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We have evaluated of the applicability of the Rayleigh–Gans (RGA) and Self-
Similar Rayleigh–Gans (SSRGA) approximations for microwave scattering by rimed
snowflakes. This study extends previous findings that showed that, for unrimed
snowflakes, the RGA is in good agreement with the discrete dipole approximation
(DDA), which we used as a reference method. When riming is introduced, the RGA-
derived scattering properties of individual snowflakes deviate significantly — up to 20–
25 dB for the backscattering cross section at the W-band — from the corresponding
DDA results. In contrast, the average scattering properties given by RGA are in good
agreement with DDA for all but the most heavily rimed snowflakes: the mean bias in the
backscattering cross section rarely exceeds 1 dB for light and moderate riming. We also
found that an adjustment that accounts for the nonspherical shapes of the ice crystals
can help eliminate a small constant bias found in RGA in earlier studies. The SSRGA
approximates the RGA results with good accuracy at all degrees of riming, indicating
that it, too, can be used with up to moderately rimed snowflakes.
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1. Introduction

Global mapping and accurate characterization of snowfall is
highly desirable for better constraining the energy budget and the
hydrological cycle of the Earth. Its assimilation into numerical
weather prediction models would also lead to improved forecasts,
especially in high latitude regions where snowfall is the main
precipitation type on the ground. Additionally, in mid-latitudes
ice and snow particles play an important role inside clouds (Field
and Heymsfield 2015). Recent studies found that over mid-latitude
oceans and continents the vast majority of rainfall is generated via
the ice phase (Mülmenstädt et al. 2015).

The challenges of remotely characterizing snow using
microwave instruments stem from the complexity of natural
frozen hydrometeors. The variety of particle shapes, sizes,
densities, and orientations lead to complicated interactions with
microwave radiation with wavelengths close to the size range of
the particles. Therefore, in order to retrieve quantities like snow
water content or particle size parameters, one must understand the
relationship between scattering properties and parameters like the
mass, size and structure of the snowflakes.

Several numerical methods, such as the discrete dipole
approximation (DDA, Flatau and Draine 1994), can compute

scattering properties accurately for arbitrarily shaped particles, but
these methods are computationally demanding. Moreover, such
methods are, by necessity, mathematically complex, which makes
it difficult to analyze the correspondence between microphysical
and scattering properties. Yet it is apparently critical to take the
complex shape into account: several studies (Ishimoto 2008; Petty
and Huang 2010; Tyynelä et al. 2011, among others) have shown
that methods using simple shapes, like homogeneous spheres
or spheroids, can be biased by orders of magnitude compared
to DDA when the particle size is significantly larger than the
wavelength.

The Rayleigh–Gans approximation (RGA; van de Hulst 1957)
has been recently identified as a method that can be accurate
enough for snowflake modelling (Tyynelä et al. 2013), yet simple
enough to allow results to be derived from it in an analytic
form, establishing a mathematical connection between the particle
structure and the scattering properties. RGA is an approximation
that ignores the interactions of the electromagnetic field between
different parts of the scatterer, and is consequently usable when
those interactions are negligible. The DDA–RGA intercomparison
of Tyynelä et al. (2013) showed that, for unrimed snowflakes, the
error of the RGA is small compared to T-Matrix or Mie scattering
(van de Hulst 1957), which use homogeneous spheroidal and
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spherical shapes, respectively. Leinonen et al. (2013) used the
RGA theory to show that the statistical properties of the internal
particle structure are responsible for the deficiencies of the
spheroidal models which assume the particle volume to be filled
with a homogeneous medium.

Unlike homogeneous medium approximations, the RGA theory
is able to take the internal particle structure of arbitrary shaped
particles into account. Hogan and Westbrook (2014) expanded the
RGA for ensembles of snowflakes by assuming that snowflake
structures are fractal by nature. The self-similarity assumption
allowed them to derive an analytic expression for the ensemble
averaged backscattering cross section; they called this method
the “Self-Similar Rayleigh–Gans Approximation” (SSRGA).
Very recently, Hogan et al. (2017) provided additional SSRGA
expressions for the scattering phase function which makes the
method also usable for simulations of passive microwave sensors.

If techniques such as SSRGA are to be used to analyze the
scattering properties of snowflakes, it is crucial that the validity of
RGA be examined. Triple-frequency radar signatures of snowfall
have been found to be connected to particle size distribution and
snowflake properties such as shape and bulk density (Leinonen
et al. 2012; Kulie et al. 2014; Stein et al. 2015; Kneifel et al.
2015). They can be used as strong constraints for retrieval forward
models, especially when the entire Doppler spectrum is analyzed
(Kneifel et al. 2016). Comparisons made in the aforementioned
studies for unrimed snowflakes clearly showed that the RGA and
SSRGA are superior to spheroid-based methods that assume a
homogeneous internal structure of the snowflake.

Riming (i.e. accretion and freezing of supercooled water
droplets) of snowflakes is known to be an important microphysical
process, which dramatically alters the properties of the
snowflakes, and which is strongly correlated with the snow
accumulation in mountainous terrain (e.g. Grazioli et al.
2015). It has not been previously investigated how riming of
snowflakes, and the consequent change in morphology, affects
the applicability of the Rayleigh–Gans theory. Stein et al. (2015)
showed that the connection between RGA theory and the particle
fractal dimension can explain the differences of the triple-
frequency patterns of rimed and unrimed snowflakes. However,
because the study of Tyynelä et al. (2013) only investigated
unrimed snowflakes, it has not yet been established whether
the RGA assumptions are valid for rimed snow. Riming greatly
increases the density of snowflakes and makes their structure
more homogeneous. These effects can be expected to increase
the internal interactions of the electromagnetic field and hence
potentially violate the key assumption of the RGA.

In this study, we use the RGA and SSRGA methods to analyze
the rimed snowflake models created by Leinonen and Szyrmer
(2015), who also computed the microwave scattering properties
of those snowflakes using the DDA. We examine empirically the
errors and biases that arise from using the RGA in place of the
DDA method at frequencies of 13.6 GHz (Ku band), 35.6 GHz

(Ka band) and 94.0 GHz (W band).

2. Data and methods

2.1. Snowflake models

In this study, we used the database of several thousand rimed
aggregate snowflake models generated earlier by Leinonen and
Szyrmer (2015); the details of the generation process can be found
in that paper. The models were generated from volumetric, three-
dimensional models of dendrite ice crystals using an algorithm
that assembles these crystals into an aggregate. Each particle
was held only at a single orientation, but their orientations were
randomized.

Leinonen and Szyrmer (2015) simulated riming using three
different scenarios. In model A, riming and aggregation occur
simultaneously. In model B, all riming occurs after aggregation.
Finally, in model C, there is only minimal aggregation and riming
drives all snowflake growth. Models A and B were simulated
at six different degrees of riming each, ranging from unrimed
aggregates to heavily rimed particles that resemble graupel. For
those models, the snowflakes maximum dimensions ranged up
to 22 mm, while for model C they reached 8 mm. The degree
of riming was quantified in that paper using the “effective liquid
water path” (ELWP), which is the liquid water path that produces
the simulated amount of riming, assuming a riming efficiency of
100%. Since we use the same dataset in this paper, we adopt this
metric to distinguish between different amounts of riming.

While convenient for modeling purposes, ELWP is difficult to
determine from measurements, and thus it may not be obvious
which of our model datasets one should use. However, ELWP
can be related empirically to the mass-dimensional relationship of
the form m = aDb: Leinonen and Szyrmer (2015) found similar
exponents b for each ELWP with model A, and if we assume a
constant value of b using the average of all model A datasets, we
can relate the prefactor a to the ELWP as:

a =

{
0.873× ELWP+ 0.0259, 0 ≤ ELWP < 0.1

0.355× ELWP+ 0.0777, 0.1 ≤ ELWP < 2.0,
(1)

b = 2.19 (2)

where SI units are used for all quantities. Thus, the prefactor
increases relatively quickly at the onset of riming and then grows
almost linearly as a function of ELWP.

The riming models appear to provide a good approximation
of the conditions found in nature. Model C produced mass–
dimensional (m–D) relationships comparable to that found for
graupel by Heymsfield and Wright (2014). For the low end of the
snowflake density range, Leinonen and Moisseev (2015) showed
that the unrimed model aggregates have m–D relationships close
to those of Mitchell et al. (1990). Examples of the particles can
be found in Fig. S18 of the supporting information accompanying
this article, as well as Fig. 1 of Leinonen and Szyrmer (2015). The
m-D relations derived for each model and ELWP separately were
given in Fig. 2 of Leinonen and Szyrmer (2015), and therefore
will not be reproduced here.

Models A and B produced very similar scattering results
in Leinonen and Szyrmer (2015), and the RGA also behaved
similarly for those models. Hence, in the interest of brevity, we
only show the results for models A and C. The results for model
B can be found in the supporting information accompanying this
article.

2.2. Scattering properties

The complete description of the scattered wave in the far field is
given by the complex amplitude scattering matrix S. Using the
notation of Bohren and Huffman (1983), at scattering zenith angle
θ and azimuth angle φ, S is

S(θ, φ) =

[
S2 S3

S4 S1

]
. (3)

The scattering properties compared in this article are the
backscattering cross section Cbsc, the scattering cross section
Csca, the absorption cross section Cabs and the asymmetry
parameter g. These are derived from the amplitude scattering
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matrix as

Cbsc =
2π

k2

(
|S1(π, 0)|2 + |S2(π, 0)|2

)
(4)

Csca =
1

2k2

∫ 2π

0

∫ π

0

(
|S1(θ, φ)|2 +

|S2(θ, φ)|2
)
sin θ dθdφ (5)

Cabs =
2π

k2
(Re[S1(0, 0) + S2(0, 0)]) (6)

g =
1

2k2Csca

∫ 2π

0

∫ π

0

(
|S1(θ, φ)|2 +

|S2(θ, φ)|2
)
sin θ cos θ dθdφ. (7)

where the wavenumber k = 2πλ−1 and λ is the wavelength. The
backscattering cross section of snowflakes is the most important
property for radar retrievals. The attenuation of the radar signal
is also dependent on the extinction cross section Cext = Csca +

Cabs. Furthermore, the extinction and scattering cross sections as
well as the asymmetry parameter are needed in radiative transfer
calculations used to model multiple scattering in radar systems,
and the brightness temperatures observed by passive microwave
radiometers.

2.3. Rayleigh–Gans Approximation (RGA)

The Rayleigh–Gans Approximation (RGA) is a theory based
on the assumption that the electromagnetic interactions between
parts of the scatterer are negligible. The scattered wave is hence
modelled relatively simply as a superposition of waves scattered
from different parts of the scattering particle. Here, we give an
overview of the theory; more details can be found in Bohren and
Huffman (1983), whose notation we use throughout this paper.

The RGA theory modifies the Rayleigh scattering law (van de
Hulst 1957) to incorporate the interference of out-of-phase
scattered waves originating from various parts of the scatterer. The
amplitude scattering matrix given by RGA is

S(θ, φ) =

[
S2 0

0 S2 cos θ

]
(8)

S2 =
3i

4π
KNSk

3V f (9)

where i is the imaginary unit, V is the total volume of the material
in the scattering particle, f is the Rayleigh–Gans form factor and
KNS is the modified Clausius–Mossotti factor that is discussed in
Sect. 2.4.

The form factor f describes the degree of coherence of the
scattered waves. It is a dimensionless number

f =
1

V

∫
V

exp(iδ(R)) dR (10)

δ(R) = R · (kinc − ksca) (11)

where R is the position within the particle and δ depends on
the phase difference between the incident wave vector kinc and
scattered wave vector ksca. Note that the integration domain in
Eq. (10) only includes the ice in the snowflake; the air parts are
not considered and thus no effective medium approximation is
necessary. The RGA reduces to the Rayleigh scattering theory
when the dimensions of the scatterer are small compared to the
wavelength, and all scattered waves are in phase. In that case,
δ → 0 and consequently f → 1. In this study, we used snowflake
models made of small volume elements, and thus adopted the
following discretization for the numerical computation of Eq. (10)

f =

(
Nelem∑
k=1

Vk

)−1 Nelem∑
k=1

Vk exp(iδ(Rk)) (12)

where Nelem is the number of volume elements and Vk is the
volume of each element. Besides being simple and efficient to
compute, this discretization is the same as that performed in DDA
(see Sect. 2.6) for the solution of the volume integral equation.
Thus, the RGA and DDA were computed in equivalent ways and
the only difference is that the internal interactions are considered
in DDA, while they are neglected in RGA.

The applicability of the RGA is typically considered to require
that

|meff − 1| � 1 (13)

2kD|meff − 1| � 1 (14)

where D is the maximum diameter of the particle. These
requirements mean that the particles are assumed to be optically
soft and not too large, and that each volume element is only
excited by the incident field. For ice at microwave frequencies,
the real part of meff − 1 is much larger than the imaginary part,
and thus dominates the absolute value in Eqs. (13) and (14). Berry
and Percival (1986) predicted, and Tyynelä et al. (2013) showed
in the case of unrimed snowflakes, that these requirements can be
greatly relaxed for sparse aggregates. This is because the effective
refractive index of the ice–air mixture, rather than that of pure ice,
can be used for meff for the purpose of determining the validity
of RGA. As aggregate snowflakes become denser with riming, the
validity can be expected to weaken. The focus of the present work
is to investigate the errors thus introduced.

2.4. Adjustment of RGA for nonspherical monomers

The Clausius–Mossotti factor K, which appears in Eq. (9), is
classically defined as

K =
m2 − 1

m2 + 2
. (15)

The complex refractive index m depends on the material (e.g.
ice or liquid water) and is also a function of temperature and
frequency; we use the values published by Warren and Brandt
(2008). However, it has long been known (e.g. van de Hulst 1957)
that non-spherical scatterers require adjustments to Rayleigh
scattering theory because their polarizability differs from that of
spheres, and may in fact be anisotropic. Such modifications have
been adopted in various geophysical applications by, for example,
Seliga and Bringi (1976) for radar measurements of raindrops,
Westbrook (2014) for ice clouds, and by Battaglia et al. (1999)
for Gaussian particles.

When an ensemble of nonspherical scatterers is randomly
oriented, their total polarizability is isotropic. Importantly,
this is the case for aggregate snowflakes composed of many
nonspherical, randomly oriented ice monomers. As discussed by
Hogan et al. (2017), in such circumstances it is convenient to
account for the nonspherical monomers by adopting a modified
K factor that has been adjusted for the nonsphericity. The
modified K, denoted as KNS by Hogan et al. (2017), is defined
as the polarizability of the monomer divided by its volume.
For spherical monomers, this definition is equivalent to the K

of Eq. (15). On the other hand, for strongly nonspherical ice
monomers like plates or columns, KNS can be significantly
different from K. Westbrook (2014) used DDA simulations to
derive approximations of KNS for hexagonal plates, columns, and
dendrites as a function of their aspect ratio and volume fraction of
ice.

Hogan et al. (2017) showed that if an aggregate snowflake is
composed of ice monomers with a specific size and aspect ratio,
using KNS leads to much better agreement with DDA than using
the classical K. In this study, the aggregates were somewhat more
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complex because they had been built from a size distribution of
dendrites with size-dependent aspect ratios. In addition, the rimed
ice added to the particles further changes the monomer properties
depending on the degree of riming. Hence, an exact theoretical
correction was difficult to derive. We instead estimated KNS

by comparing the volume-normalized absorption cross section
Cabs/V derived from RGA and DDA for unrimed snowflakes at
Ku, Ka, and W-bands. As shown in Hogan et al. (2017), Cabs/V

for RGA is only a function of the imaginary part of KNS and
independent of the form factor.

We obtained the best agreement of Cabs/V with DDA
assuming hexagonal plates with an aspect ratio of 0.3. This value
is larger than the average aspect ratio of the ice crystals used, 0.12,
but the riming and the complex dendrite shapes of our ice crystals
can be expected to affect the effective aspect ratio. Furthermore,
we shall show in Sect. 3.1 that with a KNS derived using this
adjustment, the backscattering and scattering cross sections also
agreed well between RGA and DDA at the Ku band (Rayleigh
scattering regime). This indicates that the real part of KNS is also
approximated well using this adjustment. The resulting value for
|KNS|2 — a value which is linearly related to the RGA scattering
and backscattering cross sections — is 0.21 (almost independent
of frequency) compared to a value of 0.18 obtained when using
Eq. (15) with the m for pure ice. A similar value of 0.22 was
obtained for columns with aspect ratio of 4 used by Hogan et al.
(2017).

2.5. Self-Similar Rayleigh–Gans Approximation (SSRGA)

The Self-Similar Rayleigh–Gans Approximation is based on the
RGA and was developed by Hogan and Westbrook (2014). They
provided an analytic expression for the average backscattering
cross section of an ensemble of unrimed snow aggregates for
microwave frequencies. The method has been recently refined and
extended by Hogan et al. (2017), who also provide expressions for
the full scattering phase function, absorption and scattering cross
sections, as well as the asymmetry parameter.

The SSRGA requires five parameters that describe the
decomposition of the mean structure and the fluctuations of
mass distributed along a certain direction. In this study, these
parameters have been derived following the method described
in Hogan et al. (2017) for unrimed and rimed snow aggregates
(riming model A and C, as well as model B shown in the
supporting information); the derived SSRGA parameters are
discussed in Sec. 3.2.

2.6. Discrete Dipole Approximation

The reference method used in this paper is the Discrete Dipole
Approximation (DDA Flatau and Draine 1994), which models
the complete interactions between various parts of the scatterer
by dividing it into small homogeneous volume elements (which
behave as dipoles), and solving the resulting linear system of
equations. With the combination of fast Fourier transforms for
computing convolutions and iterative methods for solving linear
systems of equations, very large systems (up to N ≈ 109) can be
solved (Goodman et al. 1991).

The accuracy of DDA is generally limited only by the
size of the dipoles. Generally, the individual dipoles must be
much smaller than the wavelength inside the scattering particle.
Various heuristic criteria have been published to establish the
maximum permissible dipole size that still yields acceptable
results. According to Zubko et al. (2010), |m|kd < 0.5 is a
sufficient criterion; for us, this relative size was largest at W band
with |m|kd = 0.14, well below the limit.

The DDA implementation we used in this work was ADDA
(Yurkin and Hoekstra 2011). The ADDA output includes the

amplitude matrix S for every scattering angle, and from that
information, the scattering properties used here can be computed.
The details of the DDA setup were described by Leinonen and
Szyrmer (2015).

3. Results and discussion

3.1. Rayleigh–Gans Approximation

We show the RGA biases of the scattering properties in Fig. 1
(Cbsc), Fig. 2 (Csca), Fig. 3 (Cabs) and Fig. 4 (g). In these figures,
the size-dependent bias of RGA (shown as continuous lines) has
been estimated with a running mean using a Gaussian weighting
function. Since this article is focused on radar applications, we
report the biases for Cbsc, Csca and Cabs in decibels, which are
commonly used in the radar context. In order to make it easier
to compare between the magnitudes of the biases of different
variables, decibels are also used for the biases of Csca and Cabs,
even though these variables are not typically given in logarithmic
units. The reported bias in dB is thus

10 log10

(
CRGA

CDDA

)
, (16)

where CRGA and CDDA can be any of Cbsc, Csca or Cabs.
For example, 1 dB corresponds to approximately 26% relative
difference, while 3 dB is roughly a factor of 2. For g, linear
units are used instead and the bias is given as gRGA − gDDA. The
absolute changes in the parameters can be seen in Figs. 6–9.

Inspection of Fig. 1 reveals that the RGA bias of the
backscattering cross section for individual particles at single
orientations increases with the degree of riming when the particles
are sufficiently large compared to the wavelength. This is clearest
at the W band (Fig. 1c), where the unrimed and lightly rimed
snowflakes are concentrated relatively close to zero bias, while
the most heavily rimed snowflakes (brown diamonds) are spread
throughout the shown range of −25 to +15 dB. The dramatic
increase in the spread with riming is in contrast to the variability
of single-orientation backscattering cross sections at the W band
between snowflakes of similar size and mass: this variability
is nearly independent of riming at roughly ±10 dB (Fig. 4 of
Leinonen and Szyrmer 2015). Interestingly, then, for lightly rimed
snowflakes the variability of the RGA bias is much smaller than
the natural variability of the backscattering cross section, while
for heavily rimed particles it is actually much larger.

The spread in the bias for individual particles widens rapidly
at snowflake sizes larger than the wavelength, and at somewhat
smaller sizes for the graupel-like particles produced by riming
model C. The model C particles also exhibit a significant spread
at somewhat smaller sizes than those from model A. Without
the adjustment that results in the KNS factor, a small bias of
approximately −0.4 dB, or 10%, would persist even at small
snowflake sizes, but this is largely fixed by the adjustment we have
made, as explained in Sect. 2.4. Such a bias was previously noted
by Tyynelä et al. (2013), who attributed it to the inaccuracy of the
Rayleigh scattering theory for elongated shapes; the success of our
adjustment in removing this bias suggests that their explanation
was, in fact, correct, and that the K factor adjustment can be used
to eliminate the residual bias arising from this.

The mean RGA bias of Cbsc also becomes more negative with
increased riming at small size–wavelength ratios, but this effect
is modest compared to the increase in the spread. Only for the
most heavily rimed particles (model A at 2.0 kgm−2 and model
C) at the W band does the mean negative bias significantly exceed
1 dB. The model A bias exhibits no significant pattern besides
becoming somewhat more negative with increasing size. Model
C, on the other hand, appears to oscillate at diameters larger than
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Figure 1. The RGA backscattering cross section (Cbsc) bias (RGA minus DDA) vs. the maximum diameter of the snowflakes. Note the different bias scales in the plots.
The markers indicate the bias for individual particles at a single orientation; for clarity, only one out of every five particles is shown. The colour and shape of the markers
indicate the riming amount (expressed in terms of the effective liquid water path, in kg m−2) and model (as per Leinonen and Szyrmer 2015). The coloured curves show
the running mean biases for the corresponding dataset, the vertical line indicates the wavelength, and the horizontal grey line indicates where the zero point would be if the
unadjusted K factor was used. (a) For the Ku band. (b) For the Ka band. (c) For the W band.
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Figure 2. As Fig. 1, but for the scattering cross section Csca.
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c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



6 Leinonen et al.

0 5 10 15 20

0.2

0.1

0.0

0.1

0.2

R
G

A
 a

sy
m

m
et

ry
 p

ar
am

et
er

 b
ia

s
a) Ku-band

0 5 10 15 20
Maximum diameter [mm]

0.2

0.1

0.0

0.1

0.2

b) Ka-band

A, 0.0 kg m−2

A, 0.1 kg m−2

A, 0.2 kg m−2

A, 0.5 kg m−2

A, 1.0 kg m−2

A, 2.0 kg m−2

C

0 5 10 15 20

0.2

0.1

0.0

0.1

0.2

c) W-band

Figure 4. As Fig. 1, but for the asymmetry parameter g, and the bias is given in linear units rather than decibels.

λ/2 for both the Ka and W bands. This hints at a resonance effect
that causes the particle internal interactions to change. Because the
average bias is small for all but the most heavily rimed snowflakes,
the applicability of the RGA can be greatly extended in practice.
Remote sensing devices measure the sum of signals from a large
number of hydrometeors, and thus errors with individual particles
are effectively averaged out.

The single-snowflake biases for Csca (Fig. 2) are less scattered
than those for Cbsc. The absolute values of the bias are also
smaller, especially for the W band. Figs. 2a–b reveal a consistently
more negative bias with increased riming; this effect is most
pronounced at the Ka band. Above a snowflake diameter of
approximately 5 mm, the mean bias hardly varies with size, which
is consistent with the findings of Tyynelä et al. (2013). However,
for the W band, Fig. 2c shows an interesting pattern for the most
heavily rimed particles: their bias shifts rapidly to more positive
values once the particle size becomes large enough. This feature
is clearest for the model C snow particles, for which the bias is
remarkably consistent as a function of size.

The behavior of the bias ofCabs (Fig. 3) is more consistent than
that of Cbsc or Csca. At all wavelengths, there is a steady, gradual
increase in the negative bias of RGA with increasing riming. The
magnitude of the bias effect is similar to that of Csca, but it
becomes quite steadily larger with increased riming. The rapid
size-dependent increase in the bias for heavily rimed snowflakes
at the W band in Csca is absent from the behavior of the Cabs bias,
which is relatively constant even at the W band.

In contrast to the cross sections, the bias in g (Fig. 4) does not
appear to be significantly dependent on the amount of riming.
The bias is near zero for small particle sizes, and begins to
exhibit spread at snowflake diameters larger than λ/2. There is
no discernible pattern to the spread for model A, but model C
appears to have an increasingly negative bias between λ/2 and λ
at the Ka and W bands, quickly shifting to a slightly positive bias
at sizes larger than λ (W band only). This is likely caused by the
same resonance effect that is responsible for the patterns in Cbsc

and Csca.

3.2. Self-Similar Rayleigh–Gans Approximation

The SSRGA is formulated using five parameters, as defined by
Hogan et al. (2017): αeff , κ, β, γ and ζ1. Their roles are described
in more detail below. Each parameter has been derived for all
particle types with different ELWP and within 1.5 mm wide size

bins. The derived parameters are shown as a function of size in
Fig. 5.

The effective aspect ratio αeff = d/D is the ratio between the
particle extent d in the direction of the propagating wave (in
this study, always assumed to be along the vertical axis), and
the maximum particle extent D. The aspect ratios are mostly
between 0.6 and 0.7, which is a typical range also found in in-
situ observations and snowflake growth models (Korolev and Isaac
2003; Westbrook et al. 2004a; Hogan et al. 2012).

As expected, the aspect ratio increases with riming. This effect
is largest for the smaller size range because even a small number
of droplets freezing onto the small aggregate cause the shape to
become more round, and aspect ratios can be up to 0.9. In contrast,
for the largest aggregates of model A, even the strongest riming
does not significantly change the overall aggregate structure, and
the aspect ratios remain between 0.65 and 0.7. Riming model C
produces the aspect ratios closest to 1 (around 0.85–0.9), even at
small sizes. This can be explained by the generation process, in
which only a small number of single crystals grows only due to
continuous riming.

The kurtosis parameter κ describes the shape of the average
mass distribution along the direction of propagation. A Gaussian
distribution would yield κ = 0; a positive value indicates that
the mass distribution has a sharp peak in the centre along with
significant tails, and a negative κ denotes a more “flat-topped”
distribution. Our κ values found for the rimed aggregates with
different ELWPs range between 0.1 and 0.25. This range, and also
the near independence of size, is very similar to the results found
for the two aggregate models analyzed in Hogan et al. (2017).

The fluctuations of mass around the average structure are
described by the remaining three parameters β, γ, and ζ1.
After subtracting the average mass structure, a Fourier-like
decomposition is applied to the fluctuations. At wavenumbers that
correspond to the size range where the particle structure is self-
similar, the spectrum of the mass fluctuations closely follows a
power law (Sorensen 2001; Hogan and Westbrook 2014). We were
able to fit such a power law even at the highest ELWP values.
The self-similarity assumption thus appears sufficiently valid (or
at least phenomenologically correct) also for our largest degrees
of riming; an exception is the size range below 3 mm, which we
excluded from the analysis.

The prefactor of the power law is β, which describes the
amplitude of the fluctuations, while γ is the exponent of the fit
indicating how fast the amplitude of mass fluctuations decreases

c© 2017 Royal Meteorological Society Prepared using qjrms4.cls



Rayleigh–Gans and Snowflake Riming 7

with larger wavenumbers (smaller sizes). For fractal particles,
the slope parameter γ is closely related to the fractal dimension
(Sorensen 2001). Our results seem to confirm this interpretation
since we found a gradual increase of γ with riming from a value
close to 2 to values between 2.5 and 3.7. A fractal dimension of
2 is typical for unrimed aggregates both simulated and observed
(e.g. Westbrook et al. 2004a,b; Schmitt and Heymsfield 2010).
Values closer to 3 are expected from a more homogeneously
filled structure similar to our most heavily rimed aggregates. It
is also interesting to see in Fig. 5b that for moderate ELWP (e.g.
0.5 kgm−2), γ is very size dependent, while the values become
nearly constant with size for non-riming and maximum riming
conditions.

The β parameter shows a significant variability as soon as the
aggregates become rimed. At medium ELWPs we found β to peak
at around 10 times higher values compared to the remaining size
range and to unrimed aggregates. It seems likely that this behavior
is related to the change of internal mass fluctuations, but currently
we are unable to provide a thorough explanation.

The third parameter ζ1 only affects the first wavenumber of the
spectrum and shows only a slight increase with size and a decrease
with ELWP. Overall, the range of values found for all SSRGA
parameters derived for the unrimed aggregates is within the range
found by Hogan et al. (2017).

The ensemble scattering properties derived with the SSRGA
are compared in Figs. 6–9 with the RGA computations for the
individual particles. Although individual particles calculated with
RGA show occasional large deviations from the ensemble SSRGA
scattering properties — especially for backscattering (Fig. 6) —
the SSRGA fits the RGA scattering properties very well. This
result is in general agreement with the comparisons of SSRGA
and RGA for unrimed aggregates presented in Hogan et al.
(2017). It is an interesting finding of this study that the SSRGA
approximates all scattering parameters of the RGA very well even
for the highest degrees of riming, where the assumption of self-
similarity might become less valid due to the mixing of different
growth processes (aggregation and riming).

4. Conclusions

In this paper, we examined the applicability of the Rayleigh–
Gans Approximation (RGA) and the Self-Similar Rayleigh–
Gans Approximation (SSRGA) for the calculation of microwave
scattering properties of snowflakes. As reference method, we
used the discrete dipole approximation (DDA). The focus of this
work was to determine whether the RGA remains useful with the
introduction of riming, and whether SSRGA is able to capture the
properties of RGA for rimed snowflakes.

We found that the RGA is subject to increasing errors with
larger particle sizes, shorter wavelengths and higher degrees of
riming. For individual particles, especially at the W-band, there
are rather large differences between the RGA and DDA methods
already for moderate riming. The errors of the backscattering
cross section are particularly large compared to the more modest
biases of the scattering and absorption cross sections. On the other
hand, the systematic errors are small for all but the most heavily
rimed snowflakes: the average bias is at most 1 dB except for
model A at ELWP = 2.0 kgm−2 (the largest amount of riming
used in the dataset), and for the graupel-like model C. Thus,
for realistic scenarious where a large number of snowflakes is
observed simultaneously, the errors attributed to the use of RGA
are typically smaller than those resulting from uncertainties in the
snowflake shape and density (for an evaluation of the latter, see
e.g. Mace and Benson 2017; Xu and Mace 2017).

We were able to reduce the small, constant biases found in RGA
by estimating a constant adjustment to the Clausius–Mossotti

factor K. The adjustment is based on matching the absorption
cross sections given by DDA and RGA, but it was also able
to nearly eliminate biases in the backscattering and scattering
cross sections. This suggests that the non-sphericity of the ice
crystals was responsible for the small constant biases reported by
Tyynelä et al. (2013), and this type of adjustment can be used to
correct for them. Unfortunately, this adjustment required analysis
of the already-known DDA scattering properties, and it is not
obvious how the adjustment factor should be estimated by those
researchers who wish to use RGA or SSRGA without resorting to
DDA calculations. As a first approximation, we suggest that they
use our adjusted value of |KNS|2 = 0.21, although the exact value
depends on the ice crystal type. This value is almost constant over
the microwave wavelength range. On the other hand, Im[KNS],
which determines the absorption, is wavelength-dependent, but
can be calculated for a given wavelength using the method of
Westbrook (2014) for hexagonal plates with an aspect ratio of 0.3.

Based on our results, we recommend that DDA be used as the
reference method of choice for snowflake scattering calculations
when the available computational resources permit it. The RGA
and SSRGA are viable alternatives for unrimed as well as
lightly or moderately rimed snowflakes, especially in the usual
case where many snowflakes are observed simultaneously, and
the individual scatterers are averaged out. Only with the most
heavily rimed snowflakes do the RGA and SSRGA display
significant systematic biases. For the graupel-like particles of
model C, Leinonen and Szyrmer (2015) showed that the T-
matrix calculations for spheroidal particles can estimate the
backscattering properties quite accurately, even though for
unrimed snow the spheroid model was very inaccurate. This
considered, given a choice between RGA or the T-matrix method,
RGA is probably more appropriate for the majority of icy
hydrometeors, but for backscattering from graupel particles it
may, in fact, be preferable to use the spheroid model and the T-
matrix method.

The SSRGA approximates the RGA results very well for all
scattering parameters and degrees of riming. Considering that
most remote sensors measure the average scattering properties
of a certain particle ensemble within their measuring volume,
the SSRGA seems to be a valuable method for calculating these
ensemble scattering properties. The most appealing aspect of the
RGA and SSRGA, besides their fast computation, is that they
directly relate the structural properties of the particles to their
scattering properties.

A better understanding of the limitations of the RGA and
SSRGA, which are mainly a result of the scattering interactions of
the internal particle elements, will help exploit their potential as a
fast scattering approximation for radiative transfer calculations of
active and passive microwave sensors. It also seems to be possible
to find a sufficient correction for at least some of the biases found
for RGA and SSRGA in previous studies, but this will require a
more in-depth study including different aggregate monomers.

Modern in-situ instrumentation that allows one to investigate
snowflake structure, as well as aggregation and riming models,
are vital for better constraining the possible range of variability of
snow structure parameters. These constraints can then be directly
linked to the scattering properties with methods like the RGA or
SSRGA.
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Amplification: Climate Relevant Atmospheric and SurfaCe
Processes, and Feedback Mechanisms (AC)3”.

Supporting Information

The supporting information file accompanying this article presents
Figs. S1–S18. Figs. S1–S9, are equivalent to Figs. 1–9 in this
article, but instead show data generated using the riming model B
of Leinonen and Szyrmer (2015). Figs. S10–S13 show alternative
versions of Figs. 1–4 using the mass-equivalent diameter on the
horizontal axis instead of the maximum diameter. Figs. S14–S17
contain versions of the same plots using the size parameter on
the vertical axis instead. Fig. S18 shows examples of the various
snowflakes generated using our model.
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