 8 we draw conclusions.

2 Model, constraints and observations

2.1 DALECv2

DALECv2 depicts a terrestrial ecosystem as a set of six
carbon pools (labile Clab, foliar Cf, wood Cw, root Cr, lit-
terfall Cl and soil organic matter Cs) linked via allocation
fluxes. At a monthly time step the gross primary produc-
tion (GPP) is calculated using the Aggregated Canopy Model
(Williams et al., 1997) as a non-linear function of meteo-
rological drivers (temperature, radiation, atmospheric CO2
concentration), foliar carbon and foliar nitrogen. Following
the mass conservation principle, GPP is then allocated to
the different carbon pools or released in the atmosphere via
respiration. The schematic for DALECv2 is represented in
Fig. 1 and a complete description of the model can be found
in Bloom and Williams (2015). DALECv2 combines the two
previous DALEC-evergreen and DALEC-deciduous models
into a single model where the non-differentiable phenol-
ogy process of DALEC-deciduous has been replaced with
a differentiable process. DALECv2 is a non-linear dynam-
ical system and the carbon pools are dynamical variables
parametrised by their initial values C0 and by 17 parame-
ters p, whose range and description can be found in Table 1.
The magnitudes and ranges of the parameters and the ini-
tial values vary drastically; therefore, to avoid the computa-
tional problems caused by these different scales the varia-
tional methods will be formulated and implemented in terms
of the log transformed variable x= log([p, C0])

T . How-
ever, in order to limit unnecessary notation and definition,
in the remainder of this paper p and C0 will stand for their
log transform.

Geosci. Model Dev., 10, 2635–2650, 2017 www.geosci-model-dev.net/10/2635/2017/
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Table 1. DALECv2 dynamical variables and parameters with their respective range. The units of the non-dimensionless quantities are given
in brackets.

Label Variable Description Range

C0(1) Clab initial labile C pool (gC m−2) 20–2000
C0(2) Cf initial foliar C pool (gC m−2) 20–2000
C0(3) Cr initial fine root C pool (gC m−2) 20–2000
C0(4) Cw initial above and below ground woody C pool (gC m−2) 100–105

C0(5) Cl initial litter C pool (gC m−2) 20–2000
C0(6) Cs initial soil organic matter C pool (gC m−2) 100–2× 105

p1 θmin litter mineralisation rate (day−1) 10−5–10−2

p2 fa autotrophic respiration fraction 0.3–0.7
p3 ff fraction of GPP allocated to Cf 0.01–0.5
p4 fr fraction of GPP allocated to Cr 0.01–0.5
p5 clf annual leaf loss fraction (season) 1 - 8
p6 θw Cw turnover rate (day−1) 2.5× 10−5–10−3

p7 θr Cr turnover rate (day−1) 10−4–10−2

p8 θl Cl turnover rate (day−1) 10−4–10−2

p9 θs Cs turnover rate (day−1) 10−7–10−3

p10 2 temperature dependence exponent factor 0.018–0.08
p11 ceff canopy efficiency parameter 10 - 100
p12 donset leaf onset day (day) 1–365
p13 fl fraction of GPP allocated to Clab 0.01–0.5
p14 cronset Clab release period (days) 10–100
p15 dfall leaf fall day (day) 1–365
p16 crfall leaf fall period (days) 20–150
p17 clma leaf mass per area (gC m−2) 10–400

The meteorological drivers are extracted from
0.125◦× 0.125◦ ERA-Interim reanalysis data sets. For
the purpose of our inverse modelling experiments we use
four different observation streams: LAI, NEE, GPP and
RESP (total respiration). LAI monthly mean observa-
tions for AmeriFlux sites are extracted from MOD15A2
LAI 8-day version 005 1 km resolution product. These
observations together with the meteorological drivers are
provided by A. Bloom and J. Exbrayat. Details about their
construction can be found in Bloom and Williams (2015). At
AmeriFlux sites we use the level 4 data product (available
at http://cdiac.ornl.gov/ftp/ameriflux/data/Level4/), which
provides monthly means for NEE and GPP. NEE and GPP
are then used to define RESP as RESP=NEE+GPP. The
meteorological drivers span a period of 12 years from 2001
to 2013. LAI observations are available during the full
period but for NEE and GPP, and thus RESP, shorter records
are available depending on the AmeriFlux site. In this study
we consider the Morgan Monroe State Forest located in
Indiana, USA (39.3–86.4). This AmeriFlux site is composed
in majority of mixed hardwood broadleaf deciduous trees
and classifies as a humid subtropical climate.

In the remainder of the paper the main focus is on the vec-
tor x= log([p, C0])

T : in Sect. 2.3 first where we investigate
the sensitivity of different outputs with respect to x and its
components, and then in subsequent sections where x is es-

timated using inverse methods. The vector x, denoting fixed
quantities as initial conditions and parameters for the dynam-
ical system DALECv2, is seen as the variable from the point
of view of sensitivity analysis and inverse modelling and
therefore its components will be referred to as state variables,
input variables or parameters interchangeably throughout the
manuscript.

2.2 Ecological constraints

Over the last decade many inverse modelling studies have
used NEE measurements from the FLUXNET network, to-
gether with other types of observations when available, to
provide information about processes controlled by parame-
ters with respect to which NEE is weakly sensitive. Though
it contains an ever-increasing amount of information, the
flux tower network only provides sparse coverage of terres-
trial ecosystems. On the other hand, despite good spatial and
temporal coverage, MODIS LAI monthly mean observations
only constrain a limited set of DALECv2 state variables, and
additional information is required in order to regularise the
ill-posed problem and obtain a meaningful solution.

Additional information can be obtained by imposing pri-
ors on the variables or by adding other observation streams
(biomass, soil organic matter, etc.). As an alternative, Bloom
and Williams (2015) introduced a set of constraints, referred
to as ecological and dynamical constraints (EDCs). These

www.geosci-model-dev.net/10/2635/2017/ Geosci. Model Dev., 10, 2635–2650, 2017
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constraints, detailed in Bloom and Williams (2015), can be
divided into two groups: static and dynamic constraints. The
static constraints which directly impose conditions on the pa-
rameters are as follows:

– Turnover rate constraints which ensure that turnover
rates ratios are consistent with knowledge of the carbon
pools residence times.

EDC1 : p9 < p8, (1)
EDC2 : p9 < p1, (2)
EDC3 : p6 < 1/(p5× 365.25) , (3)

EDC4 : p7 > p9 expp10T , (4)
EDC5 : p12+ 45< p15, (5)

where T denotes the mean temperature within
the drivers time window. EDC4 is a modifica-
tion to the constraint proposed in Bloom and
Williams (2015). It is currently used in the CAR-
DAMON framework (http://www.geos.ed.ac.uk/homes/
mwilliam/CARDAMOM.html).

– Root–foliar allocation which allows for a strong corre-
lation between parameters controlling allocation to fo-
liage and roots.

EDC6 : froot < 5(ffol+ flab) , (6)
EDC7 : ffol+ flab < 5froot, (7)

where the allocation fractions ffol, flab and froot are de-
fined as

fauto = p2, (8)
ffol = (1− fauto)p3, (9)
flab = (1− fauto− ffol)p13, (10)
froot = (1− fauto− ffol− flab)p4. (11)

The dynamic constraints, for which a model run is performed
to define attractors, limit the application of the model to
ecosystems with no major recent disturbance. They are de-
fined as follows:

– Root–foliar mean dynamics

EDC8 : Cr < 5Cf, (12)

EDC9 : Cf < 5Cr, (13)

where Cf and Cr denote the mean of Cf and Cr over the
simulation period.

– Yearly carbon pools growth rate is limited to 10 %.

EDC10−15 : C
n
/C

1
< 1+ ζ(n− 1)/10, (14)

where for each pool C
i

denotes the mean carbon pool
size over year i and the growth factor ζ is set to 1.

– Carbon pools are not expected to show rapid exponen-
tial decay; therefore, parameter sets are required to sat-
isfy the condition that the half-life period of carbon
pools is more than 3 years.

EDC16−21 : γ < 3× 365/ log2 (15)

The trajectory of each carbon pool is approximated us-
ing an exponential decay curve a+ b exp γ t where a,
b and γ are the fitted exponential decay parameters and
t the time variable, in days in this case.

– Carbon pools are expected to be within an order of mag-
nitude of a steady-state attractor.

EDC22−29 : C0/10< C∞ < 10C0, (16)

where for each of the carbon pools Cs, Cl, Cw and Cr,
C0 denotes the initial state and C∞ denotes the steady-
state attractor defined as

C∞som =
(fwood+ (ffol+ froot+ flab)p1)G

(p1+p9)p8 expT p10
, (17)

C∞lit =
(ffol+ froot+ flab)G

p9 expT p10
, (18)

C∞wood =
fwoodG

p6
, (19)

C∞root =
frootG

p7
, (20)

where G denotes the mean gross primary production
and fwood, fsom and flit are given by

fwood = 1− fauto− ffol− flab− froot, (21)
fsom = fwood+ (froot+ flab+ ffol)p1/(p1+p8) , (22)
flit = (froot+ flab+ ffol) . (23)

To the original EDCs, we found it useful to add the three
following constraints:

EDC30 : LAI(summer) < α, α > 0, (24)
EDC31 : LAI(final day) > 0, (25)
EDC32,33 : −β < E[NEE]< β, β > 0, (26)

where α and β are real constants that need to be adjusted,
LAI(summer) denotes the modelled LAI during summer and
LAI(final day) denotes the modelled LAI at the end of the
model run. These new constraints guarantee that LAI and the
mean NEE remain within realistic bounds.

Bloom and Williams (2015) demonstrated the efficiency
of incorporating EDCs using a Monte Carlo method to im-
prove parameter estimates and NEE predictions. We propose
an approach to apply these extra constraints within a varia-
tional framework.

Geosci. Model Dev., 10, 2635–2650, 2017 www.geosci-model-dev.net/10/2635/2017/
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Figure 2. Mean normalised sensitivities (MNS): 100 parameter sets satisfying EDCs are sampled at the Morgan Monroe State Forest.
Parameters are ranked in decreasing order according to their sensitivity, the blue dots represent the mean of the MNS (dimensionless quantity),
the intervals represent 1σ error bars and the red dots correspond to null sensitivity.

2.3 Sensitivity analysis

Sensitivity analysis studies how the variations of the output h
of a model can be attributed to variations of the input vari-
ables xi . Such information is crucial for model design, in-
verse modelling and reduction of complex non-linear mod-
els. A global sensitivity analysis for DALEC was recently
performed in Safta et al. (2015). Here we consider a local
approach where first-order derivatives are used to build sen-
sitivity indices that help us understand the influence of input
variables on the output.

We denote ht as the function that maps x= log(p, C0)

to the value of an output of the model (here LAI, NEE,
GPP and RESP) at time t , and we denote the time series of
the model output as h= (ht1 , . . . , htN ). Following Zhu and
Zhuang (2014), we consider the mean normalised sensitiv-
ity (MNS) defined as

si = E

(
∂h

∂xi
|
σi

σh
|
/∑

j

|
∂h

∂xj

σj

σh
|

)
, (27)

where E(·) denotes the average of the time series. The
scalars σi and σh denote the parameter variance, set as 40 %
of the parameter range, and the variance of the output respec-
tively. The partial derivatives are computed using the adjoint
derived using the method described in Giering and Kaminski
(1998). The MNS si is a dimensionless number that allows
us to compare among parameters.

We consider the Morgan Monroe State Forest over a 12-
year period. We sample 100 parameter sets satisfying the
ecological constraints. For each parameter set, we compute
the MNS for DALEC simulated mean fluxes LAI and NEE.
In Fig. 2 parameters are ranked with respect to their mean

MNS. We see that for LAI only 12 out of the 23 variables are
sensitive, namely p5, p17, p2, p13, p11, p15, p16, Cf, p12,
p3, Clab and p14. Therefore, using LAI only in an inverse
modelling experiment provides, at best, information about
those twelve sensitive variables. For NEE we see that all vari-
ables are sensitive. Sensitivity analysis for GPP shows simi-
lar characteristics with LAI and so does RESP with NEE. For
the four outputs under consideration (LAI, NEE, GPP and
RESP) the most sensitive variables are the autotrophic respi-
ration, p2, the annual leaf loss fraction, p5, the leaf mass per
area, p17, the fraction of GPP allocated to labile pool, p13,
the nitrogen use efficiency, p11, and the leaf fall day p15.

Here our focus is on the mean of the time series of DALEC
fluxes (LAI, NEE) over a 12-year period. Finer analysis
could be carried out by looking at seasonal aspects of the
carbon cycle, identifying what variables are the most sensi-
tive at certain times of the year, for example as studied in
Safta et al. (2015).

3 Data assimilation

In this section we introduce concepts and methods that al-
low for close mathematical scrutiny of inverse problems and
we present the variational method that we will apply in the
following sections.

3.1 Ill-posed problem

A generic inverse problem consists of finding a n dimen-
sional state vector x such that

h(x)= y, (28)

www.geosci-model-dev.net/10/2635/2017/ Geosci. Model Dev., 10, 2635–2650, 2017
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for a given N -dimensional observation vector y, including
random noise, and a given model h. In the remainder of the
paper the terms state vector, state variable, input variable and
parameters will be used interchangeably to denote the vec-
tor x to be estimated using inverse methods and defined in the
previous section as x= log([p, C])T . The problem is well
posed in the sense of Hadamard (1923) if the three following
conditions hold: (1) there exists a solution, (2) the solution
is unique and (3) the solution depends continuously on the
input data. If at least one of these conditions is violated the
problem is said to be ill-posed. The inverse problem (Eq. 28)
is often ill-posed, and a regularisation method is required
to replace the original problem with a well-posed problem.
Solving Eq. (28) amounts to (1) constructing a solution x,
(2) assessing the validity of the solution and (3) characteris-
ing its uncertainty. Each inverse problem has its own features
which need to be understood in order to characterise properly
the solution and its uncertainty.

3.2 Bayesian inference: 4DVAR

Inverse problems are generally presented in a probabilistic
framework where most methods can be expressed through
a Bayesian formulation. The Bayesian approach provides a
full characterisation of all possible solutions, their relative
probabilities and uncertainties.

From Bayes’ theorem, the probability density func-
tion (PDF) of the model state x given the set of observa-
tions y, p(x|y), is given by

p(x|y)∝ p(y|x)p(x), (29)

where p(y|x) is the PDF of the observations given x and
p(x) is the prior PDF of x. A special case is given when
p(y|x) and p(x) are Gaussian PDF given by

p(x)= exp
[
−

1
2
(x− x0)

TB−1 (x− x0)

]
, (30)

and

p(y|x)= exp
[
−

1
2
(h(x)− y)TR−1(h(x)− y)

]
, (31)

where B is the covariance matrix of the prior term x0, and
R is the covariance matrix of the observation error. When the
operator h is linear then the posterior PDF p(x|y) is Gaus-
sian and thus fully characterised by its mean and covariance
matrix. The mean is obtained by minimising the modulus of
the log of the joint probability distribution, which is the cost
function J given by

J (x)= J0(x)+ Jy(x)=
1
2
‖x− x0‖

2
B+

1
2
‖h(x)− y‖2R. (32)

Many methods can be considered to minimise this cost func-
tion. A Monte Carlo method is employed in Bloom and
Williams (2015). Here we use a variational approach which

applies a gradient-based method where the gradient is given
by

∇J = B−1 (x− x0)+HTR−1(h(x)− y), (33)

with HT denoting the adjoint operator. The covariance matrix
of the solution, C, is given by the inverse of the Hessian of
the cost function

C= [Hess(J )]−1
=

[
B−1
+HTR−1H

]−1
. (34)

When the observation operator h is non-linear, the cost func-
tion J can have multiple local minima and the posterior PDF
may no longer be a Gaussian PDF. However, locally, the
PDF N(̃x, C), where C is given by Eq. (34) evaluated at a
minimum x̃, provides a Gaussian approximation of the pos-
terior PDF p(x|y).

The first term in the cost function (Eq. 32) is a regularisa-
tion term encoding the Gaussian prior p(x). As we will show
in the next sections the problem of assimilating Earth ob-
servations (LAI, GPP, NEE, RESP) into DALEC is a highly
ill-posed problem and regularisation is required. The sensi-
tivity analysis of Sect. 2.3 showed that LAI and GPP are not
sensitive to all variables. Moreover, all observations streams
show very low sensitivities to some variables. Therefore, as
will be illustrated in Sect. 4.1, the solution (if any) is likely
to be subject to large uncertainties. Apart from a couple of
extensively studied sites, our prior knowledge about the vari-
ables is so far limited to their upper and lower bounds given
in Table 1. As performed in Zhu and Zhuang (2014), it is a
common practice to use this information to define a Gaus-
sian prior p(x)∼N(x0, B), where x0 is given by the centre
of the variables ranges and B is the diagonal matrix whose
diagonal elements are the squares of 40 % of the variables
ranges. While using this kind of regularisation is necessary to
ensure any solution at all when no better source of informa-
tion is available, this introduces some biases in the solution.
The EDCs introduced by Bloom and Williams (2015) pro-
vide new prior information about the variables. One of the
purposes of this paper is to incorporate the EDCs as a regu-
larisation term within 4DVAR. In the next section we propose
a strategy to achieve this goal.

3.3 EDCs and 4DVAR

Incorporating the EDCs from an optimisation point of view
can be easily performed by considering an inequality con-
straint optimisation problem where we aim at solving

minxJy(x) subject to l < x < u and g(x) < 0,

where g is the non-linear operator defining the EDCs de-
scribed in Sect. 2.2, and l and u are the lower and upper
bounds defined in Table 1. This approach provides an effi-
cient, robust and quick strategy to find an acceptable solu-
tion; however, stability properties are not easily determined
(see Roese-Koerner et al., 2012).
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We are seeking a multivariate Gaussian distribution that
would encode the EDCs. At a forest site, we start by sam-
pling the parameter space to obtain an ensemble of 1000 pa-
rameter sets satisfying the EDCs; each parameter set x is
randomly created and required to satisfy g(x)< 0. We de-
note this ensemble by XEDCs. For most parameters, the sam-
pling gives rise to undetermined PDFs which can certainly
not be represented by Gaussian PDFs. However, upon in-
specting the distribution g(x), for all x in XEDCs, we see
that the distribution log(g(x)) can be fairly accurately ap-
proximated by multivariate Gaussian PDFs N(c, 6), where
c denotes the mean of the distribution log(g(x)) and 6 de-
notes its covariance matrix. As an example, Fig. 3 shows the
marginals log(g4(x)) and log(g6(x)), corresponding to the
EDCs 4 and 6 respectively, together with a Gaussian fit.

Using Bayes’ theorem we can then write

p(x|y,c)∝ p(y|x)p(c|x)p(x). (35)

Finding a Gaussian approximation for p(x|y, c) amounts
then to minimising the cost function

J (x)=
1
2
‖h(x)− y‖2R+

1
2
‖ log(g(x))− c‖26

+
1
2
‖x− x0‖

2
B. (36)

The gradient of J is given by

∇J (x)=HTR−1(h(x)− y)+
1

g(x)
GT6−1(log(g(x))− c)

+B−1 (x− x0) ,

and the Hessian of the cost function can be approximated by

2=HTR−1H−
1

(g(x))2
GGT6−1(log(g(x))− c)

+
1

(g(x))2
GT6−1G+B−1, (37)

evaluated at the minimiser x̃. The operator GT denotes the
adjoint of the tangent linear model G whose key ingredient
is given by the adjoint of DALECv2. The approximation of
p(x|y, c) is then given by the Gaussian distribution N(̃x,
2−1). In Sect. 5 we will perform experiments using real data
to validate this approach.

4 Linear analysis

Considerable theoretical insights into the nature of the in-
verse problem, and the ill-posedness, can be obtained by
studying a linearisation of the operator h. A first approxi-
mation to the inverse problem consists of finding a perturba-
tion z which best satisfies the linear equation

Hz= d, (38)
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Figure 3. Distribution and Gaussian fit for EDC4 and EDC6.

where H is the tangent linear operator for h and d is a per-
turbation of the observations. The linear operator H is com-
monly referred to as the observability matrix (see Johnson
et al., 2005). The least squares formulation of this problem is
to solve the optimisation problem

minzJ (z)=minz
1
2
‖Hz− d‖2. (39)

The minimisation can be performed using an iterative
method such as the conjugate gradient method, where the
gradient is given by

∇J =HT (Hz− d). (40)

The inverse Hessian of the cost function, (HT H)−1, gives the
covariance matrix of the least squares solution. In the next
section we consider a direct solution method based on the
singular value decomposition of the operator H, which al-
lows us to investigate the nature of the ill-posedness of the
problem. We illustrate regularisation using a truncated sin-
gular value decomposition.

4.1 Singular value decomposition

We consider a singular value decomposition of H of the form

H= USVT , (41)

where U is a N ×N unitary matrix, V is a n× n unitary ma-
trix and S is the N × n diagonal matrix whose diagonal el-
ements are the singular values s1≥ . . . ≥ sn≥ 0. Using this
decomposition, the solution zLS to Eq. (39) can be written as

zLS = VS†UT y =H†y. (42)

The matrix H†
=VS† UT is the pseudo-inverse of H where

S† is the diagonal matrix obtained by transposing S and re-
placing the non-zero elements with their inverse s−1

i . The
covariance of the solution is given by

Cov(zLS)=H†T H†. (43)

Much can be learned about the stability of the solution
(Eq. 42) by inspecting the singular values of H. Assuming
that H is full rank, it can be shown (see Golub and Van Loan,
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Figure 4. Singular values of the observability matrix for NEE (log
scale).

1996) that the relative error in the solution, defined as the
left-hand side of the above inequality, is bounded by

‖zLS− z0‖

‖z0‖
≤ κ(H)

‖ε‖

‖d‖
, (44)

where κ(H) is the condition number of H defined as
κ(H)= s1/sn, z0 denotes the truth (possibly unknown) and
ε represents observational noise. When the condition number
is large the matrix is said to be ill-conditioned, the problem
is ill-posed and the solution (Eq. 42) is unstable: small per-
turbations to the system can lead to very large perturbations
in the solution.

4.2 Stability for NEE operator

As an example we consider the problem of assimilating NEE
observations into DALECv2 to estimate model parameters
and initial conditions at Morgan Monroe State Forest. We
linearise Eq. (28) about a point x∗ satisfying the EDCs, form
the observability matrix H and compute its singular value
decomposition. The singular values, shown in Fig. 4, reveal
a condition number of the order of 105.

For a signal-to-noise ratio, namely ‖ε‖/‖d‖, of magni-
tude 0.1, inequality (Eq. 44) gives an upper bound for the
relative error in the solution of the order of 104, which does
not give much credit to the least squares solution. How sharp
is this bound? Are we overestimating the error? To answer
these questions we create a set of noisy observations with
noise variance σ = 0.1 and we compute the solution (Eq. 42).
The relative error for each component of the solution, ηi , and
the variance νi , are given in Table 2. Despite a relatively good
match between the modelled NEE perturbations and the ob-
servations, as shown in Fig. 5, the results of Table 2 show
very large relative errors and variances for most variables.
Moreover, these results are in agreement with the results of
REFLEX: parameters directly linked to foliage and GPP are
better estimated than parameters related to allocation to and
turnover of fine root/wood. The results of Table 2 reflect the
sensitivity analysis shown in Fig. 2. The variables with re-
spect to which NEE is the most (least) sensitive are the less
(more) affected by the noise.

To reduce the impact of observational noise on the solu-
tion, regularisation is required. The truncated singular value
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Figure 5. Solution of the linearised inverse problem for NEE. The
red points represent the observations, the red curve is the true tra-
jectory, the green curve is the trajectory obtained using the unstable
solution and the blue curve is obtained using the truncated singular
value decomposition (TSVD) solution.

decomposition (TSVD) is a simple and popular method
for regularisation. TSVD consists of truncating the pseudo-
inverse in Eq. (42) in order to remove the smallest singular
values, the most affected by the noise. The solution z(k) is
then given by

z(k) = VkS†
kU

T
k y =H†

ky, (45)

where k is the truncation rank and where Sk , Uk and Vk are
the rectangular matrices formed by the first k columns of S,
U and V. The covariance of the solution is given by

Cov
(
z(k)

)
= Vk

(
S†
k

)−2
VTk . (46)

The truncation rank k can be chosen using the L-curve
method. The L curve is a log–log plot of the norm of the
solution ‖z(k)‖ against the norm of the residual ‖Hz(k)− d‖
parametrised by the regularisation parameter k. The optimal
parameter corresponds to the point of maximum curvature of
the L curve. Further details on the L-curve method can be
found in Hansen and O’Leary (1993).

In our example with NEE we use Hansen’s regularisation
tools (see Hansen, 2007) to perform the TSVD method. The
truncation rank obtained using the L-curve method is k= 7.
The last three columns of Table 2, presenting the TSVD so-
lution, the relative error of each components and the vari-
ances, can be compared with the unstable solution results.
Whereas the relative errors in the unstable solution range
from 5.3× 10−2 to 3.8× 104, the relative errors in the reg-
ularised solution range from 5.3× 10−2 to 5.1. We see that
TSVD has the effect of keeping small the variables that can-
not be estimated correctly. As previously stated the results
of the regularisation can be related to the sensitivity analysis
depicted in Fig. 2: TSVD prevents the variables with respect
to which NEE is the least sensitive from growing unbounded.

In the next section we consider the concept of a resolution
matrix, which allows for finer analysis of the solution of the
linear problem.
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Table 2. Results of the linear inverse problem showing (1) the solution components for the least squares solution zLS together with their
relative error ηi (dimensionless quantity) and variance νi and (2) the solution components for the TSVD solution z(k) together with their
relative error η(k)

i
and variance ν(k)

i
.

x∗ z∗ zLS ηi νi z(k) η
(k)
i

ν
(k)
i

p1 −6.984 −0.070 3.715 54.190 19 182.5715 0.004 1.052 0.0001
p2 −1.114 −0.011 0.342 31.715 23.2871 0.003 1.242 0.0005
p3 −3.480 −0.035 −2.690 76.285 7384.9940 0.001 1.022 0.0000
p4 −2.745 −0.027 3.389 124.470 82 380.0339 −0.000 1.000 0.0000
p5 0.086 0.001 0.048 54.082 0.6575 −0.004 5.139 0.0009
p6 −8.776 −0.088 67.445 769.477 1 581 516.7404 0.000 1.001 0.0000
p7 −5.265 −0.053 −0.999 17.970 57.1478 −0.005 0.900 0.0001
p8 −6.640 −0.066 −0.344 4.176 7981.3944 −0.016 0.757 0.0013
p9 −10.292 −0.103 133.504 1298.187 494 620.7529 −0.006 0.946 0.0002
p10 −3.035 −0.030 −0.003 0.889 2.6980 −0.011 0.632 0.0008
p11 3.539 0.035 1.075 29.370 79.5237 −0.003 1.083 0.0003
p12 4.736 0.047 0.045 0.053 0.0256 0.044 0.080 0.0003
p13 −0.772 −0.008 1.042 135.879 8676.9499 −0.028 2.616 0.0033
p14 3.261 0.033 0.072 1.196 4.3971 0.004 0.866 0.0001
p15 5.533 0.055 0.084 0.515 0.0548 0.058 0.053 0.0003
p16 4.082 0.041 0.092 1.265 1.2521 0.004 0.904 0.0001
p17 5.178 0.052 1.631 30.497 8160.2559 0.000 0.997 0.0005
Clab 6.237 0.062 1.002 15.073 8237.5716 0.019 0.697 0.0020
Cf 4.073 0.041 1.348 32.090 8070.9246 0.005 0.888 0.0001
Cr 6.858 0.069 1.788 25.067 8300.6094 −0.012 1.170 0.0008
Cw 8.341 0.083 −318.175 3815.484 7 436 253.3370 0.000 0.999 0.0000
Cl 5.961 0.060 0.568 8.532 8550.3479 −0.006 1.097 0.0002
Cs 8.956 0.090 −134.334 1500.869 483 025.4281 −0.006 1.064 0.0002

4.3 Resolution matrix

As suggested by Eqs. (42) and (45), finding a solution z
amounts to constructing a generalised inverse Hg such that
formally

z=Hgd. (47)

The generalised inverse is the operator representing any
method, direct or iterative, used to solve the linear inverse
problem, with or without any kind of regularisation. In the
previous section we considered two examples of generalised
inverse, the pseudo-inverse and the truncated inverse ob-
tained using TSVD. The generalised inverse can be used to
define operators which directly address the conditions for
well-posedness for the linearised problem. Assuming a true
state z∗ exists, possibly unknown, using Eqs. (38) and (47)
we can then define an operator N called the model resolution
matrix which relates the solution z to the true state

z=HgHz∗ = Nz∗. (48)

This matrix provides a practical tool to analyse the resolution
power of an inverse method, that is, its ability to retrieve the
true state, with or without using any regularisation method:
the closer N is to the identity, the better the resolution. More-
over, the trace of the matrix defines a natural notion of infor-
mation content (IC). Similarly a data resolution matrix can

be defined to study how well data can be reconstructed and
its diagonal elements naturally define a notion of data impor-
tance. For the two examples of generalised inverse presented
in the previous section we obtain the following resolution
matrices:

N=H†H, (49)

for the pseudo-inverse and

N= VkVTk , (50)

for the truncated pseudo-inverse. In the first case the IC
equals the number of non-zero singular values, in the sec-
ond case the IC equals the truncation rank k. An in-depth
theoretical and practical analysis of these concepts and those
introduced in the remainder of this section can be found in
Menke (1984).

While the model resolution matrix allows us to see how a
solution strategy maps the true state variables to the solution
of the inverse problem, and to see how well and how indepen-
dently the state variables can be recovered, one also needs to
assess the uncertainty of the solution. This can be studied us-
ing the so-called unit covariance matrix, C, defined using the
generalised inverse as

C=HgT Hg. (51)
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Figure 6. Model resolution matrix for the LAI operator.

By characterising the degree of error amplification that oc-
curs in the mapping from the true state to the solution of
the inverse problem, the unit covariance matrix is a crucial
object for studying the stability of the solution with respect
to observational noise. The unit covariance matrix defined
by Eq. (51) agrees with the covariance matrices given in the
previous section by Eq. (43) for the pseudo-inverse, and by
Eq. (46) when TSVD is applied.

4.4 Resolution for LAI operator

We now study the model resolution matrix for the LAI ob-
servation operator at Morgan Monroe State Forest. In the
first instance we will demonstrate the resolution power of the
LAI signal without regularisation using the pseudo-inverse
as generalised inverse first, and then apply TSVD to show
how using the truncated pseudo-inverse affects resolution. In
a second case we will study the added value of the EDCs in
terms of resolution.

As previously, we linearise Eq. (28) about the point x∗

given in Table 2. The trace of the resolution matrix obtained
using the pseudo-inverse as generalised inverse is 10, and
this means that 10 independent variables can be estimated
using LAI. These independent variables are not the variables
in which the system is expressed, but a linear transformation
can be found to express the system in terms of the indepen-
dent variables. Figure 6 shows the model resolution matrix
for LAI. As shown in Sect. 2.3 with the sensitivity analysis,
11 out of the 23 variables are not sensitive to LAI, and this
can be seen in the resolution matrix by the diagonal terms
which are zero, represented in blue. In contrast the diagonal
elements corresponding to sensitive variables have positive
values, represented by colours ranging from light blue to red.
Figure 6 also shows that whereas p5, p11, p12, p14, p15 and
p16 are perfectly resolved (the corresponding elements are
coloured brown or dark red), there exist linear combinations
between the remaining sensitive variables, which explains
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Figure 7. Diagonal elements (log scale) of the unit covariance ma-
trix for the LAI operator: using the pseudo-inverse shown in green
and TSVD shown in yellow.

why only 10 independent variables can be estimated from
the 12 sensitive variables.

For the study of the unit covariance matrix we restrict our-
selves to the sensitive variables. This amounts to removing
the columns corresponding to the non-sensitive variables,
containing only null elements, from the observability ma-
trix. The dependency of the solution on observational noise
can be studied by looking at Fig. 7, where the diagonal el-
ements of the unit covariance matrix, corresponding to the
variance of each element of the solution obtained using the
pseudo-inverse, are represented in log scale. Except for p5,
p12, p15 and p16, all variances are shown to be large.

As previously, we illustrate a simple regularisation strat-
egy, TSVD, and show its effects on both resolution and sta-
bility. Figure 8 shows the resolution matrix for LAI with op-
timal truncation rank k= 6. The IC decreases to 6. We see
that whereas p5, p12, p15 and p16 remain almost perfectly
resolved, p13, p17 and Clab are only partially resolved and
the remaining variables are not resolved properly. Figure 7
shows the corresponding diagonal elements of the unit co-
variance matrix, from which we see that the variances have
been drastically reduced. This example shows how regulari-
sation ensures stability at the price of losing resolution.

We now consider the effect of incorporating the static
EDCs into the variational framework in terms of resolution.
The static EDCs are given by the first seven EDCs, the linear
problem is then given by[

H
G̃

]
z=

(
d

f

)
, (52)

where

G̃= g
(
x∗
)−1

6−1/2G, (53)

with 6−1/2 the inverse of the symmetric square root of
the covariance matrix 6, defined in Sect. 3.3, restricted to
the first seven components. The static EDCs depend only
on 13 out of the 23 variables, namely p1 to p10, p12, p13
and p15. This can be seen on the matrix G where the columns
corresponding to the remaining variables are null. Together
with LAI observations, whose sensitive variables are repre-
sented in Fig. 2, we therefore have 19 sensitive variables. The
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Figure 9. Model resolution matrix for LAI and static EDCs as de-
fined by Eq. (52).

model resolution matrix corresponding to the operator on the
left-hand side of Eq. (52), obtained using the pseudo-inverse,
is depicted in Fig. 9. The trace of the model resolution ma-
trix gives an IC of 16, 13 variables are perfectly resolved and
4 variables show linear dependencies (p2, p3, p4 and p13).
However, although p9 and p10 are sensitive variables, they
do not appear to be resolved at all: inspecting the linear op-
erator G shows that the non-zero components corresponding
to p9 and p10 are several order of magnitude smaller than the
other components.

This example shows clearly the benefit of introducing the
static EDCs to help estimate poorly constrained or otherwise
undetermined components.

5 Experiments at AmeriFlux sites

We now consider a real experiment at the Morgan Monroe
State Forest. At this AmeriFlux site, 12 years of MODIS LAI
monthly mean observations from 2001 to 2013, NEE, GPP

Table 3. Experiment set up summary: in Exp. 1 we use LAI and
bounds constraints (BDS), in Exp. 2 we use LAI, NEE and BDS
and so on.

LAI NEE GPP RESP BDS EDCs

Exp. 1 x x
Exp. 2 x x x
Exp. 3 x x x x x
Exp. 4 x x x
Exp. 5 x x x x
Exp. 6 x x x x x x

and thus RESP observations from 2001 to 2005 are avail-
able. Our goal is to study two different aspects. The first one
is the impact of using multiple data streams: how does it af-
fect uncertainty of the predicted fluxes and how well do we
predict non-observed fluxes? The second one is to use the
static EDCs and to assess their utility in constraining poorly
sensitive variables.

When including all terms the cost function, JTOT, becomes

JTOT(x)=
λL

2
‖hL(x)− yL‖

2
+
λN

2
‖hN(x)− yN‖

2

+
λG

2
‖hG(x)− yG‖

2
+
λR

2
‖hR(x)− yR‖

2

+
λc

2
‖ log(g(x))− c‖26 +

λ0

2
‖x− x0‖

2
B

= JL+ JN+ JG+ JR+ Jc+ J0,

where subscripts L, N, G and R stand for LAI, NEE, GPP and
RESP respectively. The vectors yL, yN, yG and yR represent
the observation vectors for LAI, NEE, GPP and RESP re-
spectively. The scalars λL, λN, λG and λR take the value 0
or 1 depending on whether or not the corresponding data
stream is included in the experiment. The scalar λc takes the
value 0 or 1 depending on whether we include the EDCs and
λ0 takes the value 1.

We perform six experiments summarised in Table 3. In ex-
periment (Exp.) 1, we use only LAI observations and bounds
constraints so that in the cost function JTOT we set λL= 1
and λ0= 1, and the other λs are set to zero. For Exp. 2, we
use LAI and NEE observations, that is, we set λL= 1, λN= 1
and λ0= 1; the other λs are set to zero. We proceed simi-
larly for the remaining experiments. Here we assimilate all
data streams simultaneously; it is not our intention to ques-
tion what method best accommodates multiple data streams.
MacBean et al. (2016) addresses this question using a simple
C cycle model. Moreover, we choose to assume the same sta-
tistical error for all data streams and set their error covariance
matrix equal to the identity. To avoid being trapped at mean-
ingless local minima, the experiments are performed multiple
times using different initialisation parameter sets and results
for the best candidate only are reported.

The results of the experiments are presented in Table 4,
where each element of JTOT is given for all experiments, and
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Figure 10. DALECv2 monthly estimates for LAI and NEE at Mor-
gan Monroe State Forest. The red dots are the observations, the blue
trajectories are obtained using the 4DVAR analysis, and the grey tra-
jectories are ensemble runs obtained from a 95 % confidence sample
of the posterior PDF.

in Table 5, where the solution components and their vari-
ance are presented for all experiments. Results of Table 4
show that JL is the smallest in Exp. 1 when LAI only is
used. In Exp. 2, when adding NEE we see that JN decreases
from 109.012 in Exp. 1 to 15.263, and JG slightly decreases
as compared to Exp. 1, but JR increases instead. In Exp. 3
we see that all costs drastically decrease compared to their
initial values. Going from Exp. 1 to Exp. 3, J0 slightly in-
creases; adding more data streams constrains more param-
eters, and the parameters shift from their prior value which
may cause J0 to increase. Similar observations can be made
for Exp. 4 to Exp. 6; moreover, we see that including the
EDCs only slightly affects the costs. A reason for this might
be that EDCs help constrain the less sensitive parameters for
which the costs are less sensitive, as suggested by the sen-
sitivity analysis depicted in Fig. 2. To see the effect of the
EDCs we need to look at Table 5, which details the solution
components together with their relative variance defined by
the ratio of the variance by the parameter range. In Exp. 1 we
see that the variables with the smallest relative variance are
the most sensitive parameters as illustrated in Fig. 2: p2, p5,
p10, p12, p14, p15, p16 and p17. We recall that the sensitivity
analysis of Sect. 2.3 was performed by averaging sensitivi-
ties for an ensemble of initial parameter sets; therefore, the
ranking shown in Fig. 2 may not be reflected in the relative
variances. As we include NEE in Exp. 2 we see that most
relative variances decrease, especially for p8, p9, p10, p13,
Clab, Cf and Cl. The only variable whose relative variance
increases is p14, but as shown in Fig. 2, p14 has very low
sensitivity. In Exp. 3 most relative variances decrease. The
values are still large though for p1, p3, p4, p6, p9, Cr and Cl.
Again, similar features can be observed for Exp. 4 to Exp. 6,
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Figure 11. DALECv2 monthly estimates for GPP and RESP at
Morgan Monroe State Forest. The red dots are the observations,
the blue trajectories are obtained using the 4DVAR analysis, the
grey trajectories are ensemble runs obtained from a 95 % confidence
sample of the posterior PDF.

but a clear improvement can be seen for most variables ex-
cept for Cr which is not constrained by the first seven EDCs.
Finally, the last column of Table 4 shows the computation
time for each experiment. As expected we see that the more
observation streams we consider, the longer the experiment
takes to run, and incorporating the EDCs increases compu-
tation time. However, we stress that these figures are several
orders of magnitude less than the time required to perform
the same experiments using the current gold standard MCMC
approach used in Bloom and Williams (2015).

Figures 10 and 11 show the predicted fluxes for LAI, NEE,
GPP and RESP for the result of Exp. 6. We can see good
agreement between modelled fluxes and observations. The
uncertainty of the predicted fluxes is evaluated by modelling
an ensemble of trajectories from a 95 % ellipsoid of the pos-
terior truncated Gaussian distribution. These trajectories are
represented as grey curves in Figs. 10 and 11. Figure 12
shows the posterior parameter distribution marginals for p1,
p7, p16 and Cf for Exp. 6, illustrating the four different cases
where most of the marginal is contained in the parameter
range for p16; the marginal is truncated on the left or the
right for p7 and Cf and truncated on both sides for p1.

6 DALEC-SP

In the previous section we used EDCs within 4DVAR and
showed their advantage in reducing drastically the uncer-
tainty of otherwise undetermined variables. However, we
only included the static EDCs which do not require a model
run. As including more EDCs often leads to convergence is-
sues, the solution and its uncertainty become subject to cau-
tion.
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Table 4. Costs for the results of the inverse modelling experiments. The last column reports the computation time in seconds for the experi-
ment.

JL JN JG JR J0 Jc Time (s)

xinit 179.525 353.229 1265.556 419.696 0.003 7.157 0.000
Exp. 1 14.083 109.012 153.475 45.415 0.017 2.498 2.722
Exp. 2 19.188 15.263 145.349 131.963 0.018 3.704 7.541
Exp. 3 25.089 16.737 36.155 17.842 0.020 4.643 5.886
Exp. 4 14.083 107.420 152.908 45.480 0.016 2.498 5.012
Exp. 5 19.193 15.262 145.254 131.878 0.018 3.701 9.045
Exp. 6 25.059 16.699 36.143 17.826 0.019 4.642 8.215
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Figure 12. Posterior parameter distributions for parameters p1, p7,
p16 and Cf for Exp. 6. For each plot the limits of the abscissa cor-
respond to the parameter range. The red curve is the Gaussian pos-
terior distribution and the blue bars represent the sample used to
produce the grey trajectories in Figs. 10 and 11.

As shown in Chuter et al. (2015) for the previous DALEC
evergreen and deciduous models, the evolution of the carbon
pools for DALECv2 show a tipping point which depends on
the parameters p1 to p17. Given a set of parameters, p, the
fast carbon pools Clab, Cf, Cr and Cl grow or decay rapidly
to an equilibrium state. This equilibrium is either zero and
the forest dies out or a pseudo-periodical seasonal cycle as
shown in Fig. 13 for Cf. Moreover, there exists a limit value
below which any initial condition leads to the zero equilib-
rium and above which the equilibrium is a strictly positive
pseudo-periodical seasonal cycle.

Here we consider ecosystems with no recent major distur-
bance, where the fast carbon pools are expected to be close
to their pseudo-periodical cycle. To model these ecosystems,
one can either restrict the parameter space by using the dy-
namic EDCs, or we can introduce a spin-up period during
which the carbon pools reach their attractor. Given param-
eters p1 to p17 and initial values for Cw and Cs a first run
of DALECv2 is performed to obtain a state which is closer

to a pseudo-periodical cycle for the fast carbon pools. The
steady-state trajectories are then used to initialise the fast car-
bon pools. For this DALECv2 “spin-up” model, DALEC-SP,
the state variable is therefore formed of the 17 parameters,
p1, . . . , p17, and the initial conditions for Cw and Cs.

DALEC-SP offers several advantages: some of the EDCs
such as those controlling the growth and the half-life pe-
riod of carbon pools are almost automatically satisfied. This
greatly reduces the time required to generate the PDF p(c|x).
Moreover, as the sensitivity analysis and the resolution ma-
trices showed, the fast carbon pools are variables that are not
highly sensitive to the signals that we observe, and therefore
reducing the number of variables by removing the fast car-
bon pools is likely to improve the overall conditioning of
the inverse problem. Reproducing experiments 1 to 6 using
DALEC-SP shows similar results to those with DALECv2.

7 Discussion

To our knowledge, this paper presents the first application
of variational methods for an inverse modelling experiment
using DALEC. Over the last 15 years many studies have
validated the use of DALEC together with various types of
data streams to infer ecological parameters at the site level.
However, first ensemble Kalman filter and then Monte Carlo
methods were privileged. At the same time 4DVAR has been
successfully used at the global scale to constrain ecosystem
parameters in carbon cycle data assimilation system (CC-
DAS). In Rayner et al. (2005), the Biosphere Energy Trans-
fer Hydrology model (BETHY) is coupled with the transport
model TM2, and satellite observations of photosynthetically
active radiation and atmospheric CO2 concentration observa-
tions are used to optimise model parameters. In this context
Kemp et al. (2014) investigated how to constrain the 4DVAR
problem in CCDAS through a number of different methods:
using constrained optimisation, adding a penalty term and
applying parameter transformations. They concluded that us-
ing parameter transformations give the best results. In our
study the three methods were investigated: Gaussian anamor-
phosis where priors based on the distribution of parameters
satisfying the EDCs were considered, constrained optimisa-
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Table 5. Results of the inverse modelling experiments. The solution components together with their relative variance, in brackets, are given
for each experiment. The vector xinit is the randomly chosen parameter set satisfying the EDCs that initialises the minimisation routine.

xinit Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

p1 −5.172 −8.059 (1.727) −8.248 (1.471) −8.282 (1.021) −5.954 (0.112) −5.901 (0.075) −6.499 (0.057)
p2 −0.947 −0.885 (0.207) −1.106 (0.120) −1.085 (0.030) −0.848 (0.171) −0.982 (0.138) −0.984 (0.020)
p3 −4.318 −2.673 (0.955) −2.944 (0.849) −3.376 (0.894) −3.073 (0.954) −4.603 (0.973) −3.510 (0.895)
p4 −1.493 −2.649 (0.978) −2.813 (0.961) −2.692 (0.936) −1.589 (0.155) −1.386 (0.091) −1.476 (0.095)
p5 1.123 0.117 (0.003) 0.153 (0.002) 0.085 (0.000) 0.135 (0.002) 0.010 (0.000) 0.090 (0.000)
p6 −7.959 −8.752 (0.922) −8.870 (0.911) −8.707 (0.919) −6.910 (0.144) −7.933 (0.886) −8.330 (0.883)
p7 −7.432 −6.908 (1.151) −6.373 (0.941) −5.064 (0.224) −7.336 (0.225) −7.015 (0.207) −6.241 (0.320)
p8 −5.281 −6.908 (1.151) −6.906 (0.316) −6.522 (0.078) −5.768 (0.107) −4.981 (0.049) −6.144 (0.034)
p9 −16.012 −11.513 (2.303) −10.075 (0.995) −11.411 (1.514) −10.563 (1.141) −15.973 (2.298) −11.043 (0.848)
p10 −3.041 −3.272 (0.373) −3.296 (0.085) −3.036 (0.055) −3.255 (0.371) −2.689 (0.077) −3.037 (0.051)
p11 2.792 3.829 (0.540) 4.026 (0.163) 3.542 (0.003) 3.958 (0.458) 3.573 (0.120) 3.548 (0.003)
p12 3.549 4.626 (0.002) 4.739 (0.000) 4.735 (0.000) 4.625 (0.002) 4.663 (0.001) 4.736 (0.000)
p13 −1.768 −0.693 (0.130) −0.996 (0.067) −0.795 (0.046) −0.930 (0.077) −0.761 (0.026) −0.813 (0.033)
p14 3.343 4.013 (0.034) 3.291 (0.123) 3.292 (0.052) 3.968 (0.030) 3.762 (0.009) 3.248 (0.077)
p15 5.656 5.512 (0.001) 5.528 (0.001) 5.531 (0.000) 5.518 (0.001) 5.626 (0.000) 5.533 (0.000)
p16 4.529 4.115 (0.068) 3.993 (0.025) 4.095 (0.011) 4.050 (0.063) 4.463 (0.009) 4.100 (0.010)
p17 5.351 5.289 (0.213) 5.278 (0.198) 5.138 (0.165) 5.129 (0.180) 5.051 (0.104) 5.082 (0.106)
Clab 3.979 5.950 (0.115) 6.031 (0.059) 6.187 (0.040) 5.792 (0.103) 5.026 (0.143) 6.106 (0.027)
Cf 5.389 4.677 (0.282) 4.868 (0.068) 4.038 (0.066) 4.542 (0.263) 5.806 (0.062) 4.152 (0.043)
Cw 7.045 5.298 (1.151) 5.829 (0.900) 6.520 (0.096) 5.329 (1.149) 7.165 (0.265) 7.093 (0.232)
Cr 9.753 8.406 (1.554) 8.188 (1.533) 8.318 (1.544) 8.453 (1.541) 9.612 (1.553) 8.114 (1.531)
Cl 3.992 5.298 (1.151) 7.307 (0.300) 6.226 (0.161) 5.354 (1.141) 4.534 (0.438) 6.015 (0.089)
Cs 9.721 8.406 (1.900) 9.546 (1.188) 8.603 (1.633) 8.889 (1.528) 9.615 (1.899) 8.448 (1.559)
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Figure 13. Pseudo-periodical seasonal cycle for DALECv2. Using a given set of parameters and initial values for Cw and Cs, 100 DALECv2
runs are performed using random initial values for Clab, Cf, Cr, Cl. The plot shows the 100 trajectories for Cf.

tion as stated in Sect. 3.3 and adding a penalty term to ac-
count for the EDCs. The latter solution which is the main
interest of this publication was found to be the most success-
ful in our case.

The complexity of global-scale experiments still limit the
application of fully non-linear methods such as MCMC.
In Ziehn et al. (2012) a comparison between the MCMC
Metropolis–Hastings approach and 4DVAR for the BETHY-
TM2 CCDAS framework is performed. This study reports a
computation time of less than 1 h for the variational method
and about 8 months for the overall MCMC computation. For
our setting, DALECv2 site-based experiment, the complex-
ity is relatively small and a MCMC approach is affordable.
Used in Bloom and Williams (2015), the MCMC approach
for DALEC is studied in detail in Safta et al. (2015), and the
resulting parameter distributions suggest that 4DVAR and the

inherent Gaussian approximation provide a reasonable pos-
terior distribution.

As with most variational methods, the analysis and ap-
plication presented in this paper rely heavily on the possi-
bility of deriving the tangent linear model and its adjoint.
DALECv2 was designed to take into account this require-
ment, in particular by replacing the phenology process of
the DALEC deciduous model in order to obtain differen-
tiable processes. The model resolution matrix and the gradi-
ent of the cost function, including the additional term encod-
ing the EDCs, are computed using adjoint techniques. De-
spite the increasing capacities offered by automatic differen-
tiation tools, deriving and maintaining an adjoint code can
be a complicated task, and, besides its limiting hypothesis,
this is certainly one of the main reason for choosing alter-
natives to 4DVAR. In a forthcoming paper, we use ensem-
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ble methods to approximate the gradient of the cost function
and to derive approximate resolution matrices, and the exper-
iments presented in this paper are reproduced. The approach,
which no longer requires the adjoint, shows very promising
results: firstly in terms of estimating parameters, and sec-
ondly in terms of computation time by using graphic process-
ing units (GPUs) to perform massive parallel computations.

Designing a global-scale experiment involving a coupling
between DALEC and a transport model has been consid-
ered but is still at an early stage. As presented in Bloom
and Williams (2015), the EDCs were originally introduced
to constrain unresolved parameters at the site level where, in
the absence of any other information, only MODIS LAI ob-
servations were available. In theory there is no restriction to
readily apply the same constraints at a global scale; however,
their efficiency highly depends on the nature of the coupling
between the ecosystem model and the transport model, and
on the observation streams considered. Nonetheless in this
context 4DVAR remains the only reasonable method to con-
sider in terms of computer resources, and our study demon-
strates that the current research efforts to develop regularisa-
tion strategies fit well into the variational framework.

8 Conclusions

We used DALECv2 and combined multiple data streams –
MODIS monthly LAI and monthly NEE, GPP and RESP
at an AmeriFlux site – together with ecological constraints
to estimate model parameters and initial conditions and
to provide uncertainty characterisation for predicted fluxes.
DALECv2 is a simple model. It represents the basic pro-
cesses at the heart of more sophisticated models of the car-
bon cycle, and, besides its large modelling skills, its simplic-
ity allows for close mathematical scrutiny. Here we adopted
a variational approach where the tangent linear model and
its adjoint play a major role in (1) facilitating a linear anal-
ysis which allows one to understand the nature of the ill-
posed problem and to evaluate strategies to regularise it and
(2) finding a posterior distribution for the state variables.

We performed a sensitivity analysis using a direct method
that consists of studying the first-order derivatives of the out-
put computed using an adjoint method. A sensitivity analy-
sis is a prerequisite to any work with a model, but there is a
paucity of literature on this topic in connection with DALEC.
Our analysis reveals generic issues that will be encountered
in many inverse modelling strategies. Studying the first-order
inverse problem, we discussed how noise affects the stabil-
ity of the solution and we illustrated a simple regularisation
method. We then introduced the notion of a model resolution
matrix and showed how this can be used to diagnose the ill-
posedness of an inverse problem and evaluate the result of
regularisation strategies. While some of our findings may be
anticipated in the framework of a simple model, it is impor-
tant to describe these tools and their interpretation, as similar

analyses can be readily applied to a wide range of more com-
plex models.

Bloom and Williams (2015) proved the advantage of the
EDCs in constraining poorly resolved components of the car-
bon cycle and recommended their use for inverse modelling
problems. We successfully incorporated the EDCs within the
context of variational data assimilation. Our results confirm
that the EDCs regularise an otherwise ill-posed problem and
efficiently reduce the uncertainty of predicted fluxes. More-
over, our modification to DALECv2, DALEC-SP, which in-
cludes a spin-up period, offers an alternative to some EDCs
that facilitates the variational approach.

This study did not aim at providing an exhaustive account
on the capability of variational tools or exploring all aspects
of the EDCs for the inverse problem for DALEC. The ob-
jectives were to use 4DVAR and show that it offers a suit-
able framework to solve efficiently, robustly and quickly the
inverse problem for DALEC, and to present a methodology
to analyse some issues that affect most methods based on
Bayesian inference.
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https://zenodo.org/record/269937.
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