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Amplified surface temperature 
response of cold, deep lakes to 
inter-annual air temperature 
variability
R. Iestyn Woolway & Christopher J. Merchant

Summer lake surface water temperatures (LSWTs) have previously been shown to respond more 
rapidly to climatic warming compared to local summer surface air temperatures (SATs). In a global-
scale analysis, we explore the factors underpinning the observation of an amplified response of 
summer LSWT to SAT variability using 20 years of satellite-derived temperatures from 144 lakes. We 
demonstrate that the degree of amplification in inter-annual summer LSWT is variable, and is greater 
for cold lakes (e.g. high latitude and high altitude), which are characterised by a short warming season, 
and deep lakes, that exhibit long correlation timescales of temperature anomalies due to increased 
thermal inertia. Such lakes are more likely to display responses in excess of local inter-annual summer 
SAT variability. Climatic modification of LSWT has numerous consequences for water quality and lake 
ecosystems, so quantifying this amplified response at a global scale is important.

Climate change is occurring globally and is a first-order control that can affect lakes through a complex series of 
indirect mechanisms, via effects on the catchment, and direct mechanisms, such as altered thermal and hydro-
logical budgets1, 2. An important primary response of a lake to climatic warming is change in lake surface water 
temperature (LSWT). Change in LSWT causes secondary effects, as temperature is one of the most fundamental 
drivers of ecosystem structure and function. Temperature affects rates and equilibrium positions of chemical 
reactions3 and rates of metabolic processes4–6; it has a pervasive effect on a range of physical, chemical and biolog-
ical attributes and processes, and influences rates of photosynthesis and respiration7, biological growth rates8, and 
organism size9. An understanding of LSWT variation and its controls is therefore paramount to understanding 
how lakes will respond to climate change.

LSWTs can be measured from satellite observations10, 11 and can provide detailed information on 
climate-induced changes in lakes at regional and global scales12, 13. Recent efforts have collated satellite data with 
various in situ measurements, to investigate global patterns of summer (July-September) LSWT changes14. A 
recent global synthesis of collated summer LSWT measurements demonstrated that lakes have been warming 
in recent years, with LSWTs in some regions exceeding nearby surface air temperature (SAT) changes15. The 
amplification of LSWT response to SAT is unexpected from studies of lake surface heat budgets16, but several 
causes could explain the differential in warming, including changes to large-scale climatic forcing17 (e.g. solar 
radiation), an increase or decrease in lake water clarity18, 19, and changes to internal lake processes20 (e.g. the 
timing of stratification).

At a global scale, ice-covered lakes have been described as warming the most rapidly15, where a decline in win-
ter ice cover has been reported to result in an earlier onset of thermal stratification and, thus, an increase in the 
period over which the lake warms20. However, a direct cause and effect relationship of winter ice cover on sum-
mer LSWTs has yet to be reported, and its influence in driving excess summer LSWT warming is in question21. 
Moreover, other studies have demonstrated that ice cover is not a prerequisite for accelerated summer LSWT 
warming12, 22. Milder winter conditions, together with increased SAT and solar radiation in spring, resulting in 
earlier onset of stratification and thus increased heat absorption by surface waters21, 23, is now believed to be one 
of the main driving mechanism of rapid LSWT warming.
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The relative timescales at which surface waters can react to equilibrating surface heat fluxes can influence a 
lake’s response to antecedent winter/spring conditions. Previous studies in the North American Great Lakes have 
demonstrated that the influence of thermal anomalies may only persist for a sufficient time to influence summer 
LSWT in very deep lakes, as these systems constantly adjust towards equilibrium with the atmosphere24. Others 
suggest that both latitude and depth could regulate the magnitude of accelerated warming21, 25 and recent studies 
illustrate that high latitude and high elevation lakes display substantial warming of their surface waters6.

In this contribution, we investigate the influence of early-warming season thermal anomalies on summer 
(July-September) LSWT for a global distribution of lakes (Table S1), characterised by varying mean depths and 
situated across climatic zones. Specifically, using satellite-derived LSWTs from 144 lakes (see Methods), we assess 
what are the relative contributions from changes in early-season conditions vs. changes in summer meteoro-
logical conditions to the amplification of summer LSWTs and how these factors co-vary along gradients of geo-
graphic location (latitude and elevation) and lake depth.

Results and Discussion
To investigate the influence of antecedent winter/spring conditions on summer (July–September) LSWT, we first 
calculate, for 144 global lakes, the day of year (DOY) in which LSWT first persistently exceeds 4 °C (close to the 
temperature of maximum density of freshwater), a marker used to capture the timing of the early phase of sea-
sonal lake warming26. In this analysis, we refer to this DOY as the start of the warming period. A multiple linear 
regression model including latitude, elevation, and mean depth explains 69% of the variation in the start of the 
warming period across all lakes. Replacing latitude and elevation with annual mean SAT (to which latitude and 
elevation are related), results in a multiple linear regression that explains 84% of the variation in the start of the 
warming period (Table S2), with dependencies that are reasonably linear and statistically significant (Fig. 1). 
Throughout the analysis we use annual mean SAT to summarize the environmental conditions of the analysed 
lakes.

The start of the warming period can have a considerable influence on summer LSWTs as a result of the nonlin-
ear response which occurs when LSWT crosses the 4 °C threshold, which for some lakes can be used to describe 
the timing of the onset of stratification20, 27. In stratifying lakes, the depth of the upper mixed layer changes from 
roughly the full lake depth and tends towards the shallower summer mixing depth after the 4 °C threshold is 
exceeded. LSWT warms more rapidly when the volume of water that directly participates in surface heat exchange 
is small. LSWTs can thus display an amplified response to SAT variability after LSWT crosses from <4 °C to 
>4 °C21, 23. To quantify the statistical influence of the start of the warming period on summer LSWT variability 
we calculate the proportion of variance (r2) shared between its inter-annual variability and that of summer LSWT 
for each lake (see Methods). By calculating the inter-annual variability in the start of the warming period, we 
determine if a lake has started to warm earlier or later compared to its climatological annual cycle. We find that 
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Figure 1. (a) Average first day of year in which lake surface water temperature (LSWT) persistently exceeds 
4 °C (“start of the warming period”), and its relationship with (b) annual mean surface air temperature (SAT) 
and (c) lake mean depth. Colours in panel (b) signify latitude. Linear regressions of the statistically significant 
(p < 0.05) relationships are shown. The map was generated using the MATLAB mapping toolbox43 (URL-
https://www.mathworks.com/products/mapping.html).
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the influence on summer LSWT of the anomaly in the start of the warming period varies systematically at a global 
scale (Fig. 2a,b), and is greater in colder regions (e.g. high latitudes).

To establish further the association of the start of the warming period and summer LSWT, we evaluate three 
linear regression models. These regressions consider the influence of two previously published predictors of sum-
mer LSWT, namely the summer-mean (July–September) and winter-mean (January–March) SAT15, in addition 
to considering the influence of the start of the warming period. The first regression model (model 1) relates the 
inter-annual summer LSWT to summer SAT only. Across all the lakes, the median of the explained inter-annual 
variability for model 1 is 69.6%, the maximum r2 for an individual lake being 89.8% and the minimum being 
14.7%. The addition of winter SAT (model 2) has negligible influence on r2 (now expressed as an adjusted r2, radj

2 , 
to account for the additional predictor) for 64% of lakes, and typically results in a change in the order of <10%. In 
Fig. 2c and d, we show the improvement in radj

2  over model 1 of adding the date in which the warming period 
starts (model 3) as an additional predictor (instead of the winter-mean SAT). We find that the explained variabil-
ity of summer LSWT is more significantly increased when the start of warming period is included for lakes in cold 
regions (i.e. low mean SAT) and for deep lakes (Table S3).
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Figure 2. Relationship between (a,b) the proportion of variance (r2, %) shared between the inter-annual 
variability in summer lake surface water temperature (LSWT) and the inter-annual variability of the first day of 
year when LSWT persistently exceeds 4 °C. (c,d) The improvement (%) in the proportion of variance explained 
by introducing the date in which LSWT first persistently exceeds 4 °C to a multiple linear regression model of 
summer LSWT and summer surface air temperature (SAT) as predictors. Bar plots demonstrate averages for 5° 
latitudinal ranges, with the standard deviation indicated by the line. Colours in the bar plots signify the annual 
mean SAT for each latitudinal range. Maps were generated using the MATLAB mapping toolbox43 (URL-
https://www.mathworks.com/products/mapping.html).
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The mean SAT affects the degree of influence of the timing of the seasonal lake warming on LSWT because of 
the association (Fig. 3 and Table S4) between mean SAT and the length of the warming period (which we define 
as the number of days between the climatological start of the warming period and time of maximum LSWT). In 
colder regions, the duration of warming is shorter, making it more likely that anomalies in the timing of the start 
of warming can affect the maximum LSWT attained.

To demonstrate the significance of this association we calculate, for each lake, the correlation between the 
anomaly in the start of the warming period and later anomalies in LSWT (see Methods for details). In this way, 
we evaluate how LSWTs are influenced by the preceding early phase of lake warming and how this association 
varies with time. We find a sharp decrease in the correlation between these anomalies with time (e.g. Fig. 4a) – i.e. 
a decrease in the influence of the DOY of the start of warming on LSWT as time goes on. To quantify this, we cal-
culate for each lake the duration over which these anomalies correlate significantly, tcorr. This represents the period 
over which variations in the timing of the warming period can influence LSWT. Typically, this is during the first 
one or two months of a given lake’s climatological warming period, and thereafter, these anomalies are decorre-
lated by weather variability. This means that summer LSWTs can be influenced by the start of the warming period, 
and thus winter/spring conditions, only for lakes where the warming period is short relative to the persistence 
of early season thermal anomalies – i.e. where the length of the warming period is less than or comparable to 
tcorr. Summer LSWTs are less influenced by the time at which the warming period starts if the length of warming 
period is much longer than tcorr, as generally occurs equator-ward of 50 °N.

Mean depth influences the observed tcorr across the 144 lakes. In deeper lakes, the anomalies in the start of 
warming DOY and LSWT remain correlated for longer (Fig. 4a and b). This slower decrease in correlation over 
time results in a greater potential for variations in the start of the warming period to influence the subsequent 
summer LSWT. Therefore, winter/spring weather conditions and early-season thermal anomalies are more able to 
influence the summer LSWT of deep lakes; day-to-day changes in SAT erode established thermal anomalies more 
slowly in deep lakes28. In deep lakes that stratify, the transition in mixing depth (from maximum lake depth to 
the summer mixing depth) is a key factor in determining the effective heat capacity of the lake and the amplified 
response to SAT variability.

To summarize the above analyses, we evaluate the influence of mean SAT and mean depth on summer LSWT 
variability relative to summer SAT variability. For each lake, we calculate the ratio of these inter-annual variances, 
Var(LSWT)/Var(SAT). Where this ratio exceeds 1, it is plausible to expect amplification of the summer LSWT 
response to summer SAT variability. The ratio of the variances is plotted against mean depth (Fig. 5a) and against 
annual mean SAT (Fig. 5b). The ratio of variances is significantly correlated with mean depth and is higher for 
deeper lakes (Fig. 5a). Our interpretation is that thermal anomalies are more likely to persist in deep lakes and 
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Figure 3. (a) Average length of the warming period, defined as the time difference (in days) between the 
average earliest day of year in which lake surface water temperature (LSWT) persistently exceeds 4 °C and the 
time of maximum temperature, and its relationship with (b) annual mean surface air temperature (SAT) and 
(c) mean depth. Colours in panel (b) signify latitude. Linear regressions of the statistically significant (p < 0.05) 
relationships are shown. The map was generated using the MATLAB mapping toolbox43 (URL-https://www.
mathworks.com/products/mapping.html).
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enhance the summer LSWT variability. For this reason, in a scenario of year-round warming of SAT, deep lakes 
are more likely to show amplification of summer LSWT changes. The influence of annual mean SAT on amplifica-
tion is also evident from looking at the ratio of variances against mean SAT (Fig. 5b). Mean annual SAT influences 
amplification in conjunction with mean depth via its association with the length of the warming period. Mean 
SAT is a critical factor for the length of the warming period relative to persistence time-scale for the lake, tcorr. In 
terms of sensitivity to climatic variations, Fig. 5 suggests that where a lake is sufficiently deep (and tends to have 
a long tcorr) and is situated in a cold climate (and tends to have a short warming period), amplification of summer 
LSWT to summer SAT variability is more likely to occur.

Conclusions
We have analysed 20 years of satellite observations to study the influence of early-season thermal anomalies on 
summer LSWT in an analysis of 144 lakes across the globe. Our results indicate the relative importance of factors 
contributing to the amplified response of lakes to atmospheric temperature variability: where the length of the 
warming period is sufficiently short (for the depth of the lake in question), the direct effect of summer SAT forc-
ing may be augmented by the persisting effect of an earlier start to the warming period. Timing of the warming 
period will have a greater influence on summer LSWT in lakes where the number of days between the start of 
warming and peak temperature is short and lake thermal inertia is large, which is associated with greater persis-
tence of any temperature anomalies induced by an earlier start of the warming period. Thus, deep lakes situated 
in cold climates are most likely to display an amplified response to inter-annual SAT variability. Further analysis 
and longer data records are required to assess the degree to which similar mechanisms could drive an amplified 
response to SAT trends over the longer term associated with climate change. Amplified inter-annual summer 
LSWT variability can have a substantial influence on lake ecology. For example, warmer LSWTs can result in the 
modification of the biochemical compositions of some algal species29, result in advanced zooplankton phenology 
and reduced phytoplankton biomass30, promote the occurrence of toxic cyanobacterial blooms31–33, and threaten 
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water quality34. Any climatic modification of SAT and LSWT variability has implications for local economies 
that depend on lakes for drinking water, agricultural irrigation, recreation, and tourism. Better understanding of 
the amplified response of LSWT to climatic variability, and the factors that control it, is therefore beneficial for 
climate-change impact and water management studies.

Methods
Lake surface temperature observations. In this study, we utilize LSWTs from the ATSR (Along Track 
Scanning Radiometer) Reprocessing for Climate: Lake Surface Water Temperature and Ice Cover (ARC-Lake) 
dataset35. LSWT observations are available for 246 globally distributed lakes, derived from the ATSR series, which 
consists of ATSR-1 (1991–1996), ATSR-2 (1995–2002), and AATSR (2002–2011), and retrieved at a spatial reso-
lution of ~1 km at nadir and then averaged to 0.05° cells, where each 0.05° cell has an uncertainty in the order of 
0.4 K (relative standard deviation).

In the ARC-Lake dataset, a target lake is identified on the basis of the geographical coordinates of a pixel in the 
ATSR imagery. A land/water mask reconciling the global lakes and wetlands database polygon area and the Naval 
Oceanographic Office data was developed specifically to define lake boundaries used in the ARC-Lake project35. 
Valid LSWTs are estimated only for pixels that are effectively free from cloud, where an algorithm based on Bayes’ 
theorem36 was used for assigning a clear-sky probability. The effectiveness of the lake product retrieval algorithms 
is assessed using two methods of data validation: analysis of the performance for case study images at full ATSR 
resolution and quantitative point comparisons with in situ observations. A match-up dataset from in situ tem-
perature data consisting of 52 observation locations covering 18 lakes was constructed35. The mean differences 
ranged between the instruments from −0.34 to −0.09 °C (day) and −0.18 to +0.06 °C (night). Further details of 
the retrieval process and sensor specifications are provided in ref. 35.

In this study we use lake-mean surface water temperature time series, which are calculated for each lake 
by reconstruction (gap-filling), using dynamic empirical orthogonal functions37, of the whole-lake LSWT field 
from the intermittent and partial data coverage available from the satellite observations. We use lake mean sur-
face water temperatures, which are calculated for each lake by averaging across the reconstructed area, provid-
ing a daily LSWT series. In this study we use night-time ARC-Lake LSWTs. As shown in the reference above, 
night-time LSWT retrievals are generally more accurate that those retrieved during the day, because near-surface 
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variability from the skin effect is less38 and there is less near-surface stratification variability associated with var-
iability in the solar radiation cycle39. In validation, the apparent daytime uncertainty (0.43 K) is greater than that 
at night (0.33 K) for a comparison to in situ data at particular locations, on average across the available valida-
tion locations and three satellite instruments26. The uncertainty in the night-time lake-mean values is difficult to 
quantify because the spatio-temporal correlations of error are not known, but the value of 0.33 K gives a plausible 
upper bound.

Of the 246 lakes in the ARC-Lake dataset, not all are suitable for inclusion in this study. We focus only on 
freshwater lakes, excluding lakes that are saline, which we define to be those with total dissolved solids content 
exceeding 3 g l−1. With this limit, we also only select lakes in which their surface temperatures cross from <4 °C to 
>4 °C during their climatological annual cycle. To calculate the climatological annual cycle, we average the LSWT 
for a given DOY across all complete years from the time-series. After these exclusions, 144 lakes remain. These 
lakes vary considerably in their geographic and morphological characteristics. They range in altitude between 0 m 
below sea level to 4446 m above sea level, in latitude between 28.97°N and 74.48°N, and in mean depth between 
1.2 m and 680 m (Table S1).

Lake depth information. Mean depth information for each lake included in this study was extracted from 
the Global Lake Database (GLDB, v2), for which data were either digitised from different topographic maps or 
extracted from ETOPO1, a 1 arc-minute relief model of Earth’s surfaces40.

Air temperature observations. In this investigation we inform our LSWT analysis using SAT data grid-
ded at 0.5° resolution from the Climatic Research Unit (CRU) time series version 3.23 (CRUTS v3.23)41. Data 
were selected for grid points situated closest to the lake centre and we selected periods that matched the available 
ARC-Lake data.

Statistical Methods
Regression models. A number of linear regression and multiple linear regression models were used in 
this study to evaluate the influence of geographic location and mean depth on summer LSWT variability. For all 
regressions where we compare the inter-annual variations in LSWT and SAT and/or the time in which LSWT first 
exceeded 4 °C, we first linearly detrended all time series to remove any biases which may emerge by comparing 
time series’ with similar trends. All statistical analyses in this study were performed in R42.

Correlation of lake temperature anomalies. We calculate the timescale on which anomalies in the tim-
ing of the start of warming correlate significantly with LSWT anomalies, tcorr, as follows. For a given lake, we find 
the latest start-of-warming DOY across all years in the time-series, and calculate anomalies in LSWT relative to 
that DOY until the time of LSWT maximum. We then calculate the covariance (r2) between the inter-annual var-
iability in the start DOY of the warming period (i.e. the time in which LSWT first exceeded 4 °C) and the LSWT 
anomaly for each day after the latest start-of-warming DOY.
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